Predicting respiratory motion for four-dimensional radiotherapy
International Nuclear Information System (INIS)
sinusoidal model. With the adaptive filter, average prediction errors of less than 0.2 cm (1σ) are possible for response times less than 0.4 seconds. In comparing prediction error with system latency error (no prediction), the adaptive filter model exhibited lesser prediction errors as compared to the sinusoidal model, especially for longer response time values (>0.4 seconds). At smaller response time values (<0.4 seconds), improvements in prediction error reduction are required for both predictive models in order to maximize gains in position accuracy due to prediction. Respiratory motion patterns are inherently complex in nature. While linear prediction-based prediction models perform satisfactorily for shorter response times, their prediction accuracy significantly deteriorates for longer response times. Successful implementation of real-time target-tracking-based radiotherapy requires response times less than 0.4 seconds or improved prediction algorithms
Image-guided radiotherapy (IGRT) and four dimensional radiotherapy (4DRT)
International Nuclear Information System (INIS)
a metallic marker in the tumour can be determined with an accuracy of 1 mm every 0.033 second during radiotherapy. This dramatic improvement in the localization of moving tumours has made it possible to irradiate the tumour at a favourable phase of respiration. We have improved the 3D radiotherapy planning system (3D RTP) to incorporate the time factor into the treatment planning and called it four dimensional (4D) treatment planning. More than two hundred patients with lung, liver, and prostate cancers were treated using the RTRT system. Internal tumour motion was investigated using the fiducial markers. It revealed that inter-fractional and intra-fractional changes of amplitude and speed of the tumour motion were larger than we expected. Correction of target localization by using the RTRT system at the start of radiotherapy everyday is useful to reduce inter-fractional setup error for brain, spinal cord, head and neck, esophagus, prostate, and uterus tumours. For reducing intra-fractional error due to organ motion, the RTRT system was also shown to be useful for lung, liver, pancreas, and adrenal tumours with a little exposure of diagnostic X ray. Clinical benefits of these techniques have been suggested for many organs to reduce normal tissue complications. Migration of the marker, shrinkage and deformation of the tumour during radiotherapy are the subjects to be carefully controlled during the radiotherapy
Alasti, H.; Cho, Y. B.; Vandermeer, A. D.; Abbas, A.; Norrlinger, B.; Shubbar, S.; Bezjak, A.
2006-06-01
We present treatment planning methods based on four-dimensional computed tomography (4D-CT) to incorporate tumour motion using (1) a static field and (2) a dynamic field. Static 4D fields are determined to include the target in all breathing phases, whereas dynamic 4D fields are determined to follow the shape of the tumour assessed from 4D-CT images with a dynamic weighting factor. The weighting factor selection depends on the reliability of patient breathing and limitations of the delivery system. The static 4D method is compared with our standard protocol for gross tumour volume (GTV) coverage, mean lung dose and V20. It was found that the GTV delineated on helical CT without incorporating breathing motion does not adequately represent the target compared to the GTV delineated from 4D-CT. Dosimetric analysis indicates that the static 4D-CT based technique results in a reduction of the mean lung dose compared with the standard protocol. Measurements on a moving phantom and simulations indicated that 4D radiotherapy (4D-RT) synchronized with respiration-induced motion further reduces mean lung dose and V20, and may allow safe application of dose escalation and CRT/IMRT. The motions of the chest cavity, tumour and thoracic structures of 24 lung cancer patients are also analysed.
International Nuclear Information System (INIS)
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase Dmean and generalized equivalent uniform dose (gEUD) for liver were by 3.1%± 3.3% (p= 0.003) and 2.8%± 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%± 11.2% (p= 0.003) and 15.1%± 11.0% (p= 0.003), respectively. The Dmax and gEUD for stomach was decreased by 5.3%± 5.8% (p= 0.003) and 9.7%± 8.7% (p= 0.003), respectively. The Dmax and gEUD for right kidney was decreased by 11.2%± 16.2% (p= 0.003) and 14.9%± 16.8% (p= 0.005), respectively. For left kidney, Dmax and gEUD were decreased by 11.4%± 11.0% (p= 0.003) and 12.8%± 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%± 5.8% (p= 0.003) and 17.2%± 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.
Yu, Jesang; Choi, Ji Hoon; Ma, Sun Young; Jeung, Tae Sig; Lim, Sangwook
2015-01-01
Purpose To compare audio-only biofeedback to conventional audiovisual biofeedback for regulating patients' respiration during four-dimensional radiotherapy, limiting damage to healthy surrounding tissues caused by organ movement. Materials and Methods Six healthy volunteers were assisted by audiovisual or audio-only biofeedback systems to regulate their respirations. Volunteers breathed through a mask developed for this study by following computer-generated guiding curves displayed on a scree...
International Nuclear Information System (INIS)
Stereotactic ablative body radiotherapy (SABR) is an emerging treatment modality for primary renal cell carcinoma. To account for respiratory-induced target motion, an internal target volume (ITV) concept is often used in treatment planning of SABR. The purpose of this study is to assess patterns of kidney motion and investigate potential surrogates of kidney displacement with the view of ITV verification during treatment. Datasets from 71 consecutive patients with free breathing four-dimensional computed tomography (4DCT) planning scans were included in this study. The displacement of the left and right hemi-diaphragm, liver dome and abdominal wall were measured and tested for correlation with the displacement of the both kidneys and patient breathing frequency. Nine patients were excluded due to severe banding artifact. Of 62 evaluable patients, the median age was 68 years, with 41 male patients and 21 female patients. The mean (range) of the maximum, minimum and average breathing frequency throughout the 4DCTs were 20.1 (11–38), 15.1 (9–24) and 17.3 (9–27.5) breaths per minute, respectively. The mean (interquartile range) displacement of the left and right kidneys was 0.74 cm (0.45-0.98 cm) and 0.75 cm (0.49-0.97) respectively. The amplitude of liver-dome motion was correlated with right kidney displacement (r=0.52, p<0.001), but not with left kidney displacement (p=0.796). There was a statistically significant correlation between the magnitude of right kidney displacement and that of abdominal displacement (r=0.36, p=0.004), but not the left kidney (r=0.24, p=0.056). Hemi-diaphragm displacements were correlated with kidney displacements respectively, with a weaker correlation for the left kidney/left diaphragm (r=0.45, [95% CI 0.22 to 0.63], p=<0.001) than for the right kidney/right diaphragm (r=0.57, [95% CI 0.37 to 0.72], p=<0.001). For the majority of patients, maximal left and right kidney displacement is subcentimeter in magnitude. The magnitude of
International Nuclear Information System (INIS)
Purpose: To quantify the dosimetric impact of four-dimensional computed tomography (4D-CT) pulmonary ventilation imaging-based functional treatment planning that avoids high-functional lung regions. Methods and Materials: 4D-CT ventilation images were created from 15 non-small-cell lung cancer patients using deformable image registration and quantitative analysis of the resultant displacement vector field. For each patient, anatomic and functional plans were created for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Consistent beam angles and dose-volume constraints were used for all cases. The plans with Radiation Therapy Oncology Group (RTOG) 0617-defined major deviations were modified until clinically acceptable. Functional planning spared the high-functional lung, and anatomic planning treated the lungs as uniformly functional. We quantified the impact of functional planning compared with anatomic planning using the two- or one-tailed t test. Results: Functional planning led to significant reductions in the high-functional lung dose, without significantly increasing other critical organ doses, but at the expense of significantly degraded the planning target volume (PTV) conformity and homogeneity. The average reduction in the high-functional lung mean dose was 1.8 Gy for IMRT (p < .001) and 2.0 Gy for VMAT (p < .001). Significantly larger changes occurred in the metrics for patients with a larger amount of high-functional lung adjacent to the PTV. Conclusion: The results of the present study have demonstrated the impact of 4D-CT ventilation imaging-based functional planning for IMRT and VMAT for the first time. Our findings indicate the potential of functional planning in lung functional avoidance for both IMRT and VMAT, particularly for patients who have high-functional lung adjacent to the PTV.
Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head
International Nuclear Information System (INIS)
Purpose: To develop and evaluate a new four-dimensional image-guided radiotherapy system, which enables precise setup, real-time tumor tracking, and pursuit irradiation. Methods and Materials: The system has an innovative gimbaled X-ray head that enables small-angle (±2.4o) rotations (pan and tilt) along the two orthogonal gimbals. This design provides for both accurate beam positioning at the isocenter by actively compensating for mechanical distortion and quick pursuit of the target. The X-ray head is composed of an ultralight C-band linear accelerator and a multileaf collimator. The gimbaled X-ray head is mounted on a rigid O-ring structure with an on-board imaging subsystem composed of two sets of kilovoltage X-ray tubes and flat panel detectors, which provides a pair of radiographs, cone beam computed tomography images useful for image guided setup, and real-time fluoroscopic monitoring for pursuit irradiation. Results: The root mean square accuracy of the static beam positioning was 0.1 mm for 360o of O-ring rotation. The dynamic beam response and positioning accuracy was ±0.6 mm for a 0.75 Hz, 40-mm stroke and ±0.4 mm for a 2.0 Hz, 8-mm stroke. The quality of the images was encouraging for using the tomography-based setup. Fluoroscopic images were sufficient for monitoring and tracking lung tumors. Conclusions: Key functions and capabilities of our new system are very promising for precise image-guided setup and for tracking and pursuit irradiation of a moving target
Wu, W. C.; Chan, C. L.; Wong, Y W; Cuijpers, J P
2010-01-01
During gated intensity-modulated radiotherapy (IMRT) treatment for patients with inoperable non-small cell lung cancer (NSCLC), the end-expiration (EE) phase of respiratory is more stable, whereas end-inspiration (EI) spares more normal lung tissue. This study compared the relative plan quality based on dosimetric and biological indices of the planning target volume (PTV) and organs at risk (OARs) between EI and EE in gated IMRT. 16 Stage I NSCLC patients, who were scanned by four-dimensional...
International Nuclear Information System (INIS)
To investigate the interfraction displacement and volume variation of primary thoracic esophagus carcinoma with enhanced four-dimensional computed tomography (4DCT) scanning during fractionated radiotherapy. 4DCT data sets were acquired at the time of treatment simulation and every ten fraction for each of 32 patients throughout treatment. Scans were registered to baseline (simulation) 4DCT scans by using bony landmarks. The gross tumor volumes (GTVs) were delineated on each data set. Coordinates of the GTV centroids were acquired on each respiration phase. Distance between center of the GTV contour on the simulation scan and the centers on subsequent scans were used to assess interfraction displacement between fractions. Volumes were constructed using three approaches: The GTV delineated from the maximum intensity projection (MIP) was defined IGTVMIP, all 10 GTVs were combined to form IGTV10, GTVmean was the average of all 10 phases of each GTV. Interfraction displacement in left-right (LR), anterior-posterior (AP), superior-inferior (SI) directions and 3D vector were 0.13 ± 0.09 cm, 0.16 ± 0.12 cm, 0.34 ± 0.26 cm and 0.43 ± 0.24 cm, respectively between the tenth fraction and simulation 4DCT scan. 0.14 ± 0.09 cm, 0.19 ± 0.16 cm, 0.45 ± 0.43 cm and 0.56 ± 0.40 cm in LR, AP, SI and 3D vector respectively between the twentieth fraction and simulation 4DCT scan. Displacement in SI direction was larger than LR and AP directions during treatment. For distal esophageal cancer, increased interfraction displacements were observed in SI direction and 3D vector (P = 0.002 and P = 0.001, respectively) during radiotherapy. The volume of GTVmean, IGTVMIP, and IGTV10 decreased significantly at the twentieth fraction for middle (median: 34.01%, 33.09% and 28.71%, respectively) and distal (median: 22.76%, 25.27% and 23.96%, respectively) esophageal cancer, but for the upper third, no significant variation were observed during radiotherapy. Interfractional displacements in
Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography
International Nuclear Information System (INIS)
Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2–18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5–9 mm in the ML direction, 4–11 mm in the AP direction, and 12–25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5–16 mm in the ML direction, 6–17 mm in the AP direction, and 21–52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.
International Nuclear Information System (INIS)
Thoracic cancer treatment presents dosimetric difficulties due to respiratory motion and lung inhomogeneity. Monte Carlo and deformable image registration techniques have been proposed to be used in four-dimensional (4D) dose calculations to overcome the difficulties. This study validates the 4D Monte Carlo dosimetry with measurement, compares 4D dosimetry of different tumor sizes and tumor motion ranges, and demonstrates differences of dose-volume histograms (DVH) with the number of respiratory phases that are included in 4D dosimetry. BEAMnrc was used in dose calculations while an optical flow algorithm was used in deformable image registration and dose mapping. Calculated and measured doses of a moving phantom agreed within 3% at the center of the moving gross tumor volumes (GTV). 4D CT image sets of lung cancer cases were used in the analysis of 4D dosimetry. For a small tumor (12.5 cm3) with motion range of 1.5 cm, reduced tumor volume coverage was observed in the 4D dose with a beam margin of 1 cm. For large tumors and tumors with small motion range (around 1 cm), the 4D dosimetry did not differ appreciably from the static plans. The dose-volume histogram (DVH) analysis shows that the inclusion of only extreme respiratory phases in 4D dosimetry is a reasonable approximation of all-phase inclusion for lung cancer cases similar to the ones studied, which reduces the calculation in 4D dosimetry
International Nuclear Information System (INIS)
To evaluate the volumetric and geometric differences in the ITVs generated by four-dimensional (4D) computed tomography (CT), a modified slow CT scan, and a combination of these CT methods in lung cancer patients treated with stereotactic body radiotherapy (SBRT). Both 4D CT and modified slow CT using a multi-slice CT scanner were performed for SBRT planning in 14 patients with 15 pulmonary targets. Volumetric and geometric analyses were performed for (1) ITVall, generated by combining the gross tumor volumes (GTVs) from all 8 phases of the 4D CT; (2) ITV2, generated by combining the GTVs from 2 extreme phases of the 4D CT; (3) ITVslow, derived from the GTV on the modified slow CT scan; (4) ITVall+slow, generated by combining ITVall and ITVslow; and (5) ITV2+slow, generated by combining ITV2 and ITVslow. Three SBRT plans were performed using 3 ITVs to assess the dosimetric effects on normal lung caused by the various target volumes. ITVall (11.8 ± 8.3 cm3) was significantly smaller than ITVall+slow (12.5 ± 8.9 cm3), with mean values of 5.8% for the percentage volume difference, and a mean of 7.5% of ITVslow was not encompassed in ITVall. The geometric coverages of ITV2 and ITVslow for ITVall were 84.7 ± 6.6% and 76.2 ± 9.3%, respectively, but the coverage for ITVall increased to 90.9 ± 5.9% by using the composite of these two ITVs. There were statistically significant increases in the lung-dose parameters of the plans based on ITVall+slow compared to the plans based on ITVall or ITV2+slow. However, the magnitudes of these differences were relatively small, with a value of less than 3% in all dosimetric parameters. Due to its ability to provides additional motion information, the combination of 4D CT and a modified slow CT scan in SBRT planning for lung cancer can be used to reduce possible errors in true target delineation caused by breathing pattern variations
Energy Technology Data Exchange (ETDEWEB)
Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the
International Nuclear Information System (INIS)
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the
International Nuclear Information System (INIS)
Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to
International Nuclear Information System (INIS)
Purpose: To compare conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and respiration-gated radiotherapy (RGRT) planning techniques for pancreatic cancer. All target volumes were determined using four-dimensional computed tomography scans (4D CT). Methods and Materials: The pancreatic tumor and enlarged regional lymph nodes were contoured on all 10 phases of a planning 4D CT scan for 10 patients, and the planning target volumes (PTVallphases) were generated. Three consecutive respiratory phases for RGRT delivery in both inspiration and expiration were identified, and the corresponding PTVs (PTVinspiration and PTVexpiration) and organ at risk volumes created. Treatment plans using CRT and IMRT, with and without RGRT, were created for each PTV. Results: Compared with the CRT plans, IMRT significantly reduced the mean volume of right kidney exposed to 20 Gy from 27.7% ± 17.7% to 16.0% ± 18.2% (standard deviation) (p < 0.01), but this was not achieved for the left kidney (11.1% ± 14.2% to 5.7% ± 6.5%; p = 0.1). The IMRT plans also reduced the mean gastric, hepatic, and small bowel doses (p < 0.01). No additional reductions in the dose to the kidneys or other organs at risk were seen when RGRT plans were combined with either CRT or IMRT, and the findings for RGRT in end-expiration and end-inspiration were similar. Conclusion: 4D CT-based IMRT plans for pancreatic tumors significantly reduced the radiation doses to the right kidney, liver, stomach, and small bowel compared with CRT plans. The additional dosimetric benefits from RGRT appear limited in this setting
International Nuclear Information System (INIS)
Purpose: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non–small cell lung cancer using weekly four-dimensional computed tomography (4DCT). Methods and Materials: Eleven patients with advanced non–small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (TLN). Results: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) TLN: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 ± 0.7 cm and 0.8 ± 0.3 cm, respectively, for B and TLN. Primary and involved LN expansions were 0.7 ± 0.5 cm and 1.1 ± 0.5 cm for T. Conclusion: T is best for solitary targets. When treatments include primary tumor and LNs, B and TLN provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.
International Nuclear Information System (INIS)
Purpose: To evaluate the implications of differences between contours drawn manually and contours generated automatically by deformable image registration for four-dimensional (4D) treatment planning. Methods and Materials: In 12 lung cancer patients intensity-modulated radiotherapy (IMRT) planning was performed for both manual contours and automatically generated ('auto') contours in mid and peak expiration of 4D computed tomography scans, with the manual contours in peak inspiration serving as the reference for the displacement vector fields. Manual and auto plans were analyzed with respect to their coverage of the manual contours, which were assumed to represent the anatomically correct volumes. Results: Auto contours were on average larger than manual contours by up to 9%. Objective scores, D2% and D98% of the planning target volume, homogeneity and conformity indices, and coverage of normal tissue structures (lungs, heart, esophagus, spinal cord) at defined dose levels were not significantly different between plans (p = 0.22-0.94). Differences were statistically insignificant for the generalized equivalent uniform dose of the planning target volume (p = 0.19-0.94) and normal tissue complication probabilities for lung and esophagus (p = 0.13-0.47). Dosimetric differences >2% or >1 Gy were more frequent in patients with auto/manual volume differences ≥10% (p = 0.04). Conclusions: The applied deformable image registration algorithm produces clinically plausible auto contours in the majority of structures. At this stage clinical supervision of the auto contouring process is required, and manual interventions may become necessary. Before routine use, further investigations are required, particularly to reduce imaging artifacts
Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo
2007-05-01
We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1. PMID:17555261
International Nuclear Information System (INIS)
Objective: To quantify the amplitudes of lung tumor motion during free-breathing using four dimensional computed tomography (4DCT), and seek the characteristics of tumors with large motion. Methods: Respiratory-induced tumor motion was analyzed for 44 tumors from 43 patients. All patients un-derwent 4DCT during free-breathing before treatment. Gross tumor volumes (GTV) on ten respiratory phases were contoured by the same doctor. The centroids of GTVs were autoplaced with treatment software (ADAC Pinnacle 7.4f), then the amplitudes of tumor motion were assessed. The various clinical and anatomic factors associated with GTV motion were analyzed. The characteristics of tumors with motion greater than 5 mm in any direction were explored. Results: The tumor motion was found to be associated with T stage, GTV size, the superior-inferior (SI) tumor location in the lung, and the attachment to rigid structures such as the chest wall, vertebrae or mediastinum. The motion over 5 mm was observed in ten tumors, which were all located in the lower or posterior half of the lung, with the greatest motion of 14.4 mm. For 95% of the tumors, the magnitude of motion was less than I 1.8 mm, 4.6 mm and 2.7 mm along the SI, anterior-posterior (AP) and lateral directions, respectively. Conclusions: Tumor motion due to breathing is associated with tumor location, volume, and T stage. The greatest motion was in the SI direction for unfixed tumor in lower-lobe, followed by tumor in upper-lobe posterior-segment. (authors)
van Balkom Anton JLM; van Boeijen Christine A; Hermens Marleen LM; Penninx Brenda WJH; de Vet Henrica CW; Adèr Herman J; van Marwijk Harm WJ; Terluin Berend; van der Klink Jac JL; Stalman Wim AB
2006-01-01
Abstract Background The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. Methods Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosoc...
Steffens, Niklas K; Haslam, S Alexander; Reicher, Stephen D.; Platow, Michael J; Fransen, Katrien; Yang, Jie; Ryan, Michelle K.; Jetten, Jolanda; Peters, Kim O.; Boen, Filip
2014-01-01
Although nearly two decades of research has provided support for the social identity approach to leadership, most previous work has focused on leaders’ identity prototypicality while neglecting the assessment of other equally important dimensions of social identity management. However, recent theoretical developments have argued that in order to mobilize and direct followers’ energies, leaders need not only to ‘be one of us’ (identity prototypicality), but also to ‘do it for us’ (identity adv...
2014-01-01
Purpose. To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. Methods. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing ...
Sindoni, Alessandro; Minutoli, Fabio; Pontoriero, Antonio; Iatì, Giuseppe; Baldari, Sergio; Pergolizzi, Stefano
2016-06-01
In the past decade, Positron Emission Tomography (PET) has become a routinely used methodology for the assessment of solid tumors, which can detect functional abnormalities even before they become morphologically evident on conventional imaging. PET imaging has been reported to be useful in characterizing solitary pulmonary nodules, guiding biopsy, improving lung cancer staging, guiding therapy, monitoring treatment response and predicting outcome. This review focuses on the most relevant and recent literature findings, highlighting the current role of PET/CT and the evaluation of 4D-PET/CT modality for radiation therapy planning applications. Current evidence suggests that gross tumor volume delineation based on 4D-PET/CT information may be the best approach currently available for its delineation in thoracic cancers (lung and non-lung lesions). In our opinion, its use in this clinical setting is strongly encouraged, as it may improve patient treatment outcome in the setting of radiation therapy for cancers of the thoracic region, not only involving lung, but also lymph nodes and esophageal tissue. Literature results warrants further investigation in future prospective studies, especially in the setting of dose escalation. PMID:27133755
Energy Technology Data Exchange (ETDEWEB)
Schievano, Silvia; Capelli, Claudio; Young, Carol; Lurz, Philipp; Nordmeyer, Johannes; Owens, Catherine; Bonhoeffer, Philipp; Taylor, Andrew M. [UCL, Institute of Child Health and Great, Ormond Street Hospital for Children, Cardiovascular Unit, London (United Kingdom)
2011-01-15
To characterise 3D deformations of the right ventricular outflow tract (RVOT)/ pulmonary arteries (PAs) during the cardiac cycle and estimate the errors of conventional 2D assessments. Contrast-enhanced, ECG-gated cardiovascular computed tomography (CT) findings were retrospectively analysed from 12 patients. The acquisition of 3D images over 10 phases of the cardiac cycle created a four-dimensional CT (4DCT) dataset. The datasets were reconstructed and deformation measured at various levels of the RVOT/PAs in both space and time. Section planes were either static or dynamic relative to the motion of the structures. 4DCT enabled measurement and characterisation of in vivo 3D changes of patients' RVOT/PA during the cardiac cycle. The studied patient population showed a wide range of RVOT/PA morphologies, sizes and dynamics that develop late after surgical repair of congenital heart disease. There were also significant differences in the measured cross-sectional areas of the structures between static and dynamic section planes (up to 150%, p < 0.05) secondary to large 3D displacements and rotations. 4DCT imaging data suggest high variability in RVOT/PA dynamics and significant errors in deformation measurements if 3D analysis is not carried out. These findings play an important role for the development of novel percutaneous approaches to pulmonary valve intervention. (orig.)
Directory of Open Access Journals (Sweden)
van Balkom Anton JLM
2006-08-01
Full Text Available Abstract Background The Four-Dimensional Symptom Questionnaire (4DSQ is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. Methods Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosocial problem for Distress, standardised psychiatric diagnoses for Depression and Anxiety, and GPs' suspicion of somatization for Somatization. ROC analyses and logistic regression analyses were used to examine the associations. Construct validity was evaluated by investigating the inter-correlations between the scales, the factorial structure, the associations with other symptom questionnaires, and the associations with stress, personality and social functioning. The factorial structure of the 4DSQ was assessed through confirmatory factor analysis (CFA. The associations with other questionnaires were assessed with Pearson correlations and regression analyses. Results Regarding criterion validity, the Distress scale was associated with any psychosocial diagnosis (area under the ROC curve [AUC] 0.79, the Depression scale was associated with major depression (AUC = 0.83, the Anxiety scale was associated with anxiety disorder (AUC = 0.66, and the Somatization scale was associated with the GPs' suspicion of somatization (AUC = 0.65. Regarding the construct validity, the 4DSQ scales appeared to have considerable inter-correlations (r = 0.35-0.71. However, 30–40% of the variance of each scale was unique for that scale. CFA confirmed the 4-factor structure with a comparative fit index (CFI of 0.92. The 4DSQ scales correlated with most other questionnaires measuring corresponding constructs. However, the 4DSQ Distress scale appeared to correlate with some other
DEFF Research Database (Denmark)
Baker, Mariwan; Behrens, Claus F.
2015-01-01
values ( 1 SD) (mm); inferior ( )-superior (I/S): (0.1 0.8); left ( )-right (L/R): (0.2 0.7); and anterior ( )-posterior (A/P): (0.1 1.0). The majority of the displacements were within 1 – 2 mm. Only two scans (5%) (A/P direction) and 16% of Euclidean distances were larger than 2.0 mm. The largest...
International Nuclear Information System (INIS)
Objective: This study was to assess the three-dimensional gross tumor volume(GTV) motion of lung cancer caused by respiration using four-dimensional computed tomography (4DCT), and to analyze the influence factors. Methods: Four-DCT scans of 22 lung focuses in 21 patients with lung cancer were analyzed. The gross tumor volume was contoured in all 10 respiration phases of 4DCT scans. The changes in volume of GTV, the 3D motion of the centroid,boundary of GTV and the 3D spatial motion vectors were calculated and the influence factors were analyzed. Results: The average change in volume of GTV was + 14.3%(0.2%-42.5%)/-8.4% (0.4%-38.6%), the average movement amplitude of GTV centroid and GTV boundary were (0.18±0.12)cm, (0.20±0.16)cm, (0.53±0.59)cm and (0.42±0.23)cm, (0.41±0.22)cm, (0.57±0.70)cm in medio-lateral, vertro-dorsal, cranio-caudal (CC) direction, respectively. The CC movement was larger than other directions (Z=-2.12, P=0.034; Z:-2.10, P=0.035), and no significant difference was observed in 3D motion of GTV boundary (Z=-0.81, P=0.417; Z=-0.86, 0.391). The CC motion of GTV centroid in lower lobe was larger than that in upper lobe [(0.87±0.64) and (0.35±0.49)cm, (t=-2.12, P=0.047)], and no significant difference was found in other directions [(0.23±0.10) and (0.19±0.18)cm (t=-0.49, P=0.629), (0.21±0.13) and (0.17±0.11)cm (t=0.76, P=0.460)]. There was no correlation of the 3D movement and 3D spatial motion vector of GTV to the volume of GTV (r=-0.306, -0.062, -0.279, -0.300; P=0.189, 0.796, 0.234, 0.199). Conclusions: GTV motion of patients with lung cancer is individual, the CC movement is the moat obvious, using 4DCT to assess is comparatively accurate. The motion amplitude of lower lobe focuses is larger. No significant correlation of the GTV motion to the volume was observed. Larger sample study is needed to analyze the influence of adjacency to the GTV motion. (authors)
Contact radiotherapy. Report of technological assessment
International Nuclear Information System (INIS)
This report aims at assessing safety, indications, the role in therapeutic strategy, and efficiency of contact radiotherapy. It also aims at answering questions like: is the contact radiotherapy technique validated? What are the indications for contact radiotherapy? What about the efficiency and safety of contact radiotherapy? After a presentation of preliminary notions on radiotherapy (radiation types, dose, and irradiation techniques), the report presents this specific technique of contact radiotherapy: definition, devices, use recommendations, issues of radiation protection, modalities of performance of a contact radiotherapy session, and concerned pathologies. Then, based on a literature survey, this report addresses the various concerned tumours (skin, rectum, brain, breast), indicates some general information about these tumours (epidemiological data, anatomy and classification, therapeutic options, radiotherapy), and proposes an assessment of the efficiency and safety of contact radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Huguet, F. [Hopital Tenon, Paris (France); Yorke, E.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.; Goodman, K. [Memorial Sloan-Kettering Cancer Center, New York (United States)
2011-10-15
The authors report the study which aimed at quantifying pancreas tumour movements induced by breathing by using four-dimensional scanography, and at assessing the reliability of biliary prosthesis, of intra-tumor fiducials, and of an external maker as position markers of the gross tumour volume (GTV). The authors analyzed scanography images acquired during the simulation of 22 patients treated for locally advanced pancreas cancer by intensity-modulated conformational irradiation with respiratory gating. Average movements in different directions have measured. Respiratory gating limits the GTV movement amplitude by 40 to 60 per cent. GTV movements are in good correlation with that of biliary prostheses and intra-tumor fiducials. Short communication
Spinors in Four-Dimensional Spaces
Torres del Castillo, Gerardo F
2010-01-01
Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples. Key topics and features: • Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + −) employed in relativity • Examples taken from Riemannian geometry and special or general relativity are discussed in detail, emphasizing the usefulness of the two-component spinor formalism • Exercises in each chapter • The relationship of Clifford algebras and Dirac four-component spinors is established • Applications of the two-component formalism, focusing mainly on general relativity, are presented in the context of actual computations Spinors in Four-Dim...
Cohomology of real four-dimensional triquadrics
Krasnov, Vyacheslav A.
2012-10-01
We consider non-singular intersections of three real six-dimensional quadrics. They are referred to for brevity as real four-dimensional triquadrics. We calculate the dimensions of their cohomology spaces with coefficients in the field of two elements.
String breaking in four dimensional lattice QCD
International Nuclear Information System (INIS)
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a2) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R∼>1 fm
String Breaking in Four Dimensional Lattice QCD
Duncan, A; Thacker, H
2001-01-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O($a^2$) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R $\\geq$ approximately 1 fm.
Purley four-dimensional viable anomaly mediation
International Nuclear Information System (INIS)
Anomaly mediation of supersymmetry breaking solves the supersymmetric flavor problem thanks to its ultraviolet-insensitivity. However, it suffers from two problems: sleptons have negative masses-squared, and there are likely bulk moduli that spoil the framework. Here, we present the first fully ultraviolet-insensitive model of anomaly mediation with positive slepton masses-squared in a purely four-dimensional framework. Our model is based on the additional D-term contributions to the sparticle masses, and the conformal sequestering mechanism. (author)
Dynamic ventilation imaging from four-dimensional computed tomography
Guerrero, Thomas; Sanders, Kevin; Castillo, Edward; Zhang, Yin; Bidaut, Luc; Pan, Tinsu; Komaki, Ritsuko
2006-02-01
A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.
Dynamic ventilation imaging from four-dimensional computed tomography
Energy Technology Data Exchange (ETDEWEB)
Guerrero, Thomas [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009 (United States); Sanders, Kevin [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009 (United States); Castillo, Edward [Department of Computational and Applied Mathematics, Rice University, Houston, TX (United States); Zhang Yin [Department of Computational and Applied Mathematics, Rice University, Houston, TX (United States); Bidaut, Luc [Division of Diagnostic Imaging, University of Texas M D Anderson Cancer Center, Houston, TX (United States); Pan Tinsu [Division of Diagnostic Imaging, University of Texas M D Anderson Cancer Center, Houston, TX (United States); Komaki, Ritsuko [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009 (United States)
2006-02-21
A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.
Quantum teleportation of four-dimensional qudits
International Nuclear Information System (INIS)
A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender's side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome, the qudit state is fully transferred to the receiver. Other detection events lead to partial teleportation or failed teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the full teleportation probability are discussed.
Four-dimensional unsubtraction with massive particles
Sborlini, German F R; Rodrigo, German
2016-01-01
We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with an scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
N=3 four dimensional field theories
García-Etxebarria, Iñaki
2015-01-01
We introduce a class of four dimensional field theories constructed by quotienting ordinary $\\mathcal{N}=4$ $U(N)$ SYM by particular combinations of R-symmetry and $SL(2,\\mathbb{Z})$ automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions posses an unconventional large $N$ limit described by a non-trivial F-theory fibration with base $AdS_5\\times (S^5/\\mathbb{Z}_k)$. Upon reduction on a circle the $\\mathcal{N}=3$ theories flow to well-known $\\mathcal{N}=6$ ABJM theories.
Energy Technology Data Exchange (ETDEWEB)
Tian, Bing, E-mail: bing.tian@hotmail.com; Xu, Bing, E-mail: aishanli0102@126.com; Lu, Jianping, E-mail: tianbing2003@163.com; Liu, Qi, E-mail: liuqimd@126.com; Wang, Li, E-mail: wangli_changhai@163.com; Wang, Minjie, E-mail: cjr.wangminjie@vip.163.com
2015-06-15
Highlights: • 4D CTA showed excellent agreement with DSA with regard to identification of feeding arteries and drainage veins. • The most important finding was 4D CTA in determining the impact of DAVF treatment with transarterial embolization. • 4D CTA provides images similar to those obtained with DSA both before and after treatment. - Abstract: Purpose: This study aimed to evaluate the usefulness of four-dimensional CTA before and after embolization treatment with ONYX-18 in eleven patients with cranial dural arteriovenous fistulas, and to compare the results with those of the reference standard DSA. Patients and Methods: Eleven patients with cranial dural arteriovenous fistulas detected on DSA underwent transarterial embolization with ONYX-18. Four-dimensional CTA was performed an average of 2 days before and 4 days after DSA. Four-dimensional CTA and DSA images were reviewed by two neuroradiologists for identification of feeding arteries and drainage veins and for determining treatment effects. Interobserver and intermodality agreement between four-dimensional CTA and DSA were assessed. Results: Forty-two feeding arteries were identified for 14 fistulas in the 11 patients. Of these, 36 (85.71%) were detected on four-dimensional CTA. After transarterial embolization, one patient got partly embolized, and the fistulas in the remaining 10 patients were completely occluded. The interobserver agreement for four-dimensional CTA and intermodality agreement between four-dimensional CTA and DSA were excellent (κ = 1) for shunt location, identification of drainage veins, and fistula occlusion after treatment. Conclusion: Four-dimensional CTA images are highly accurate when compared with DSA images both before and after transarterial embolization treatment. Four-dimensional CTA can be used for diagnosis as well as follow-up of cranial dural arteriovenous fistulas in clinical settings.
International Nuclear Information System (INIS)
Highlights: • 4D CTA showed excellent agreement with DSA with regard to identification of feeding arteries and drainage veins. • The most important finding was 4D CTA in determining the impact of DAVF treatment with transarterial embolization. • 4D CTA provides images similar to those obtained with DSA both before and after treatment. - Abstract: Purpose: This study aimed to evaluate the usefulness of four-dimensional CTA before and after embolization treatment with ONYX-18 in eleven patients with cranial dural arteriovenous fistulas, and to compare the results with those of the reference standard DSA. Patients and Methods: Eleven patients with cranial dural arteriovenous fistulas detected on DSA underwent transarterial embolization with ONYX-18. Four-dimensional CTA was performed an average of 2 days before and 4 days after DSA. Four-dimensional CTA and DSA images were reviewed by two neuroradiologists for identification of feeding arteries and drainage veins and for determining treatment effects. Interobserver and intermodality agreement between four-dimensional CTA and DSA were assessed. Results: Forty-two feeding arteries were identified for 14 fistulas in the 11 patients. Of these, 36 (85.71%) were detected on four-dimensional CTA. After transarterial embolization, one patient got partly embolized, and the fistulas in the remaining 10 patients were completely occluded. The interobserver agreement for four-dimensional CTA and intermodality agreement between four-dimensional CTA and DSA were excellent (κ = 1) for shunt location, identification of drainage veins, and fistula occlusion after treatment. Conclusion: Four-dimensional CTA images are highly accurate when compared with DSA images both before and after transarterial embolization treatment. Four-dimensional CTA can be used for diagnosis as well as follow-up of cranial dural arteriovenous fistulas in clinical settings
General flat four-dimensional world pictures and clock systems
Hsu, J. P.; Underwood, J. A.
1978-01-01
We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.
Assessment of psychological responses in patients about to receive radiotherapy
International Nuclear Information System (INIS)
Radiotherapy is considered to be associated with psychological distress. We assessed the mental status, anxiety, and the factors associated with these in cancer patients about to receive radiotherapy. Hospitalized patients about to receive radiotherapy participated. Psychological status was assessed by a psychiatrist, based on interview about the type of anxiety related to cancer or radiotherapy as well as self-rating questionnaires. Eligible data were collected from 94 patients. The incidence of mental disorders was 20%. The total mood disturbance scores were significantly higher in patients with poor performance status. The most common type of anxiety regarding radiotherapy was acute adverse effect, and the predictors were palliative treatment and living alone. Mental disorders, mood disturbance, and anxiety in patients cannot be neglected in radiation oncology practice. Especially careful attention should be paid to patients with these predictive factors. (author)
On the four-dimensional formulation of dimensionally regulated amplitudes
Fazio, A. R.; Mastrolia, P.; Mirabella, E.; Torres Bobadilla, W. J.
2014-12-01
Elaborating on the four-dimensional helicity scheme, we propose a pure four-dimensional formulation (FDF) of the -dimensional regularization of one-loop scattering amplitudes. In our formulation particles propagating inside the loop are represented by massive internal states regulating the divergences. The latter obey Feynman rules containing multiplicative selection rules which automatically account for the effects of the extra-dimensional regulating terms of the amplitude. We present explicit representations of the polarization and helicity states of the four-dimensional particles propagating in the loop. They allow for a complete, four-dimensional, unitarity-based construction of -dimensional amplitudes. Generalized unitarity within the FDF does not require any higher-dimensional extension of the Clifford and the spinor algebra. Finally we show how the FDF allows for the recursive construction of -dimensional one-loop integrands, generalizing the four-dimensional open-loop approach.
On the Four-Dimensional Formulation of Dimensionally Regulated Amplitudes
Fazio, Raffaele A; Mirabella, Edoardo; Bobadilla, William J Torres
2014-01-01
We propose a pure four-dimensional formulation (FDF) of the d-dimensional regularization of one-loop scattering amplitudes. In our formulation particles propagating inside the loop are represented by massive internal states regulating the divergences. The latter obey Feynman rules containing multiplicative selection rules which automatically account for the effects of the extra-dimensional regulating terms of the amplitude. The equivalence between the FDF and the Four Dimensional Helicity scheme is discussed. We present explicit representations of the polarization and helicity states of the four-dimensional particles propagating in the loop. They allow for a complete, four-dimensional, unitarity-based construction of d-dimensional amplitudes. Generalized unitarity within the FDF does not require any higher-dimensional extension of the Clifford and the spinor algebra. Finally we show how the FDF allows for the recursive construction of $d$-dimensional one-loop integrands, generalizing the four-dimensional open...
On the four-dimensional formulation of dimensionally regulated amplitudes
Energy Technology Data Exchange (ETDEWEB)
Fazio, A.R. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Mastrolia, P. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); Max-Planck-Institut fuer Physik, Munich (Germany); INFN, Padova (Italy); Mirabella, E. [Max-Planck-Institut fuer Physik, Munich (Germany); Torres Bobadilla, W.J. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN, Padova (Italy)
2014-12-01
Elaborating on the four-dimensional helicity scheme, we propose a pure four-dimensional formulation (FDF) of the d-dimensional regularization of one-loop scattering amplitudes. In our formulation particles propagating inside the loop are represented by massive internal states regulating the divergences. The latter obey Feynman rules containing multiplicative selection rules which automatically account for the effects of the extra-dimensional regulating terms of the amplitude. We present explicit representations of the polarization and helicity states of the four-dimensional particles propagating in the loop. They allow for a complete, four-dimensional, unitarity-based construction of d-dimensional amplitudes. Generalized unitarity within the FDF does not require any higher-dimensional extension of the Clifford and the spinor algebra. Finally we show how the FDF allows for the recursive construction of d-dimensional one-loop integrands, generalizing the four-dimensional open-loop approach. (orig.)
Statistical Entropy of Four-Dimensional Extremal Black Holes
Maldacena, Juan; Strominger, Andrew
1996-01-01
String theory is used to count microstates of four-dimensional extremal black holes in compactifications with $N=4$ and $N=8$ supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy.
Commutative curvature operators over four-dimensional generalized symmetric
Directory of Open Access Journals (Sweden)
Ali Haji-Badali
2014-12-01
Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
Peters, Kenneth E.; Magoon, Leslie B.; Lampe, Carolyn; Scheirer, Allegra Hosford; Lillis, Paul G.; Gautier, Donald L.
2008-01-01
A calibrated numerical model depicts the geometry and three-dimensional (3-D) evolution of petroleum systems through time (4-D) in a 249 x 309 km (155 x 192 mi) area covering all of the San Joaquin Basin Province of California. Model input includes 3-D structural and stratigraphic data for key horizons and maps of unit thickness, lithology, paleobathymetry, heat flow, original total organic carbon, and original Rock-Eval pyrolysis hydrogen index for each source rock. The four principal petroleum source rocks in the basin are the Miocene Antelope shale of Graham and Williams (1985; hereafter referred to as Antelope shale), the Eocene Kreyenhagen Formation, the Eocene Tumey formation of Atwill (1935; hereafter referred to as Tumey formation), and the Cretaceous to Paleocene Moreno Formation. Due to limited Rock-Eval/total organic carbon data, the Tumey formation was modeled using constant values of original total organic carbon and original hydrogen index. Maps of original total organic carbon and original hydrogen index were created for the other three source rocks. The Antelope shale was modeled using Type IIS kerogen kinetics, whereas Type II kinetics were used for the other source rocks. Four-dimensional modeling and geologic field evidence indicate that maximum burial of the three principal Cenozoic source rocks occurred in latest Pliocene to Holocene time. For example, a 1-D extraction of burial history from the 4-D model in the Tejon depocenter shows that the bottom of the Antelope shale source rock began expulsion (10 percent transformation ratio) about 4.6 Ma and reached peak expulsion (50 percent transformation ratio) about 3.6 Ma. Except on the west flank of the basin, where steep dips in outcrop and seismic data indicate substantial uplift, little or no section has been eroded. Most petroleum migration occurred during late Cenozoic time in distinct stratigraphic intervals along east-west pathways from pods of active petroleum source rock in the Tejon and
Quality assurance of radiotherapy and its clinical assessment
International Nuclear Information System (INIS)
We investigated the clinical quality assurance (QA) of radiotherapy in Japan since 1981. The aim of this study was to establish the QA of a radiotherapy system and its clinical assessment in Japan. We introduced the Patterns of Care Study (PCS) into Japan to perform this study in 1996. The PCS is a retrospective study designed to establish the national practice for cancer patients during a specific period and should be a complementary study to a prospective randomized controlled study. We collected precise data for 4399 patients with carcinomas of the breast, cervix, esophagus, lung and prostate by means of external audits for 96 institutes from 1998 through 2001. Patients were randomly sampled with two-stage cluster sampling. We stratified 556 institutes into four categories according to the academic condition and annual number of radiotherapy patients. National and regional averages of various factors of radiotherapy could be calculated and were used to measure QA of radiotherapy. Using a standard score, we could compare the process of individual institutions with national averages and feed back the evaluation score to each institution. With a PCS process survey, we could observe the dissemination of the treatment method under evidence-based medicine from the prospective randomized controlled study. We proposed future prediction of the number of radiotherapy patients and a counter plan for equipment and personnel. The first US-Japan PCS Workshop was held at San Francisco in 2001. We could establish QA of a radiotherapy system using PCS 1995-97 in Japan. (author)
Motion artifact detection in four-dimensional computed tomography images
Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.
2014-03-01
Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.
Treatment assessment of radiotherapy using MR functional quantitative imaging
Institute of Scientific and Technical Information of China (English)
Zheng; Chang; Chunhao; Wang
2015-01-01
Recent developments in magnetic resonance(MR) functional quantitative imaging have made it a potentially powerful tool to assess treatment response in radiation therapy. With its abilities to capture functional information on underlying tissue characteristics, MR functional quantitative imaging can be valuable in assessing treatment response and as such to optimize therapeutic outcome. Various MR quantitative imaging techniques, including diffusion weighted imaging, diffusion tensor imaging, MR spectroscopy and dynamic contrastenhanced imaging, have been investigated and found useful for assessment of radiotherapy. However, various aspects including data reproducibility, interpretation of biomarkers, image quality and data analysis impose challenges on applications of MR functional quantitative imaging in radiotherapy assessment. All of these challenging issues shall be addressed to help us understand whether MR functional quantitative imaging is truly beneficial and contributes to future development of radiotherapy. It is evident that individualized therapy is the future direction of patient care. MR functional quantitative imaging might serves as an indispensable tool towards this promising direction.
International Nuclear Information System (INIS)
Purpose: To assess the viability of four-dimensional (4D) computed tomography (CT) in describing intrafractional and interfractional changes in lung volumes and to determine which breathing phase, if any, produces the most highly reproducible lung volumes among fractions. Methods and Materials: Weekly 4D CT scans were acquired for 13 patients with non-small-cell lung cancer during a course of radiotherapy. Contours delineating the right lung, left lung, and total lung were obtained by adapting library models of the anatomic structures to the CT images and propagating them to all 10 respiratory phases represented in the 4D CT image data set. Lung volumes were calculated using software tools in a commercial radiation treatment-planning system and analyzed for interfractional volume reproducibility using t tests and for phase reproducibility using a phase-dependent uncertainty curve across all patients. Probability (p) values of <0.05 were considered to indicate significant differences in all comparisons. Results: The average mean coefficient of variation of tidal volume across all patients was 25.0%. The average standard deviation of tidal volumes was 5.7% relative to the lung volume at end-expiration. Total volumes measured at the 30% phase were 15% more consistent than those measured at end-inspiration (p = 0.03). Conclusions: Four-dimensional CT assesses lung volume with acceptable precision; but the technique was unable to accurately predict interfractional changes in lung volume because wide variations in intra- and interfractional breathing cause high uncertainties in 4D CT data acquisition. The most reproducible breathing phase seems to be at the 30-40% phase (just before end-expiration)
International Nuclear Information System (INIS)
This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted
Vector particles tunneling from four-dimensional Schwarzschild black holes
Chen, Ge-Rui; Zhou, Shiwei; Huang, Yong-Chang
2015-05-01
Vector particles' Hawking radiation from a four-dimensional Schwarzschild black hole is investigated. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles and the expected Hawking temperature.
Statistical Entropy of Four-Dimensional Extremal Black Holes
International Nuclear Information System (INIS)
String theory is used to count microstates of four-dimensional extremal black holes in compactifications with N=4 and N=8 supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy. copyright 1996 The American Physical Society
Lattice classification of the four-dimensional heterotic strings
International Nuclear Information System (INIS)
A lattice slicing procedure is proposed which leads to the classification of all four-dimensional chiral heterotic strings based on Conway and Sloane's 22-dimensional self-dual Euclidean lattices. By reversing this procedure it is possible to construct all these theories. (author)
Four-dimensional conformal field theory using quaternions
Giardino, Sergio
2015-01-01
We build a four-dimensional quaternion-parametrized conformal field theory (QCFT) using quaternion holomorphic functions as the generators of quaternionic conformal transformations. Taking the two-dimensional complex-parametrized conformal field theory (CCFT) as our model, we study the stress tensor, the conserved charge, the symmetry generators, the quantization conditions and several operator product expansions (OPE's). Future applications also are addressed.
A linear solution to the effective four-dimensionality problem
Trifonov, Vladimir
2003-01-01
In this note we formalize certain aspects of observation process in an attempt to link the logic of the observer with properties of the observables structures. It is shown that an observer with Boolean logic perceives her environment as a four-dimensional Lorentzian manifold.
Multipole expansions in four-dimensional hyperspherical harmonics
International Nuclear Information System (INIS)
The technique of vector differentiation is applied to the problem of the derivation of multipole expansions in four-dimensional space. Explicit expressions for the multipole expansion of the function rnCj(r-circumflex) with r = r1 + r2 are given in terms of tensor products of two hyperspherical harmonics depending on the unit vectors r-circumflex1 and r-circumflex2. The multipole decomposition of the function (r1 . r2)n is also derived. The proposed method can be easily generalized to the case of the space with dimensionality larger than four. Several explicit expressions for the four-dimensional Clebsch-Gordan coefficients with particular values of parameters are presented in the closed form
Four-dimensional pseudo-Riemannian homogeneous Ricci solitons
Calvaruso, Giovanni; Fino, Anna
2011-01-01
We consider four-dimensional homogeneous pseudo-Riemannian manifolds with non-trivial isotropy and completely classify the cases giving rise to non-trivial homogeneous Ricci solitons. In particular, we show the existence of non-compact homogeneous (and also invariant) pseudo-Riemannian Ricci solitons which are not isometric to solvmanifolds, and of conformally flat homogeneous pseudo-Riemannian Ricci solitons which are not symmetric.
Mathieu moonshine in four dimensional N=1 theories
International Nuclear Information System (INIS)
We show that the recently discovered Mathieu moonshine plays a role for certain four dimensional theories with N=1 supersymmetry. These theories are obtained from the E8×E8 heterotic string theory by compactifying on toroidal orbifolds. We find that a universal contribution to the holomorphic gauge kinetic function can be expanded in such a way that the expansion coefficients are the dimensions of representations of the Mathieu group M24
The transfer matrix in four dimensional causal dynamical triangulations
Ambjo̸rn, J.; Gizbert-Studnicki, J.(Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. prof. Stanislawa Lojasiewicza 11, Krakow, PL 30-348, Poland); Görlich, A.T.; Jurkiewicz, J.; Loll, R.
2013-01-01
The Causal Dynamical Triangulation model of quantum gravity (CDT) is a proposition to evaluate the path integral over space-time geometries using a lattice regularization with a discrete proper time and geometries realized as simplicial manifolds. The model admits a Wick rotation to imaginary time for each space-time configuration. Using computer simulations we determined the phase structure of the model and discovered that it predicts a de Sitter phase with a four-dimensional spherical semi-...
Platonic solids generate their four-dimensional analogues.
Dechant, Pierre Philippe
2013-11-01
This paper shows how regular convex 4-polytopes - the analogues of the Platonic solids in four dimensions - can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonné theorem, the reflective symmetries of the Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors generating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic solids can thus in turn be interpreted as vertices in four-dimensional space, giving a simple construction of the four-dimensional polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have `mysterious' symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter groups, which can be shown to be a general property of the spinor construction. These considerations thus also apply to other root systems such as A(1)\\oplus I(2)(n) which induces I(2)(n)\\oplus I(2)(n), explaining the existence of the grand antiprism and the snub 24-cell, as well as their symmetries. These results are discussed in the wider mathematical context of Arnold's trinities and the McKay correspondence. These results are thus a novel link between the geometries of three and four dimensions, with interesting potential applications on both sides of the correspondence, to real three-dimensional systems with polyhedral symmetries such as (quasi)crystals and viruses, as well as four-dimensional geometries arising for instance in Grand Unified Theories and string and M-theory. PMID:24132220
Supergravity duals of supersymmetric four dimensional gauge theories
International Nuclear Information System (INIS)
This article contains an overview of some recent attempts of understanding supergravity and string duals of four dimensional gauge theories using the AdS/CFT correspondence. We discuss the general philosophy underlying the various ways to realize Super Yang-Mills theories in terms of systems of branes. We then review some of the existing duals for N=2 and N=1 theories. We also discuss differences and similarities with realistic theories. (author)
On the compatibility of Lorentz metrics with linear connections on four-dimensional manifolds
International Nuclear Information System (INIS)
This paper considers four-dimensional manifolds upon which there is a Lorentz metric h and a symmetric connection Γ which are originally assumed unrelated. It then derives sufficient conditions on h and Γ (expressed through the curvature tensor of Γ) for Γ to be the Levi-Civita connection of some (local) Lorentz metric g and calculates the relationship between g and h. Some examples are provided which help to assess the strength of the sufficient conditions derived
On the compatibility of Lorentz metrics with linear connections on four-dimensional manifolds
Energy Technology Data Exchange (ETDEWEB)
Hall, G S [Department of Mathematical Sciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, Scotland (United Kingdom); Lonie, D P [108e Anderson Drive, Aberdeen, AB15 6BW (United Kingdom)
2006-03-24
This paper considers four-dimensional manifolds upon which there is a Lorentz metric h and a symmetric connection {gamma} which are originally assumed unrelated. It then derives sufficient conditions on h and {gamma} (expressed through the curvature tensor of {gamma}) for {gamma} to be the Levi-Civita connection of some (local) Lorentz metric g and calculates the relationship between g and h. Some examples are provided which help to assess the strength of the sufficient conditions derived.
Energy Technology Data Exchange (ETDEWEB)
Tay, Shian-Chao; Berger, Richard A. [Mayo Clinic College of Medicine, Orthopedics Biomechanics Laboratory, Rochester, MN (United States); Primak, Andrew N.; Amrami, Kimberly K. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Fletcher, Joel G.; McCollough, Cynthia H. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Mayo Clinic College of Medicine, CT Innovation Center, Rochester, MN (United States); Schmidt, Bernhard [Siemens Medical Solutions, Forchheim (Germany)
2007-12-15
High-resolution real-time three-dimensional (3D) imaging of the moving wrist may provide novel insights into the pathophysiology of joint instability. The purpose of this work was to assess the feasibility of using retrospectively gated spiral computed tomography (CT) to perform four-dimensional (4D) imaging of the moving wrist joint. A cadaver forearm from below the elbow was mounted on a motion simulator which performed radioulnar deviation of the wrist at 30 cycles per minute. An electronic trigger from the simulator provided the ''electrocardiogram'' (ECG) signal required for gated reconstructions. Four-dimensional and 3D images were compared by a blinded observer for image quality and presence of artifacts. Image quality of 4D images was found to be excellent at the extremes of radial and ulnar deviation (end-motion phases). Some artifacts were seen in mid-motion phases. 4D CT musculoskeletal imaging is feasible. Four-dimensional CT may allow clinicians to assess functional (dynamic) instabilities of the wrist joint. (orig.)
International Nuclear Information System (INIS)
High-resolution real-time three-dimensional (3D) imaging of the moving wrist may provide novel insights into the pathophysiology of joint instability. The purpose of this work was to assess the feasibility of using retrospectively gated spiral computed tomography (CT) to perform four-dimensional (4D) imaging of the moving wrist joint. A cadaver forearm from below the elbow was mounted on a motion simulator which performed radioulnar deviation of the wrist at 30 cycles per minute. An electronic trigger from the simulator provided the ''electrocardiogram'' (ECG) signal required for gated reconstructions. Four-dimensional and 3D images were compared by a blinded observer for image quality and presence of artifacts. Image quality of 4D images was found to be excellent at the extremes of radial and ulnar deviation (end-motion phases). Some artifacts were seen in mid-motion phases. 4D CT musculoskeletal imaging is feasible. Four-dimensional CT may allow clinicians to assess functional (dynamic) instabilities of the wrist joint. (orig.)
New supersymmetric black holes in four dimensional N=2 supergravity
Mandal, Taniya
2016-01-01
In this paper we consider the four dimensional N=2 supergravity theory arising from the compactification of type IIA string theory on a Calabi-Yau manifold. We analyse the supersymmetric flow equations for static, spherically symmetric, single-centered black holes. These flow equations are solved by a set of algebraic equations involving the holomorphic sections and harmonic functions. We examine black hole configurations with D0-D4-D6 charge for which the most general solution of these algebraic equations are considered. Though the black hole solution is unique for a given value of the charges, we find new phases of the black hole solutions upon varying them.
Temporal Parameter Optimization in Four-Dimensional Flash Trajectory Imaging
International Nuclear Information System (INIS)
In four-dimensional flash trajectory imaging, temporal parameters include time delay, laser pulse width, gate time, pulse pair repetition frequency and the frame rate of CCD, which directly impact on the acquisition of target trajectories over time. We propose a method of optimizing the temporal parameters of flash trajectory imaging. All the temporal parameters can be estimated by the spatial parameters of the volumes of interest, target scale and velocity, and target sample number. The formulae for optimizing temporal parameters are derived, and the method is demonstrated in an experiment with a ball oscillating as a pendulum. (general)
Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication
Birkner, Peter
2011-01-01
The GLV method of Gallant, Lambert and Vanstone (CRYPTO 2001) computes any multiple $kP$ of a point $P$ of prime order $n$ lying on an elliptic curve with a low-degree endomorphism $\\Phi$ (called GLV curve) over $\\mathbb{F}_p$ as \\[kP = k_1P + k_2\\Phi(P), \\quad\\text{with} \\max\\{|k_1|,|k_2|\\}\\leq C\\sqrt n] for some explicit constant $C>0$. Recently, Galbraith, Lin and Scott (EUROCRYPT 2009) extended this method to all curves over $\\mathbb{F}_{p^2}$ which are twists of curves defined over $\\mathbb{F}_p$. These are examples of two-dimensional decompositions (with two new scalars), and the GLS approach shows that for curves with many automorphisms (cubic and quartic twists) one can achieve a four-dimensional decomposition as well. We show in this work how to merge the two approaches in order to get, for twists of any GLV curve over $\\mathbb{F}_{p^2}$, a four-dimensional decomposition together with fast endomorphisms $\\Phi, \\Psi$ over $\\mathbb{F}_{p^2}$ acting on the group generated by a point $P$ of prime order $...
Platonic solids generate their four-dimensional analogues
Dechant, Pierre-Philippe
2013-01-01
In this paper, we show how regular convex 4-polytopes - the analogues of the Platonic solids in four dimensions - can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonne theorem, the reflective symmetries of the Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors generating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic Solids can thus in turn be interpreted as vertices in four-dimensional space, giving a simple construction of the 4D polytopes 16-cell, 24-cell, the F_4 root system and the 600-cell. In particular, these polytopes have `mysterious' symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter groups, which can be shown to be a general property of the spinor construction. These cons...
Concurrent Boost with Adjuvant Breast Hypofractionated Radiotherapy and Toxicity Assessment
Directory of Open Access Journals (Sweden)
Mona M. Sayed
2015-01-01
Full Text Available Background: The use of shorter radiotherapy schedules has an economic and logistic advantage for radiotherapy departments, as well as a high degree of patient convenience. The aim of this study is to assess the acute and short-term late toxicities of a hypofractionated radiotherapy schedule with a concomitant boost. Methods: We enrolled 57 eligible patients as group A. These patients received 42.5 Gy in 16 fractions of 2.66 Gy each to the whole breast over 3.2 weeks. A concomitant electron boost of 12 Gy in 16 fractions was also administered which gave an additional 0.75 Gy daily to the lumpectomy area for a total radiation dose of 54.5 Gy. Toxicity was recorded at three weeks and at three months for this group as well as for a control group (group B. The control group comprised 76 eligible patients treated conventionally with 50 Gy to the whole breast over five weeks followed by a sequential electron boost of 12 Gy in 2 Gy per fraction. Results: There were no statistically significant differences observed in the incidence of acute skin toxicity, breast pain, and edema recorded at three weeks or pigmentation and fibrosis recorded at three months between the two groups (P0.05. Conclusion: The results of this study suggest there are no increased acute and shortterm late toxicities affiliated with the hypofractionated schedule plus a concomitant boost as prescribed compared to the conventional fractionation of adjuvant breast radiotherapy. Large randomized trials and long-term follow-up are needed to confirm these favorable findings.
International Nuclear Information System (INIS)
The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy
The effective action in four-dimensional CDT
Gizbert-Studnicki, Jakub
2015-01-01
We present recent results concerning the measurement and analysis of the effective action in four-dimensional Causal Dynamical Triangulations. The action describes quantum fluctuations of the spatial volume of the CDT universe (or alternatively the scale factor) after integrating out other degrees of freedom. We use the covariance of volume fluctuations to measure and parametrize the effective action inside the de Sitter phase, also called the C phase. We show that the action is consistent with a simple discretization of the minisuperspace action (with a reversed overall sign). We discuss possible subleading corrections and show how to construct a more complicated effective action comprising both integer and half-integer discrete proper time layers. We introduce a new method of the effective action measurement based on the transfer matrix. We show that the results of the new method are fully consistent with the covariance matrix method inside the de Sitter phase. We use the new method to measure the effective...
International Nuclear Information System (INIS)
The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance
Zonotopes and four-dimensional superconformal field theories
Kato, A
2007-01-01
The a-maximization technique proposed by Intriligator and Wecht allows us to determine the exact R-charges and scaling dimensions of the chiral operators of four-dimensional superconformal field theories. The problem of existence and uniqueness of the solution, however, has not been addressed in general setting. In this paper, it is shown that the a-function has always a unique critical point which is also a global maximum for a large class of quiver gauge theories specified by toric diagrams. Our proof is based on the observation that the a-function is given by the volume of a three dimensional polytope called "zonotope", and the uniqueness essentially follows from Brunn-Minkowski inequality for the volume of convex bodies. We also show a universal upper bound for the exact R-charges, and the monotonicity of a-function in the sense that a-function decreases whenever the toric diagram shrinks. The relationship between a-maximization and volume-minimization is also discussed.
An explicit four-dimensional variational data assimilation method
Institute of Scientific and Technical Information of China (English)
2007-01-01
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.
An economical approach to four-dimensional variational data assimilation
Wang, Bin; Liu, Juanjuan; Wang, Shudong; Cheng, Wei; Juan, Liu; Liu, Chengsi; Xiao, Qingnong; Kuo, Ying-Hwa
2010-07-01
Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimensionreduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.
Four-dimensional unsubtraction from the loop-tree duality
Sborlini, German F R; Hernandez-Pinto, Roger; Rodrigo, German
2016-01-01
We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes with the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at the integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for $\\gamma^* \\to q \\bar{q}(g)$, at its generalisation to multi-leg processes...
An explicit four-dimensional variational data assimilation method
Institute of Scientific and Technical Information of China (English)
QIU ChongJian; ZHANG Lei; SHAO AiMei
2007-01-01
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are expressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost function with respect to the control variables, is no longer needed. The new technique significantly simplifies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.
Decision-making for supplying energy projects: A four-dimensional model
International Nuclear Information System (INIS)
Highlights: • Extant pipeline evaluation models offer insufficient supplier analysis tools. • We offer a four-dimensional decision-making tool to augment extant models. • Model employs four filters to help decision makers eliminate unsuitable suppliers. • Aids in prioritization of best courses of action for overcoming obstacles. • Case study of Nabucco pipeline shows Azerbaijan would have been best supply option. - Abstract: Importing states and regions employ myriad strategies to enhance energy security, from stockpiling to diversification to efficiency programs. As has occurred in recent years, importers can seek diversification by initiating pipeline and liquefied natural gas projects, meaning they may also have to select suppliers. However, most extant pipeline evaluation models erroneously assume suppliers are known and thus neglect supplier selection. We propose a decision-making tool to augment these older models: a systematic and replicable four-dimensional model to help policymakers and managers identify suitable suppliers and prioritize the best courses of action for overcoming obstacles. The first three dimensions—timeframe, supply availability and infrastructure constraints—filter out unsuitable suppliers. The fourth dimension then assesses the political, geopolitical and commercial stability of the remaining candidates. To demonstrate the model in practice, we assess the original Nabucco pipeline proposal, which was designed to transport gas from the Caspian and Middle East regions to Europe
International Nuclear Information System (INIS)
Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm3. An analysis of sagittal and
Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm
Suh, Yelin; Sawant, Amit; Venkat, Raghu; Keall, Paul J.
2009-06-01
The purpose of this study is to develop a four-dimensional (4D) intensity-modulated radiation therapy (IMRT) treatment-planning method by modifying and applying a dynamic multileaf collimator (DMLC) motion-tracking algorithm. The 4D radiotherapy treatment scenario investigated is to obtain a 4D treatment plan based on a 4D computed tomography (CT) planning scan and to have the delivery flexible enough to account for changes in tumor position during treatment delivery. For each of 4D CT planning scans from 12 lung cancer patients, a reference phase plan was created; with its MLC leaf positions and three-dimensional (3D) tumor motion, the DMLC motion-tracking algorithm generated MLC leaf sequences for the plans of other respiratory phases. Then, a deformable dose-summed 4D plan was created by merging the leaf sequences of individual phase plans. Individual phase plans, as well as the deformable dose-summed 4D plan, are similar for each patient, indicating that this method is dosimetrically robust to the variations of fractional time spent in respiratory phases on a given 4D CT planning scan. The 4D IMRT treatment-planning method utilizing the DMLC motion-tracking algorithm explicitly accounts for 3D tumor motion and thus hysteresis and nonlinear motion, and is deliverable on a linear accelerator.
Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Senthi, Sashendra, E-mail: sasha.senthi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Gill, Suki S. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Haworth, Annette; Kron, Tomas; Cramb, Jim [Department of Physical Sciences, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Rolfo, Aldo [Radiation Therapy Services, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Thomas, Jessica [Biostatistics and Clinical Trials, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Duchesne, Gillian M. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Hamilton, Christopher H.; Joon, Daryl Lim [Radiation Oncology Department, Austin Repatriation Hospital, Heidelberg, VIC (Australia); Bowden, Patrick [Radiation Oncology Department, Tattersall' s Cancer Center, East Melbourne, VIC (Australia); Foroudi, Farshad [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia)
2012-02-01
Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures
Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy
International Nuclear Information System (INIS)
Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V95% and V100%, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V95%, PTV sigma index, and conformity number. The mean PTV V95% was 92.5% (95% confidence interval, 91.3–93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90–2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76–0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p 95% only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate cancer using IMRT. The differences seen between centers and planning systems and the coverage deterioration
International Nuclear Information System (INIS)
The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)
Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin
2011-01-01
There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves a...
Four-dimensional coronary morphology and computational hemodynamics
Wahle, Andreas; Mitchell, Steven C.; Ramaswamy, Sharan D.; Chandran, Krishnan B.; Sonka, Milan
2001-07-01
Conventional reconstructions from intravascular ultrasound (IVUS) stack the frames as acquired during the pullback of the catheter to form a straight three-dimensional volume, thus neglecting the vessel curvature and merging images from different heart phases. We are developing a comprehensive system for fusion of the IVUS data with the pullback path as determined from x-ray angiography, to create a geometrically accurate 4-D (3-D plus time) model of the coronary vasculature as basis for computational hemodynamics. The overall goal of our work is to correlate shear stress with plaque thickness. The IVUS data are obtained in a single pullback using an automated pullback device; the frames are afterwards assigned to their respective heart phases based upon the ECG signal. A set of 3-D models is reconstructed by fusion of IVUS and angiographic data corresponding to the same ECG-gated heart phase; methods of computational fluid dynamics (CFD) are applied to obtain important hemodynamic data. Combining these models yields the final 4-D reconstruction. Visualization is performed using the platform-independent VRML standard for a user-friendly manipulation of the scene. An extension for virtual angioscopy allows an easy assessment of the vessel features within their local context. Validation was successfully performed both in-vitro and in-vivo.
Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation
The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...
Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis
International Nuclear Information System (INIS)
Purpose: Four-dimensional cone-beam computed tomography (4D CBCT) has been investigated for motion imaging in the radiotherapy treatment room. The drawbacks of 4D CBCT are long scan times and high imaging doses. The aims of this study were to develop and investigate a slow gantry rotation acquisition protocol for four-dimensional digital tomosynthesis (4D DTS) as a faster, lower dose alternative to 4D CBCT. Methods: This technique was implemented using an On-Board Imager kV imaging system (Varian Medical Systems, Palo Alto, CA) mounted on the gantry of a linear accelerator. The general procedure for 4D DTS imaging using slow gantry rotation acquisition consists of the following steps: (1) acquire projections over a limited gantry rotation angle in a single motion with constant frame rate and gantry rotation speed; (2) generate a respiratory signal and temporally match projection images with appropriate points from the respiratory signal; (3) use the respiratory signal to assign phases to each of the projection images; (4) sort projection images into phase bins; and (5) reconstruct phase images. Phantom studies were conducted to validate theoretically derived relationships between acquisition and respiratory parameters. Optimization of acquisition parameters was then conducted by simulating lung scans using patient data. Lung tumors with approximate volumes ranging from 0.12 to 1.53 cm3 were studied. Results: A protocol for slow gantry rotation 4D DTS was presented. Equations were derived to express relationships between acquisition parameters (frame rate, phase window, and angular intervals between projections), respiratory cycle durations, and resulting acquisition times and numbers of projections. The phantom studies validated the relationships, and the patient studies resulted in determinations of appropriate acquisition parameters. The phase window must be set according to clinical goals. For 10% phase windows, we found that appropriate frame rates ranging from
Classification of the four-dimensional power-commutative real division algebras
Darpö, Erik; Rochdi, Abdellatif
2009-01-01
A classification of all four-dimensional power-commutative real division algebras is given. It is shown that every four-dimensional power-commutative real division algebra is an isotope of a particular kind of a quadratic division algebra. The description of such isotopes in dimension four and eight is reduced to the description of quadratic division algebras. In dimension four this leads to a complete and irredundant classification. As a special case, the finite-dimensional power-commutative...
A new four-dimensional hyperchaotic Lorenz system and its adaptive control
International Nuclear Information System (INIS)
Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh—Hurwitz theorem is applied to derive the stability conditions of the proposed system. Furthermore, based on Lyapunov stability theory, an adaptive controller is designed and the new four-dimensional hyperchaotic Lorenz system is controlled at equilibrium point. Numerical simulation results are presented to illustrate the effectiveness of this method. (general)
Uddin, A K M Nizam; Mansfield, Darren R; Farmer, Michael W; Lau, Kenneth K
2015-12-01
Amyloid is a heterogeneous family of extracellular proteinaceous deposits characterized by apple-green birefringence on polarized light microscopy. There are rare case reports of these extracellular deposits accumulating in the upper and central airways. Progressive infiltration may impair glottic and airway function with some cases requiring intervention to improve flow. Bronchoscopy and lung function testing provide dynamic information to monitor for disease progression; however, the recent development of 320 multislice computed tomography (320 CT) enables dynamic, four-dimensional (4-D) evaluation of laryngeal and tracheal structure and function and presents as a noninvasive, low-radiation dose surveillance tool. We reviewed a 43-year-old man with primary amyloidosis of the larynx and central airways who presented with an 18-year history of progressive dysphonia without breathlessness and preserved lung function. 4-D CT demonstrated marked thickening of supraglottic folds and trachea with marked tracheal dilatation. Despite gross structural abnormalities, dynamic function assessed throughout inspiration and expiration was normal, demonstrating neither rigidity nor dynamic collapse. This combination of structural and functional assessment of the proximal airway by 4-D CT is a novel application to surveillance for laryngeal and tracheal amyloid. PMID:26740884
Zhao, Kristin; Breighner, Ryan; Holmes, David; Leng, Shuai; McCollough, Cynthia; An, Kai-Nan
2015-07-01
Accurate quantification of subtle wrist motion changes resulting from ligament injuries is crucial for diagnosis and prescription of the most effective interventions for preventing progression to osteoarthritis. Current imaging techniques are unable to detect injuries reliably and are static in nature, thereby capturing bone position information rather than motion which is indicative of ligament injury. A recently developed technique, 4D (three dimensions + time) computed tomography (CT) enables three-dimensional volume sequences to be obtained during wrist motion. The next step in successful clinical implementation of the tool is quantification and validation of imaging biomarkers obtained from the four-dimensional computed tomography (4DCT) image sequences. Measures of bone motion and joint proximities are obtained by: segmenting bone volumes in each frame of the dynamic sequence, registering their positions relative to a known static posture, and generating surface polygonal meshes from which minimum distance (proximity) measures can be quantified. Method accuracy was assessed during in vitro simulated wrist movement by comparing a fiducial bead-based determination of bone orientation to a bone-based approach. The reported errors for the 4DCT technique were: 0.00-0.68 deg in rotation; 0.02-0.30 mm in translation. Results are on the order of the reported accuracy of other image-based kinematic techniques. PMID:25901447
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Ken; Takenaka, Tadashi; Tanaka, Eiichi; Kuriyama, Keiko; Yoshida, Mineo [National Hospital Organization Osaka National Hospital (Japan). Dept. of Radiology; Yamazaki, Hideya; Nishimura, Tsunehiko [Kyoto Prefectural Univ. of Medicine (Japan). Dept. of Radiology; Kotsuma, Tadayuki [Osaka Univ. Graduate School of Medicine (Japan). Dept. of Radiation Oncology; Fujita, Yuka [Osaka Univ. Graduate School of Medicine (Japan). Dept. of Diagnostic and Interventional Radiology; Masuda, Norikazu [National Hospital Organization Osaka National Hospital (Japan). Dept. of Surgery
2010-11-15
To evaluate radiation dermatitis objectively in patients with breast cancer who had undergone post-operative radiotherapy after breast-conserving surgery. Skin color (L{sup *}, a{sup *}, and b{sup *} values) and moisture analyses were performed for both breasts (before, after, 1 month, 6 months, and 1 year after radiotherapy) to examine irradiated and non-irradiated skin divided into four quadrants in 118 patients. These patients underwent breast conservative surgery followed by 50 Gy/25 fractions (median) of radiotherapy with or without boost irradiation (10 Gy/5 fractions). L{sup *}, a{sup *}, and moisture values were changed by irradiation and maximized at completion or 1 month after radiotherapy. One year after radiotherapy, the skin color had returned to the range observed prior to radiotherapy. However, moisture did not return to previous values even 1 year after treatment. The lateral upper side (quadrant C) showed greater changes than other quadrants in the L{sup *} value (darker) at the end of radiotherapy. The Common Toxicity Criteria version 3 scores were found to correlate well with a{sup *} and L{sup *} values at the completion and 1 month after radiotherapy. Boost radiotherapy intensified reddish and darker color changes at the completion of radiotherapy, while chemotherapy did not intensify the skin reaction caused by radiotherapy. Moisture impairment as a result of irradiation lasts longer than color alterations. Objective assessments are useful for analyzing radiation dermatitis. (orig.)
Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors
Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz
2012-02-01
Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.
Chaotic behaviour of nonlinear coupled reaction–diffusion system in four-dimensional space
Indian Academy of Sciences (India)
Li Zhang; Shutang Liu; Chenglong Yu
2014-06-01
In recent years, nonlinear coupled reaction–diffusion (CRD) system has been widely investigated by coupled map lattice method. Previously, nonlinear behaviour was observed dynamically when one or two of the three variables in the discrete system change. In this paper, we consider the chaotic behaviour when three variables change, which is called as four-dimensional chaos. When two parameters in the discrete system are unknown, we first give the existing condition of the chaos in four-dimensional space by the generalized definitions of spatial periodic orbits and spatial chaos. In addition, the chaotic behaviour will vary with the parameters. Then we propose a generalized Lyapunov exponent in four-dimensional space to characterize the different effects of parameters on the chaotic behaviour, which has not been studied in detail. In order to verify the chaotic behaviour of the system and the different effects clearly, we simulate the dynamical behaviour in two- and three-dimensional spaces.
Pahlavani, M. R.; Mirfathi, S. M.
2016-04-01
Four-dimensional Langevin equations have been suggested for the dynamical simulation of neutron-induced fission at low and medium excitation energies. The mass distribution of the fission fragments, the neutron multiplicity, and the fission cross section for the thermal and fast neutron-induced fission of 233U, 235U, and 238U is studied by considering energy dissipation of the compound nucleus through the fission using four-dimensional Langevin equations combined with a Monte Carlo simulation approach. The calculated results using this approach indicate reasonable agreement with available experimental data.
International Nuclear Information System (INIS)
To present the changes induced at the tissue level in patients subjected to external radiotherapy and brachytherapy to treat carcinomas of endometrium and cervix, as disclosed by magnetic resonance (MR). The MR study dealt with 26 patients 14 with endometrial carcinoma and 12 with cervical carcinoma who were treated with external radiotherapy and brachytherapy. The features assessed retrospectively were bone marrow of the lumbar and sacral spine, pelvic fat, abdominal wall, uterine, junction and size, rectal and bladder wall and pelvic musculature. The most common changes observed after radiotherapy according to our study were changes in signal intensity in the bone marrow of the pelvic bones (88%), followed by changes in the pelvic fat (65.3%). Other radiotherapy-related findings in order of frequency were cervical fibrosis, colitis and cystitis. Radiotherapy induces changes in the tissue of the pelvic structures, and the knowledge of these changes is important in the evaluation of the follow-up studies of these patients. (Author) 12 refs
Objective assessment of cosmetic outcome after targeted intraoperative radiotherapy in breast cancer
DEFF Research Database (Denmark)
Keshtgar, Mohammed R S; Williams, Norman R; Bulsara, Max;
2013-01-01
fibrosis and thus impair cosmesis further, so we objectively evaluated the aesthetic outcome of patients within the TARGIT randomised controlled trial. We have used an objective assessment tool for evaluation of cosmetic outcome. Frontal digital photographs were taken at baseline (before TARGIT or EBRT...... objective assessment in a randomised setting, the aesthetic outcome of patients demonstrates that those treated with TARGIT have a superior cosmetic result to those patients who received conventional external beam radiotherapy....
Effect of four-dimensional variational data assimilation in case of nonlinear instability
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of four-dimensional variational data assimilation on the reduction of the forecast errors is investigated for both stable and unstable flows. Numerical results show that the effect is generally positive. Particularly,its effect is much more significant in the presence of nonlinear instability
The Existence of Silnikov's Orbit in Four-dimensional Duffing's Systems
Institute of Scientific and Technical Information of China (English)
Wei Li; Peng-cheng Xu
2003-01-01
The existence of Silnikov's orbits in a four-dimensional dynamical system is discussed. The existence of Silnikov's orbit resulting in chaotic dynamics is established by the fiber structure of invariant manifold and high-dimensional Melnikov method. Numerical simulations are given to demonstrate the theoretical analysis.
Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography
DEFF Research Database (Denmark)
Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard; Sørensen, Thomas Sangild
2013-01-01
We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...
Four-dimensional Osserman-Ivanov-Petrova metrics of neutral signature
Energy Technology Data Exchange (ETDEWEB)
Calvino-Louzao, Esteban; GarcIa-RIo, Eduardo; Vazquez-Lorenzo, Ramon [Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)
2007-05-07
Algebraic curvature tensors which are Osserman-IP in the (- - + +)-signature setting are completely determined. As a consequence, it is shown that a four-dimensional pointwise Osserman-IP manifold is a space of constant sectional curvature or, otherwise, at each point the Jacobi operators either vanish or they are two-step nilpotent.
Five-dimensional moving brane solutions with four-dimensional limiting behavior
International Nuclear Information System (INIS)
Under certain conditions some solutions to five-dimensional heterotic M theory can be accurately described by the four-dimensional action of the theory. We consider the connection between solutions of four- and five-dimensional heterotic M theory when moving five-branes are present in the bulk. We begin by describing how to raise the known four-dimensional moving brane solutions to obtain approximate solutions to the five-dimensional theory, presenting for the first time the metric template necessary for this procedure. We then present the first solutions to the five-dimensional theory containing moving five-branes. We then discuss the correspondence between solutions of the five- and four-dimensional actions as presented. Specifically, we show that our exact, five-dimensional solution only corresponds to one of the previously known four-dimensional solutions when the embedded five-brane is static. In other words, higher Kaluza-Klein modes are essential in the description of the five-brane's motion in our new solution
Energy Technology Data Exchange (ETDEWEB)
Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chen, Nan-kuei [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Brain Imaging and Analysis Center, Duke University Medical Center, Box 2737, Hock Plaza, Durham, North Carolina 27710 (United States); Chu, Mei-Lan [Brain Imaging and Analysis Center, Duke University Medical Center, Box 2737, Hock Plaza, Durham, North Carolina 27710 (United States)
2015-02-15
Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N{sub KS}) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C{sub p}) and a number of impacting factors: the number of repeated scans (N{sub R}), number of slices (N{sub S}), number of respiratory phase bins (N{sub P}), N{sub KS}, F, R, and initial respiratory phase at image acquisition (P{sub 0}). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C{sub p} and N{sub R} was found best represented by an exponential function
Four-dimensional optical coherence tomography imaging of total liquid ventilated rats
Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund
2013-06-01
Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.
Radiation safety assessment of cobalt 60 external beam radiotherapy using the risk-matrix method
International Nuclear Information System (INIS)
External beam radiotherapy is the only practice in which humans are placed directly in a radiation beam with the intention to deliver a very high dose. This is why safety in radiotherapy is very critical, and is a matter of interest to both radiotherapy departments and regulatory bodies. Accidental exposures have occurred throughout the world, thus showing the need for systematic safety assessments, capable to identify preventive measures and to minimize consequences of accidental exposure. Risk-matrix is a systematic approach which combines the relevant event features to assess the overall risk of each particular event. Once an event sequence is identified, questions such as how frequent the event, how severe the potential consequences and how reliable the existing safety measures are answered in a risk-matrix table. The ultimate goal is to achieve that the overall risk for events with severe consequences should always be low o very low. In the present study, the risk-matrix method has been applied to an hypothetical radiotherapy department, which could be equivalent to an upper level hospital of the Ibero American region, in terms of safety checks and preventive measures. The application of the method has identified 76 event sequences and revealed that the hypothetical radiotherapy department is sufficiently protected (low risk) against them, including 23 event sequences with severe consequences. The method has revealed that the risk of these sequences could grow to high level if certain specific preventive measures were degraded with time. This study has identified these preventive measures, thus facilitating a rational allocation of resources in regular controls to detect any loss of reliability. The method has proven to have an important practical value and is affordable at hospital level. The elaborated risk-matrix can be easily adapted to local circumstances, in terms of existing controls and safety measures. This approach can help hospitals to identify
Quantitative assessment of skin erythema due to radiotherapy--evaluation of different measurements
International Nuclear Information System (INIS)
Background and purpose: Visual assessment is the most common clinical investigation of skin reactions in radiotherapy. Due to the unquantitative and subjective nature of this method additional non-invasive methods are needed for more accurate evaluation of the visible acute adverse skin reactions due to radiotherapy. The purpose of this study was to evaluate a new objective measure with regard to reliability and validity and compare it with an established objective measure and a visual assessment. Patients and methods: A sample of 53 consecutive patients commencing curative tangential radiation therapy to the breast parenchyma were included in the study. The skin area of the treated breast was divided into five sections and assessed individually at 0, 24 and 50 Gy. The RTOG scoring system was used for the visual assessment of the skin reactions. The first objective measure included reflectance spectrometry (DermaSpectrometer) measures at fixed points within the treatment area. For the second objective measure digital images (Camera) were taken with a system using a digital camera and software. The images were analyzed using the Adobe Photoshop 5.0 software program. Results: The results provided significant evidence of the test-retest reliability of the camera. The correlation between the objective measures proved to be significant as the treatment progressed. Conclusions: The results suggest that the camera may be used in a reliable and valid way to measure skin erythema due to radiotherapy
Assessment of induction of secondary tumours due to various radiotherapy modalities
International Nuclear Information System (INIS)
One of the objectives of the European Sixth Framework integrated project MAESTRO is to perform an assessment of risk due to various radiotherapy modalities, regarding secondary tumour induction. Initially, the study will focus on cancer of the prostate and the present work represents the first step towards that goal. One of the intended tools, to be used in the assessment, is the Monte Carlo radiation transport code ORANGE. A validation of the ORANGE code's capability to tally dose on a grid superimposed on an existing MCNP geometry is given. Preliminary results on the dose distribution due to conventional radiotherapy treatment of prostate cancer are discussed. Two mathematical models of the patient are proposed and the clinical relevance of the ADAM phantom is investigated. A problem in comparing average doses provided by commercial treatment planning systems and those calculated with Monte Carlo is noticed. The two proposed models are shown to receive a lower dose and average energy deposition than a 'real' patient. (authors)
Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview.
Adriaanse, B M E; van Vugt, J M G; Haak, M C
2016-09-01
Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted in a good image quality even in late first trimester, 2DUS still has its limitations. Four-dimensional ultrasound with spatiotemporal image correlation (STIC) is an automated volume acquisition, recording a single three-dimensional (3D) volume throughout a complete cardiac cycle, which results in a four-dimensional (4D) volume. STIC has the potential to increase the detection rate of CHD. The aim of this study is to provide a practical overview of the possibilities and (dis)advantages of STIC. A review of literature and evaluation of the current status and clinical value of 3D/4D ultrasound in prenatal screening and diagnosis of congenital heart disease are presented. PMID:26963426
The four-dimensional mouse whole-body phantoms and its application in medical imaging research
International Nuclear Information System (INIS)
Medical imaging simulation is a powerful tool for characterizing,evaluating,and optimizing medical imaging devices and techniques. A vital aspect of simulation is to have a realistic phantom or model of the subject's anatomy. Four-dimensional mouse whole-body phantoms provide realistic models of the mouse anatomy and physiology for imaging studies. When combined with accurate models for the imaging process,are capable of providing a wealth of realistic imaging data from subjects with various anatomies and motions (cardiac and respiratory) in health and disease. With this ability, the four-dimensional mouse whole-body phantoms have enormous potential to study the effects of anatomical, physiological and physical factors on medical and small animal imaging and to research new instrumentation, image acquisition strategies, image processing, reconstruction methods, image visualization and interpretation techniques. (authors)
International Nuclear Information System (INIS)
In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincaré map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations are in good agreement with the numerical simulation results. (general)
A symplectic rearrangement of the four dimensional non-geometric scalar potential
Shukla, Pramod
2015-01-01
We present a symplectic rearrangement of the effective four-dimensional non-geometric scalar potential resulting from the type IIB superstring compactification on Calabi Yau orientifolds. The strategy has two main steps. In the first step, we rewrite the four dimensional scalar potential utilizing some interesting flux combinations which we call {\\it new generalized flux orbits}. After invoking a couple of non-trivial symplectic relations, in the second step, we further rearrange all the pieces of scalar potential into a completely `symplectic-formulation' which involves only the symplectic ingredients (such as period matrix etc.) without the need of knowing Calabi Yau metric. Moreover, the scalar potential under consideration is induced by a generic tree level K\\"{a}hler potential and (non-geometric) flux superpotential for arbitrary numbers of complex structure moduli, K\\"ahler moduli and odd-axions. Finally, we exemplify our symplectic formulation for the two well known toroidal examples based on type IIB ...
Rotating system for four-dimensional transverse rms-emittance measurements
Xiao, C; Du, X N; Gerhard, P; Groening, L; Mickat, S; Vormann, H
2016-01-01
Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.
Prospective patient-based assessment of effectiveness of palliative radiotherapy for bone metastases
International Nuclear Information System (INIS)
Purpose: The primary objective of this report is to prospectively evaluate pain control provided by palliative radiotherapy for all irradiated patients with bone metastases by using their own assessments. Materials and methods: A prospective database was set up for all patients referred for palliative radiotherapy for bone metastases. Patients were asked to rate their pain intensity using an 11 categorical point scale (0=lack of pain, 10=worst pain imaginable). Analgesic consumption during the preceding 24 h was recorded and converted into equivalent total daily dose of oral morphine. For those who received radiotherapy, follow-up was conducted via telephone interviews at week 1, 2, 4, 8 and 12 post treatment using the same pain scale and analgesic diary. Radiotherapy outcome was initially assessed by pain score alone. Complete response (CR) was defined as a pain score of 0. Partial response (PR) was defined as a reduction of score ≥2 or a≥50% reduction of the pre-treatment pain score. We further analyzed outcomes using integrated pain and analgesic scores. Response was defined as either a reduction of pain score ≥2 with at least no increase in analgesics or at least stable pain score with a ≥50% reduction in analgesic intake. Results: One hundred and five patients were treated with palliative radiotherapy. When response evaluation was by pain score alone, the PR rates at 2, 4, 8 and 12 weeks were 44, 42, 30 and 38%, respectively; while the CR rates were 24, 32, 31 and 29%, respectively. The overall response rate at 12 weeks was 67%. When assessed by the integrated pain and analgesic scores, the response rates were 50, 46, 43 and 43%, respectively. Conclusion: The response rate in our patient population is comparable with those reported in clinical trials. This is important when counselling our patients on the expected effectiveness of radiotherapy outside of clinical trials. Our observations confirm the generalizability of the trials conducted to date
Morphogenesis of an extended phenotype: four-dimensional ant nest architecture
Minter, Nicholas J.; Franks, Nigel R.; Robson Brown, Katharine A.
2011-01-01
Animals produce a variety of structures to modify their environments adaptively. Such structures represent extended phenotypes whose development is rarely studied. To begin to rectify this, we used micro-computed tomography (CT) scanning and time-series experiments to obtain the first high-resolution dataset on the four-dimensional growth of ant nests. We show that extrinsic features within the environment, such as the presence of planes between layers of sediment, influence the architecture ...
Iterative sorting for four-dimensional CT images based on internal anatomy motion
Zeng, Rongping; Fessler, Jeffrey A.; Balter, James M.; Balter, Peter A.
2008-01-01
Current four-dimensional (4D) computed tomography (CT) imaging techniques using multi-slice CT scanners require retrospective sorting of the reconstructed two-dimensional (2D) CT images. Most existing sorting methods depend on externally monitored breathing signals recorded by extra instruments. External signals may not always accurately capture the breathing status and may lead to severe discontinuity artifacts in the sorted CT volumes. This paper describes a method to find the temporal corr...
Instability of a four-dimensional de Sitter black hole with a conformally coupled scalar field
Harper, Tom J. T.; Thomas, Paul A.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom); Young, Phil M.
2003-01-01
We study the stability of new neutral and electrically charged four-dimensional black hole solutions of Einstein's equations with a positive cosmological constant and conformally coupled scalar field. The neutral black holes are always unstable. The charged black holes are also shown analytically to be unstable for the vast majority of the parameter space of solutions, and we argue using numerical techniques that the configurations corresponding to the remainder of the parameter space are als...
Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality
International Nuclear Information System (INIS)
We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states. copyright 1996 The American Physical Society
Solutions of the generalized Weierstrass representation in four-dimensional Euclidean space
P. Bracken; Grundland, A. M.
2003-01-01
Several classes of solutions of the generalized Weierstrass system, which induces constant mean curvature surfaces into four-dimensional Euclidean space are constructed. A gauge transformation allows us to simplify the system considered and derive factorized classes of solutions. A reduction of the generalized Weierstrass system to decoupled CP^1 sigma models is also considered. A new procedure for constructing certain classes of solutions, including elementary solutions (kinks and bumps) and...
Non-diagonal four-dimensional cohomogeneity-one Einstein metrics in various signatures
Dunajski, Maciej
2016-01-01
Most known four-dimensional cohomogeneity-one Einstein metrics are diagonal in the basis defined by the left-invariant one-forms, though some essentially non-diagonal ones are known. We consider the problem of explicitly seeking non-diagonal Einstein metrics, and we find solutions which in some cases exhaust the possibilities. In particular we construct new examples of neutral signature non--diagonal Bianchi type VIII Einstein metrics with self--dual Weyl tensor.
A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings
Farakos, Fotis; Kehagias, Alex; Saridakis, Emmanuel N
2012-01-01
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.
Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase
Ren Xiaozhen; Yang Ruliang
2016-01-01
Observation data obtained from the Four-Dimensional (4D) Synthetic Aperture Radar (SAR) system is sparse and non-uniform in the baseline-time plane. Hence, the imaging results acquired by traditional Fourier-based methods are limited by high side lobes. Compressive Sensing (CS) is a recently proposed technique that allows for the recovery of an unknown sparse signal with overwhelming probability from very limited samples. However, the standard CS framework has been developed for real-valued s...
Terluin, Berend; Unalan, Pemra C.; Turfaner Sipahioğlu, Nurver; Arslan Özkul, Seda; van Marwijk, Harm W. J.
2016-01-01
Background The Four-Dimensional Symptom Questionnaire (4DSQ) is originally a Dutch 50 item questionnaire developed in primary care to assess distress, depression, anxiety and somatization. We aimed to develop and validate a Turkish translation of the 4DSQ. Methods The questionnaire was translated using forward and backward translation, and pilot testing. Turkish 4DSQ-data were collected in 352 consecutive adult primary care patients. For comparison, gender and age matched Dutch reference data...
Quantitative MR imaging in planning and assessing novel cancer treatments Radiotherapy
Baustert, I C
2001-01-01
Novel treatments in cancer, like conformal radiotherapy and anticancer drugs, require new MRI techniques to assess their benefits and potential. In conformal radiotherapy, MRI can be used to measure the shape and dose of the conformed radiation field in dose sensitive gel test-objects thus validating the predicted dose computed by complex programs. In antiangiogenic drug treatment, the vascular dysfunction of the tumour can be assessed by MRI prior to treatment. Response to treatment may also be monitored by measuring the changes in vascular function. In this thesis, MRI of polyacrylamide gels is investigated as a 3D dosimeter for conformal radiotherapy treatment planning. Quantitative MRI sequences capable of measuring the wide range of T2 values typically expected in gel dosimetry, are identified. Different T2 measurement methods are compared in terms of accuracy, signal to noise ratio and acquisition time. Examples of a complex dose distribution in 2D and 3D are presented and compared to the planned dose p...
International Nuclear Information System (INIS)
The assessment of the safety culture within a radiotherapy department has been performed by using a Safety Attitudes Questionnaire (SAQ). It assesses the safety environment, the team cooperation quality, the satisfaction related to professional activity, the approval of management actions, the perception of the work environment quality and of logistic support, and the acknowledgment of the influence of stress on performance. The survey has been performed before and after the support intervention of a hospital audit and expertise mission in relationship with the National cancer Institute (Inca). The comparison of results before and after this support intervention shows a general score improvement for the SAQ. Short communication
Energy Technology Data Exchange (ETDEWEB)
Mnejja, W.; Ghorbal, L.; Daoud, J. [Service de radiotherapie oncologique, CHU Habib-Bourguiba, Sfax (Tunisia); Kallel, F.; Guermazi, F. [Service de medecine nucleaire, CHU Habib-Bourguiba, Sfax (Tunisia); Frikha, M. [Service de carcinologie medicale, CHU Habib-Bourguiba, Sfax (Tunisia)
2011-10-15
As xerostomia is the main complication after radiotherapy of nasopharyngeal carcinomas, and affects life quality, this study aims at objectively assess the salivary function after radiotherapy of a nasopharyngeal cancer by parotid scintigraphy. 27 seven patients have been treated by radiotherapy with or without chemotherapy. Results are analyzed in terms of salivary toxicity, change of secretion function. No correlation was found between the xerostomia severity and scintigraphy results. Short communication
International Nuclear Information System (INIS)
Background and purpose: There is a paucity of data regarding the feasibility and relevance of Patient Reported Outcome (PRO) tools to assess radiotherapy-related toxicity in lung cancer. Material and methods: From January to June 2013, lung cancer patients undergoing thoracic radiotherapy/chemo-radiotherapy completed nine patient-adapted Common Terminology Criteria for Adverse Events (CTCAE), the European Organisation for Research and Treatment of Cancer Quality of Life (QoL) questionnaire and the Hospital Anxiety and Depression Scale (HADS) at baseline, the end of radiotherapy and at follow-up. Clinicians completed the same CTCAE items and agreement between patients’ and clinicians’ reporting was assessed using weighted kappa coefficients. QoL and HADS scores were correlated with the patients’ and clinicians’ reported toxicity. Results: 70/116 patients completed the questionnaires for at least one time point excluding baseline. Agreement between patients’ and clinicians’ reported toxicity ranged from slight to substantial. Most discrepancies were within one grade and patients reported greater severity than clinicians for most symptoms. QoL and HADS scores were more strongly correlated with the patients’ compared to clinicians’ matching toxicity reports. The PRO tool was found to be statistically reliable. Conclusions: The use of a PRO tool in lung cancer radiotherapy is feasible, reliable and acceptable to patients. PROs should be integrated in future clinical trials evaluating new radiotherapy approaches to assess toxicity
Three-dimensional dynamics of four-dimensional topological BF theory with boundary
International Nuclear Information System (INIS)
We consider the four-dimensional (4D) abelian topological BF theory with a planar boundary, following Symanzik's method. We find the most general boundary conditions compatible with the field equations broken by the boundary. The residual gauge invariance is described by means of two Ward identities which generate a current algebra. We interpret this algebra as canonical commutation relations of fields, which we use to construct a 3D Lagrangian. As a remarkable by-product, we find a (unique) boundary condition which can be read as a duality relation between 3D dynamical variables. (paper)
Four-Dimensional Effective Supergravity and Soft Terms in M-Theory
Choi, Kiwoon; Kim, Hang Bae; Munoz, Carlos
1997-01-01
We provide a simple macroscopic analysis of the four-dimensional effective supergravity of the Ho\\v{r}ava-Witten M-theory which is expanded in powers of $\\kappa^{2/3}/\\rho V^{1/3}$ and $\\kappa^{2/3}\\rho/V^{2/3}$ where $\\kappa^2$, $V$ and $\\rho$ denote the eleven-dimensional gravitational coupling, the Calabi-Yau volume and the eleventh length respectively. Possible higher order terms in the K\\"ahler potential are identified and matched with the heterotic string corrections. In the context of ...
International Nuclear Information System (INIS)
The Ashtekar endash Jacobson endash Smolin endash Mason endash Newman equations are used to construct the hyperkaehler metrics on four-dimensional manifolds. These equations are closely related to anti-self-dual Yang endash Mills equations of the infinite-dimensional gauge Lie algebras of all volume-preserving vector fields. Several examples of hyperkaehler metrics are presented through the reductions of anti-self-dual connections. For any gauge group anti-self-dual connections on hyperkaehler manifolds are constructed using the solutions of both Nahm and Laplace equations. copyright 1997 American Institute of Physics
Choice of evolutional parameter within a framework of four-dimensional symmetry
International Nuclear Information System (INIS)
Within the context of the variational principle, there is the freedom to choose specific evolutional parameters. Different parameters can be associated with physical time, while allowing the physical laws to preserve the property of four-dimensional symmetry. In this sense, the concept of time has flexibility. Besides proper time and relativistic time, another natural choice emerges, which is called the generalized Galilean time. We study the impact of this choice here. This approach provides a deeper understanding of the theory of special relativity, and it also provides a new basis to study other space-time theories
Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2016-02-15
We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)
Analysis of two-torus in a new four-dimensional autonomous system
International Nuclear Information System (INIS)
In this paper, we report the dynamical behaviours of a four-dimensional autonomous continuous dissipative system analysed when the parameter is varied in the range we are interested in. The system changes its dynamical modes between periodic motion and quasiperiodic motion. Furthermore, the existence of two-torus is investigated numerically by means of Lyapunov exponents. By taking advantage of phase portraits and Poincare sections, two types of the two-torus are observed and proved to have the structure of ring torus and horn torus, both of which are known to be the standard tori
Observations on the space of four dimensional string and M theory vacua
International Nuclear Information System (INIS)
The space of four dimensional string and M theory vacua with non-Abelian gauge symmetry, chiral fermions and unbroken supersymmetry beyond the electroweak scale appears to be a disconnected space whose different components represent distinct universality classes of vacua. Calculating statistical distributions of physical observables a la Douglas therefore requires that the distinct components are carefully accounted for. We highlight some classes of vacua which deserve further study and suggest an argument which may serve to rule out vacua which are small perturbations of supersymmetric AdS4. (author)
The pedagogical value of the four-dimensional picture: I. Relativistic mechanics of point particles
International Nuclear Information System (INIS)
In this paper we outline two subjects of relativistic mechanics: (i) the set of allowable world lines, and (ii) the origin of the relativistic law of dynamics governing point particles. We show that: (i) allowable world lines in the classical theory of particles and fields are quite simple geometric objects as opposed to their associated three-dimensional trajectories; and (ii) Newton’s second law requires neither modification nor generalization, it should only be smoothly embedded in the four-dimensional geometry of Minkowski spacetime to yield the dynamical law for relativistic particles. (paper)
The pedagogical value of the four-dimensional picture: I. Relativistic mechanics of point particles
Kosyakov, B. P.
2014-03-01
In this paper we outline two subjects of relativistic mechanics: (i) the set of allowable world lines, and (ii) the origin of the relativistic law of dynamics governing point particles. We show that: (i) allowable world lines in the classical theory of particles and fields are quite simple geometric objects as opposed to their associated three-dimensional trajectories; and (ii) Newton’s second law requires neither modification nor generalization, it should only be smoothly embedded in the four-dimensional geometry of Minkowski spacetime to yield the dynamical law for relativistic particles.
Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors
Mirjam Cvetič; Antonella Grassi; Denis Klevers; Hernan Piragua
2014-01-01
We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP 2 . We classify its resolved elliptic fibrations over a general base B . The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U...
Allal, Abdelkarim Said; Nicoucar, Kevin; Mach, Nicolas; Dulguerov, Pavel
2003-01-01
In oropharyngeal carcinomas, it is assumed that the effectiveness of the different treatment approaches is roughly equivalent, whereas the functional outcome after radical radiotherapy (RT) is superior to that associated with primary surgery. The aim of this study is to assess quality of life (QoL) outcomes of patients after two treatment strategies: radical surgery with postoperative RT and accelerated concomitant boost RT with or without chemotherapy.
Assessment of quality of life after radical radiotherapy for prostate cancer
International Nuclear Information System (INIS)
The objective was to assess the quality of life (QoL) of patients with localized prostate cancer (LPC) after treatment by radical radiotherapy (RR). An ''ad hoc'' self-administered questionnaire was developed, which comprised a series of 41 items grouped into seven subscales reflecting the main QoL domains, and the questionnaire's psychometric properties were assessed. Ninety patients (76%) completed the questionnaire; because 20 of them were also treated with hormonal therapy, QoL was assessed only in the remaining 70 patients, to avoid confusion. The assessment of the psychometric properties showed that the questionnaire was valid and reliable (Cronbach's α coefficient >0.8 for each subscale). The main side effects of RR were urinary symptoms and sexual impairment, while physical, psychological and relational well-being were good. The degree of information available about the therapy and the disease seemed to play a major role in the patients' QoL adjustment after RR. (Author)
An introduction to an alternative four-dimensional formalism of the special theory of relativity
International Nuclear Information System (INIS)
A formulation of the four-dimensional vector laws of physics which emphasizes the transformation of position and time using the four-vectors (R', 0) and (0, ct') is presented. One goal of the formalism is to incorporate the Lorentz co-ordinate transformation of measured position and time intervals. Another goal is to generate vector laws of physics in both three- and four-dimensional formats. A definition of the electrostatic field is introduced which can be inserted into a four-vector allowing Gauss' law to be interpreted as both covariant and numerically invariant. Consistent with the definition of the electrostatic field are revised definitions of force, magnetic field, charge density and current. The alternative formulation of standard theory suggests that the concept of geometric invariance was neglected in deriving the three-dimensional vector laws of physics. The Minkowski formulation and the alternative formulation together illustrate two basic ways of transforming length and time intervals in the special theory of relativity
Directory of Open Access Journals (Sweden)
Kalemba Mwambazambi
2014-04-01
Full Text Available The process of a four-dimensional conversion and/or transformation strives in helping the leadership of an organisation, especially such as the church, with practical ways that may lead to the development of an effective leadership by observing the four important aspects of human spirituality as elaborated on in the article. The spiritual, intellectual, moral and socio-political dimensions of the transformation can be catered for so that the complete inner being of humans, as well as their social and political attitudes and behaviours, can equally be transformed to maximum spiritual, personal and socio-political profitability. Mutombo-Mukendi demonstrates that the need for a spiritual leadership that can contribute to an effective transformation of Africa is dire, both for the church and the larger community. The real challenge is how to develop such leadership. This article provides intentional and practical ways that may lead to the development of the needed leadership. Four-dimensional transformation of people can be planned and carried out both in the church arena and in the surrounding communities. Skills development and transfer can also take place when skilled people from the church work with unskilled people from the community.
A novel four-dimensional analytical approach for analysis of complex samples.
Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J
2016-05-01
A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation. PMID:27038056
The Radiobiological Basis for Improvements in Radiotherapy and Low Dose Risk Assessment
Energy Technology Data Exchange (ETDEWEB)
Hei, Tom K
2009-12-09
Overall Goal: This conference grant was proposed to organize and host an international conference at Columbia University in New York to critically assess the cellular and molecular signaling events and tissue response following radiation damage. The conference would also serve as a venue to play tribute to the more than forty years contributions made by Professor Eric J. Hall to the radiation biology field. The goals of the meeting were to examine tumor hypoxia and sensitizer development; recent advances made in clinical radiotherapy; addressed several low dose phenomena, including genomic instability and bystander effects that are important in radiation risk assessment. Study and Results: The symposium was held on October 13th and 14th, 2008 at the Alfred Lerner Hall in the Morningside campus of Columbia University. The symposium, entitled “From Beans to Genes: A Forty Year Odyssey in Radiation Biology” was attended by more than 120 faculty, scientists, clinicians, fellows and students. The symposium, spanned over a day and a half, covered four scientific themes. These included tumor hypoxia and radiosensitizers; low dose radiation response; radiation biology in the practice of radiotherapy, and radiation hazard in space and genetic predisposition to cancer. The program of the symposium is as follow:
International Nuclear Information System (INIS)
The present study aimed to assess the feasibility of four-dimensional (4D) chest computed tomography (CT) under tidal volume ventilation and the impact of respiratory motion on quantitative analysis of CT measurements. Forty-four pulmonary nodules in patients with metastatic disease were evaluated. CT examinations were performed using a 256 multidetector-row CT (MDCT) unit. Volume data were obtained from the lower lung fields (128 mm) above the diaphragm during dynamic CT acquisition. The CT parameters used were 120 kV, 100 or 150 mA, 0.5 s-1, and 0.5 mm collimation. Image data were reconstructed every 0.1 s during one respiratory cycle by a 180 reconstruction algorithm for four independent fractions of the respiratory cycle. Pulmonary nodules were measured along their longest and shortest axes using electronic calipers. Automated volumetry was assessed using commercially available software. The diameters of long and short axes in each frame were 9.0-9.6 mm and 7.1-7.5 mm, respectively. There was fluctuation of the long axis diameters in the third fraction. The mean volume in each fraction ranged from 365 to 394 mm3. Statistically significant fluctuation was also found in the third fraction. 4D-CT under tidal volume ventilation is feasible to determine diameter or volume of the pulmonary nodule. (orig.)
International Nuclear Information System (INIS)
Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm3) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapy dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6–36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44–99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.
Ground-state projection multigrid for propagators in four-dimensional SU (2) gauge fields
International Nuclear Information System (INIS)
The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators in four-dimensional SU (2) lattice gauge theory. The defining eigenvalue equation for the restriction operator C is solved exactly. With the Galerkin choice A=C* for the interpolation operator, the critical exponent z is not reduced in nontrivial gauge fields. Nevertheless, a considerable speedup is obtained compared to conventional relaxation, and the conjugate gradient algorithm is outperformed. Simulations with an 'optimal' interpolation kernel A eliminate critical slowing down for any value of the gauge coupling. This proves that ground-state projection is a good choice of C (i.e., of the blockspin). (orig.)
Man, Tianlong; Wan, Yuhong; Wu, Fan; Wang, Dayong
2015-11-01
We present a new method for the four-dimensional tracking of a spatially incoherent illuminated object. Self-interference digital holography is utilized for recording the hologram of the spatially incoherent illuminated object. Three-dimensional spatial coordinates encoded in the hologram are extracted by holographic reconstruction procedure and tracking algorithms, while the time information is reserved by the single-shot configuration. Applications of the holographic tracking methods are expanded to the incoherent imaging areas. Speckles and potential damage to the samples of the coherent illuminated tracking methods are overcome. Results on the quantitative tracking of three-dimensional spatial position over time are reported. In practical, living zebra fish larva is used to demonstrate one of the applications of the method.
Five-brane thresholds and membrane instantons in four-dimensional heterotic M-theory
International Nuclear Information System (INIS)
The effective four-dimensional supergravity of M-theory compactified on the orbifold S1/Z2 and a Calabi-Yau threefold includes in general moduli supermultiplets describing massless modes of five-branes. For each brane, one of these fields corresponds to fluctuations along the interval. The five-brane also leads to modifications of the anomaly-cancelling terms in the eleven-dimensional theory, including gauge contributions located on their world-volumes. We obtain the interactions of the brane 'interval modulus' predicted by these five-brane-induced anomaly-cancelling terms and we construct their effective supergravity description. In the condensed phase, these interaction terms generate an effective non-perturbative superpotential which can also be interpreted as instanton effects of open membranes stretching between five-branes and the S1/Z2 fixed hyperplanes. Aspects of the vacuum structure of the effective supergravity are also briefly discussed
A four-dimensional primitive equation model for coupled coastal-deep ocean studies
Haidvogel, D. B.
1981-01-01
A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.
A time-parallel approach to strong-constraint four-dimensional variational data assimilation
Rao, Vishwas; Sandu, Adrian
2016-05-01
A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.
Energy Technology Data Exchange (ETDEWEB)
Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)
1994-12-01
Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.
Lopez, Andrew L., III; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.
2015-09-01
Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.
Statistical Entropy of Four-Dimensional Rotating Black Holes from Near-Horizon Geometry
International Nuclear Information System (INIS)
We show that a class of four-dimensional rotating black holes allow five-dimensional embeddings as black rotating strings. Their near-horizon geometry factorizes locally as a product of the three-dimensional anti-de Sitter space-time and a two-dimensional sphere (AdS3xS2 ), with angular momentum encoded in the global space-time structure. Following the observation that the isometries on the AdS3 space induce a two-dimensional (super)conformal field theory on the boundary, we reproduce the microscopic entropy with the correct dependence on the black hole angular momentum. copyright 1999 The American Physical Society
Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction
Zhang, Bin; Zhao, Minmin; Liu, Zhigang; Wu, Zhaohang
2016-08-01
Deflection tomography with limited angle projections was investigated to visualize a premixed flame. A projection sampling system for deflection tomography was used to obtain chronological deflectogram arrays at six view angles with only a pair of gratings. A new iterative reconstruction algorithm with deflection angle compressed-sensing revision was developed to improve reconstruction-distribution quality from incomplete projection data. Numerical simulation and error analysis provided a good indication of algorithm precision and convergence. In the experiment, 150 fringes were processed, and temperature distributions in 20 cross-sections were reconstructed from projection data in four instants. Four-dimensional flame structures and temperature distributions in the flame interior were visualized using the visualization toolkit. The experimental reconstruction was then compared with the result obtained from computational fluid dynamic analysis.
Metallic phase of the quantum Hall effect in four-dimensional space
Edge, Jonathan; Tworzydlo, Jakub; Beenakker, Carlo
2013-03-01
We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent ν ~ 1 . 2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value ν = 1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect. NanoCTM, FOM/NWO, ERC
Four-dimensional multiphoton microscopy with time-correlated single-photon counting.
Schönle, A; Glatz, M; Hell, S W
2000-12-01
We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at each pixel or in arbitrarily defined regions of interest. When employing an avalanche photodiode the width of the temporal response function is 420 ps. Although this response confines the temporal resolution to values greater than several hundreds of picoseconds, the lifetime precision is determined by the signal-to-noise ratio and can be in the range of tens of picosconds. Lifetime changes are visualized in pulsed-laser-deposited fluorescent layers as well as in cyan fluorescent proteins that transfer energy to yellow fluorescent proteins in live mammalian cells. PMID:18354639
Four-dimensionally coded PSK systems for combatting effects of severe ISI and CCI
Fang, R.; Lee, W.
A combined forward error correction (FEC) coding and modulation technique is proposed for transmissions over four-dimensional (4-D) channels that are interference and noise limited. Improved error performance is achieved by 4-D channel coding, with the expanded signal set in a manner similar to Ungerboeck's set-partitioning method, which maximizes the free Euclidean distance. Lower bounds on free Euclidean distance at the output of the 4-D modulator are derived for evaluating the asymptotic performance. As an example, a rate 2/3 convolutional encoder combined with a 4-D coded QPSK signal could yield an Eb/No gain of about 3 to 4 dB over an uncoded two-dimensional (2-D) BPSK system. Performance over a linear channel in the presence of thermal noise, intersymbol interference (ISI), and co-channel interference (CCI) is also evaluated.
Institute of Scientific and Technical Information of China (English)
LIU Juanjuan; WANG Bin
2011-01-01
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research's fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
Universal time versus relativistic time in four-dimensional symmetry framework
International Nuclear Information System (INIS)
A new four-dimensional symmetry framework with a universal time is investigated which can be realized by a radioactive clock--the measured survival fraction of unstable particles gives the elapsed time. The world picture turns out to be quite different from that in special relativity. The general space-light transformation and the nonuniversal speed of light in this framework are discussed. The difference between the one-way speed and the two-way speed of a light signal is considered in detail. Moreover, the discussion sheds light on the connection between the universality of the light speed and the clock which does not read universal time. The relation with special relativity theory is examined in a few cases
Ultrafast core-loss spectroscopy in four-dimensional electron microscopy
Directory of Open Access Journals (Sweden)
Renske M. van der Veen
2015-03-01
Full Text Available We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions.
New supersymmetric black holes in four-dimensional N = 2 supergravity
Mandal, Taniya; Tripathy, Prasanta K.
2016-05-01
In this paper, we consider the four-dimensional N = 2 supergravity theory arising from the compactification of type IIA string theory on a Calabi-Yau manifold. We analyze the supersymmetric flow equations for static, spherically symmetric, single-centered black holes. These flow equations are solved by a set of algebraic equations involving the holomorphic sections and harmonic functions. We examine black hole configurations with D0-D4-D6 charge for which the most general solution of these algebraic equations are considered. Though the black hole solution is unique for a given value of the charges, we find new phases of the black hole solutions upon varying them.
On the existence of rigid spheres in four-dimensional spacetime manifolds
Gittel, Hans-Peter; Kijowski, Jerzy
2015-01-01
This paper deals with the generalization of usual round spheres in the flat Minkowski spacetime to the case of a generic four-dimensional spacetime manifold $M$. We consider geometric properties of sphere-like submanifolds in $M$ and introduce conditions on external curvature and torsion, which lead to a definition of a {\\em rigid sphere}. The main result is a local existence theorem concernig such spheres. For this purpose we apply the surjective implicit function theorem. The proof is based on a detailed analysis of the linearized problem and leads to an eight-parameter family of solutions in case when the metric tensor $g$ of $M$ is from a certain neighbourhood of the flat Minkowski metric. This contribution continues the study of rigid spheres in (Class. Quantum Grav. \\textbf{30} (2013), 175010, doi:10.1088/0264-9381/30/17/175010, 18 pp.).
Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation.
Chen, Jiunn-Wei; Pu, Shi; Wang, Qun; Wang, Xin-Nian
2013-06-28
We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains vorticity terms and a four-dimensional Euclidean Berry monopole which gives an axial anomaly. By integrating out the zeroth component of the 4-momentum p, we reproduce the previous three-dimensional results derived from the Hamiltonian approach, together with the newly derived vorticity terms. The phase space continuity equation has an anomalous source term proportional to the product of electric and magnetic fields (FσρF[over ˜]σρ∼EσBσ). This provides a unified interpretation of the chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in the framework of Wigner functions. PMID:23848865
A four dimensional map for escape from resonance: negative energy modes and nonlinear instability
Martins, Caroline G L; Curry, C
2016-01-01
Positive definiteness of a Hamiltonian expanded about an equilibrium point provides only a necessary condition for stability, a criterion known as Dirichlet's theorem. The reason that this criterion is not necessary for stability is because of the possible existence of negative energy modes, which are linearly stable modes of oscillation that have negative energy. When such modes are present, the Hamiltonian is, in general, indefinite. Although such systems with negative energy modes are linearly stable (spectral stable), they are unstable to infinitesimal perturbations under the nonlinear dynamics. In the present work we study this kind of nonlinear instability with the simplest nontrivial four dimensional area-preserving map, which has a cubic degree of freedom, that was designed to mimic the behavior of a Hamiltonian system with one positive and one negative energy mode, and a quadratic degree of freedom, that allows eventual escapes in phase space, usually called as Arnold diffusion.
International Nuclear Information System (INIS)
An important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung. The abdominal height was known to be affected by sensor placement and patient positioning while the spirometer exhibited signal drift. By combining these two, a normalization of the drift-free metric to tidal volume may be generated and the overall metric precision may be improved
International Nuclear Information System (INIS)
Aim: To compare cosmetic results of different radiotherapy schedules used in the treatment of breast cancer after breast radiotherapy and to identify factors affecting cosmetic outcomes. Material and methods: Ninety-four patients irradiated. Median follow-up of 29 months (range 18-154 mo.). Patients were treated with standard fractionation 45-50 Gy/20-25 fx/4-5 weeks. Boost up to 10 Gy. Late effects were evaluated using the LENT-SOMA scoring scale. The cosmetic results were assessed on a four-point scale and presence of concomitant chemotherapy. Results: LENT-SOMA grade 3 toxicity was observed only in 8 (8,5%) patients. The factor associated with hyperpigmentation is large breast size. The significant risk factors for teleangiectasia are high dose and use photon energy 1,33 MeV beam. Factors found to impact significantly cosmetics adversely fibrosis was large breast size. Breast fibrosis were more frequent observed in woman after whole dose 50 Gy. There were no differences in breast skin thick between analysed factors. Conclusions: After irradiating large breasts more often than one observes the fibrosis of the breast in the case of small and average breasts and discolour of the skin. Irradiating photons from the cobalt source in the comparison with photons about higher energy at women with large breasts, there is the reason more frequent occurrence of the skin angioma. For the final cosmetic effect of radiotherapy in saving treatment, they do not have the impact: tumor size, boost method, chemical treatment, patients age. (authors)
Four-dimensional computed tomography (4DCT): A review of the current status and applications.
Kwong, Yune; Mel, Alexandra Olimpia; Wheeler, Greg; Troupis, John M
2015-10-01
The applications of conventional computed tomography (CT) have been widely researched and implemented in clinical practice. A recent technological innovation in the field of CT is the emergence of four-dimensional computed tomography (4DCT), where a three-dimensional computed tomography volume containing a moving structure is imaged over a period of time, creating a dynamic volume data set. 4DCT has previously been mainly utilised in the setting of radiation therapy planning, but with the development of wide field of view CT, 4DCT has opened major avenues in the diagnostic arena. The aim of this study is to provide a comprehensive narrative review of the literature regarding the current clinical applications of 4DCT. The applications reviewed include both routine diagnostic usage as well as an appraisal of the current research literature. A systematic review of the studies related to 4DCT was conducted. The Medline database was searched using the MeSH subject heading 'Four-Dimensional Computed Tomography'. After excluding non-human and non-English papers, 2598 articles were found. Further exclusion criteria were applied, including date range (since wide field of view CT was introduced in 2007), and exclusion of technical/engineering/physics papers. Further filtration of papers included identification of Review papers. This process yielded 67 papers. Of these, exclusion of papers not specifically discussing 4DCT (cone beam, 4D models) yielded 38 papers. As part of the review, the technique for 4DCT is described, with perspectives as to how it has evolved and its benefits in different clinical indications. PMID:26041442
International Nuclear Information System (INIS)
We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in cine mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume (ν) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r>0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08±0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between ν and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1%±1.9%. This quantitative analysis highlights the value of using spirometry
International Nuclear Information System (INIS)
Purpose: We have recently reported that ultrasound imaging, together with ultrasound tissue characterization (UTC), can provide quantitative assessment of radiation-induced normal-tissue toxicity. This study’s purpose is to evaluate the reliability of our quantitative ultrasound technology in assessing acute and late normal-tissue toxicity in breast cancer radiotherapy. Method and Materials: Our ultrasound technique analyzes radiofrequency echo signals and provides quantitative measures of dermal, hypodermal, and glandular tissue toxicities. To facilitate easy clinical implementation, we further refined this technique by developing a semiautomatic ultrasound-based toxicity assessment tool (UBTAT). Seventy-two ultrasound studies of 26 patients (720 images) were analyzed. Images of 8 patients were evaluated for acute toxicity (<6 months postradiotherapy) and those of 18 patients were evaluated for late toxicity (≥6 months postradiotherapy). All patients were treated according to a standard radiotherapy protocol. To assess intraobserver reliability, one observer analyzed 720 images in UBTAT and then repeated the analysis 3 months later. To assess interobserver reliability, three observers (two radiation oncologists and one ultrasound expert) each analyzed 720 images in UBTAT. An intraclass correlation coefficient (ICC) was used to evaluate intra- and interobserver reliability. Ultrasound assessment and clinical evaluation were also compared. Results: Intraobserver ICC was 0.89 for dermal toxicity, 0.74 for hypodermal toxicity, and 0.96 for glandular tissue toxicity. Interobserver ICC was 0.78 for dermal toxicity, 0.74 for hypodermal toxicity, and 0.94 for glandular tissue toxicity. Statistical analysis found significant changes in dermal (p < 0.0001), hypodermal (p = 0.0027), and glandular tissue (p < 0.0001) assessments in the acute toxicity group. Ultrasound measurements correlated with clinical Radiation Therapy Oncology Group (RTOG) toxicity scores of patients
Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy
International Nuclear Information System (INIS)
Radiotherapy with a proton beam of initial energy 55-80 MeV is presently the clinically recommended therapy for some cases of intraocular melanoma such as large melanomas or tumours adjacent to critical organs. Evaluation and optimization of radiation doses outside the treatment volume may contribute to reducing undesirable side-effects and decreasing the risk of occurrence of secondary cancers, particularly for paediatric patients. In this work the undesired doses to organs were assessed basing on Monte Carlo calculation of secondary radiation transport and on results of measurements of neutron and γ-ray doses at the proton therapy facility of the Institute of Nuclear Physics at Krakow. Dosimetry was performed using a He-3-based FHT 762 neutron monitor (Wendi II), a FH40G proportional counter (for γ-rays), and MTS-7 (LiF:Mg,Ti) thermoluminescence detectors (TLDs). Organ doses were calculated in the ADAM anthropomorphic phantom using the MCNPX Monte Carlo transport code and partly verified, for γ-ray doses, with TLD measurements in the RANDO Anderson anthropomorphic phantom. The effective dose due to undesired radiation, including exposure from scattered radiation during the entire process of proton radiotherapy and patient positioning using X-rays, does not exceed 1 mSv.
Institute of Scientific and Technical Information of China (English)
ZHANG Lin; NI Yunqi
2005-01-01
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However,the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front,and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently,the heavy rainfall forecast was improved.
Prospective Imaging Assessment of Mortality Risk After Head-and-Neck Radiotherapy
International Nuclear Information System (INIS)
Purpose: The optimal roles for imaging-based biomarkers in the management of head-and-neck cancer remain undefined. Unresolved questions include whether functional or anatomic imaging might improve mortality risk assessment for this disease. We addressed these issues in a prospective institutional trial. Methods and Materials: Ninety-eight patients with locally advanced pharyngolaryngeal squamous cell cancer were enrolled. Each underwent pre- and post-chemoradiotherapy contrast-enhanced computed tomography (CT) and 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT imaging. Imaging parameters were correlated with survival outcomes. Results: Low post-radiation primary tumor FDG avidity correlated with improved survival on multivariate analysis; so too did complete primary tumor response by CT alone. Although both imaging modalities lacked sensitivity, each had high specificity and negative predictive value for disease-specific mortality risk assessment. Kaplan-Meier estimates confirmed that both CT and FDG-PET/CT stratify patients into distinct high- and low-probability survivorship groups on the basis of primary tumor response to radiotherapy. Subset analyses demonstrated that the prognostic value for each imaging modality was primarily derived from patients at high risk for local treatment failure (human papillomavirus [HPV]-negative disease, nonoropharyngeal primary disease, or tobacco use). Conclusions: CT alone and FDG-PET/CT are potentially useful tools in head-and-neck cancer-specific mortality risk assessment after radiotherapy, particularly for selective use in cases of high-risk HPV-unrelated disease. Focus should be placed on corroboration and refinement of patient selection for imaging-based biomarkers in future studies.
International Nuclear Information System (INIS)
Purpose: Auto-propagation of anatomic regions of interest from the planning computed tomography (CT) scan to the daily CT is an essential step in image-guided adaptive radiotherapy. The goal of this study was to quantitatively evaluate the performance of the algorithm in typical clinical applications. Methods and Materials: We had previously adopted an image intensity-based deformable registration algorithm to find the correspondence between two images. In the present study, the regions of interest delineated on the planning CT image were mapped onto daily CT or four-dimensional CT images using the same transformation. Postprocessing methods, such as boundary smoothing and modification, were used to enhance the robustness of the algorithm. Auto-propagated contours for 8 head-and-neck cancer patients with a total of 100 repeat CT scans, 1 prostate patient with 24 repeat CT scans, and 9 lung cancer patients with a total of 90 four-dimensional CT images were evaluated against physician-drawn contours and physician-modified deformed contours using the volume overlap index and mean absolute surface-to-surface distance. Results: The deformed contours were reasonably well matched with the daily anatomy on the repeat CT images. The volume overlap index and mean absolute surface-to-surface distance was 83% and 1.3 mm, respectively, compared with the independently drawn contours. Better agreement (>97% and <0.4 mm) was achieved if the physician was only asked to correct the deformed contours. The algorithm was also robust in the presence of random noise in the image. Conclusion: The deformable algorithm might be an effective method to propagate the planning regions of interest to subsequent CT images of changed anatomy, although a final review by physicians is highly recommended
Quality assessment for VMAT prostate radiotherapy planning based on data envelopment analysis
International Nuclear Information System (INIS)
The majority of commercial radiotherapy treatment planning systems requires planners to iteratively adjust the plan parameters in order to find a satisfactory plan. This iterative trial-and-error nature of radiotherapy treatment planning results in an inefficient planning process and in order to reduce such inefficiency, plans can be accepted without achieving the best attainable quality. We propose a quality assessment method based on data envelopment analysis (DEA) to address this inefficiency. This method compares a plan of interest to a set of past delivered plans and searches for evidence of potential further improvement. With the assistance of DEA, planners will be able to make informed decisions on whether further planning is required and ensure that a plan is only accepted when the plan quality is close to the best attainable one. We apply the DEA method to 37 prostate plans using two assessment parameters: rectal generalized equivalent uniform dose (gEUD) as the input and D95 (the minimum dose that is received by 95% volume of a structure) of the planning target volume (PTV) as the output. The percentage volume of rectum overlapping PTV is used to account for anatomical variations between patients and is included in the model as a non-discretionary output variable. Five plans that are considered of lesser quality by DEA are re-optimized with the goal to further improve rectal sparing. After re-optimization, all five plans improve in rectal gEUD without clinically considerable deterioration of the PTV D95 value. For the five re-optimized plans, the rectal gEUD is reduced by an average of 1.84 Gray (Gy) with only an average reduction of 0.07 Gy in PTV D95. The results demonstrate that DEA can correctly identify plans with potential improvements in terms of the chosen input and outputs. (paper)
Directory of Open Access Journals (Sweden)
Shaveta Mehta
2008-01-01
Full Text Available Aim: To investigate the quality of life (QOL of patients with advanced carcinoma esophagus treated with different palliative radiation schedules. Methods: Sixty-two consecutive patients with inoperable, non-metastatic carcinoma of the esophagus were randomly allocated to Arm-A (external radiotherapy 30 Gy/10 fractions + brachytherapy 12 Gy/two sessions, Arm-B (external radiotherapy 30 Gy /10 fractions and Arm-C (external radiotherapy 20Gy /five fractions. The QOL was assessed using the European Organization for Research and Treatment of Cancer questionnaire at presentation, after treatment and at 3 months follow-up. Results: The mean QOL score improved, in arm-A from 38 to 52 after treatment and 56 at 3 months, in arm-B from 30 to 44 after treatment and 55 at 3 months and in arm-C from 24 to 40 after treatment but decreased to 37 at 3 months. Improvement in dysphagia scores at the first follow-up was 46.1% in arm-A, 25.0% in arm-B and 22.6% in arm-C. The difference was maintained at 3 months, with maximum improvement in arm-A (57.6%. No significant differences were found between the three arms with regard to complications and additional procedures needed for relief of dysphagia. Conclusion: In comparison with external radiotherapy alone, external radiotherapy with intraluminal brachytherapy has shown a trend toward better QOL and consistent dysphagia relief without significant difference in adverse effects.
International Nuclear Information System (INIS)
A four-dimensional (x, y, z, t) composite superquadric-based object model of the human heart for Monte Carlo simulation of radiological imaging systems has been developed. The phantom models the real temporal geometric conditions of a beating heart for frame rates up to 32 per cardiac cycle. Phantom objects are described by boolean combinations of superquadric ellipsoid sections.Moving spherical coordinate systems are chosen to model wall movement whereby points of the ventricle and atria walls are assumed to move towards a moving center-of-gravity point. Due to the non-static coordinate systems, the atrial/ventricular valve plane of the mathematical heart phantom moves up and down along the left ventricular long axis resulting in reciprocal emptying and filling of atria and ventricles. Compared to the base movement, the epicardial apex as well as the superior atria area are almost fixed in space. Since geometric parameters of the objects are directly applied on intersection calculations of the photon ray with object boundaries during Monte Carlo simulation, no phantom discretization artifacts are involved
Five-brane thresholds and membrane instantons in four-dimensional heterotic M-theory
Energy Technology Data Exchange (ETDEWEB)
Carlevaro, Luca [Physics Institute, Neuchatel University, A.-L. Breguet 1, CH-2000 Neuchatel (Switzerland)]. E-mail: luca.carlevaro@unine.ch; Derendinger, Jean-Pierre [Physics Institute, Neuchatel University, A.-L. Breguet 1, CH-2000 Neuchatel (Switzerland)]. E-mail: jean-pierre.derendinger@unine.ch
2006-02-20
The effective four-dimensional supergravity of M-theory compactified on the orbifold S{sup 1}/Z{sub 2} and a Calabi-Yau threefold includes in general moduli supermultiplets describing massless modes of five-branes. For each brane, one of these fields corresponds to fluctuations along the interval. The five-brane also leads to modifications of the anomaly-cancelling terms in the eleven-dimensional theory, including gauge contributions located on their world-volumes. We obtain the interactions of the brane 'interval modulus' predicted by these five-brane-induced anomaly-cancelling terms and we construct their effective supergravity description. In the condensed phase, these interaction terms generate an effective non-perturbative superpotential which can also be interpreted as instanton effects of open membranes stretching between five-branes and the S{sup 1}/Z{sub 2} fixed hyperplanes. Aspects of the vacuum structure of the effective supergravity are also briefly discussed.
Directory of Open Access Journals (Sweden)
Zhiwei Jiang
2014-03-01
Full Text Available To improve crop model performance for regional crop yield estimates, a new four-dimensional variational algorithm (POD4DVar merging the Monte Carlo and proper orthogonal decomposition techniques was introduced to develop a data assimilation strategy using the Crop Environment Resource Synthesis (CERES-Wheat model. Two winter wheat yield estimation procedures were conducted on a field plot and regional scale to test the feasibility and potential of the POD4DVar-based strategy. Winter wheat yield forecasts for the field plots showed a coefficient of determination (R2 of 0.73, a root mean square error (RMSE of 319 kg/ha, and a relative error (RE of 3.49%. An acceptable yield at the regional scale was estimated with an R2 of 0.997, RMSE of 7346 tons, and RE of 3.81%. The POD4DVar-based strategy was more accurate and efficient than the EnKF-based strategy. In addition to crop yield, other critical crop variables such as the biomass, harvest index, evapotranspiration, and soil organic carbon may also be estimated. The present study thus introduces a promising approach for operationally monitoring regional crop growth and predicting yield. Successful application of this assimilation model at regional scales must focus on uncertainties derived from the crop model, model inputs, data assimilation algorithm, and assimilated observations.
Relativistic positioning: four-dimensional numerical approach in Minkowski space-time
Puchades, Neus
2011-01-01
We simulate the satellite constellations of two Global Navigation Satellite Systems: Galileo (EU) and GPS (USA). Satellite motions in Minkowski space-time are described in an inertial frame with the origin at the center of an idealized spherically symmetric non rotating Earth. The trajectories are then circumferences centered at the same point as Earth. In Minkowski space-time, there is a well known relation (see B. Coll, J. J. Ferrando and J. A. Morales-Lladosa, Class. Quantum Grav., 27, 065013, 2010) between the emission and inertial coordinates of any event. Here, this relation is implemented in a numerical code, which is tested and applied. The first application is a detailed numerical four-dimensional analysis of the so-called emission coordinate region and co-region. In a second application, a GPS (Galileo) satellite is considered as the receiver and its emission coordinates are given by four Galileo (GPS) satellites. The bifurcation problem (double localization) in the positioning of the receiver satel...
A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-04-01
Hyperspectral imaging has proven significance in bio-imaging applications and it has the ability to capture up to several hundred images of different wavelengths offering relevant spectral signatures. To use hyperspectral imaging for in vivo monitoring and diagnosis of the internal body cavities, a snapshot hyperspectral video-endoscope is required. However, such reported systems provide only about 50 wavelengths. We have developed a four-dimensional snapshot hyperspectral video-endoscope with a spectral range of 400–1000 nm, which can detect 756 wavelengths for imaging, significantly more than such systems. Capturing the three-dimensional datacube sequentially gives the fourth dimension. All these are achieved through a flexible two-dimensional to one-dimensional fiber bundle. The potential of this custom designed and fabricated compact biomedical probe is demonstrated by imaging phantom tissue samples in reflectance and fluorescence imaging modalities. It is envisaged that this novel concept and developed probe will contribute significantly towards diagnostic in vivo biomedical imaging in the near future.
A Four-Dimensional Computed Tomography Analysis of Multiorgan Abdominal Motion
International Nuclear Information System (INIS)
Purpose: To characterize and quantify multiorgan respiration-induced motion in the abdomen in liver and pancreatic cancer patients. Methods and Materials: Four-dimensional computed tomography scans were acquired for 18 patients treated for abdominal tumors. Contours of multiple abdominal organs were drawn by the radiation oncologist at one respiratory phase; these contours were propagated to other respiratory phases by deformable registration. Three-dimensional organ models were generated from the resulting contours at each phase. Motions of the bounding box and center of mass were extracted and analyzed for the clinical target volume and organs at risk. Results: On average, the center of mass motion for liver clinical target volumes was 9.7 mm (SD 5 mm) in the superior–inferior direction, with a range of 3 to 18 mm; for pancreatic tumors, the average was 5 mm (SD 1 mm) m with a range of 3 to 7 mm. Abdominal organs move in unison, but with varying amplitudes. Gating near exhale (T40–T60) reduces the range of motion by a factor of ∼10. Conclusion: We have used deformable registration to calculate the trajectories of abdominal organs in four dimensions, based on center of mass and bounding box motion metrics. Our results are compared with previously reported studies. Possible reasons for differences are discussed.
A four-dimensional virtual hand brain–machine interface using active dimension selection
Rouse, Adam G.
2016-06-01
Objective. Brain–machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s‑1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation
Institute of Scientific and Technical Information of China (English)
Fuqing ZHANG; Meng ZHANG; James A. HANSEN
2009-01-01
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect-and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
On the Superstrings-Induced Four-Dimensional Gravity and Its Applications to Cosmology
Directory of Open Access Journals (Sweden)
Sergei V. Ketov
2009-01-01
Full Text Available We review the status of the fourth-order (quartic in the spacetime curvature terms induced by superstrings/M-theory (compactified on a warped torus in the leading order with respect to the Regge slope parameter, and study their (nonperturbative impact on the evolution of the Hubble scale in the context of the four-dimensional FRW cosmology. After taking into account the quantum ambiguities in the definition of the off-shell superstring effective action, we propose the generalized Friedmann equations, find the existence of their (de Sitter exact inflationary solutions without a spacetime singularity, and constrain the ambiguities by demanding stability and the scale factor duality invariance of our solutions. The most naive (Bel-Robinson tensor squared quartic terms are ruled out, thus giving the evidence for the necessity of extra quartic (Ricci tensor-dependent terms in the off-shell gravitational effective action for superstrings. Our methods are generalizable to the higher orders in the spacetime curvature.
International Nuclear Information System (INIS)
When radiological accidents occur, radioactive material may spread into the atmosphere, causing large-scale and long-term contamination. To diminish the effects of such accidents, researchers from many countries have investigated training programs in emergency response to radiological accidents, especially in the wake of several serious radiological accidents. Although many training programs have been proposed, this study identifies two problems: the lack of effective data representation and the lack of complete training records. Therefore, by considering various requirements for relief and evacuation work at radiological accident sites, it integrates four-dimensional geographical information and mobile techniques to construct a training platform for radiological accident emergency response. During training, groups of participants learn to respond to simulated radiological accident scenarios. Moreover, participants can use the training platform to review and discuss training details. Judging by the results, the training platform has not only increased the effectiveness of training programs, but also complied with standard operating procedures for radiological accident emergency response in Taiwan. In conclusion, this study could serve as a useful reference for similar studies and applications. (author)
Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation
Energy Technology Data Exchange (ETDEWEB)
Agishtein, M.E.; Migdal, A.A. (Program in Applied and Computational Mathematics, Fine Hall, Princeton Univ., Princeton, NJ (US))
1992-04-20
In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 {times} 10{sup 4} simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths.
Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation
International Nuclear Information System (INIS)
In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 104 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths
Franke, Philipp; Elbern, Hendrik
2016-04-01
Estimating volcanic ash emissions is a very challenging task due to limited monitoring capacities of the ash plume and nonlinear processes in the atmosphere, which renders application of source strength and injection height estimations difficult. Most models, which estimate volcanic ash emissions, make strong simplifications of the dispersion of volcanic ash and corresponding atmospheric processes. The objective of this work is to estimate volcanic ash emissions and simulate the ensuing dispersion applying a full chemistry transport model in a hybrid approach by using its adjoint as well as an ensemble of model runs to quantify forecast uncertainties. Therefore, the four dimensional variational data assimilation version of the EURAD-IM chemistry transport model is extended to include a Sequential Importance Resampling Smoother (SIRS), introducing novel weighting and resampling strategies. In the main SIRS step the ensemble members exchange high rated emission patterns while rejecting emission patterns with low value for the forecast. The emission profiles of the ensemble members are perturbed afterwards to guarantee different emissions for all ensemble members. First identical twin experiments show the ability of the system to estimate the temporal and vertical distribution of volcanic ash emissions. The 4D-var data assimilation algorithm of the new system additionally provides quantitative emission estimation.
Two-dimensional topological field theories coupled to four-dimensional BF theory
International Nuclear Information System (INIS)
Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level
Four-dimensional formulation of the sector-improved residue subtraction scheme
International Nuclear Information System (INIS)
Four years ago, one of us introduced a novel subtraction scheme [1] for the evaluation of double-real radiation contributions to cross sections at next-to-next-to-leading order (NNLO) in QCD. This approach, named SecToR Improved Phase sPacE for Real radiation (STRIPPER), has already found several non-trivial applications. In particular, it has allowed for the determination of NNLO corrections to hadronic top-quark pair production, fully differential top-quark decays, inclusive semileptonic charmless b-quark decays, associated Higgs boson and jet production in gluon fusion, muon decay spin asymmetry, and t-channel single-top production. Common to these calculations was the use of conventional dimensional regularization (CDR). In this publication, we present a complete formulation of the subtraction scheme for arbitrary processes with any number of colored partons in the final state, and up to two partons in the initial state. Furthermore, we modify the integrated subtraction terms of the double-real radiation to enable the introduction of the 't Hooft–Veltman version of dimensional regularization (HV), in which resolved states are four-dimensional. We demonstrate the correctness of our approach on the example of top-quark pair production in the gluon fusion channel
Four-dimensional dielectric property image obtained from electron spectroscopic imaging series.
Lo, S C; Kai, J J; Chen, F R; Chang, L; Chen, L C; Chiang, C C; Ding, P; Chin, B; Zhang, H; Chen, F
2001-01-01
We have demonstrated a new quantitative method to characterize two-dimensional distributions of energy-dependent dielectric function of materials from low loss electron spectroscopic image (ESI) series. Two problems associated with extracted image-spectrum from the low-loss image series, under-sampling and loss of energy resolution, were overcome by using fast Fourier transformation (FFT) interpolation and maximum entropy deconvolution method. In this study, Black Diamond/Si3N4/SiO2/Si-substrate dielectric layer designed for copper metallization was used as the sample. We show that the reconstructed (FFT interpolated and maximum entropy deconvoluted) image-spectrum obtained from ESI series images can be quantified with the same accuracy as conventional electron energy-loss spectroscopy spectra. Since the analysis of the dielectric function is sensitive to the local thickness of the specimen using Kramers-Kronig analysis, we also developed a new method to quantitatively determine the dielectric constant for low-k materials. We have determined the thickness of the Black Diamond using the extrapolated thickness method from the materials of known dielectric constants. Using Kramers-Kronig formula, the dielectric function map can be deduced from two-dimensional reconstructed single scattering spectra with providing the information of thickness. We proposed a four-dimensional data presentation for revealing the uniformity of the energy dependent property. The accuracy of our methods depends on the thickness determination and on the quality of the reconstructed spectra from the image series. PMID:11918416
Four-dimensional computed tomography (4D CT). Concepts and preliminary development
International Nuclear Information System (INIS)
Four-dimensional computed tomography (4D CT) is a dynamic volume imaging system of moving organs with an image quality comparable to that of conventional CT. 4D CT will be realized by several technical breakthroughs for dynamic cone-beam CT: a large-area two-dimensional (2D) detector; high-speed data transfer system; reconstruction algorithms; ultra-high-speed reconstruction computer; and high-speed, continuously rotating gantry. Among these, development of the 2D detector is one of the main tasks because it should have as wide a dynamic range and as high a data acquisition speed (view rate) as present CT detectors. We are now developing a 4D CT scanner together with the key components. It will take one volume image in 0.5 sec with a 3D matrix of 512 x 512 x 512. This paper describes the concepts and designs of the 4D CT system, as well as preliminary development of the 2D detector. (author)
Chiral Four-Dimensional F-Theory Compactifications With SU(5) and Multiple U(1)-Factors
Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan
2013-01-01
We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP_2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1)xU(1) and SU(5)xU(1)xU(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B=P^3. We determine the general G_4-flux that belongs to H^{(2,2)}_V of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G_4-flux in general F-theory compactifications w...
Monocosm a linear solution to the effective four-dimensionality problem
Trifonov, V Yu
1995-01-01
In this note we formalize certain aspects of measurement \\textit{(active observation)} process which makes it possible to express in strict terms the concept of rational behaviour and degree to which logic of the observer determines what he perceives. This leads to a first-order theory shown to possess a real-world model: if a resercher's logic is Boolean, he is bound to perceive his spacetime as a four-dimensional pseudo-Riemannian manifold of signature 2, with a big-bang geometry. These connections between the type of an observer's logic and large-scale structure of the observable universe generate a testable effect similar to the action of a positive cosmological constant, imply Haar integration-over-spacetime and also provide a heuristic limit on the number of matter generations. The result casts some doubts (arising also from the necessity of renormalization procedures and other difficulties of Gauge-Grassmannian schemes) that \\textit{classical} mathematics (i.e. the mathematics of the topos of sets) is ...
Four-Dimensional Coded Modulation with Bit-wise Decoders for Future Optical Communications
Alvarado, Alex
2014-01-01
Coded modulation (CM) is the combination of forward error correction (FEC) and multilevel constellations. Coherent optical communication systems result in a four-dimensional (4D) signal space, which naturally leads to 4D-CM transceivers. A practically attractive design paradigm is to use a bit-wise decoder, where the detection process is (suboptimally) separated into two steps: soft-decision demapping followed by binary decoding. In this paper, bit-wise decoders are studied from an information-theoretic viewpoint. 4D constellations with up to 4096 constellation points are considered. Metrics to predict the post-FEC bit-error rate (BER) of bit-wise decoders are analyzed. The mutual information is shown to fail at predicting the post-FEC BER of bit-wise decoders and the so-called generalized mutual information is shown to be a much more robust metric. It is also shown that constellations that transmit and receive information in each polarization and quadrature independently (e.g., PM-QPSK, PM-16QAM, and PM-64QA...
Directory of Open Access Journals (Sweden)
Alessandra Pereira Lopes
2013-12-01
Full Text Available INTRODUCTION: Brain tumors are the most common solid tumors and the second largest group of neoplasms diagnosed in childhood. Treatment includes surgery, radiotherapy, and chemotherapy. However, radiotherapy can cause complications, e.g., cognitive deficits. CASE DESCRIPTION: We describe the case of a child diagnosed with a brain tumor evaluated before and after radiotherapy to investigate cognitive decline after treatment. The results showed a decline in Intelligence Quotient (IQ scores and reversal of the predominance of verbal and nonverbal skills. After radiotherapy, the subject showed slowness, academic deficits, and difficulties learning new information. COMMENTS: Even though the post-treatment evaluation showed scores compatible with the average, comparison between pre- and post-treatment evaluations demonstrated the impact of radiotherapy on the subject's cognitive profile. These results highlight the importance of evaluating patients who undergo radiotherapy before and after treatment and understanding neuropsychological scores associated with the subjects' complaints.
International Nuclear Information System (INIS)
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincaré maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system. (general)
International Nuclear Information System (INIS)
Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.
Energy Technology Data Exchange (ETDEWEB)
Aviles, Agustin, E-mail: agustin.aviles@imss.gob.mx [Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Neri, Natividad [Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Fernandez, Raul [Department of Radiation Therapy, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Huerta-Guzman, Judith; Nambo, Maria J. [Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico)
2012-07-15
Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.
Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.
2010-12-01
We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.
International Nuclear Information System (INIS)
Objective: To investigate the motion characteristics of primary thoracic esophageal carcinoma with four-dimensional computed tomography (4DCT). Methods: Sixteen patients with primary thoracic esophageal carcinoma received respiratory gated 4DCT imaging,mapping the GTV1-GTV10 on every patient's each subsequent CT image of 10 images in the full-respiratory phase, and measuring the displacement of each centre of GTV. These displacements and directions were analyzed on different segments of esophagus. Results: The mean total lung volume and GTV volume was 2993.5 cm3, 35.00 cm3 and 3362.12 cm3, 34.84 cm3 respectively on end-expiration and end-inspiration phases (t=12.36, P=0.000 and t=-0.61, P=0.546). The total mean peak to peak displacement of GTV were 0.65 mm, 0.55 mm, and 2.03 mm in x, y- and z-axis direction,respectively (F=41.14, P=0.000). The motion in x-axis,y-axis and z-axis were 0.50 mm, 0.48 mm, 1.23 mm in the upper segment (F=5.45, P=0.017), 0.68 mm, 0.62 mm, 1.97 mm in the middle segment (F=27.74, P=0.000), 0.72 mm, 0.38 mm, 3.05 mm in the lower segment, respectively (F=15.61, P=0.000). Conclusions: The displacement of tumor in z axis is more notable than x-, y-axis in thoracic esophageal carcinoma. The displacement of tumor x-, y- and z-axis is different in different segment of thoracic esophageal carcinoma. (authors)
Complete classification of parallel Lorentz surfaces in four-dimensional neutral pseudosphere
Chen, Bang-Yen
2010-08-01
A Lorentz surface of an indefinite space form is called parallel if its second fundamental form is parallel with respect to the Van der Waerden-Bortolotti connection. Such surfaces are locally invariant under the reflection with respect to the normal space at each point. Parallel surfaces are important in geometry as well as in general relativity since extrinsic invariants of such surfaces do not change from point to point. Parallel Lorentz surfaces in four-dimensional (4D) Lorentzian space forms are classified by Chen and Van der Veken ["Complete classification of parallel surfaces in 4-dimensional Lorentz space forms," Tohoku Math. J. 61, 1 (2009)]. Recently, explicit classification of parallel Lorentz surfaces in the pseudo-Euclidean 4-space E24 and in the pseudohyperbolic 4-space H24(-1) are obtained recently by Chen et al. ["Complete classification of parallel Lorentzian surfaces in Lorentzian complex space forms," Int. J. Math. 21, 665 (2010); "Complete classification of parallel Lorentz surfaces in neutral pseudo hyperbolic 4-space," Cent. Eur. J. Math. 8, 706 (2010)], respectively. In this article, we completely classify the remaining case; namely, parallel Lorentz surfaces in 4D neutral pseudosphere S24(1). Our result states that there are 24 families of such surfaces in S24(1). Conversely, every parallel Lorentz surface in S24(1) is obtained from one of the 24 families. The main result indicates that there are major differences between Lorentz surfaces in the de Sitter 4-space dS4 and in the neutral pseudo 4-sphere S24.
Complete classification of parallel Lorentz surfaces in four-dimensional neutral pseudosphere
International Nuclear Information System (INIS)
A Lorentz surface of an indefinite space form is called parallel if its second fundamental form is parallel with respect to the Van der Waerden-Bortolotti connection. Such surfaces are locally invariant under the reflection with respect to the normal space at each point. Parallel surfaces are important in geometry as well as in general relativity since extrinsic invariants of such surfaces do not change from point to point. Parallel Lorentz surfaces in four-dimensional (4D) Lorentzian space forms are classified by Chen and Van der Veken [''Complete classification of parallel surfaces in 4-dimensional Lorentz space forms,'' Tohoku Math. J. 61, 1 (2009)]. Recently, explicit classification of parallel Lorentz surfaces in the pseudo-Euclidean 4-space E24 and in the pseudohyperbolic 4-space H24(-1) are obtained recently by Chen et al. [''Complete classification of parallel Lorentzian surfaces in Lorentzian complex space forms,'' Int. J. Math. 21, 665 (2010); ''Complete classification of parallel Lorentz surfaces in neutral pseudo hyperbolic 4-space,'' Cent. Eur. J. Math. 8, 706 (2010)], respectively. In this article, we completely classify the remaining case; namely, parallel Lorentz surfaces in 4D neutral pseudosphere S24(1). Our result states that there are 24 families of such surfaces in S24(1). Conversely, every parallel Lorentz surface in S24(1) is obtained from one of the 24 families. The main result indicates that there are major differences between Lorentz surfaces in the de Sitter 4-space dS4 and in the neutral pseudo 4-sphere S24.
Robust principal component analysis-based four-dimensional computed tomography
Gao, Hao; Cai, Jian-Feng; Shen, Zuowei; Zhao, Hongkai
2011-06-01
The purpose of this paper for four-dimensional (4D) computed tomography (CT) is threefold. (1) A new spatiotemporal model is presented from the matrix perspective with the row dimension in space and the column dimension in time, namely the robust PCA (principal component analysis)-based 4D CT model. That is, instead of viewing the 4D object as a temporal collection of three-dimensional (3D) images and looking for local coherence in time or space independently, we perceive it as a mixture of low-rank matrix and sparse matrix to explore the maximum temporal coherence of the spatial structure among phases. Here the low-rank matrix corresponds to the 'background' or reference state, which is stationary over time or similar in structure; the sparse matrix stands for the 'motion' or time-varying component, e.g., heart motion in cardiac imaging, which is often either approximately sparse itself or can be sparsified in the proper basis. Besides 4D CT, this robust PCA-based 4D CT model should be applicable in other imaging problems for motion reduction or/and change detection with the least amount of data, such as multi-energy CT, cardiac MRI, and hyperspectral imaging. (2) A dynamic strategy for data acquisition, i.e. a temporally spiral scheme, is proposed that can potentially maintain similar reconstruction accuracy with far fewer projections of the data. The key point of this dynamic scheme is to reduce the total number of measurements, and hence the radiation dose, by acquiring complementary data in different phases while reducing redundant measurements of the common background structure. (3) An accurate, efficient, yet simple-to-implement algorithm based on the split Bregman method is developed for solving the model problem with sparse representation in tight frames.
Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain
International Nuclear Information System (INIS)
A multiscale four-dimensional data assimilation (FDDA) technique, based on Newtonian relaxation, is incorporated into a mesoscale model and evaluated using meteorological and tracer data collected during a field experiment. The mesoscale model is used to predict synoptically driven flows and small-scale circulations influenced by terrain near the Rocky Flats Plant (RFP) for four nocturnal periods. Data assimilation is used to create dynamically consistent analysis fields based on mesoscale forecasts and asynoptic data. Observations from towers, minisodars, airsondes, tethersondes, rawinsondes, and profilers near RFP, as well as observations from surface stations throughout Colorado, are incorporated into the high-resolution analysis fields. Wind and turbulence quantities produced by the mesoscale model are used to determine the dispersion of tracer released from RFP for each evening. A subjective and statistical evaluation of meteorological and dispersion results is performed to examine FDDA effects on nocturnal circulations and tracer transport. The mesoscale model is able to qualitatively predict the mesobeta-scale drainage flows; however, the largest wind forecast errors occurred in a region immediately adjacent to the foothills. The FDDA technique reduced overall errors in the atmospheric and dispersion calculations, while the model generated realistic small-scale circulations not resolved by the data. Still, the model did not capture the shallow surface drainage flows east of RFP for two evenings during the field experiment. When the model was initialized with high-resolution analysis fields generated by FDDA and left to forecast, little improvement in forecasts were seen two hours after initialization time. This may be due to the fact that only observed horizontal wind components were assimilated into the analyses generated by FDDA; assimilation of temperature observations was not included. 32 refs., 12 figs., 4 tabs
Impact of four-dimensional data assimilation (FDDA) on urban climate analysis
Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory
2015-12-01
This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.
Four-dimensional CT in the study of lung volume and respiratory movement
International Nuclear Information System (INIS)
Objective: To evaluate the respiratory movement of the both lungs with four-dimensional CT(4DCT), and determine the optimal respiratory phase series CT images for radiation dose calculation. Methods: From November 2005 to November 2006, thirty patients with lung cancer who received 4DCT scan were enrolled, including 15 left and 15 right lung cancer cases, 25 men and 5 women. The media age was 55 (35-78) years old. After 4DCT scanning, the image was treated with Advantage 4D workstation, and then transmitted into Pinnacle station (Adac 7.4). The both lungs were automatically outlined using Pinnacle station with CT recognition value of -900 to -200 Hu. Then the same physician examined the unreasonable parts and revised them. After the delineation was completed, the volume of 10 respiratory phases of lung was obtained. Results: The average respiratory phase in inspiratory and expiratory phases was 78.87% ± 2.71% and 26.32% ± 3.17% in the tumor located lung, 77.55% ± 2.81% and 24.73% ± 2.55% in the healthy lung. The maximum and minimum mean volume was 106.48% ± 3.00% and 94.23% ± 2.78% in the tumor located lung,107.47% ± 2.43% and 93.65% ± 2.32% in the healthy lung. The volume at the end of inspiratory and expiratory was 106.43% ± 3.07% and 94.63% ± 2.71% in the tumor located lung, 107.37% ± 4.62% and 93.98% ± 2.34% in the healthy lung. Conclusions: The series CT images scan on 20%, 30% and 80% respiratory phases are reasonable for radiation dose calculation. The maximum and minimum average lung volumes are almost equal to those at the end of inspiratory and expiratory. (authors)
Robust principal component analysis-based four-dimensional computed tomography
International Nuclear Information System (INIS)
The purpose of this paper for four-dimensional (4D) computed tomography (CT) is threefold. (1) A new spatiotemporal model is presented from the matrix perspective with the row dimension in space and the column dimension in time, namely the robust PCA (principal component analysis)-based 4D CT model. That is, instead of viewing the 4D object as a temporal collection of three-dimensional (3D) images and looking for local coherence in time or space independently, we perceive it as a mixture of low-rank matrix and sparse matrix to explore the maximum temporal coherence of the spatial structure among phases. Here the low-rank matrix corresponds to the 'background' or reference state, which is stationary over time or similar in structure; the sparse matrix stands for the 'motion' or time-varying component, e.g., heart motion in cardiac imaging, which is often either approximately sparse itself or can be sparsified in the proper basis. Besides 4D CT, this robust PCA-based 4D CT model should be applicable in other imaging problems for motion reduction or/and change detection with the least amount of data, such as multi-energy CT, cardiac MRI, and hyperspectral imaging. (2) A dynamic strategy for data acquisition, i.e. a temporally spiral scheme, is proposed that can potentially maintain similar reconstruction accuracy with far fewer projections of the data. The key point of this dynamic scheme is to reduce the total number of measurements, and hence the radiation dose, by acquiring complementary data in different phases while reducing redundant measurements of the common background structure. (3) An accurate, efficient, yet simple-to-implement algorithm based on the split Bregman method is developed for solving the model problem with sparse representation in tight frames.
Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors
Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Piragua, Hernan
2014-04-01
We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP 2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B = ℙ3. We determine the general G 4-flux that belongs to of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G 4-flux in general F-theory compactifications with a non-holomorphic zero section. These conditions have to be formulated after a circle reduction in terms of Chern-Simons terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New Chern-Simons terms are generated by Kaluza-Klein states of the circle compactification. We explicitly perform the relevant field theory computations, that yield non-vanishing results precisely for fourfolds with a non-holomorphic zero section. Taking into account the new Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory duality. We independently check these chiralities using the subset of matter surfaces we determined. The presented techniques are general and do not rely on toric data.
A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application
Institute of Scientific and Technical Information of China (English)
LIU Juan; WANG Bin; LIU Hailong; YU Yongqiang
2008-01-01
A four-dimensional variational data assimilation (4DVar) system of the LASG/IAP Climate Ocean Model, version 1.0 (LICOM1.0), named LICOM-3DVM, has been developed using the three-dimensional variational data assimilation of mapped observation (3DVM), a 4DVar method newly proposed in the past two years. Two experiments with 12-year model integrations were designed to validate it. One is the as- similation run, called ASSM, which incorporated the analyzed weekly sea surface temperature (SST) fields from Reynolds and Smith (OISST) between 1990 and 2001 once a week by the LICOM-3DVM. The other is the control run without any assimilation, named CTL. ASSM shows that the simulated temperatures of the upper ocean (above 50 meters), especially the SST of equatorial Pacific, coincide with the Tropic Atmo- sphere Ocean (TAO) mooring data, the World Ocean Atlas 2001 (WOA01) data and the Met Office Hadley Centre's sea ice and sea surface temperature (HadISST) data. It decreased the cold bias existing in CTL in the eastern Pacific and produced a Nino index that agrees with observation well. The validation results suggest that the LICOM-3DVM is able to effectively adjust the model results of the ocean temperature, although it's hard to correct the subsurface results and it even makes them worse in some areas due to the incorporation of only surface data. Future development of the LICOM-3DVM is to include subsurface in situ observations and satellite observations to further improve model simulations.
TH-A-19A-10: Fast Four Dimensional Monte Carlo Dose Computations for Proton Therapy of Lung Cancer
International Nuclear Information System (INIS)
Purpose: To develop and validate a fast and accurate four dimensional (4D) Monte Carlo (MC) dose computation system for proton therapy of lung cancer and other thoracic and abdominal malignancies in which the delivered dose distributions can be affected by respiratory motion of the patient. Methods: A 4D computer tomography (CT) scan for a lung cancer patient treated with protons in our clinic was used to create a time dependent patient model using our in-house, MCNPX-based Monte Carlo system (“MC2”). The beam line configurations for two passively scattered proton beams used in the actual treatment were extracted from the clinical treatment plan and a set of input files was created automatically using MC2. A full MC simulation of the beam line was computed using MCNPX and a set of phase space files for each beam was collected at the distal surface of the range compensator. The particles from these phase space files were transported through the 10 voxelized patient models corresponding to the 10 phases of the breathing cycle in the 4DCT, using MCNPX and an accelerated (fast) MC code called “FDC”, developed by us and which is based on the track repeating algorithm. The accuracy of the fast algorithm was assessed by comparing the two time dependent dose distributions. Results: The error of less than 1% in 100% of the voxels in all phases of the breathing cycle was achieved using this method with a speedup of more than 1000 times. Conclusion: The proposed method, which uses full MC to simulate the beam line and the accelerated MC code FDC for the time consuming particle transport inside the complex, time dependent, geometry of the patient shows excellent accuracy together with an extraordinary speed
TH-A-19A-10: Fast Four Dimensional Monte Carlo Dose Computations for Proton Therapy of Lung Cancer
Energy Technology Data Exchange (ETDEWEB)
Mirkovic, D; Titt, U; Mohan, R [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Yepes, P [Rice University, Houston, TX (United States)
2014-06-15
Purpose: To develop and validate a fast and accurate four dimensional (4D) Monte Carlo (MC) dose computation system for proton therapy of lung cancer and other thoracic and abdominal malignancies in which the delivered dose distributions can be affected by respiratory motion of the patient. Methods: A 4D computer tomography (CT) scan for a lung cancer patient treated with protons in our clinic was used to create a time dependent patient model using our in-house, MCNPX-based Monte Carlo system (“MC{sup 2}”). The beam line configurations for two passively scattered proton beams used in the actual treatment were extracted from the clinical treatment plan and a set of input files was created automatically using MC{sup 2}. A full MC simulation of the beam line was computed using MCNPX and a set of phase space files for each beam was collected at the distal surface of the range compensator. The particles from these phase space files were transported through the 10 voxelized patient models corresponding to the 10 phases of the breathing cycle in the 4DCT, using MCNPX and an accelerated (fast) MC code called “FDC”, developed by us and which is based on the track repeating algorithm. The accuracy of the fast algorithm was assessed by comparing the two time dependent dose distributions. Results: The error of less than 1% in 100% of the voxels in all phases of the breathing cycle was achieved using this method with a speedup of more than 1000 times. Conclusion: The proposed method, which uses full MC to simulate the beam line and the accelerated MC code FDC for the time consuming particle transport inside the complex, time dependent, geometry of the patient shows excellent accuracy together with an extraordinary speed.
Energy Technology Data Exchange (ETDEWEB)
Ramirez Vera, M. L.; Perez Mulas, A.; Delgado, J. M.; Barrientos Ontero, M.; Somoano, F.; Alvarez Garcia, C.; Rodriguez Marti, M.
2011-07-01
The understanding of accidents that have occurred in radiotherapy and the lessons learned from them are very useful to prevent repetition, but there are other risks that have not been detected to date. With a view to identifying and preventing such risks, proactive methods successfully applied in other fields, such as probabilistic safety assessment (PSA), have been developed. (Author)
Shielding assessment of the radiotherapy room of the second egyptian research reactor (ET-RR-2)
International Nuclear Information System (INIS)
one of the applications of the ET-RR-2 multipurpose reactor is boron capture therapy. The reactor is provided with a radiotherapy room for patients to be irradiated with thermal neutrons emerging from one of its irradiation tubes. This room has special shield arrangements. The present work is aimed to assess the shielding performance of the above room in the abnormal situation i.e. when the irradiation tube is completely opened (without any collimation of the irradiation beam). One-dimensional ANISN and two-dimensional DOT 3.5 transport codes were used to calculate neutrons as well as primary and secondary gamma fluxes and doses. The cross sections utilized in the ANISN and the dot 3.5 calculations originated the multigroup cross library DLC2 (VITAMIN-C Library) for coupled neutrons and gamma rays. Results were obtained at different distances from the core center up to the front wall of the tumor irradiation room passing through the beam port, the room entrance and around the shielding door and its access entrance. calculations were also done across the room shielding materials to assess its performance. The present results were compared with the design calculations and the actual doses measured during reactor operation at full power
International Nuclear Information System (INIS)
To describe post-CyberKnife® imaging characteristics of liver metastases as an aid in assessing response to treatment, and a novel set of combined criteria (CC) as an alternative to response according to change in size (RECIST). Imaging data and medical records of 28 patients with 40 liver metastases treated with stereotactic body radiotherapy (SBRT) were reviewed. Tumor size, CT attenuation coefficient, and contrast enhancement of lesions were evaluated up to 2 years post SBRT. Rates of local control, progression-free survival, time to progression, and overall survival according to RECIST and CC were estimated. Complete response (CR) was 3.6% (95% CI: 0.1–18%) and 18% (95% CI: 6–37%) according to RECIST and combined criteria, respectively. Two progressive diseases and two partial responses according to RECIST were classified as CR by the combined criteria and one stable response according to RECIST was classified as progressive by CC (Stuart-Maxwell test, p = 0.012). The disease control rate was 60.7% (95% CI: 41–78%) by RECIST and 64% (95% CI: 44%–81%) by CC. Use of response criteria based on change in size alone in the interpretation of liver response to SBRT may be inadequate. We propose a simple algorithm with a combination of criteria to better assess tumor response. Further studies are needed to confirm their validity
Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy
International Nuclear Information System (INIS)
Background and purpose: During radiotherapy (RT) for head-and-neck cancer, parotid glands undergo significant anatomic, functional and structural changes which could characterize pre-clinical signs of an increased risk of xerostomia. Texture analysis is proposed to assess structural changes of parotids induced by RT, and to investigate whether early variations of textural parameters (such as mean intensity and fractal dimension) can predict parotid shrinkage at the end of treatment. Material and methods: Textural parameters and volumes of 42 parotids from 21 patients treated with intensity-modulated RT for nasopharyngeal cancer were extracted from CT images. To individuate which parameters changed during RT, a Wilcoxon signed-rank test between textural indices (first and second RT week; first and last RT week) was performed. Discriminant analysis was applied to variations of these parameters in the first two weeks of RT to assess their power in predicting parotid shrinkage at the end of RT. Results: A significant decrease in mean intensity (1.7 HU and 3.8 HU after the second and last weeks, respectively) and fractal dimension (0.016 and 0.021) was found. Discriminant analysis, based on volume and fractal dimension, was able to predict the final parotid shrinkage (accuracy of 71.4%). Conclusion: Textural features could be used in combination with volume to characterize structural modifications on parotid glands and to predict parotid shrinkage at the end of RT
Energy Technology Data Exchange (ETDEWEB)
Koom, Woong Sub; Keum, Ki Chang [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ahn, Seung Do [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of); and others
2012-09-15
The purpose of this prospective multi-institutional study was to evaluate the nutritional status of patients undergoing radiotherapy (RT) for treatment of head and neck, lung, or gastrointestinal cancer. A total of 1,000 patients were enrolled in this study at seven different hospitals in Seoul, Korea between October 2009 and May 2010. The nutritional status of patients after receiving 3 weeks of RT was evaluated using subjective global assessment (SGA). The nutritional status of each patient was rated as well nourished (A), moderately malnourished (B), or severely malnourished (C). The mean age of patients in this study was 59.4 {+-} 11.9 years, and the male to female ratio was 7:3. According to the SGA results, 60.8%, 34.5%, and 4.7% of patients were classified as A, B, or C, respectively. The following criteria were significantly associated with malnutrition (SGA B or C; p < 0.001): loss of subcutaneous fat or muscle wasting (odds ratio [OR], 11.473); increased metabolic demand/stress (OR, 8.688); ankle, sacral edema, or ascites (OR, 3.234); and weight loss 5% (OR, 2.299). SGA was applied successfully to assess the nutritional status of most patients. The prevalence of malnutrition in a radiation oncology department was 39.2%. The results of this study serve as a basis for implementation of nutrition intervention to patients being treated at radiation oncology departments.
International Nuclear Information System (INIS)
The purpose of this prospective multi-institutional study was to evaluate the nutritional status of patients undergoing radiotherapy (RT) for treatment of head and neck, lung, or gastrointestinal cancer. A total of 1,000 patients were enrolled in this study at seven different hospitals in Seoul, Korea between October 2009 and May 2010. The nutritional status of patients after receiving 3 weeks of RT was evaluated using subjective global assessment (SGA). The nutritional status of each patient was rated as well nourished (A), moderately malnourished (B), or severely malnourished (C). The mean age of patients in this study was 59.4 ± 11.9 years, and the male to female ratio was 7:3. According to the SGA results, 60.8%, 34.5%, and 4.7% of patients were classified as A, B, or C, respectively. The following criteria were significantly associated with malnutrition (SGA B or C; p < 0.001): loss of subcutaneous fat or muscle wasting (odds ratio [OR], 11.473); increased metabolic demand/stress (OR, 8.688); ankle, sacral edema, or ascites (OR, 3.234); and weight loss 5% (OR, 2.299). SGA was applied successfully to assess the nutritional status of most patients. The prevalence of malnutrition in a radiation oncology department was 39.2%. The results of this study serve as a basis for implementation of nutrition intervention to patients being treated at radiation oncology departments.
Govaerts, Jan
2004-01-01
This brief set of notes presents a modest introduction to the basic features entering the construction of supersymmetric quantum field theories in four-dimensional Minkowski spacetime, building a bridge from similar lectures presented at a previous Workshop of this series, and reaching only at the doorstep of the full edifice of such theories.
Energy Technology Data Exchange (ETDEWEB)
Remmert, G [Department of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Biederer, J [Department of Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Lohberger, F [Department of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Fabel, M [Department of Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Hartmann, G H [Department of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany)
2007-09-21
A method of four-dimensional (4D) magnetic resonance imaging (MRI) has been implemented and evaluated. It consists of retrospective sorting and slice stacking of two-dimensional (2D) images using an external signal for motion monitoring of the object to be imaged. The presented method aims to determine the tumour trajectories based on a signal that is appropriate for monitoring the movement of the target volume during radiotherapy such that the radiation delivery can be adapted to the movement. For evaluation of the 4D-MRI method, it has been applied to a dynamic lung phantom, which exhibits periodic respiratory movement of a porcine heart-lung explant with artificial pulmonary nodules. Anatomic changes of the lung phantom caused by respiratory motion have been quantified, revealing hysteresis. The results demonstrate the feasibility of the presented method of 4D-MRI. In particular, it enables the determination of trajectories of periodically moving objects with an uncertainty in the order of 1 mm. (note)
International Nuclear Information System (INIS)
Purpose: Respiratory motion is a non-negligible source of uncertainty in radiotherapy. A common approach is to delineate the target volume in all respiratory phases (ITV) and to calculate a treatment plan using the average reconstruction of the four-dimensional computed tomography (4DCT) scans. In this study the extent of the interplay effect caused by interaction between dynamic dose delivery and respiratory tumor motion, as well as other motion effects were investigated. These effects are often ignored when the ITV concept is used. Methods and Materials: Nine previously treated patients with in ten abdominal or thoracic cancer lesions (3 liver, 3 adrenal glands and 4 lung lesions) were selected for this planning study. For all patients, phase-sorted respiration-correlated 4DCT scans were taken, and volumetric modulated arc therapy (VMAT) treatments were planned using the ITV concept. Margins from ITV to planning target volume (PTV) of 3-10 mm were used. Plans were optimized and dose distributions were calculated on the average reconstruction of the 4DCT. 4D dose distributions were calculated to evaluate motion effects, caused by the interference of dynamic treatment delivery with respiratory tumor motion and inhomogeneously planned target dose. These calculations were performed on the phase-sorted CT series with a respiration-correlated assignment of the treatment plan's monitor units (MU) to the respiration phases of the 4DCT. The 4D dose was accumulated with rigid as well as deformable registrations of the CT series and compared to the original 3D dose distribution. Maximum, minimum and mean doses to ITV and PTV, and maximum or mean doses to organs at risk (OAR), were compared after rigid accumulation. The dose variation in the gross tumor volume (GTV) was compared after deformable registration. Results: Using rigid registrations, variations in the investigated dose parameters between 3D and 4D dose calculations were found to be within -2.1% to 1.4% for
Energy Technology Data Exchange (ETDEWEB)
Ehrbar, Stefanie; Lang, Stephanie; Stieb, Sonja; Riesterer, Oliver; Stark, Luisa Sabrina; Guckenberger, Matthias; Kloeck, Stephan [University Hospital Zuerich (Switzerland). Dept. of Radiation Oncology
2016-05-01
Purpose: Respiratory motion is a non-negligible source of uncertainty in radiotherapy. A common approach is to delineate the target volume in all respiratory phases (ITV) and to calculate a treatment plan using the average reconstruction of the four-dimensional computed tomography (4DCT) scans. In this study the extent of the interplay effect caused by interaction between dynamic dose delivery and respiratory tumor motion, as well as other motion effects were investigated. These effects are often ignored when the ITV concept is used. Methods and Materials: Nine previously treated patients with in ten abdominal or thoracic cancer lesions (3 liver, 3 adrenal glands and 4 lung lesions) were selected for this planning study. For all patients, phase-sorted respiration-correlated 4DCT scans were taken, and volumetric modulated arc therapy (VMAT) treatments were planned using the ITV concept. Margins from ITV to planning target volume (PTV) of 3-10 mm were used. Plans were optimized and dose distributions were calculated on the average reconstruction of the 4DCT. 4D dose distributions were calculated to evaluate motion effects, caused by the interference of dynamic treatment delivery with respiratory tumor motion and inhomogeneously planned target dose. These calculations were performed on the phase-sorted CT series with a respiration-correlated assignment of the treatment plan's monitor units (MU) to the respiration phases of the 4DCT. The 4D dose was accumulated with rigid as well as deformable registrations of the CT series and compared to the original 3D dose distribution. Maximum, minimum and mean doses to ITV and PTV, and maximum or mean doses to organs at risk (OAR), were compared after rigid accumulation. The dose variation in the gross tumor volume (GTV) was compared after deformable registration. Results: Using rigid registrations, variations in the investigated dose parameters between 3D and 4D dose calculations were found to be within -2.1% to 1.4% for
International Nuclear Information System (INIS)
phantom that possessed both high and low contrast test objects. Finally, the system's performance was compared to that of a four-dimensional CT (4DCT) data set. The absolute spatial and display superposition accuracy was found to be better than 2 mm and typically 1 mm. Overall dynamic system response was adequate to produce a mean relative positional error of less than 1 mm if an empiric latency correction of 3 video frames was incorporated. The dynamic CT/US display mode was able to assess phantom motion for both high and low contrast test objects to within 1 mm, and compared favorably to the 4DCT data. The 4DCT movie loop accurately assessed the target motion for both of the high and low contrast objects tested, but the minimum intensity and average intensity reconstructions did not. This investigation demonstrated that this US system possesses sufficient spatio-temporal accuracy to properly assess respiratory motion. Future work will seek to demonstrate efficacy in its clinical application to respiratory motion assessment, particularly for sites in the upper abdomen, where low tissue contrast is evident
GPU-based four-dimensional general-relativistic ray tracing
Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel
2012-10-01
This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D
Improved and robust detection of cell nuclei from four dimensional fluorescence images.
Directory of Open Access Journals (Sweden)
Md Khayrul Bashar
Full Text Available Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9% over
Four dimensional variational assimilation of in-situ and remote-sensing aerosol data
Nieradzik, L. P.; Elbern, H.
2012-04-01
Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents contribute to PMx, like e.g. mineral dust derived from desert storms or sea salt, it is necessary to make aerosol forecasts not only of load, but also type resolved. The method of four dimensional variational data assimilation (4Dvar) is a widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements. The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT (Boundary Layer Aerosol Optical Thickness) and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability. In this study both in-situ measured PMx as well as satellite retrieved aerosol optical thicknesses have been assimilated and the effect on forecast performance has been investigated. The source of BLAOT is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves AOT by making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot
International Nuclear Information System (INIS)
In France, accreditation of health care organisations (HCOs) is mandatory every 4 years. It is based on a systemic approach and, since 2004, includes professional practice appraisal (EPP) against good practice guidelines. However, following an incident in Epinal, a new quality assurance criterion was introduced in 2007 for external radiotherapy (ERT) on top of the annual inspection of patient radiation protection by the Nuclear Safety Authority. In the accreditation procedure starting January 2010, ERT work organisation will come under 'high-risk activity' (criterion 26b) and radio-vigilance will be included in the adverse events reporting system (8i). In addition, ERT will have to comply with many generic criteria on quality and safety improvement. For example, practice appraisal of all clinical activities will become routine. Thus, besides self-assessment against criteria 26b and 8i, ERT professionals will have report the impact of their quality improvement actions on patient care. They will be able to freely choose the area for improvement, as long as it is in line with the HCO's overall quality and safety plan. In oncology, multidisciplinary team meetings for deciding on the treatment plan, as well as mortality and morbidity meetings providing feedback, are compulsory (28a). Appraisal of appropriateness of care (28b) and indicator-based practice appraisal (28c) complete the process. In conclusion, the generic practice appraisal approach that is part of the French HCO accreditation procedure can contribute toward improving health care and education, but it has not been designed for in-depth assessment of complex, multidisciplinary clinical practice such as ERT. Such assessment requires a specific clinical audit and specialized auditors. (authors)
International Nuclear Information System (INIS)
Purpose: Assessment of rectal distention in a group of patients who are not receiving daily rectum emptying procedures during a course of prostate cancer radiotherapy to investigate which patients could benefit from daily rectum emptying. Methods and materials: Eighteen patients underwent daily megavoltage CT (MVCT) scanning with positioning based on bony anatomy. Emptying the rectum was only performed before planning CT and not during the actual treatment. The rectal average cross-sectional area (CSA) was determined on the MVCTs. The relative CSA (CSArel) was defined as CSA on MVCT / CSA on planning CT. Additional prostate soft tissue matching was performed to verify the influence of rectal distention on prostate motion. Results: Two distinct subgroups could be defined a posteriori. One group had a limited and stable rectal distention with a CSA (mean ± SD) of 6.6 ± 2.1 cm2, in contrast with a second group with large and variable rectal filling with a CSA of 9.5 ± 3.7 cm2 (p rel of 1.35 of the first 3 days as cut-off value allowed for a correct a priori classification of 90% and 85% of the patients from groups 1 and 2, respectively. Conclusion: Based on a few measurements of the CSA by daily MVCT imaging at the first days of treatment, rectum emptying may be omitted in part of the patients
Results of postoperative 90Sr radiotherapy of keloids in view of patients' subjective assessment
International Nuclear Information System (INIS)
Background and Purpose: As treatment of keloids is mainly a cosmetic indication, the authors investigated, beyond the recurrence rate, the patients' satisfaction with the result and its correlation with objective medical findings. Patients and Methods: 83 keloids of 66 patients had been irradiated after excision by a uniform protocol with 4 x 5 Gy (strontium-90 [90Sr] surface applicator). A questionnaire was developed and sent out in which, above all, the satisfaction with the therapeutic and cosmetic outcome was obtained. These results were correlated with objective parameters and medical findings which were ascertained during an extra follow-up examination. Results: Among 18 of the 41 patients (44%), who had answered the questionnaire, 19 of the 53 keloids treated (36%) had relapsed. 61% of the patients were extremely or mainly satisfied with the therapeutic outcome, 51% extremely or mainly satisfied with the cosmetic outcome. The relief from former keloid-caused symptoms (therapeutic outcome: p=0.0005; cosmetic outcome: p=0.0011), the ear as keloid localization (p=0.0008 and p=0.0197), and male gender (therapeutic outcome: p=0.0423) were significantly associated with higher satisfaction. The recurrence rate as well as the extent of radiation side effects had no significant influence on patients' assessment. Conclusion: Cosmetic aspects like the dermal side effects and the patients' satisfaction should be taken into account when evaluating the results of radiotherapy in keloids. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Astner, Sabrina T.; Theodorou, Marilena; Dobrei-Ciuchendea, Mihaela; Kopp, Christine; Molls, Michael [Dept. of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Auer, Florian [Dept. of Neuroradiology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Grosu, Anca-Ligia [Dept. of Radiotherapy, Univ. Hospital Freiburg (Germany)
2010-08-15
Purpose: To evaluate tumor volume reduction in the follow-up of meningiomas after fractionated stereotactic radiotherapy (FSRT) or linac radiosurgery (RS) by using magnetic resonance imaging (MRI). Patients and Methods: In 59 patients with skull base meningiomas, gross tumor volume (GTV) was outlined on contrast-en-hanced MRI before and median 50 months (range 11-92 months) after stereotactic radiotherapy. MRI was performed as an axial three-dimensional gradient-echo T1-weighted sequence at 1.6 mm slice thickness without gap (3D-MRI). Results were compared to the reports of diagnostic findings. Results: Mean tumor size of all 59 meningiomas was 13.9 ml (0.8-62.9 ml) before treatment. There was shrinkage of the treated meningiomas in all but one patient. Within a median volumetric follow-up of 50 months (11-95 months), an absolute mean volume reduction of 4 ml (0-18 ml) was seen. The mean relative size reduction compared to the volume before radiotherapy was 27% (0-73%). Shrinkage measured by 3D-MRI was greater at longer time intervals after radiotherapy. The mean size reduction was 17%, 23%, and 30% (at < 24 months, 24-48 months, and 48-72 months). Conclusion: By using 3D-MRI in almost all patients undergoing radiotherapy of a meningioma, tumor shrinkage is detected. The data presented here demonstrate that volumetric assessment from 3D-MRI provides additional information to routinely used radiologic response measurements. After FSRT or RS, a mean size reduction of 25-45% can be expected within 4 years. (orig.)
Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method
International Nuclear Information System (INIS)
Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward–backward splitting algorithm and a Gauss–Jacobi iteration method are employed to solve the problems. The algorithms implementation
A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control
Minggang Wang; Hua Xu
2012-01-01
This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical sim...
Namati, Eman; Warger, William C.; Unglert, Carolin I.; Eckert, Jocelyn E.; Hostens, Jeroen; Bouma, Brett E.; Tearney, Guillermo J.
2013-01-01
Pulmonary alveoli have been studied for many years, yet no unifying hypothesis exists for their dynamic mechanics during respiration due to their miniature size (100-300 μm dimater in humans) and constant motion, which prevent standard imaging techniques from visualizing four-dimensional dynamics of individual alveoli in vivo. Here we report a new platform to image the first layer of air-filled subpleural alveoli through the use of a lightweight optical frequency domain imaging (OFDI) probe t...
Wang, Wei; LI, JIANBIN; Zhang, Yingjie; SHAO, QIAN; Xu, Min; Fan, Tingyong; Wang, Jinzhi
2016-01-01
Wei Wang, Jianbin Li, Yingjie Zhang, Qian Shao, Min Xu, Tingyong Fan, Jinzhi Wang Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, People’s Republic of China Background and purpose: To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for t...
Objective assessment of deformable image registration in radiotherapy: A multi-institution study
International Nuclear Information System (INIS)
The looming potential of deformable alignment tools to play an integral role in adaptive radiotherapy suggests a need for objective assessment of these complex algorithms. Previous studies in this area are based on the ability of alignment to reproduce analytically generated deformations applied to sample image data, or use of contours or bifurcations as ground truth for evaluation of alignment accuracy. In this study, a deformable phantom was embedded with 48 small plastic markers, placed in regions varying from high contrast to roughly uniform regional intensity, and small to large regional discontinuities in movement. CT volumes of this phantom were acquired at different deformation states. After manual localization of marker coordinates, images were edited to remove the markers. The resulting image volumes were sent to five collaborating institutions, each of which has developed previously published deformable alignment tools routinely in use. Alignments were done, and applied to the list of reference coordinates at the inhale state. The transformed coordinates were compared to the actual marker locations at exhale. A total of eight alignment techniques were tested from the six institutions. All algorithms performed generally well, as compared to previous publications. Average errors in predicted location ranged from 1.5 to 3.9 mm, depending on technique. No algorithm was uniformly accurate across all regions of the phantom, with maximum errors ranging from 5.1 to 15.4 mm. Larger errors were seen in regions near significant shape changes, as well as areas with uniform contrast but large local motion discontinuity. Although reasonable accuracy was achieved overall, the variation of error in different regions suggests caution in globally accepting the results from deformable alignment.
Energy Technology Data Exchange (ETDEWEB)
Paumier, A.; Ghalibafian, M.; Gilmore, J.; Girinsky, T. [Departement de radiotherapie, institut de cancerologie Gustave-Roussy, Villejuif (France); Hanna, C.; Raphael, J.; Ferme, C.; Ribrag, V. [Departement d' hematologie, institut de cancerologie Gustave-Roussy, Villejuif (France)
2011-10-15
The authors report the assessment of low-dose radiotherapy (two sessions of 2 Gy in two days) for the curative treatment of mucosa-associated lymphoid tissue (MALT) lymphoma of the lung. The treatment of this lymphoma is discussed in terms of surgery, chemotherapy, radiotherapy, or even simple monitoring. The authors analyse the results obtained on nine patients who have been treated this way since 2002, straight away for some of them, after surgery or chemotherapy for others. Survival rate, recurrence, evolutions and responses are discussed. Short communication
International Nuclear Information System (INIS)
In 40 patients with laryngeal carcinoma after total laryngectomy and radiotherapy the triiodotyronine binding index, total thyroxine level, serum free thyroxine index were determined before, during and after treatment. At the same time thyroid iodine uptake was determined by the routine method. Surgical treatment as well as radiotherapy caused lowering of thyroid functions. These changes had a high tendency for return to normal values, not earlier, however, than 6 months after treatment. The authors stress that endocrine thyroid disturbances may have an important influence on delay of psychic rehabilitation and speech training in laryngectomized patients. (author)
Randomized controlled trial to assess the effectiveness of a videotape about radiotherapy
Harrison, R; Dey, P.; Slevin, N J; Eardley, A; Gibbs, A; Cowan, R.; Logue, J P; Leidecker, V; Hopwood, P
2001-01-01
In a randomized controlled trial, the additional provision of information on videotape was no more effective than written information alone in reducing pre-treatment worry about radiotherapy. Images of surviving cancer patients, however, may provide further reassurance to patients once therapy is completed. © 2001 Cancer Research Campaign http://www.bjcancer.com
Assessment of Olfactory Threshold in Patients Undergoing Radiotherapy for Head and Neck Malignancies
Directory of Open Access Journals (Sweden)
Mir Mohammad Jalali
2014-10-01
Conclusion: Deterioration in olfactory threshold scores was found at 6 months after initiation of radiation therapy. Provided that these results are reproducible, an evaluation of olfactory functioning in patients with head and neck malignancies using in vivo dosimetry may be useful for determining the optimal dose for patients treated with conformal radiotherapy techniques while avoiding the side effects of radiation.
International Nuclear Information System (INIS)
The method of orbits, traditionally employed in problems of geometric quantization in this study is used for analyzing uniform spaces. On the basis of suggested classification of co-associated presentation of orbits (K-orbits) the classification of homogeneous spaces is constructed. Specially, this classification permits indication of explicit type of identity of functional ratios between generators of transformation group, which are of great importance in applied problems (in the theory of variables separation, in particular). All four-dimensional uniform spaces with the Poincare and de Sitter transformation group were classified, explicit form of all independent identities in the spaces being provided
Dereli, Tekin; Akarsu, Özgür
2013-01-01
arXiv:1201.4545v3 [gr-qc] 31 Mar 2013 A four-dimensional CDM-type cosmological model induced from higher dimensions using a kinematical constraint Özgür Akarsu, Tekin Dereli Department of Physics, Koç University, 34450 Sarıyer, İstanbul, Turkey Abstract A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes t...
Four-dimensional anti-de Sitter black holes from a three-dimensional perspective Full complexity
Zanchin, V T; Lemos, J P S
2002-01-01
The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed.
Non-Gaussian Fixed Point in Four-Dimensional Pure Compact U(1) Gauge Theory on the Lattice
International Nuclear Information System (INIS)
The line of phase transitions separating the confinement phase from the Coulomb phase in the four-dimensional pure compact U(1) gauge theory with extended Wilson action is reconsidered. By means of a high precision simulation on spherical lattices and a finite-size scaling analysis we find that along a part of this line, including the Wilson action the critical scaling behavior is determined by one fixed point with non-Gaussian critical exponent ν=0.365(8). This indicates the existence of a nontrivial and nonasymptotically free continuum limit of this theory, as well as of its dual equivalent. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Equations of motion for scalar and spinor fields in a four-dimensional non-Euclidean momentum space are obtained. These equations incorporate as a parameter the fundamental length and coincide with the ordinary Klein-Gordon and Dirac equations in the limiting case l → 0. In the new formalism an important role is played by ''vacuum momentum'' (this notion is introduced by I.E. Tamm). The equations obtained remain invariant under the space inversion only if the vacuum momentum transforms simultaneously