WorldWideScience

Sample records for assess lung dose

  1. Microdosimetric approach for lung dose assessments

    International Nuclear Information System (INIS)

    Hofmann, W.; Steinhausler, F.; Pohl, E.; Bernroider, G.

    1980-01-01

    In the macroscopic region the term ''organ dose'' is related to an uniform energy deposition within a homogeneous biological target. Considering the lung, inhaled radioactive nuclides, however, show a significant non-uniform distribution pattern throughout the respiratory tract. For the calculation of deposition and clearance of inhaled alpha-emitting radionuclides within different regions of this organ, a detailed compartment model, based on the Weibel model A was developed. Since biological effects (e.g. lung cancer initiation) are primarily caused at the cellular level, the interaction of alpha particles with different types of cells of the lung tissue was studied. The basic approach is to superimpose alpha particle tracks on magnified images of randomly selected tissue slices, simulating alpha emitting sources. Particle tracks are generated by means of a specially developed computer program and used as input data for an on-line electronic image analyzer (Quantimet-720). Using adaptive pattern recognition methods the different cells in the lung tissue can be identified and their distribution within the whole organ determined. This microdosimetric method is applied to soluble radon decay products as well as to insoluble, highly localized, plutonium particles. For a defined microdistribution of alpha emitters, the resulting dose, integrated over all cellular dose values, is compared to the compartmental doses of the ICRP lung model. Furthermore this methodology is also applicable to other organs and tissues of the human body for dose calculations in practical health physics. (author)

  2. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    International Nuclear Information System (INIS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H; Williams, Christopher L; Berbeco, Ross I; Seco, Joao; Lewis, John H

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data. (paper)

  3. Dose assessment in patients undergoing lung examinations by computed tomography

    International Nuclear Information System (INIS)

    Gonzaga, Natalia B.; Silva, Teogenes A. da; Magalhaes, Marcos J.

    2011-01-01

    In the last fifteen years, the use of computed tomography (CT) has increased alongside other radiology technologies technologies. Its contribution has already achieved 34% in terms of doses undergone by patients. Radiation protection of patients submitted to CT examinations is based on the knowledge of internationally defined dosimetric quantities as the CT air kerma-length product (P K,L ) and weighted CT air kerma index (C w ). In Brazil, those dosimetric quantities are not routinely used and the optimization criteria are based only upon the MSAD - the average dose in multislices. In this work, the dosimetric quantities P K,L and C w were assessed by the CT Expo program for seven protocols used daily for lung examinations in adults with the use of Siemens and Philips scanners in Belo Horizonte. Results showed that P K,L values varied from 163 to 558 mGy.cm and the C w from 9.6 to 17.5 mGy. All results were found to be lower than the reference values internationally recommended by ICRP 87 and the European Community 16262 (30 mGy and 650 mGy.cm). The large dose ranges suggest that optimization of patient dose reduction is still possible without losses in the image quality and new reference dose levels could be recommended after a large survey to be carried out in the region. (author)

  4. Reducing dose to the lungs through loosing target dose homogeneity requirement for radiotherapy of non small cell lung cancer.

    Science.gov (United States)

    Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong

    2017-11-01

    It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Uncertainties on lung doses from inhaled plutonium.

    Science.gov (United States)

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  6. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    In vitro measures of aerosol particles size, such as the fine particle mass, play a pivotal role for approval of inhaled anti-asthmatic drugs. However, the validity as a measure of dose to the lungs in children lacks evidence. In this study we investigated for the first time the association between...... an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... was assessed after single inhalation. The corresponding emitted mass of drug in segments of aerosol particle size was assessed ex vivo by replicating the inhalation flows recorded by transducers built into the Diskus® inhaler and re-playing them in a breathing simulator. There was no correlation between any...

  7. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  8. In search of the relevant lung dose

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1982-12-01

    Researchers have traditionally been inconsistent in their methods of determining and reporting dose to the lung from inhaled radionuclides - a situation which has led to difficulties in later comparing results and deriving dose-response relationships. The dose quantities which at present are most generally assumed to be related to risk of stochastic radiation effects (such as lung cancer) are (1) mean dose equivalent to the bronchial epithelium basal cell layer for radon daughters, and (2) mean dose equivalent to the whole lung (including tracheobronchial lymph nodes) for all other radionuclides. The average radiation dose is calculated by assuming that the energy is homogeneously impared to the entire tissue mass. However, the actual dose received by a cell which becomes transformed or tumorigenic is likely to be very much different than the smear dose to the entire organ. This realization has led to further study of stochastic energy deposition processes in single cells or cell nuclei from internal emitters. The end product of the stochastic approach to dosimetry, sometimes called microdosimetry, is a probability density in specific energy. For alpha-emitting radionuclides in the lung, a concept that may be more important than dose is the probability that a cell is hit by an alpha particle

  9. The mean lung dose (MLD). Predictive criterion for lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, Peter; Appold, Steffen [Dresden University of Technology (TU Dresden), Clinic and Polyclinic for Radiotherapy and Radiation Oncology, Carl Gustav Carus Medical Faculty, Dresden (Germany); Herrmann, Thomas

    2015-07-15

    The purpose of this work was to prove the validity of the mean lung dose (MLD), widely used in clinical practice to estimate the lung toxicity of a treatment plan, by reevaluating experimental data from mini pigs. A total of 43 mini pigs were irradiated in one of four dose groups (25, 29, 33, and 37 Gy). Two regimens were applied: homogeneous irradiation of the right lung or partial irradiation of both lungs - including parts with lower dose - but with similar mean lung doses. The animals were treated with five fractions with a linear accelerator applying a CT-based treatment plan. The clinical lung reaction (breathing frequency) and morphological changes in CT scans were examined frequently during the 48 weeks after irradiation. A clear dose-effect relationship was found for both regimens of the trial. However, a straightforward relationship between the MLD and the relative number of responders with respect to different grades of increased breathing frequency for both regimens was not found. A morphologically based parameter NTCP{sub lung} was found to be more suitable for this purpose. The dependence of this parameter on the MLD is markedly different for the two regimens. In clinical practice, the MLD can be used to predict lung toxicity of a treatment plan, except for dose values that could lead to severe side effects. In the latter mentioned case, limitations to the predictive value of the MLD are possible. Such severe developments of a radiation-induced pneumopathy are better predicted by the NTCP{sub lung} formalism. The predictive advantage of this parameter compared to the MLD seems to remain in the evaluation and comparison of widely differing dose distributions, like in the investigated trial. (orig.) [German] Es soll unter Reevaluation von Tierversuchsdaten am Minischwein geprueft werden, ob die in der klinischen Praxis zur Beurteilung der Lungentoxizitaet eines Bestrahlungsregims regelhaft verwendete mittlere Lungendosis (MLD) eine zuverlaessige

  10. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Lin, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Li, J [Cyber Medical Inc, Xian, Shaanxi (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number was used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.

  11. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  12. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  13. Radiotherapy dose compensation for lung patients

    International Nuclear Information System (INIS)

    Piyaratna, N.; Arnold, A.; Metcalfe, P.

    1999-01-01

    The purpose of the present paper is to provide a more homogeneous dose distribution in the target volume from compensated anterior and posterior fields while the healthy lung is spared by de-weighting the lateral fields. A compensation computation which used linear iterations to compute the most homogeneous dose distribution across the target volume was applied to produce optimum compensator designs. The equivalent tissue-air ratio (E-TAR) inhomogeneity correction was applied for the computations using a GE target series 11 planning computer. The compensators designed were tested for accuracy in a modified water/lung phantom using a scanning diode and an anthropomorphic phantom using thermoluminescent dosimeters. A comparison has been made between the compensated and uncompensated plans for the first nine patients who we have treated with this technique. The dose profiles produced by the computation agreed with the prediction of the computed isodose plans to within ± 2% at the target depth. The thermoluminescent dosimeter (TLD)-measured results in the anthropomorphic phantom agreed with the planning computer within ± 3%. A comparison of nine compensated plans of radiotherapy patients for large-volume targets in the lung region showed a maximum variation in the target to be 19% uncompensated versus 10% compensated. By providing compensated treatment fields from anterior and posterior treatment portals, a homogeneous dose that conforms well to the target volume is provided. As an added bonus, this enables the lateral lung fields to be significantly de-weighted and the healthy lung is spared considerable dose. Copyright (1999) Blackwell Science Pty Ltd

  14. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  15. Incidental renal tumours on low-dose CT lung cancer screening exams.

    Science.gov (United States)

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  16. Impact of Fraction Size on Lung Radiation Toxicity: Hypofractionation may be Beneficial in Dose Escalation of Radiotherapy for Lung Cancers

    International Nuclear Information System (INIS)

    Jin Jinyue; Kong Fengming; Chetty, Indrin J.; Ajlouni, Munther; Ryu, Samuel; Ten Haken, Randall; Movsas, Benjamin

    2010-01-01

    Purpose: To assess how fraction size impacts lung radiation toxicity and therapeutic ratio in treatment of lung cancers. Methods and Materials: The relative damaged volume (RDV) of lung was used as the endpoint in the comparison of various fractionation schemes with the same normalized total dose (NTD) to the tumor. The RDV was computed from the biologically corrected lung dose-volume histogram (DVH), with an α/β ratio of 3 and 10 for lung and tumor, respectively. Two different (linear and S-shaped) local dose-effect models that incorporated the concept of a threshold dose effect with a single parameter D L50 (dose at 50% local dose effect) were used to convert the DVH into the RDV. The comparison was conducted using four representative DVHs at different NTD and D L50 values. Results: The RDV decreased with increasing dose/fraction when the NTD was larger than a critical dose (D CR ) and increased when the NTD was less than D CR . The D CR was 32-50 Gy and 58-87 Gy for a small tumor (11 cm 3 ) for the linear and S-shaped local dose-effect models, respectively, when D L50 was 20-30 Gy. The D CR was 66-97 Gy and 66-99 Gy, respectively, for a large tumor (266 cm 3 ). Hypofractionation was preferred for small tumors and higher NTDs, and conventional fractionation was better for large tumors and lower NTDs. Hypofractionation might be beneficial for intermediate-sized tumors when NTD = 80-90 Gy, especially if the D L50 is small (20 Gy). Conclusion: This computational study demonstrated that hypofractionated stereotactic body radiotherapy is a better regimen than conventional fractionation in lung cancer patients with small tumors and high doses, because it generates lower RDV when the tumor NTD is kept unchanged.

  17. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    Science.gov (United States)

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  18. Reduced-dose chest CT with 3D automatic exposure control vs. standard chest CT: Quantitative assessment of emphysematous changes in smokers’ lung parenchyma

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Yamazaki, Youichi; Matsumoto, Keiko; Onishi, Yumiko; Takenaka, Daisuke; Yoshikawa, Takeshi; Nishio, Mizuho; Matsumoto, Sumiaki; Murase, Kenya; Nishimura, Yoshihiro

    2012-01-01

    Objectives: To determine the capability of reduced-dose chest CT with three-dimensional (3D) automatic exposure control (AEC) on quantitative assessment of emphysematous change in smoker’ lung parenchyma, compared to standard chest CT. Methods: Twenty consecutive smoker patients (mean age 62.8 years) underwent CT examinations using a standard protocol (150 mAs) and a protocol with 3D-AEC. In this study, the targeted standard deviations number was set to 160. For quantitative assessment of emphysematous change in lung parenchyma in each subject using the standard protocol, a percentage of voxels less than −950 HU in the lung (%LAA −950 ) was calculated. The 3D-AEC protocol's %LAA was computed from of voxel percentages under selected threshold CT value. The differences of radiation doses between these two protocols were evaluated, and %LAAs −950 was compared with the 3D-AEC protocol %LAAs. Results: Mean dose length products were 780.2 ± 145.5 mGy cm (standard protocol), and 192.0 ± 95.9 (3D-AEC protocol). There was significant difference between them (paired Student's t test, p −950 and 3D-AEC protocol %LAAs. In adopting the feasible threshold CT values of the 3D-AEC protocol, the 3D-AEC protocol %LAAs were significantly correlated with %LAAs −950 (r = 0.98, p < 0.001) and limits of agreement from Bland–Altman analysis was 0.52 ± 4.3%. Conclusions: Changing threshold CT values demonstrated that reduced-dose chest CT with 3D-AEC can substitute for the standard protocol in assessments of emphysematous change in smoker’ lung parenchyma.

  19. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity.

    Science.gov (United States)

    Ju, Yun Hye; Lee, Geewon; Lee, Ji Won; Hong, Seung Baek; Suh, Young Ju; Jeong, Yeon Joo

    2018-05-01

    Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal-Wallis test and the Chi-square test. Results Effective doses were 61-87% lower in groups 2-5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1-3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1-4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.

  20. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  1. Radiation dose response of normal lung assessed by Cone Beam CT - A potential tool for biologically adaptive radiation therapy

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Soren M.; Hansen, Olfred; Nielsen, Morten; Brink, Carsten

    2011-01-01

    Background: Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose. Methods: A total of 665 CBCTs in 65 lung cancer patients treated with IMRT/VMAT to 60 or 66 Gy in 2 Gy fractions were analyzed. For each patient, CBCT lung density changes during the treatment course were related to the locally delivered dose. Results: A dose response is observed for the patient population at the end of the treatment course. However, the observed dose response is highly variable among patients. Density changes at 10th and 20th fraction are clearly correlated to those observed at the end of the treatment course. Conclusions: CBCT density changes in healthy lung tissue during radiotherapy correlate with the locally delivered dose and can be detected relatively early during the treatment. If these density changes are correlated to subsequent clinical toxicity this assay could form the basis for biological adaptive radiotherapy.

  2. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    International Nuclear Information System (INIS)

    Qu, H; Xia, P; Yu, N

    2015-01-01

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer

  3. Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment.

    Science.gov (United States)

    Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C

    2017-09-01

    Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction

  4. Risk assessment of nickel carcinogenicity and occupational lung cancer.

    OpenAIRE

    Shen, H M; Zhang, Q F

    1994-01-01

    Recent progress in risk assessment of nickel carcinogenicity and its correlation with occupational lung cancer in nickel-exposed workers is reviewed. Epidemiological investigations provide reliable data indicating the close relation between nickel exposure and high lung cancer risk, especially in nickel refineries. The nickel species-specific effects and the dose-response relationship between nickel exposure and lung cancer are among the main questions that are explored extensively. It is als...

  5. Preliminary evaluation of lung doses for dogs exposed to 239PuO2

    International Nuclear Information System (INIS)

    Fisher, D.R.; Cannon, W.C.; Hadley, R.T.; Park, J.F.

    1986-01-01

    A group of beagle dogs exposed to inhaled 239 PuO 2 is being followed for life-span effects. This paper reports preliminary lung dose estimates and dose-response relationships for incidence of lung tumors and radiation pneumonitis which have been observed to date. Doses were estimated by using both conventional dose-averaging and microdosimetric techniques. Cascade impactor sampling data were used to reconstruct the original plutonium aerosol size distributions unique to each of about 120 individual dogs exposed to 239 PuO 2 . Data providing the initial plutonium lung burden and lifetime lung retention-clearance functions of plutonium for each dog were used for calculating average dose rates, cumulative absorbed doses, and specific energy distributions. A linear dose-response relationship for lung tumor induction was estimated on the basis of cumulative lung dose. Average time to death was estimated as a function of average dose rate. Conclusions regarding the potential value of microdosimetry in the interpretation of such dose-response relationships are discussed. 8 refs., 5 figs., 1 tab

  6. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Heil, R.; Hofmann, W. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Hussain, M. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Higher Education Commission of Pakistan, Islamabad (Pakistan)

    2015-05-15

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM{sup -1}. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas. (orig.)

  7. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  8. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  9. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  10. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Choi, N; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  11. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    International Nuclear Information System (INIS)

    Shusharina, N; Khan, F; Choi, N; Sharp, G

    2014-01-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart

  12. On the radiation dose to lung tissues from radon daughters

    International Nuclear Information System (INIS)

    Wise, K.N.

    1980-04-01

    The work of Harley and Pasternak on calculating dose conversion factors for radon daughters is re-examined. It is found that their estimates of the deposit of radon daughters on the lung airways are too low and the factor for converting from equilibrium activity of radon daughters on the airways to dose to basal cells is too high; these are re-calculated. However, it is shown that inter-subject variability of the depth of the basal cells leads to considerable uncertainty in the individual dose. Finally average dose conversion factors are re-calculated for atmospheres which may be charactersitic of underground mines; the dose conversion factors range from 8 mGy/WLM to 40 mGy/WLM as calculated from the Weibel lung model and from 3 mGy/WLM to 17 mGy/WLM as calculated from the Landahl lung model

  13. Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study.

    Science.gov (United States)

    Mathieu, Kelsey B; Ai, Hua; Fox, Patricia S; Godoy, Myrna Cobos Barco; Munden, Reginald F; de Groot, Patricia M; Pan, Tinsu

    2014-03-06

    The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.

  14. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  15. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    International Nuclear Information System (INIS)

    Hardy, A; Bostani, M; McMillan, K; Zankl, M; Cagnon, C; McNitt-Gray, M

    2016-01-01

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  16. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, A; Bostani, M [University of California, Los Angeles, Los Angeles, CA (United States); McMillan, K [Mayo Clinic, Rochester, MN (United States); Zankl, M [Helmholtz Zentrum Munchen, Neuherberg (Germany); Cagnon, C [UCLA Medical Center, Los Angeles, CA (United States); McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  17. Estimation of radiation exposure from lung cancer screening program with low-dose computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Yeon; Jun, Jae Kwan [Graduate School of Cancer Science and Policy, National Cancer Center, Seoul (Korea, Republic of)

    2016-12-15

    The National Lung Screening Trial (NLST) demonstrated that screening with Low-dose Computed Tomography (LDCT) screening reduced lung cancer mortality in a high-risk population. Recently, the United States Preventive Services Task Force (USPSTF) gave a B recommendation for annual LDCT screening for individuals at high-risk. With the promising results, Korea developed lung cancer screening guideline and is planning a pilot study for implementation of national lung cancer screening. With widespread adoption of lung cancer screening with LDCT, there are concerns about harms of screening, including high false-positive rates and radiation exposure. Over the 3 rounds of screening in the NLST, 96.4% of positive results were false-positives. Although the initial screening is performed at low dose, subsequent diagnostic examinations following positive results additively contribute to patient's lifetime exposure. As with implementing a large-scale screening program, there is a lack of established risk assessment about the effect of radiation exposure from long-term screening program. Thus, the purpose of this study was to estimate cumulative radiation exposure of annual LDCT lung cancer screening program over 20-year period.

  18. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation

    International Nuclear Information System (INIS)

    Hanley, J.; Debois, M.M.; Raben, A.; Mageras, G.S.; Lutz, W.R.; Mychalczak, B.; Schwartz, L.H.; Gloeggler, P.J.; Leibel, S.A.; Fuks, Z.; Kutcher, G.J.

    1996-01-01

    compared to assess the improvement due to target immobilization and reduced lung density. To estimate the role of target immobilization alone, an additional plan is generated using the DIBH PTV, but with the assumption it is surrounded by free-breathing, not deep inspiration, density lung. Results: The results of the study suggest that the DIBH technique can reduce the mass of lung irradiated to high dose, so that the possibility for dose escalation is increased. The relative contribution of reduced lung density and reduced margin for motion vary depending on the tumor size, level of DIBH and extent of tumor motion in free-breathing. An example treatment plan comparison for a typical patient is shown in the figure, which is a cumulative dose mass histogram (DMH) depicting the mass of normal lung tissue receiving at least a certain dose. The lung DMHs shown are for three plans: (A) Free-breathing; (B) Target immobilization only; (C) Target immobilization plus reduced lung density. It is observed that the mass of lung tissue treated to high doses is less for cases B and C. For example, the mass receiving >24.5 Gy is 235 g for free-breathing (A), 180 g for immobilization alone (B) and 150 g for DIBH (C). For this patient, target immobilization alone would allow a dose escalation from 75.6 Gy to 95 Gy for the same level of NTCP as the free-breathing plan, the added effect of reduced density would then enable a further escalation from 95 Gy to 110 Gy. For this study, the measured tumor motions ranged from 5 to 12 mm for free-breathing and 1 to 3 mm for DIBH. For the example shown in the figure the tumor motion was 10 mm and DIBH reproducibility was 3 mm. Additional details on the DIBH technique and results for a group of patients will be presented. Conclusions: Compared to conventional free-breathing treatment the DIBH technique benefits from reduced margins, as a result of the suppressed target motion, as well as a decreased lung density - both contribute to moving normal lung

  19. Radiation dose to the lungs due to inhalation of alpha emitters

    International Nuclear Information System (INIS)

    Haque, A.K.M.M.; Al-Affan, I.A.M.

    1987-01-01

    The radiation dose to the lungs due to inhalation of radon daughters has been computed with improved data on lung models, aerosol parameters, deposition and clearance mechanisms. The dose corresponds to mean radon concentration of 23 Bq/m 3 indoors (recent NRPB Survey) for different living conditions. The dose rate to basal cells in gen. 5 is 12 mGy/WLM. (author)

  20. Low-dose CT: new tool for screening lung cancer?

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2001-01-01

    Lung cancer is the leading cause of death from malignant tumours as it is very common and has a poor prognosis at advanced tumour stages. Prognosis could be improved by treatment at early stages. As these stages are usually asymptomatic, a diagnostic test that would allow detection of early tumour stages in a population at risk could potentially reduce mortality from lung cancer. Previous approaches using chest radiography and sputum cytology in smokers have been disappointing. Fluorescent bronchoscopy and molecular markers are not yet applicable in clinical routine. Because of its high sensitivity for small pulmonary nodules, which are the most common manifestation of early lung cancer, CT appears suitable as a screening test. Low-dose examination parameters can and should be used for this purpose. From clinical practice it is well known that chest CT often demonstrates small pulmonary nodules, which do not represent lung cancer. Therefore, non-invasive diagnostic algorithms are required to avoid unnecessary biopsies in benign lesions. In preliminary studies of low-dose CT using algorithms based on size and density of detected nodules a large proportion of asymptomatic lung cancers and a large proportion of early, resectable tumour stages were found with a small proportion of invasive procedures for benign nodules. Before this technology can be recommended for broad application, however, further information is required regarding appropriate inclusion criteria (smoking habits, age groups) and screening intervals. Most importantly, further data are required to clarify whether lung cancer screening using low-dose CT can actually reduce mortality from lung cancer. (orig.)

  1. Automated assessment of aortic and main pulmonary arterial diameters using model-based blood vessel segmentation for predicting chronic thromboembolic pulmonary hypertension in low-dose CT lung screening

    Science.gov (United States)

    Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Sugiura, Toshihiko; Tanabe, Nobuhiro; Kusumoto, Masahiko; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 lowdose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening.

  2. WE-AB-207B-05: Correlation of Normal Lung Density Changes with Dose After Stereotactic Body Radiotherapy (SBRT) for Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q; Devpura, S; Feghali, K; Liu, C; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the method of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian

  3. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  4. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  5. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  6. Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.

    Science.gov (United States)

    Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf

    2016-01-01

    The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Han, Jin-Young; Kim, Bumseok; Lee, Kyuhong

    2018-01-01

    Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl 2 ), and PHMG + CdCl 2 . Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl 2 group. In contrast, mice in the CdCl 2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl 2 . Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.

  8. The Use of 4DCT to Reduce Lung Dose: A Dosimetric Analysis

    International Nuclear Information System (INIS)

    Khan, Fazal; Bell, Glenn; Antony, Jacob; Palmer, Matt; Balter, Peter; Bucci, Kara; Chapman, Melissa Jane

    2009-01-01

    Dosimetric studies on respiratory movement suggest several advantages toward the use of 4-dimensional computed tomography (4DCT) in radiation treatment planning. 4DCT is a method to obtain a series of CT scans each representing a different respiratory phase. The use of 4DCT has provided substantial information on tumor movement in the lung, allowing for the creation of custom planning margins explicitly including respiratory motion. These custom motion margins may result in an increase in the amount of normal lung in the field; however, it is believed less normal lung is irradiated than if generic motion margins were used. Clinical data regarding dose to normal lung by using 4DCT remain rather limited. Thus, a study presenting figures on the change in normal lung dose between planned free breathing CT and 4DCT cases would be useful to the dosimetry community. We have generated plans comparing fast spiral CT and 4DCT in regard to tumor coverage and the resulting dose to normal lung for the clinical target volume (CTV) and planning target volume (PTV) expansions used at our institution. These data were analyzed for free breathing and 4D plans of 6 lung cancer patients using intensity modulated radiation therapy (IMRT). We compared doses to normal lung tissue between free breathing and 4DCT plans.

  9. Thoron in the air: assessment of the occupational dose

    International Nuclear Information System (INIS)

    Campos, Marcia Pires de

    1999-01-01

    The occupational dose due to inhalation of thoron was assessed through the committed effective dose and the committed equivalent dose received by workers exposed to the radionuclide at the nuclear materials storage site and the thorium purification plant of the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP). The radiation doses were performed by compartmental analysis following the compartmental model of the lung and biokinetic model of the lead, through the thoron equilibrium equivalent concentrations. These values were obtained by gamma ray spectrometry, total alpha count and alpha particle spectrometry of air samples glass fiber filters. The results of the thoron equilibrium equivalent concentration varied from 0.3 to 0,67 Bq/m 3 at the nuclear materials storage site and from 0.9 to 249.8 Bq/m 3 at the thorium purification plant. The committed effective dose due to thoron inhalation varied from 0.03 mSv/a to 0.67 mSv/a at the nuclear materials storage site and from 0.12 mSv/a to 6.0 mSv/a at the thorium purification plant. The risk assessment of lung cancer and fatal cancers for the workers exposed to thoron at the nuclear materials storage site and the thorium purification plant showed an increment for both risk cancer. (author)

  10. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  11. Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Ding, George X.; Duggan, Dennis M.; Lu Bo; Hallahan, Dennis E.; Cmelak, Anthony; Malcolm, Arnold; Newton, Jared; Deeley, Matthew; Coffey, Charles W.

    2007-01-01

    The purpose of this study is to assess the real target dose coverage when radiation treatments were delivered to lung cancer patients based on treatment planning according to the RTOG-0236 Protocol. We compare calculated dosimetric results between the more accurate anisotropic analytical algorithm (AAA) and the pencil beam algorithm for stereotactic body radiation therapy treatment planning in lung cancer. Ten patients with non-small cell lung cancer were given 60 Gy in three fractions using 6 and 10 MV beams with 8-10 fields. The patients were chosen in accordance with the lung RTOG-0236 protocol. The dose calculations were performed using the pencil beam algorithm with no heterogeneity corrections (PB-NC) and then recalculated with the pencil beam with modified Batho heterogeneity corrections (PB-MB) and the AAA using an identical beam setup and monitor units. The differences in calculated dose to 95% or 99% of the PTV, between using the PB-NC and the AAA, were within 10% of prescribed dose (60 Gy). However, the minimum dose to 95% and 99% of PTV calculated using the PB-MB were consistently overestimated by up to 40% and 36% of the prescribed dose, respectively, compared to that calculated by the AAA. Using the AAA as reference, the calculated maximum doses were underestimated by up to 27% using the PB-NC and overestimated by 19% using the PB-MB. The calculations of dose to lung from PB-NC generally agree with that of AAA except in the small high-dose region where PB-NC underestimates. The calculated dose distributions near the interface using the AAA agree with those from Monte Carlo calculations as well as measured values. This study indicates that the real minimum PTV dose coverage cannot be guaranteed when the PB-NC is used to calculate the monitor unit settings in dose prescriptions

  12. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection.

    Science.gov (United States)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, ASIR-driven ULDCT in three out of the five observers (p ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  13. Nationwide Study of Humidifier Disinfectant Lung Injury in South Korea, 1994-2011. Incidence and Dose-Response Relationships.

    Science.gov (United States)

    Paek, Domyung; Koh, Younsuck; Park, Dong-Uk; Cheong, Hae-Kwan; Do, Kyung-Hyun; Lim, Chae-Man; Hong, Soo-Jong; Kim, Yong-Hwa; Leem, Jong-Han; Chung, Kyu Hyuck; Choi, Ye-Yong; Lee, Jong-Hyeon; Lim, Sin-Ye; Chung, Eun-Hee; Cho, Young Ah; Chae, Eun Jin; Joh, Joon-Sung; Yoon, Yup; Lee, Kyu-Hong; Choi, Bo Youl; Gwack, Jin

    2015-12-01

    Humidifier disinfectant lung injury is an acute lung disease attributed to recurrent inhalation of certain disinfectant aerosols emitted from room humidifiers. An outbreak of this toxic lung injury occurred in South Korea from 1995 until all humidifier disinfectant products were recalled from the consumer market by the government in 2011. A nationwide study was conducted to ascertain and classify all potential cases of humidifier disinfectant lung injury in Korea and to assess dose-response relationships. By several mechanisms, clinicians and the general public were invited to report all suspected cases of humidifier disinfectant lung injury to public health officials in South Korea. A committee was convened to define diagnostic criteria based on pathologic, radiologic, and clinical findings for index cases, combined with assessment of environmental exposure to humidifier disinfectants. Clinical review and environmental assessments were performed and later combined to determine overall likelihood of disease for each study participant, classified as definite, probable, possible, or unlikely. Survival time from exposure to onset of symptoms was analyzed to assess dose-response relationships. Three broad categories of risk factors were examined: (1) biological susceptibility, (2) temporal cycle of exposure and recovery, and (3) spatial conditions and density of disinfectant. Of 374 possible cases identified and reviewed, 329 were unanimously classified by the diagnostic committee, as follows: 117 definite, 34 probable, 38 possible and 140 unlikely cases. A total of 62 individuals with definite or probable disease died. Risk factors examined for polyhexamethyleneguanidine phosphate exposure that were found to be significant in shortening survival included age 4 years or younger at onset, use of disinfectant for 7 days per week, airborne density of 800 μg/m(3) or more of disinfectant, and daily exposure 11 or more hours in duration. Dose-response analysis indicated

  14. Lung cancer screening with low-dose CT

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2003-01-01

    Screening for lung cancer is hoped to reduce mortality from this common tumour, which is characterised by a dismal overall survival, relatively well defined risk groups (mainly heavy cigarette smokers and workers exposed to asbestos) and a lack of early symptoms. In the past studies using sputum cytology and chest radiography have failed to demonstrate any reduction in lung cancer mortality through screening. One of the reasons is probably the relatively poor sensitivity of both these tests in early tumours. Low radiation dose computed tomography (CT) has been shown to have a much higher sensitivity for small pulmonary nodules, which are believed to be the most common presentation of early lung cancer. As, however, small pulmonary nodules are common and most are not malignant, non-invasive diagnostic algorithms are required to correctly classify the detected lesions and avoid invasive procedures in benign nodules. Nodule density, size and the demonstration of growth at follow-up have been shown to be useful in this respect and may in the future be supplemented by contrast-enhanced CT and positron emission tomography. Based on these diagnostic algorithms preliminary studies of low-dose CT in heavy smokers have demonstrated a high proportion of asymptomatic, early, resectable cancers with good survival. As, however, several biases could explain these findings in the absence of the ultimate goal of cancer screening, i.e. mortality reduction, most researchers believe that randomised controlled trials including several 10000 subjects are required to demonstrate a possible mortality reduction. Only then general recommendations to screen individuals at risk of lung cancer with low-dose CT should be made. It can be hoped that international cooperation will succeed in providing results as early as possible

  15. Mid-ventilation position planning: Optimal model for dose distribution in lung tumour

    International Nuclear Information System (INIS)

    Benchalal, M.; Leseur, J.; Chajon, E.; Cazoulat, G.; Haigron, P.; Simon, A.; Bellec, J.; Lena, H.; Crevoisier, R. de

    2012-01-01

    Purpose. - The dose distribution for lung tumour is estimated using a 3D-CT scan, and since a person breathes while the images are captured, the dose distribution doesn't reflect the reality. A 4D-CT scan integrates the motion of the tumour during breathing and, therefore, provides us with important information regarding tumour's motion in all directions, the motion volume (ITV) and the time-weighted average position (MVP). Patient and methods. - Based on these two concepts, we have estimated, for a lung carcinoma case a 3D dose distribution from a 3D-CT scan, and a 4D dose distribution from a 4-D CT scan. To this, we have applied a non-rigid registration to estimate the cumulative dose. Results. - Our study shows that the 4D dose estimation of the GTV is almost the same when made using MVP and ITV concepts, but sparring of the healthy lung is better done using the MPV model (MVP), as compared to the ITV model. This improvement of the therapeutic index allows, from a projection on the theoretical maximal dose to PTV (strictly restricted to doses for the lungs and the spinal cord), for an increase of about 11% on the total dose (maximal dose of 86 Gy for the ITV and 96 Gy for the MVP). Conclusion. - Further studies with more patients are needed to confirm our data. (authors)

  16. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    Science.gov (United States)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  17. Lung doses from radon in dwellings and influencing factors

    International Nuclear Information System (INIS)

    Stranden, E.

    1980-01-01

    The radon concentration in Norwegian dwellings and the lung doses received by the Norwegian population are reported. The biological effects of these doses are discussed. The mean value of radon-daughters in Norwegian dwellings was found to be about 7x10 -3 WL (working levels). This corresponds to an annual exposure of about 0.3 WLM (working level months). From studies of the lung cancer statistics of Norway, this exposure may account for about 10% of the annual lung cancer cases in Norway. The variations in the radon concentration inside dwellings are discussed, and the influence of exhalation, ventilation and meteorological parameters upon the respiratory dosage is studied. From the risk estimates performed, the consequences of an increased indoor radon concentration due to reduced ventilation or introduction of building materials with high radium concentrations are discussed. From comparison of the population doses from different sources of radiation, it is evident that a possible future increase in the radon concentration in dwellings is one of the most serious radiation protection problems of our time. (author)

  18. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-01-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  19. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

    International Nuclear Information System (INIS)

    Kroon, Petra S; Hol, Sandra; Essers, Marion

    2013-01-01

    The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. The dosimetric impact on near-minimum PTV dose (D 98% ) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V 20Gy and V 5Gy in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V 5Gy-cont was 35.6% for stage III patients. For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose

  20. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  1. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    International Nuclear Information System (INIS)

    Siva, Shankar; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Callahan, Jason; MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki; Hicks, Rodney J.; Steinfort, Daniel; Ball, David L.; Hofman, Michael S.

    2015-01-01

    Purpose: To investigate 68 Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r 2 =0.99, P<.01), with ventilation strongly negatively linear (r 2 =0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These

  2. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    Energy Technology Data Exchange (ETDEWEB)

    Siva, Shankar, E-mail: shankar.siva@petermac.org [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hardcastle, Nicholas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Bressel, Mathias [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne (Australia); Callahan, Jason [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia); Steinfort, Daniel [Department of Medicine, University of Melbourne, Parkville (Australia); Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne (Australia); Ball, David L. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hofman, Michael S. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia)

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  3. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  4. Metformin decreases lung cancer risk in diabetic patients in a dose-dependent manner.

    Science.gov (United States)

    Tsai, Ming-Ju; Yang, Chih-Jen; Kung, Ya-Ting; Sheu, Chau-Chyun; Shen, Yu-Ting; Chang, Pi-Yu; Huang, Ming-Shyan; Chiu, Herng-Chia

    2014-11-01

    Higher risk of lung cancer has been noted in patients with type 2 diabetes mellitus (DM). Some observational studies have shown a reduced risk of lung cancer in DM patients taking metformin, but a dose-response relationship has never been reported. The aim of this study is to exam the association between the dose of metformin and the incidence of lung cancer in a Chinese population. The dataset used for this nationwide population-based study is a cohort of 1 million subjects randomly sampled from individuals enrolled in the Taiwan National Health Insurance system. We enrolled all subjects with newly diagnosed type 2 DM between 1997 and 2007. Subjects with a diagnosis of neoplasm before DM diagnosis, those using metformin before DM diagnosis, those with polycystic ovary syndrome, and those with a DM diagnosis before their 15 years of age were excluded. The demographic data and duration, cumulative dose and intensity of metformin use were compared between patients developing lung cancer and those without lung cancer. Totally, 47,356 subjects were identified. After adjusting for age, gender, and modified Charlson Comorbidity Index score, the utilization of metformin was an independent protecting factor, and the risk of developing lung cancer decreased progressively with either the higher cumulative dose or the higher intensity of metformin use. This study revealed that the use of metformin decreased the risk of lung cancer in a dose-dependent manner in patients with type 2 DM. The chemo-preventive effect of metformin deserves further study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of dose reporting modes in Acuros XB for prostate, lung and breast cancer

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-12-01

    Full Text Available Purpose: Acuros XB (AXB dose calculation algorithm is available for external beam photon dose calculations in Eclipse treatment planning system (TPS. The AXB can report the absorbed dose in two modes: dose-to-water (Dw and dose-to-medium (Dm. The main purpose of this study was to compare the dosimetric results of the AXB_Dm with that of AXB_Dw on real patient treatment plans. Methods: Four groups of patients (prostate cancer, stereotactic body radiation therapy (SBRT lung cancer, left breast cancer, and right breast cancer were selected for this study, and each group consisted of 5 cases. The treatment plans of all cases were generated in the Eclipse TPS. For each case, treatment plans were computed using AXB_Dw and AXB_Dm for identical beam arrangements. Dosimetric evaluation was done by comparing various dosimetric parameters in the AXB_Dw plans with that of AXB_Dm plans for the corresponding patient case. Results: For the prostate cancer, the mean planning target volume (PTV dose in the AXB_Dw plans was higher by up to 1.0%, but the mean PTV dose was within ±0.3% for the SBRT lung cancer. The analysis of organs at risk (OAR results in the prostate cancer showed that AXB_Dw plans consistently produced higher values for the bladder and femoral heads but not for the rectum. In the case of SBRT lung cancer, a clear trend was seen for the heart mean dose and spinal cord maximum dose, with AXB_Dw plans producing higher values than the AXB_Dm plans. However, the difference in the lung doses between the AXB_Dm and AXB_Dw plans did not always produce a clear trend, with difference ranged from -1.4% to 2.9%. For both the left and right breast cancer, the AXB_Dm plans produced higher maximum dose to the PTV for all cases. The evaluation of the maximum dose to the skin showed higher values in the AXB_Dm plans for all 5 left breast cancer cases, whereas only 2 cases had higher maximum dose to the skin in the AXB_Dm plans for the right breast cancer

  6. Multi-component assessment of chronic obstructive pulmonary disease : an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets

    NARCIS (Netherlands)

    Jones, Rupert C.; Price, David; Chavannes, Niels H.; Lee, Amanda J.; Hyland, Michael E.; Stallberg, Bjorn; Lisspers, Karin; Sundh, Josefin; van der Molen, Thys; Tsiligianni, Ioanna

    2016-01-01

    Suitable tools for assessing the severity of chronic obstructive pulmonary disease (COPD) include multi-component indices and the global initiative for chronic obstructive lung disease (GOLD) categories. The aim of this study was to evaluate the dyspnoea, obstruction, smoking, exacerbation (DOSE)

  7. The impact of central lung distance, maximal heart distance, and radiation technique on the volumetric dose of the lung and heart for intact breast radiation

    International Nuclear Information System (INIS)

    Kong, F.-M.; Klein, Eric E.; Bradley, Jeffrey D.; Mansur, David B.; Taylor, Marie E.; Perez, Carlos A.; Myerson, Robert J.; Harms, William B.

    2002-01-01

    Purpose: To investigate the impact of radiographic parameter and radiation technique on the volumetric dose of lung and heart for intact breast radiation. Methods and Materials: Forty patients with both two-dimensional (2D) and computed tomographic (CT) simulations were enrolled in the study. Central lung distance (CLD), maximal heart distance (MHD), and maximal heart length (MHL) were measured under virtual simulation. Four plans were compared for each patient. Plan A used a traditional 2D tangential setup. Plan B used clinical target volume (CTV) based three-dimensional (3D) planning. Both plans C and D used a combination of a medial breast field with shallow tangents. Plan D is a further modification of plan C. Results: Under the traditional tangential setup, the mean ipsilateral lung dose and volume at 20, 30, and 40 Gy correlated linearly with CLD (R = 0.85∼0.91). The mean ipsilateral lung dose (Gy) approximated 4 times the CLD value (cm), whereas the percentage volume (%) of ipsilateral lung at 20, 30, and 40 Gy was about 10 times the CLD (cm). The mean heart dose and percentage volume at 20, 30, and 40 Gy correlated with MHD (R = 0.76∼0.80) and MHL (R 0.65∼0.75). The mean heart dose (Gy) approximated 3 times the MHD value (cm), and the percentage volume (%) of the heart at 10, 20, 30, and 40 Gy was about 6 times MHD (cm). Radiation technique impacted lung and heart dose. The 3D tangential plan (plan B) failed to reduce the volumetric dose of lung and heart from that of the 2D plan (plan A). The medial breast techniques (plans C and D) significantly decreased the volume of lung and heart receiving high doses (30 and 40 Gy). Plan D further decreased the 20 Gy volumes. By use of the medial breast technique, the lung and heart dose were not impacted by original CLD and MHD/MHL. Therefore, the improvement from the tangential technique was more remarkable for patients with CLD ≥ 3.0 cm (p<0.001). Conclusions: The CLD and MHD impact the volumetric dose of

  8. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms

    International Nuclear Information System (INIS)

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-01-01

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  9. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment.

    Science.gov (United States)

    Liao, Chung-Min; Chio, Chia-Pin; Chen, Wei-Yu; Ju, Yun-Ru; Li, Wen-Hsuan; Cheng, Yi-Hsien; Liao, Vivian Hsiu-Chuan; Chen, Szu-Chieh; Ling, Min-Pei

    2011-06-15

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo(a)pyrene (B[a]P) and PM concentrations. A dose-response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10(-5) to 10(-4) for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  11. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2000-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  12. Microscopic dose distribution around PuO2 particles in lungs of hamsters, rats and dogs

    International Nuclear Information System (INIS)

    Diel, J.H.; Mewhinney, J.A.; Guilmette, R.A.

    1982-01-01

    Syrian hamsters, Fischer-344 rats and Beagle dogs inhaled monodisperse aerosols of PuO 2 and were sacrificed 1 to 16 days after exposure. The microscopic distribution of dose and tissue-at-risk around individual particles in lung was studied using autoradiographs of the lungs. The dose pattern in dogs and rats was more diffuse than in hamsters, resulting in a calculation of about twice the tumor incidence in rats and dogs as in hamsters on the basis of dose pattern using the same dose-effect model for all three species. The tumorigenic effect of inhaled insoluble PuO 2 particles depends on the species inhaling the material; Syrian hamsters are much less susceptible than are rats or dogs. It has been suggested that a difference in dose distribution resulting from differences in particle distributions in the two species may contribute to the differences in susceptibility in Syrian hamsters and rats. The role of dose distribution in lung cancer production is explored in this study by measuring microscopic dose patterns in regions surrounding single PuO 2 particles in lung. The alveolar structures of the dog and rat are different than those of the hamster. Based on these measurements, particles of PuO 2 in lung are more likely to cause lung cancer in dogs and rats than in hamsters

  13. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer

    Directory of Open Access Journals (Sweden)

    Katarzyna Walczak

    2017-10-01

    Full Text Available Objectives: Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. Material and Methods: The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA in the report No. 33 was used for estimating the effective doses. Results: In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI: 1.6–1.87. Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. Conclusions: The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5:687

  14. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection Technique; Pineau, J.F. [ALGADE, Bessines (France); Chameaud, J. [Compagnie Generale des Matieres Nucleaires (COGEMA), 87 - Razes (France)

    1994-12-31

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10{sup 6} J.m{sup -3} (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author).

  15. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    International Nuclear Information System (INIS)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R.; Chameaud, J.

    1994-01-01

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10 6 J.m -3 (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author)

  16. The theoretical benefit of beam fringe compensation and field size reduction for iso-normal tissue complication probability dose escalation in radiotherapy of lung cancer

    NARCIS (Netherlands)

    Engelsman, Martijn; Remeijer, Peter; van Herk, Marcel; Mijnheer, Ben; Damen, Eugène

    2003-01-01

    To assess the benefit of beam fringe (50%-90% dose level) sharpening for lung tumors, we performed a numerical simulation in which all geometrical errors (breathing motion, random and systematic errors) are included. A 50 mm diameter lung tumor, located centrally in a lung-equivalent phantom was

  17. Evaluation of chronic infectious interstitial pulmonary disease in children by low-dose CT-guided transthoracic lung biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, Christoph M.; Lemburg, Stefan P.; Kagel, Thomas; Nicolas, Volkmar [Ruhr-University of Bochum, Institute of Diagnostic Radiology, Interventional Radiology and Nuclear Medicine, BG Clinics Bergmannsheil, Bochum (Germany); Mueller, Klaus-Michael [Ruhr-University of Bochum, Institute of Pathology, BG Clinics Bergmannsheil, Bochum (Germany); Nuesslein, Thomas G.; Rieger, Christian H.L. [Ruhr-University of Bochum, Pediatric Hospital, Bochum (Germany)

    2005-07-01

    Children with chronic infectious interstitial lung disease often have to undergo open lung biopsy to establish a final diagnosis. Open lung biopsy is an invasive procedure with major potential complications. Transthoracic lung biopsy (TLB) guided by computed tomography (CT) is a less-invasive well-established procedure in adults. Detailing the role of low-dose CT-guided TLB in the enhanced diagnosis of chronic lung diseases related to infection in children. A group of 11 children (age 8 months to 16 years) underwent CT-guided TLB with a 20-gauge biopsy device. All investigations were done under general anaesthesia on a multidetector CT scanner (SOMATOM Volume Zoom, Siemens, Erlangen, Germany) using a low-dose protocol (single slices, 120 kV, 20 mAs). Specimens were processed by histopathological, bacteriological, and virological techniques. All biopsies were performed without major complications; one child developed a small pneumothorax that resolved spontaneously. A diagnosis could be obtained in 10 of the 11 patients. Biopsy specimens revealed chronic interstitial alveolitis in ten patients. In five patients Chlamydia pneumoniae PCR was positive, in three Mycoplasma pneumoniae PCR was positive, and in two Cytomegalovirus PCR was positive. The average effective dose was 0.83 mSv. Low-dose CT-guided TLB can be a helpful tool in investigating chronic infectious inflammatory processes in children with minimal radiation exposure. It should be considered prior to any open surgical procedure performed for biopsy alone. In our patient group no significant complication occurred. A disadvantage of the method is that it does not allow smaller airways and vessels to be assessed. (orig.)

  18. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  19. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer

    Science.gov (United States)

    Suzuki, H.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, Masahiro; Moriyama, N.

    2014-03-01

    Chronic obstructive pulmonary disease is a major public health problem that is predicted to be third leading cause of death in 2030. Although spirometry is traditionally used to quantify emphysema progression, it is difficult to detect the loss of pulmonary function by emphysema in early stage, and to assess the susceptibility to smoking. This study presents quantification method of smoking-induced emphysema progression based on annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in lung cancer screening. The method consists of three steps. First, lung lobes are segmented using extracted interlobar fissures by enhancement filter based on fourdimensional curvature. Second, LAV of each lung lobe is segmented. Finally, smoking-induced emphysema progression is assessed by statistical analysis of the annual changes represented by linear regression of LAV percentage in each lung lobe. This method was applied to 140 participants in lung cancer CT screening for six years. The results showed that LAV progressions of nonsmokers, past smokers, and current smokers are different in terms of pack-year and smoking cessation duration. This study demonstrates effectiveness in diagnosis and prognosis of early emphysema in lung cancer CT screening.

  20. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  1. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  2. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  3. Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    International Nuclear Information System (INIS)

    Dobler, Barbara; Walter, Cornelia; Knopf, Antje; Fabri, Daniella; Loeschel, Rainer; Polednik, Martin; Schneider, Frank; Wenz, Frederik; Lohr, Frank

    2006-01-01

    The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

  4. Quantitative assessment of pulmonary function using low dose multi-slice spiral CT in smoker

    International Nuclear Information System (INIS)

    Chen Huai; Zeng Qingsi; Zheng Jinping; Guan Yubao; Zhang Chaoliang; Cen Renli

    2012-01-01

    Objective: To evaluate the clinical feasibility of low dose MSCT for quantitative assessment of pulmonary function in smokers. Methods: One hundred and forty-six patients with chronic objective pulmonary disease (COPD) including 109 smokers (74.6%) and 37 non-smokers (25.3%) underwent pulmonary function test and low-dose MSCT scan. All data were analyzed using computer-aided lung analysis software. Pulmonary function parameters from low-dose MSCT were compared between smokers and non-smokers and also compared with pulmonary function test in non-smokers (Pearson test). Results: In smokers, the average volume at full inspiratory phase (Vin) was (5125 ± 862 ) ml, mean lung attenuation was (-902 ± 26) HU, mean lung density was (0.0984 ± 0.0260 ) g/cm 3 , emphysema volume was (2890 ±1370) ml. The average volume at full expiratory phase (Vex) was (2756 ±1027) ml, mean lung attenuation was (-811 ±62) HU, mean lung density was (0.1878 ±0.0631) g/cm 3 , emphysema volume was (685 ±104) ml. In non-smokers, the average Vin was (3734 ± 759) ml, mean lung attenuation was (-876 ±40) HU,mean lung density was (0.1244 ±0.0401)g/cm 3 , emphysema volume was ( 1503 ± 1217) ml. The average Vex was (1770 ± 679) ml, mean lung attenuation was (-765 ± 56) HU, mean lung density was (0.2360 ± 0.0563) g/cm 3 , emphysema volume was (156 ± 45) ml. There were significant differences between smokers and non-smokers (P<0.01). The Vex/Vin was correlated with residual volume/total lung capacity (RV/TLC, r=0.60, P<0.01), and Vin was correlated with TLC (r=0.58, P<0.01), Vex with RV (r=0.59, P<0.01). Pixel index (PI) -950 in was correlated with FEV 1% pre and FEV1/FVC% (r=-0.53, -0.62, respective, P<0.01), Pl-950ex was correlated with FEV1 % pre and FEV1/FVC% (r=-0.71, -0.77, respective, P<0.01). Conclusion: Low-dose MSCT can be a potential imaging tool for quantitative pulmonary function assessment in smokes. (authors)

  5. Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

    International Nuclear Information System (INIS)

    Ffrrcsi, F.H.; Parton, C.

    2006-01-01

    Aim: We aim to check the safety of the standard palliative radiotherapy techniques by using the Linear quadratic model for a careful estimation of the doses received by the spinal cord, in all standard palliative lung radiotherapy fields and fractionation. Material and Methods: All patients surveyed at this prospective audit were treated with palliative chest radio-therapy for lung cancer over a period from January to June 2005 by different clinical oncology specialists within the department. Radiotherapy field criteria were recorded and compared with the recommended limits of the MRC trial protocols for the dose and fractionation prescribed. Doses delivered to structures off the field central axis were estimated using a standard CT scan of the chest. Dose estimates were made using an SLPLAN planning system. As unexpected spinal cord toxicity has been reported after hypo fractionated chest radiotherapy, a sagittal view was used to calculate the isodoses along the length of the spinal cord that could lie within the RT field. Equivalent dose estimates are made using the Linear Quadratic Equivalent Dose formula (LQED). The relative radiation sensitivity of spinal cord for myelopathy (the a/b dose) cord has been estimated as a/b = 1 Gy. Results: 17 Gy in 2 fraction and 39 Gy in 13 fraction protocols have spinal cord equivalent doses (using the linear-quadratic model) that lie within the conventional safe limits of 50 Gy in 25 fractions for the 100% isodose. However when the dosimetry is modelled for a 6 MV 100 cm isocentric linac in 3 dimensions, and altered separations and air space inhomogeneity are considered, the D-Max doses consistently fall above this limit on our 3 model patients. Conclusion: The 17 Gy in 2 fraction and 39 Gy in 13 fraction protocol would risk spinal cord damage if the radio therapist was unaware of the potential spinal cord doses. Alterative doses are suggested below 15.5 Gy/ 2 fractions (7 days apart) would be most acceptable

  6. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  7. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo; Moon, Jung Won

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT

  8. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Moon, Jung Won [Dept. of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2015-10-15

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  9. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    International Nuclear Information System (INIS)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P.; Rojas P, E.; Marquez P, F.

    2015-10-01

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe 133 or Tc 99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133 Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133 Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc 99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc 99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  10. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppe [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Monti, Serena [IRCCS SDN, Naples (Italy); D' Avino, Vittoria [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Conson, Manuel [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pressello, Maria Cristina [Department of Health Physics, S. Camillo-Forlanini Hospital, Rome (Italy); Donato, Vittorio [Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Rome (Italy); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Quarantelli, Mario [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pacelli, Roberto [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy)

    2016-09-01

    Purpose: To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials: An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient's computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results: The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions: We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (∼6 Gy) were delivered. Interestingly, the relation between differences in the high-dose

  11. Dose distribution in lungs and thyroid from scatter photons of x-ray mammography imaging

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.

    2006-01-01

    The contribution of scatter photons in dose of mammography image in thyroid and lungs are studied. Thyroid and in the form of distribution function and total delivered dose studied by direct measurement with Thermoluminescence dosimeter. The results of measurements compared to other published measurements and the total dose compared to our modelling with Monte Carlo method.. Our phantoms for direct measurement of Dose are a compressed breast phantom placed on a female RANDO phantom. The results of modelling and measurement are in agreement for the total delivered dose to thyroid and lungs and comparable to doses reported by the other researcher

  12. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.

    Science.gov (United States)

    Walczak, Katarzyna; Olszewski, Jerzy; Politański, Piotr; Zmyślony, Marek

    2017-07-14

    Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR) VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA) in the report No. 33 was used for estimating the effective doses. In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI): 1.6-1.87). Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5):687-694. This work is available in Open Access model and licensed under a CC

  13. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  14. SU-F-T-609: Impact of Dosimetric Variation for Prescription Dose Using Analytical Anisotropic Algorithm (AAA) in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, D [Kanagawa Cancer Center, Yokohama, Kanagawa (Japan); Takahashi, R [Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo (Japan); Kamima, T [Cancer Institute Hospital Japanese Foundation for Cancer Research, Koto, Tokyo (Japan); Baba, H [The National Cancer Center Hospital East, Kshiwa, Chiba (Japan); Yamamoto, T; Kubo, Y [Otemae Hospital, Chuo-ku, Osaka (Japan); Ishibashi, S; Higuchi, Y [Sasebo City General Hospital, Sasebo, Nagasaki (Japan); Tani, K [St Luke’s International Hospital, Tokyo, Tokyo (Japan); Tachibana, H [National Cancer Center, Kashiwa, Chiba (Japan)

    2016-06-15

    Purpose: Actual irradiated prescription dose to patients cannot be verified. Thus, independent dose verification and second treatment planning system are used as the secondary check. AAA dose calculation engine has contributed to lung SBRT. We conducted a multi-institutional study to assess variation of prescription dose for lung SBRT when using AAA in reference to using Acuros XB and Clarkson algorithm. Methods: Six institutes in Japan participated in this study. All SBRT treatments were planed using AAA in Eclipse and Adaptive Convolve (AC) in Pinnacle3. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, Japan), which implemented a Clarkson-based dose calculation algorithm using CT image dataset. A retrospective analysis for lung SBRT plans (73 patients) was performed to compute the confidence limit (CL, Average±2SD) in dose between the AAA and the SMU. In one of the institutes, a additional analysis was conducted to evaluate the variations between the AAA and the Acuros XB (AXB). Results: The CL for SMU shows larger systematic and random errors of 8.7±9.9 % for AAA than the errors of 5.7±4.2 % for AC. The variations of AAA correlated with the mean CT values in the voxels of PTV (a correlation coefficient : −0.7) . The comparison of AXB vs. AAA shows smaller systematic and random errors of −0.7±1.7%. The correlation between dose variations for AXB and the mean CT values in PTV was weak (0.4). However, there were several plans with more than 2% deviation of AAPM TG114 (Maximum: −3.3 %). Conclusion: In comparison for AC, prescription dose calculated by AAA may be more variable in lung SBRT patient. Even AXB comparison shows unexpected variation. Care should be taken for the use of AAA in lung SBRT. This research is partially supported by Japan Agency for Medical Research and Development (AMED)

  15. Lung dose and lung cancer risk by inhalation of radon daughters

    International Nuclear Information System (INIS)

    Jacobi, W.

    1983-01-01

    The inhalation of short-lived radon daughters constitutes the most important occupational radiation exposure in mines, particularly in uranium mines. Among some groups of miners exposed in the past to relatively high radon levels, an excess lung cancer incidence has been observed. In addition to this occupational hazard, the observed radon levels in domestic houses indicate that the inhalation of short-lived radon daughters seems to be the most important component of the radiation exposure of the population from natural sources. For the quantification and judgment of the radiological impact by inhalation of radon daughters in mines as well as in houses, it is necessary to estimate the relationships between the inhaled activity or potential alpha (α) energy of these radionuclides, the dose to target tissues in the lung, and the possible associated lung cancer (LC) risk. It is the purpose of this paper to give a condensed review of our present knowledge in this field and to indicate the main gaps and uncertainties where future research seems necessary

  16. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease.

    Science.gov (United States)

    Zanon, Matheus; Pacini, Gabriel Sartori; de Souza, Vinicius Valério Silveiro; Marchiori, Edson; Meirelles, Gustavo Souza Portes; Szarf, Gilberto; Torres, Felipe Soares; Hochhegger, Bruno

    2017-12-01

    To assess whether an additional chest ultra-low-dose CT scan to the coronary CT angiography protocol can be used for lung cancer screening among patients with suspected coronary artery disease. 175 patients underwent coronary CT angiography for assessment of coronary artery disease, additionally undergoing ultra-low-dose CT screening to early diagnosis of lung cancer in the same scanner (80kVp and 15mAs). Patients presenting pulmonary nodules were followed-up for two years, repeating low-dose CTs in intervals of 3, 6, or 12 months based on nodule size and growth rate in accordance with National Comprehensive Cancer Network guidelines. Ultra-low-dose CT identified 71 patients with solitary pulmonary nodules (41%), with a mean diameter of 5.50±4.00mm. Twenty-eight were >6mm, and in 79% (n=22) of these cases they were false positive findings, further confirmed by follow-up (n=20), resection (n=1), or biopsy (n=1). Lung cancer was detected in six patients due to CT screening (diagnostic yield: 3%). Among these, four cases could not be detected in the cardiac field of view. Most patients were in early stages of the disease. Two patients diagnosed at advanced stages died due to cancer complications. The addition of the ultra-low-dose CT scan represented a radiation dose increment of 1.22±0.53% (effective dose, 0.11±0.03mSv). Lung cancer might be detected using additional ultra-low-dose protocols in coronary CT angiography scans among patients with suspected coronary artery disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    International Nuclear Information System (INIS)

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-01-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  18. Monte Carlo dose calculations for BNCT treatment of diffuse human lung tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.

    2006-01-01

    In order to test the possibility to apply BNCT in the core of diffuse lung tumours, dose distribution calculations were made. The simulations were performed with the Monte Carlo code MCNP.4c2, using the male computational phantom Adam, version 07/94. Volumes of interest were voxelized for the tally requests, and results were obtained for tissues with and without Boron. Different collimated neutron sources were tested in order to establish the proper energies, as well as single and multiple beams to maximize neutron flux uniformity inside the target organs. Flux and dose distributions are reported. The use of two opposite epithermal neutron collimated beams insures good levels of dose homogeneity inside the lungs, with a substantially lower radiation dose delivered to surrounding structures. (author)

  19. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  20. Lung cancer risk at low doses of alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Katz, R.; Zhang, C.X.

    1986-01-01

    A survey of inhabitant exposures arising from the inhalation of 222 Rn and 220 Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the high background and the control area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 2 ]2'' 2 Rn and 220 Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli

  1. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  2. Loss of lung function after chemo-radiotherapy for NSCLC measured by perfusion SPECT/CT: Correlation with radiation dose and clinical morbidity

    DEFF Research Database (Denmark)

    Farr, Katherina P; Møller, Ditte S; Khalil, Azza A

    2015-01-01

    BACKGROUND: The purpose of the study was to assess dose and time dependence of radiotherapy (RT)-induced changes in regional lung function measured with single photon emission computed tomography (SPECT) of the lung and relate these changes to the symptomatic endpoint of radiation pneumonitis (RP......) in patients treated for non-small cell lung cancer (NSCLC). MATERIAL AND METHODS: NSCLC patients scheduled to receive curative RT of minimum 60 Gy were included prospectively in the study. Lung perfusion SPECT/CT was performed before and three months after RT. Reconstructed SPECT/CT data were registered...

  3. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  4. Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland); Nesteruk, Marta [Faculty of Physics, University of Warsaw, Warsaw (Poland); Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich (Switzerland); Brzozowska, Beata [Faculty of Physics, University of Warsaw, Warsaw (Poland); Kukołowicz, Paweł F. [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland)

    2017-04-01

    The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.

  5. Cystic Fibrosis: Are Volumetric Ultra-Low-Dose Expiratory CT Scans Sufficient for Monitoring Related Lung Disease?

    DEFF Research Database (Denmark)

    Loeve, Martine; Lequin, Maarten H; Bruijne, Marleen de

    2009-01-01

    Purpose: To assess whether chest computed tomography (CT) scores from ultra-low-dose end-expiratory scans alone could suffice for assessment of all cystic fibrosis (CF)-related structural lung abnormalities. Materials and Methods: In this institutional review board–approved study, 20 patients...... with CF aged 6–20 years (eight males, 12 females) underwent low-dose end-inspiratory CT and ultra-low-dose end-expiratory CT. Informed consent was obtained. Scans were randomized and scored by using the Brody-II CT scoring system to assess bronchiectasis, airway wall thickening, mucus plugging......-Altman plots. Results: Median age was 12.6 years (range, 6.3–20.3 years), median forced expiratory volume in 1 second was 100% (range, 46%–127%) of the predicted value, and median forced vital capacity was 99% (range, 61%–123%) of the predicted value. Very good agreement was observed between end...

  6. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  7. Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a retrospective cohort analysis of a randomised, multicentre, diagnostic screening trial.

    Science.gov (United States)

    Patz, Edward F; Greco, Erin; Gatsonis, Constantine; Pinsky, Paul; Kramer, Barnett S; Aberle, Denise R

    2016-05-01

    Annual low-dose CT screening for lung cancer has been recommended for high-risk individuals, but the necessity of yearly low-dose CT in all eligible individuals is uncertain. This study examined rates of lung cancer in National Lung Screening Trial (NLST) participants who had a negative prevalence (initial) low-dose CT screen to explore whether less frequent screening could be justified in some lower-risk subpopulations. We did a retrospective cohort analysis of data from the NLST, a randomised, multicentre screening trial comparing three annual low-dose CT assessments with three annual chest radiographs for the early detection of lung cancer in high-risk, eligible individuals (aged 55-74 years with at least a 30 pack-year history of cigarette smoking, and, if a former smoker, had quit within the past 15 years), recruited from US medical centres between Aug 5, 2002, and April 26, 2004. Participants were followed up for up to 5 years after their last annual screen. For the purposes of this analysis, our cohort consisted of all NLST participants who had received a low-dose CT prevalence (T0) screen. We determined the frequency, stage, histology, study year of diagnosis, and incidence of lung cancer, as well as overall and lung cancer-specific mortality, and whether lung cancers were detected as a result of screening or within 1 year of a negative screen. We also estimated the effect on mortality if the first annual (T1) screen in participants with a negative T0 screen had not been done. The NLST is registered with ClinicalTrials.gov, number NCT00047385. Our cohort consisted of 26 231 participants assigned to the low-dose CT screening group who had undergone their T0 screen. The 19 066 participants with a negative T0 screen had a lower incidence of lung cancer than did all 26 231 T0-screened participants (371·88 [95% CI 337·97-408·26] per 100 000 person-years vs 661·23 [622·07-702·21]) and had lower lung cancer-related mortality (185·82 [95% CI 162·17

  8. Dose-Time Relations for Induction of Lung Cancer in Uranium Miners

    Energy Technology Data Exchange (ETDEWEB)

    Blair, H. A. [University of Rochester School of Medicine and Dentistry, Rochester, NY (United States)

    1969-11-15

    Lack of data on the concentration of radon and daughters in the air inhaled by uranium miners has made it difficult in the past to establish radiation dose and time factors for induction of lung cancer. Recent determinations by others of {sup 210}Pb in the bones of miners who died of cancer provide, however, a new approach. Because {sup 210}Pb, a decay product of radon, accumulates in bone but is also excreted, its concentration, after prolonged exposure, will approach an equilibrium which is a measure of the rate of exposure. It is shown that the {sup 210}Pb. levels in bone at the end of mining are as closely proportional to existing measured and estimated exposure rates to radon as can be expected. It is reasonable, therefore, to use {sup 210}Pb levels in bone as measures of prior exposure rates. When this is done a graph of survival times from beginning of exposures against reciprocal of {sup 210}Pb shows that lung cancer in man exhibits the two types, early and late, previously revealed in bone cancer in dogs and skin cancer in rats. When the dose is high, death follows initiation of cancer in about 7 years. When the dose is low, the usual case, there is an additional latency of 16 years so the time from attainment of initiating dose to death is 23 years. The initiating dose for the high dose type is about 65 pCi {sup 210}Pb per gram years and for the low dose type about 10 pCi per gram years which, in terms of exposure, is about 400 working level months, WLM, as working level, WL, is currently defined. Of the derived parameters the total low dose development time of 23 years is fairly accurate. The high dose development time of 7 years is less certain. The initiating low dose of 10 pCi per gram years is probably moderately accurate, but its counterpart of 400 WLM less certain. The high initiating dose is poorly determined. Twenty three lung cancer cases were involved in this study. Additional cases along with additional environmental and other measurements

  9. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Allen, B.J.

    1998-01-01

    Recent advances in synchrotron generated x-ray beams with a high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. (author)

  10. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Fay, Michael; Tan, Alex; Fisher, Richard; Mac Manus, Michael; Wirth, Andrew; Ball, David

    2005-01-01

    Purpose: To determine the relationship between various parameters derived from lung dose-volume histogram analysis and the risk of symptomatic radiation pneumonitis (RP) in patients undergoing radical radiotherapy for primary lung cancer. Methods and Materials: The records of 156 patients with lung cancer who had been treated with radical radiotherapy (≥45 Gy) and for whom dose-volume histogram data were available were reviewed. The incidence of symptomatic RP was correlated with a variety of parameters derived from the dose-volume histogram data, including the volume of lung receiving 10 Gy (V 10 ) through 50 Gy (V 50 ) and the mean lung dose (MLD). Results: The rate of RP at 6 months was 15% (95% confidence interval 9-22%). On univariate analysis, only V 30 (p = 0.036) and MLD (p = 0.043) were statistically significantly related to RP. V 30 correlated highly positively with MLD (r = 0.96, p 30 and MLD can be used to predict the risk of RP in lung cancer patients undergoing radical radiotherapy

  11. 222Rn alpha dose to organs other than lung

    International Nuclear Information System (INIS)

    Harley, N.H.; Robbins, E.S.

    1991-01-01

    The alpha dose to cells in tissues or organs other theft the lung has been calculated using the solubility coefficients for 222 Rn measured in human tissue. The annual alpha dose equivalent f rom 222 Rn and decay products in most tissues is a maximum of 30% of the annual average natural background dose equivalent (1 mSv) for external and internally deposited nuclides. The dose to the small population of lymphocytes located in or under the bronchial epithelium is a special case and their annual dose equivalent is essentially the same as that to basal cells in bronchial epithelium (200 mSv) for continuous exposure to 200 Bq M -3 . The significance of this dose is uncertain because the only excess cancer observed in follow up studies of underground miners with high 222 Rn exposure is bronchogenic carcinoma

  12. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments

    International Nuclear Information System (INIS)

    Chin, L.M.; Cheng, C.W.; Siddon, R.L.; Rice, R.K.; Mijnheer, B.J.; Harris, J.R.

    1989-01-01

    The influence of lung volume and photon energy on the 3-dimensional dose distribution for patients treated by intact breast irradiation is not well established. To investigate this issue, we studied the 3-dimensional dose distributions calculated for an 'average' breast phantom for 60Co, 4 MV, 6 MV, and 8 MV photon beams. For the homogeneous breast, areas of high dose ('hot spots') lie along the periphery of the breast near the posterior plane and near the apex of the breast. The highest dose occurs at the inferior margin of the breast tissue, and this may exceed 125% of the target dose for lower photon energies. The magnitude of these 'hot spots' decreases for higher energy photons. When lung correction is included in the dose calculation, the doses to areas at the left and right margin of the lung volume increase. The magnitude of the increase depends on energy and the patient anatomy. For the 'average' breast phantom (lung density 0.31 g/cm3), the correction factors are between 1.03 to 1.06 depending on the energy used. Higher energy is associated with lower correction factors. Both the ratio-of-TMR and the Batho lung correction methods can predict these corrections within a few percent. The range of depths of the 100% isodose from the skin surface, measured along the perpendicular to the tangent of the skin surface, were also energy dependent. The range was 0.1-0.4 cm for 60Co and 0.5-1.4 cm for 8 MV. We conclude that the use of higher energy photons in the range used here provides lower value of the 'hot spots' compared to lower energy photons, but this needs to be balanced against a possible disadvantage in decreased dose delivered to the skin and superficial portion of the breast

  13. Quantitative assessment of smoking-induced emphysema progression in longitudinal CT screening for lung cancer

    Science.gov (United States)

    Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2015-03-01

    Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, pemphysema in CT screening for lung cancer.

  14. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    Science.gov (United States)

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  15. A Dosimetric Comparison of Dose Escalation with Simultaneous Integrated Boost for Locally Advanced Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wenjuan Yang

    2017-01-01

    Full Text Available Background. Many studies have demonstrated that a higher radiotherapy dose is associated with improved outcomes in non-small-cell lung cancer (NSCLC. We performed a dosimetric planning study to assess the dosimetric feasibility of intensity-modulated radiation therapy (IMRT with a simultaneous integrated boost (SIB in locally advanced NSCLC. Methods. We enrolled twenty patients. Five different dose plans were generated for each patient. All plans were prescribed a dose of 60 Gy to the planning tumor volume (PTV. In the three SIB groups, the prescribed dose was 69 Gy, 75 Gy, and 81 Gy in 30 fractions to the internal gross tumor volume (iGTV. Results. The SIB-IMRT plans were associated with a significant increase in the iGTV dose (P < 0.05, without increased normal tissue exposure or prolonged overall treatment time. Significant differences were not observed in the dose to the normal lung in terms of the V5 and V20 among the four IMRT plans. The maximum dose (Dmax in the esophagus moderately increased along with the prescribed dose (P < 0.05. Conclusions. Our results indicated that escalating the dose by SIB-IMRT is dosimetrically feasible; however, systematic evaluations via clinical trials are still warranted. We have designed a further clinical study (which is registered with ClinicalTrials.gov, number NCT02841228.

  16. SU-F-J-99: Dose Accumulation and Evaluation in Lung SBRT Among All Phases of Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Azcona, JD; Barbes, B; Aristu, J; Moreno, M; Zubiria, A [Clinica Universidad de Navarra, Pamplona (Spain); Burguete, J [Universidad de Navarra, Pamplona, Navarra (Spain); Arce, P; Lagares, JI [Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas, Madrid (Spain)

    2016-06-15

    Purpose: To calculate the total planning dose on lung tumors (GTV) by accumulating the dose received in all respiration phases. Methods: A patient 4D planning CT (phase-binned, from a Siemens Somatom CT) was used to locate the GTV of a lung tumor in all respiratory phases with Pinnacle (v9.10). GTV contours defined in all phases were projected to the reference phase, where the ITV was defined. Centroids were calculated for all the GTV projections. No deformation or rotation was taken into account. The only GTV contour as defined in the reference phase was voxelized to track each voxel individually. We accumulated the absorbed dose in different phases on each voxel. A 3DCRT and a VMAT plan were designed on the reference phase fulfilling the ITV dosimetric requirements, using the 10MV FFF photon model from an Elekta Versa linac. ITV-to-PTV margins were set to 5mm. In-house developed MATLAB code was used for tumor voxeling and dose accumulation, assuming that the dose distribution planned in the reference phase behaved as a “dose-cloud” during patient breathing. Results: We tested the method on a patient 4DCT set of images exhibiting limited tumor motion (<5mm). For the 3DCRT plan, D95 was calculated for the GTV with motion and for the ITV, showing an agreement of 0.04%. For the VMAT plan, we calculated the D95 for every phase as if the GTV in that phase had received the whole treatment. Differences in D95 for all phases are within 1%, and estimate the potential interplay effect during delivery. Conclusion: A method for dose accumulation and assessment was developed that can compare GTV motion with ITV dosage, and estimate the potential interplay effect for VMAT plans. Work in progress includes the incorporation of deformable image registration and 4D CBCT dose calculation for dose reconstruction and assessment during treatment.

  17. Target dose study of effects of changes in the AAA calculation resolution on lung SABR plan

    International Nuclear Information System (INIS)

    Kim, Dae Il; Son, Sang Jun; Ahn, Bum Seok; Jung, Chi Hoon; Yoo, Suk Hyun

    2014-01-01

    Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan(Eclipse TM ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid V98 of the prescribed dose is about 99.5%±1.5%, Dmin of the prescribed dose is about 92.5±1.5% and Homogeneity Index(HI) is 1.0489±0.0025. In the case of use a 3.0 mm calculation grid V98 dose of the prescribed dose is about 90±4.5% , Dmin of the prescribed dose is about 87.5±3% and HI is about 1.07±1. In the case of use a 5.0 mm calculation grid V98 dose of the prescribed dose is about 63±15%, Dmin of the prescribed dose is about 83±4% and HI is about 1.13±0.2, respectively. The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm

  18. SU-G-TeP1-11: Predictors of Cardiac and Lung Dose Sparing in DIBH for Left Breast Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, N; Kalet, A; Fang, L; Dempsey, C; Young, L; Kim, J; Mayr, N; Meyer, J [University of Washington Medical Center, Seattle, WA (United States); Lavilla, M; Richardson, H; McClure, R [Seattle Cancer Care Alliance, Seattle, WA (United States)

    2016-06-15

    Purpose: This retrospective study of left sided whole breast radiation therapy (RT) patients investigates possible predictive parameters correlating to cardiac and left lung dose sparing by deep inspiration breath-hold (DIBH) technique compared to free-breathing (FB). Methods: Thirty-one patients having both DIBH and FB CT scans were included in the study. All patients were planned with a standard step-and-shoot tangential technique using MV photons, with prescription of 50Gy or 50.4Gy. The displacement of the breath hold sternal mark during DIBH, the cardiac contact distances of the axial (CCDax) and parasagittal (CCDps) planes, and lateral-heart-to-chest (LHC) distance on FB CT scans were measured. Lung volumes, mean dose and dose-volume histograms (V5, V10 and V20) were analyzed and compared for heart and left lung for both FB and DIBH techniques. Correlation analysis was performed to identify the predictors for heart and left lung dose sparing. Two-tailed Student’s t-test and linear regression were used for data analysis with significance level of P≤0.05. Results: All dosimetric metrics for the heart and left lung were significantly reduced (P<0.01) with DIBH. Breath hold sternal mark displacement ranged from 0.4–1.8 cm and correlated with mean (P=0.05) and V5 (P=0.02) of heart dose reduction by DIBH. FB lung volume showed correlation with mean lung dose reduction by DIBH (P<0.01). The FB-CCDps and FB-LHC distance had strong positive and negative correlation with FB mean heart dose (P<0.01) and mean heart dose reduction by DIBH (P<0.01), respectively. FB-CCDax showed no correlation with dosimetric changes. Conclusion: DIBH technique has been shown to reduce dose to the heart and left lung. In this patient cohort, FB-CCDps, FB-LHC distance, and FB lung volume served as significant predictors for heart and left lung. These parameters can be further investigated to be used as a tool to better select patients who will benefit from DIBH.

  19. The effect of dose protraction on the incidence of lung carcinomas in beagle dogs with internally deposited β-emitting radionuclides

    International Nuclear Information System (INIS)

    Griffith, W.C.; Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Snipes, M.B.

    1992-01-01

    Studies using Beagle dogs were conducted to understand health effects when lung is the primary organ irradiated after inhaling insoluble radioactive particles containing one of four β-emitting radionuclides, 90 Y, 91 Y, 144 Ce, or 90 Sr. The low-LET β irradiation was delivered over a wide range of total doses and dose rate patterns that protracted the dose to lung from about 1 wk to several years. The tumor incidence rates for lung carcinomas were estimated using a proportional hazard rate model. These studies suggest that dose protraction only affects production of lung carcinomas at doses above 50 Gy

  20. Comparison of dose evaluation index by pencil beam convolution and anisotropic analytical algorithm in stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    We previously studied dose distributions of stereotactic radiotherapy (SRT) for lung cancer. Our aim is to compare in combination pencil beam convolution with the inhomogeneity correction algorithm of Batho power low [PBC (BPL)] to the anisotropic analytical algorithm (AAA) by using the dose evaluation indexes. There were significant differences in D95, planning target volume (PTV) mean dose, homogeneity index, and conformity index, V10, and V5. The dose distributions inside the PTV calculated by PBC (BPL) were more uniform than those of AAA. There were no significant differences in V20 and mean dose of total lung. There was no large difference for the whole lung. However, the surrounding high-dose region of PTV became smaller in AAA. The difference in dose evaluation indexes extended between PBC (BPL) and AAA that as many as low CT value of lung. When the dose calculation algorithm is changed, it is necessary to consider difference dose distributions compared with those of established practice. (author)

  1. Functional and histological assessment of the radiobiology of normal rat lung in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Riley, K.J.; Binns, P.J.; Harling, O.K.; Coderre, J.A.; Kiger, W.S. III; Patel, H.

    2006-01-01

    This study investigated the radiobiology and sensitivity of the normal rat lung to Boron Neutron Capture Therapy (BNCT) radiation. Rat thorax irradiations were carried out with x-rays or with neutrons in the presence or absence of p-boronophenylalanine (BPA). Lung damage were assessed functionally with breathing rate measurement up to 180 days after irradiation and then histologically. Breathing rates 20% (∼3 σ) above the control group (sham-irradiated rats) mean were considered as positive responses to lung radiation damage. Though most responding animals demonstrated radiation induced pneumonitis (≤110 days) as well as pulmonary fibrosis (>110 days), some animals receiving neutrons plus BPA showed only the latter. The breathing rate dose response data were fit using probit analysis. The ED 50 values measured for x-rays, neutron beam only, and neutrons plus BPA were 11.5±0.4 Gy, 9.2±0.5 Gy, and 6.7±0.4 Gy, respectively. The biological weighting factors for the neutron beam (n+γ), the thermal neutron dose component, and the 10 B dose component were determined to be 1.2±0.1, 2.2±0.4, and 2.3±0.3, respectively. The histological dose response curves were linear. Consistent with the functional assay, the weighting factors measured histologically were 1.2±0.1 for the thermal neutron beam and 1.9±0.2 for the 10 B dose component. (author)

  2. SU-F-T-687: Comparison of SPECT/CT-Based Methodologies for Estimating Lung Dose from Y-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Kost, S; Yu, N [Cleveland Clinic, Cleveland, OH (United States); Lin, S [Cleveland State University, Cleveland, OH (United States)

    2016-06-15

    Purpose: To compare mean lung dose (MLD) estimates from 99mTc macroaggregated albumin (MAA) SPECT/CT using two published methodologies for patients treated with {sup 90}Y radioembolization for liver cancer. Methods: MLD was estimated retrospectively using two methodologies for 40 patients from SPECT/CT images of 99mTc-MAA administered prior to radioembolization. In these two methods, lung shunt fractions (LSFs) were calculated as the ratio of scanned lung activity to the activity in the entire scan volume or to the sum of activity in the lung and liver respectively. Misregistration of liver activity into the lungs during SPECT acquisition was overcome by excluding lung counts within either 2 or 1.5 cm of the diaphragm apex respectively. Patient lung density was assumed to be 0.3 g/cm{sup 3} or derived from CT densitovolumetry respectively. Results from both approaches were compared to MLD determined by planar scintigraphy (PS). The effect of patient size on the difference between MLD from PS and SPECT/CT was also investigated. Results: Lung density from CT densitovolumetry is not different from the reference density (p = 0.68). The second method resulted in lung dose of an average 1.5 times larger lung dose compared to the first method; however the difference between the means of the two estimates was not significant (p = 0.07). Lung dose from both methods were statistically different from those estimated from 2D PS (p < 0.001). There was no correlation between patient size and the difference between MLD from PS and both SPECT/CT methods (r < 0.22, p > 0.17). Conclusion: There is no statistically significant difference between MLD estimated from the two techniques. Both methods are statistically different from conventional PS, with PS overestimating dose by a factor of three or larger. The difference between lung doses estimated from 2D planar or 3D SPECT/CT is not dependent on patient size.

  3. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  4. Investigation of lung nodule detectability in low-dose 320-slice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Paul, N. S.; Siewerdsen, J. H. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Imaging, Toronto General Hospital, Toronto, Ontario M5G 2C6 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2009-05-15

    Low-dose imaging protocols in chest CT are important in the screening and surveillance of suspicious and indeterminate lung nodules. Techniques that maintain nodule detectability yet permit dose reduction, particularly for large body habitus, were investigated. The objective of this study was to determine the extent to which radiation dose can be minimized while maintaining diagnostic performance through knowledgeable selection of reconstruction techniques. A 320-slice volumetric CT scanner (Aquilion ONE, Toshiba Medical Systems) was used to scan an anthropomorphic phantom at doses ranging from {approx}0.1 mGy up to that typical of low-dose CT (LDCT, {approx}5 mGy) and diagnostic CT ({approx}10 mGy). Radiation dose was measured via Farmer chamber and MOSFET dosimetry. The phantom presented simulated nodules of varying size and contrast within a heterogeneous background, and chest thickness was varied through addition of tissue-equivalent bolus about the chest. Detectability of a small solid lung nodule (3.2 mm diameter, -37 HU, typically the smallest nodule of clinical significance in screening and surveillance) was evaluated as a function of dose, patient size, reconstruction filter, and slice thickness by means of nine-alternative forced-choice (9AFC) observer tests to quantify nodule detectability. For a given reconstruction filter, nodule detectability decreased sharply below a threshold dose level due to increased image noise, especially for large body size. However, nodule detectability could be maintained at lower doses through knowledgeable selection of (smoother) reconstruction filters. For large body habitus, optimal filter selection reduced the dose required for nodule detection by up to a factor of {approx}3 (from {approx}3.3 mGy for sharp filters to {approx}1.0 mGy for the optimal filter). The results indicate that radiation dose can be reduced below the current low-dose (5 mGy) and ultralow-dose (1 mGy) levels with knowledgeable selection of

  5. LUDEP: A Lung Dose Evaluation Program

    International Nuclear Information System (INIS)

    Birchall, A.; Bailey, M.R.; James, A.C.

    1990-06-01

    A Task Group of the ICRP is currently reviewing its dosimetric model for the respiratory tract with the aim of producing a more comprehensive and realistic model which can be used both for dosimetry and bioassay purposes. This in turn requires deposition, clearance, and dosimetry to be treated in a more detailed manner in than in the current model. In order to examine the practical application and radiological implications of the proposed model, a microcomputer program has been developed in a modular form so that changes can be easily included as the model develops. LUDEP (Lung Dose Evaluation Program) is a user-friendly menu-driven program which can be operated on any IBM-compatible PC. It enables the user to calculate (a) doses to each region of the respiratory tract and all other body organs, and (b) excretion rates and retention curves for bioassay purposes. 11 refs., 4 figs., 6 tabs

  6. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-01-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung

  7. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    International Nuclear Information System (INIS)

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-01-01

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D m,m ) and dose-to-water in medium (D w,m ), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%–4.4% to AXB doses (both D m,m and D w,m ); and within 2.5%–6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes (±3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB Dm,m , and AXB Dw,m , respectively. The differences between AXB and AAA in dose–volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However

  8. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Farr, Katherina P; Khalil, Azza A; Møller, Ditte S

    2018-01-01

    BACKGROUND AND PURPOSE: To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS: NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy we...

  9. Minimizing dose variation from the interplay effect in stereotactic radiation therapy using volumetric modulated arc therapy for lung cancer.

    Science.gov (United States)

    Kubo, Kazuki; Monzen, Hajime; Tamura, Mikoto; Hirata, Makoto; Ishii, Kentaro; Okada, Wataru; Nakahara, Ryuta; Kishimoto, Shun; Kawamorita, Ryu; Nishimura, Yasumasa

    2018-03-01

    It is important to improve the magnitude of dose variation that is caused by the interplay effect. The aim of this study was to investigate the impact of the number of breaths (NBs) to the dose variation for VMAT-SBRT to lung cancer. Data on respiratory motion and multileaf collimator (MLC) sequence were collected from the cases of 30 patients who underwent radiotherapy with VMAT-SBRT for lung cancer. The NBs in the total irradiation time with VMAT and the maximum craniocaudal amplitude of the target were calculated. The MLC sequence complexity was evaluated using the modulation complexity score for VMAT (MCSv). Static and dynamic measurements were performed using a cylindrical respiratory motion phantom and a micro ionization chamber. The 1 standard deviation which were obtained from 10 dynamic measurements for each patient were defined as dose variation caused by the interplay effect. The dose distributions were also verified with radiochromic film to detect undesired hot and cold dose spot. Dose measurements were also performed with different NBs in the same plan for 16 patients in 30 patients. The correlations between dose variations and parameters assessed for each treatment plan including NBs, MCSv, the MCSv/amplitude quotient (TMMCSv), and the MCSv/amplitude quotient × NBs product (IVS) were evaluated. Dose variation was decreased with increasing NBs, and NBs of >40 times maintained the dose variation within 3% in 15 cases. The correlation between dose variation and IVS which were considered NBs was shown stronger (R 2  = 0.43, P 40 times during irradiation of two partial arcs VMAT (i.e., NBs = 16 breaths per minute) may be suitable for VMAT-SBRT for lung cancer. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Low dose CT in early lung cancer diagnosis: prevalence data

    International Nuclear Information System (INIS)

    Cardinale, Luciano; Cortese, Giancarlo; Ferraris, Fabrizio; Perotto, Fabio; Fava, Cesare; Borasio, Piero; Dogliotti, Luigi; Novello, Silvia; Scagliotti, Giorgio

    2005-01-01

    Purpose. Lung cancer has a high mortality rate and its prognosis largely depends on early detection. We report the prevalence data of the study on early detection of lung cancer with low-dose spiral CT underway at our hospital. Materials and methods. Since the beginning of 2001, 519 asymptomatic volunteers have undergone annual blood tests, sputum tests, urinalyses and low-dose spiral CT. The inclusion criteria were age (55 years old), a history of cigarette smoking and a negative history for previous neoplastic disease. The diagnostic workup varied depending on the size and CT features of the nodules detected. Results. At baseline, the CT scan detected nodules> 5 mm in 22% of subjects; the nodules were single in 42 and multiple in 71. In 53% of cases the findings were completely negative, while in 122 (23.4%) nodules with a diameter [it

  11. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeV sub d yields Be ) for normal tissues. Pt. 3; Effects on lung function

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, M.; Hopewell, J.W.; Robbins, M.E.C.; Hamlet, R. (Churchill Hospital, Oxford (UK)); Barnes, D.W.H.; Sansom, J.M.; Adams, P.J.V. (Medical Research Council, Harwell (UK). Radiobiological Research Unit)

    1990-11-01

    The effect of single and fractionated doses of fast neutrons (42 MeV{sub d{yields}Bc}) on the early and late radiation responses of the pig lung have been assessed by the measurement of changes in lung function using a {sup 133}Xe washout technique. The results obtained for irradiation schedules with fast neutrons have been compared with those after photon irradiation. There was no statistically significant difference between the values for the relative biological effectiveness (RBE) for the early and late radiation response of the lung. The RBE of the neutron beam increased with decreasing size of dose/fraction with an upper limit value of 4.39 {plus minus} 0.94 for infinitely small X-ray doses per fraction. (author).

  12. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    Science.gov (United States)

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S; Van Duyse, B; Schelfhout, J; De Neve, W

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  14. Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

    Directory of Open Access Journals (Sweden)

    Mehnati P.

    2017-09-01

    Full Text Available Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the female breast and lung doses using split and standard protocols in chest CT scanning. Materials and Methods: The sliced chest and breast female phantoms were used. CT exams were performed using a single-slice (SS- and a 16 multi-slice (MS- CT scanner at 100 kVp and 120 kVp. Two different protocols, including standard and split protocols, were selected for scanning. The breast and lung doses were measured using thermo-luminescence dosimeters which were inserted into different layers of the chest and breast phantoms. The differences in breast and lung radiation doses in two protocols were studied in two scanners, analyzed by SPSS software and compared by t-test. Results: Breast dose by split scanning technique reduced 11% and 31% in SS- and MS- CT. Also, the radiation dose of lung tissue in this method decreased 18% and 54% in SS- and MS- CT, respectively. Moreover, there was a significant difference (p< 0.0001 in the breast and lung radiation doses between standard and split scanning protocols. Conclusion: The application of a split scan technique instead of standard protocol has a considerable potential to reduce breast and lung doses in SS- and MS- CT scanners. If split scanning protocol is associated with an optimum kV and MSCT, the maximum dose decline will be provided.

  15. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  16. Technology and outcomes assessment in lung transplantation.

    Science.gov (United States)

    Yusen, Roger D

    2009-01-15

    Lung transplantation offers the hope of prolonged survival and significant improvement in quality of life to patients that have advanced lung diseases. However, the medical literature lacks strong positive evidence and shows conflicting information regarding survival and quality of life outcomes related to lung transplantation. Decisions about the use of lung transplantation require an assessment of trade-offs: do the potential health and quality of life benefits outweigh the potential risks and harms? No amount of theoretical reasoning can resolve this question; empiric data are needed. Rational analyses of these trade-offs require valid measurements of the benefits and harms to the patients in all relevant domains that affect survival and quality of life. Lung transplant systems and registries mainly focus outcomes assessment on patient survival on the waiting list and after transplantation. Improved analytic approaches allow comparisons of the survival effects of lung transplantation versus continued waiting. Lung transplant entities do not routinely collect quality of life data. However, the medical community and the public want to know how lung transplantation affects quality of life. Given the huge stakes for the patients, the providers, and the healthcare systems, key stakeholders need to further support quality of life assessment in patients with advanced lung disease that enter into the lung transplant systems. Studies of lung transplantation and its related technologies should assess patients with tools that integrate both survival and quality of life information. Higher quality information obtained will lead to improved knowledge and more informed decision making.

  17. SU-G-BRC-15: The Potential Clinical Significance of Dose Mapping Error for Intra- Fraction Dose Mapping for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Sayah, N [Thomas Cancer Center, Richmond, VA (United States); Weiss, E [Virginia Commonwealth University, Richmond, Virginia (United States); Watkins, W [University of Virginia, Charlottesville, VA (United States); Siebers, J [University of Virginia Health System, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM); an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is

  18. Asbestos Surveillance Program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT

    International Nuclear Information System (INIS)

    Das, Marco; Muehlenbruch, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Wildberger, Joachim E.; Hering, K.G.; Sirbu, H.; Zschiesche, W.; Knoll, Lars; Felten, Michael K.; Kraus, Thomas

    2007-01-01

    The purpose of this study was to assess the prevalence of lung cancer in a high-risk asbestos-exposed cohort using low-dose MDCT. Of a population of 5,389 former power-plant workers, 316 were characterized as individuals at highest risk for lung cancer according to a lung-cancer risk model including age, asbestos exposure and smoking habits. Of these 316, 187 (mean age: 66.6 years) individuals were included in a prospective trial. Mean asbestos exposure time was 29.65 years and 89% were smokers. Screening was performed on a 16-slice MDCT (Siemens) with low-dose technique (10/20 mAs eff. ; 1 mm/0.5 mm increment). In addition to soft copy PACS reading analysis on a workstation with a dedicated lung analysis software (LungCARE; Siemens) was performed. One strongly suspicious mass and eight cases of histologically proven lung cancer were found plus 491 additional pulmonary nodules (average volume: 40.72 ml, average diameter 4.62 mm). Asbestos-related changes (pleural plaques, fibrosis) were visible in 80 individuals. Lung cancer screening in this high-risk cohort showed a prevalence of lung cancer of 4.28% (8/187) at baseline screening with an additional large number of indeterminate pulmonary nodules. Low-dose MDCT proved to be feasible in this highly selected population. (orig.)

  19. Dose escalation for non-small cell lung cancer: Analysis and modelling of published literature

    International Nuclear Information System (INIS)

    Partridge, Mike; Ramos, Monica; Sardaro, Angela; Brada, Michael

    2011-01-01

    Purpose: To review the published clinical data on non-small cell lung cancer treated with radical radiotherapy to confirm a dose-response relationship as a basis for further dose-escalation trials. Methods: Twenty-four published clinical trials were identified, 16 of which - with 29 different standard, hyper- and hypofractionated treatment schedules - were analysed. Prescription doses were converted to biologically-equivalent dose (BED), with a correction for repopulation. Disease-free survival data were corrected for the stage profile of each cohort to allow better comparison of results. We also analysed moderate (grade II and III) lung and oesophageal acute toxicity related to the corrected BED delivered to the tumour. Results: The clinical data analysed showed good agreement between the observed and modelled disease-free survival at 2 years when compared to the published models of Fenwick (correlation coefficient 0.525, p = 0.003) and Martel (correlation coefficient 0.492, p = 0.007), indicating a clear tumour dose-response. In the normally fractionated treatments (∼2 Gy per fraction), improved disease-free survival was generally observed in the shorter schedules (maximum around 6 weeks). However, the best outcomes were obtained for the hypofractionated schedules. No systematic relationship was seen between prescribed dose and lung or oesophageal acute toxicity, possibly due to dose selection depending on V 20 or MLD in some studies and the diversity of the patients analysed. Conclusions: We have demonstrated a dose-response relationship for NSCLC based on clinical data. The clinical data provide a rational basis for selection of dose escalation schedules to be tested in future randomised trials.

  20. Dose impact of a carbon fiber couch for stereotactic body radiation therapy of lung tumors

    International Nuclear Information System (INIS)

    Tominaga, Hirofumi; Kanetake, Nagisa; Kawasaki, Keiichi; Iwashita, Yuki; Sakata, Junichi; Okuda, Tomoko; Araki, Fujio; Shimohigashi, Yoshinobu; Tomiyama, Yuki

    2013-01-01

    The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D 95 , D mean , V 20 , V 5 , homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D 95 and D mean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan. (author)

  1. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  2. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  3. Prognostic factors of inoperable localized lung cancer treated by high dose radiotherapy

    International Nuclear Information System (INIS)

    Schaake-Koning, C.S.; Schuster-Uitterhoeve, L.; Hart, G.; Gonzalez, D.G.

    1983-01-01

    A retrospective study was made of the results of high dose radiotherapy (greater than or equal to 50 Gy) given to 171 patients with inoperable, intrathoracic non small cell lung cancer from January 1971-April 1973. Local control was dependent on the total tumor dose: after one year local control was 63% for patients treated with >65 Gy, the two year local control was 35%. If treated with 2 , the one year local control was 72%; the two year local control was 44%. Local control was also influenced by the performance status, by the localization of the primary tumor in the left upper lobe and in the periphery of the lung. Local control for tumors in the left upper lobe and in the periphery of the lung was about 70% after one year, and about 40% after two years. The one and two years survival results were correlated with the factors influencing local control. The dose factor, the localization factors and the performance influenced local control independently. Tumors localized in the left upper lobe did metastasize less than tumors in the lower lobe, or in a combination of the two. This was not true for the right upper lobe. No correlation between the TNM system, pathology and the prognosis was found

  4. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver

    International Nuclear Information System (INIS)

    Wulf, Joern; Haedinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-01-01

    Background and purpose: Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5 mm in axial and 5-10 mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Materials and methods: Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10 mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). Results: A decrease of TC to 3 . Conclusions: Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV ≥95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm 3 are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins

  5. Paraquat poisoning: an experimental model of dose-dependent acute lung injury due to surfactant dysfunction

    Directory of Open Access Journals (Sweden)

    M.F.R. Silva

    1998-03-01

    Full Text Available Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight 24 h before the experiment. Static pressure-volume (PV curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA, sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation

  6. Lung Dose Calculation With SPECT/CT for 90Yittrium Radioembolization of Liver Cancer

    International Nuclear Information System (INIS)

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-01-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ( 99m Tc-MAA) single photon emission CT (SPECT)/CT for 90 Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of 99m Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on 99m Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended

  7. SU-E-T-370: Evaluating Plan Quality and Dose Delivery Accuracy of Tomotherapy SBRT Treatments for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Blake, S; Thwaites, D [University of Sydney, Sydney, NSW (Australia); Hansen, C [Odense University Hospital, Odense C (Denmark); Deshpande, S; Phan, P; Franji, I [Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW (United Kingdom); Holloway, L [Ingham Institute, Sydney, NSW (Australia)

    2015-06-15

    Purpose: This study evaluated the plan quality and dose delivery accuracy of stereotactic body radiotherapy (SBRT) helical Tomotherapy (HT) treatments for lung cancer. Results were compared with those previously reported by our group for flattening filter (FF) and flattening filter free (FFF) VMAT treatments. This work forms part of an ongoing multicentre and multisystem planning and dosimetry audit on FFF beams for lung SBRT. Methods: CT datasets and DICOM RT structures delineating the target volume and organs at risk for 6 lung cancer patients were selected. Treatment plans were generated using the HT treatment planning system. Tumour locations were classified as near rib, near bronchial tree or in free lung with prescribed doses of 48Gy/4fr, 50Gy/5fr and 54Gy/3fr respectively. Dose constraints were specified by a modified RTOG0915 protocol used for an Australian SBRT phase II trial. Plan quality was evaluated using mean PTV dose, PTV volume receiving 100% of the prescribed dose (V100%), target conformity (CI=VD100%/VPTV) and low dose spillage (LDS=VD50%/VPTV). Planned dose distributions were compared to those measured using an ArcCheck phantom. Delivery accuracy was evaluated using a gamma-index pass rate of 95% with 3% (of max dose) and 3mm criteria. Results: Treatment plans for all patients were clinically acceptable in terms of quality and accuracy of dose delivery. The following DVH metrics are reported as averages (SD) of all plans investigated: mean PTV dose was 115.3(2.4)% of prescription, V100% was 98.8(0.9)%, CI was 1.14(0.03) and LDS was 5.02(0.37). The plans had an average gamma-index passing rate of 99.3(1.3)%. Conclusion: The results reported in this study for HT agree within 1 SD to those previously published by our group for VMAT FF and FFF lung SBRT treatments. This suggests that HT delivers lung SBRT treatments of comparable quality and delivery accuracy as VMAT using both FF and FFF beams.

  8. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    International Nuclear Information System (INIS)

    Zheng, Dandan; Zhu, Xiaofeng; Zhang, Qinghui; Liang, Xiaoying; Zhen, Weining; Lin, Chi; Verma, Vivek; Wang, Shuo; Wahl, Andrew; Lei, Yu; Zhou, Sumin; Zhang, Chi

    2016-01-01

    A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R 2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume

  9. Assessment of lung cancer risks for some categories of underground workers

    International Nuclear Information System (INIS)

    Dimitrov, M.

    1975-01-01

    In radioactive mines as well as in hardrock mines, tunnels under construction, and other underground workings, increased atmospheric levels of radioactive-gas daughter products are associated with a potential hazard of inhalation overexposure to workers. Absorbed dose from the alpha-activity component of deposition occurring in the process of breathing manifests a maximum in the area of secondary to quarternary bronchi. In this critical tissue, radiation exposure, along with other deleterious factors, produces conditions favourable to initiation of lung cancer, with a frequency of the latter proportional to cumulative dose. An assessment was made of absolute radiation risk to workers inhaling a radon-daughter contaminated atmosphere, on the basis of an estimated cumulative dose and a dose-response relation arrived at from epidemiological studies by other authors. For a range with a lower limit representing the product of maximum permissible concentration and half of the underground experience assigned to first category labor, and an upper limit determined by the product of maximum ''hidden'' alpha-decay energy measured and a full underground experience (180 months), cumulative exposures were found to vary from 90 to 8100 WLM. Rough estimates of corresponding lung cancer incidence ranged from 2 to 150 cases per year per 10,000 workers, versus 2-5 cases per year per 10,000 members of the general male population of the country. Results, obtained from a reconnaissance statistical study on a sample of 230 underground workers, with suitable working experiences and personal cumulative exposures, indicated a predicted frequency of lung cancer development of 0.43 cases per year, leading to an estimate of 19 cases per year per 10,000 workers. Such a magnitude of risk clearly shows an urgent need for introducing effective measures to improve radiological conditions in the occupational environment for a large proportion of the underground workers. (author)

  10. [China National Lung Cancer Screening Guideline with Low-dose Computed 
Tomography (2018 version)].

    Science.gov (United States)

    Zhou, Qinghua; Fan, Yaguang; Wang, Ying; Qiao, Youlin; Wang, Guiqi; Huang, Yunchao; Wang, Xinyun; Wu, Ning; Zhang, Guozheng; Zheng, Xiangpeng; Bu, Hong; Li, Yin; Wei, Sen; Chen, Liang'an; Hu, Chengping; Shi, Yuankai; Sun, Yan

    2018-02-20

    Lung cancer is the leading cause of cancer-related death in China. The results from a randomized controlled trial using annual low-dose computed tomography (LDCT) in specific high-risk groups demonstrated a 20% reduction in lung cancer mortality. The aim of tihs study is to establish the China National lung cancer screening guidelines for clinical practice. The China lung cancer early detection and treatment expert group (CLCEDTEG) established the China National Lung Cancer Screening Guideline with multidisciplinary representation including 4 thoracic surgeons, 4 thoracic radiologists, 2 medical oncologists, 2 pulmonologists, 2 pathologist, and 2 epidemiologist. Members have engaged in interdisciplinary collaborations regarding lung cancer screening and clinical care of patients with at risk for lung cancer. The expert group reviewed the literature, including screening trials in the United States and Europe and China, and discussed local best clinical practices in the China. A consensus-based guidelines, China National Lung Cancer Screening Guideline (CNLCSG), was recommended by CLCEDTEG appointed by the National Health and Family Planning Commission, based on results of the National Lung Screening Trial, systematic review of evidence related to LDCT screening, and protocol of lung cancer screening program conducted in rural China. Annual lung cancer screening with LDCT is recommended for high risk individuals aged 50-74 years who have at least a 20 pack-year smoking history and who currently smoke or have quit within the past five years. Individualized decision making should be conducted before LDCT screening. LDCT screening also represents an opportunity to educate patients as to the health risks of smoking; thus, education should be integrated into the screening process in order to assist smoking cessation. A lung cancer screening guideline is recommended for the high-risk population in China. Additional research , including LDCT combined with biomarkers, is

  11. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    Science.gov (United States)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  12. Converging Stereotactic Radiotherapy Using Kilovoltage X-Rays: Experimental Irradiation of Normal Rabbit Lung and Dose-Volume Analysis With Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M.; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N.; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-01-01

    Purpose: To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. Methods and Materials: A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. Results: A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. Conclusions: A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  13. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  14. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  15. SU-F-T-516: Effects of Inter-Fraction Organ Displacement/deformation On the Delivered Doses to the Heart, Esophagus, and Lungs in Patients Receiving Thoracic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hammers, J; Matney, J; Kaidar-Person, O; Zagar, T; Marks, L; Das, S; Mavroidis, P [University North Carolina, Chapel Hill, NC (United States)

    2016-06-15

    Purpose: To quantitatively assess the effects of inter-fraction changes in organ shape and location on the delivered dose distribution to the organs at risk (OAR) in lung cancer patients. Methods: This study analyzes treatment data of 10 patients, who were treated to 60Gy in 30 fractions. In each fraction a cone beam CT (CBCT) was acquired. Each CBCT was registered with the planning CT using deformable registration tools within MIM Software. The daily setup shifts were used to translate the planned dose distribution on the deformed planning CT. The structures of lungs, esophagus and heart were re-delineated by a physician on each CBCT. The doses delivered to each OAR, reflecting changes in the position and shape variations, were recomputed. Resultant daily dose volume histograms (DVHs) for OARs were computed and compared to those from the planning CT. Results: Based on the findings of two patients and 24 CBCTs analyzed so far, higher doses are delivered to the lungs and esophagus compared to the treatment plan. The dose differences per fraction between the delivered doses and those in the treatment plan are: for patient 1, lung mean dose = 5.3±1.3cGy and esophagus mean dose = 3.4±3.5cGy. For patient 2, lung mean dose = 12.0±3.9cGy and esophagus mean dose = 34.2±7.5cGy. Regarding the maximum dose to heart, the results varied (−18.9±22.0cGy for patient1 and 53.0±62.2cGy for patient2). Conclusion: The dosimetric effects of inter-fractional anatomical variations could be estimated using deformable image registration and manual organ segmentation for each CBCT. A considerable dose distribution variation between fractions was observed for the OARs. These changes are currently not taken into account while treating the patients and these may explain cases with severe side effects even when the treatment plan looks satisfactory. These results suggest the need for automated daily dose tracking and accumulation.

  16. Implications of free breathing motion assessed by 4D-computed tomography on the delivered dose in radiotherapy for esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duma, Marciana Nona, E-mail: Marciana.Duma@mri.tum.de [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Berndt, Johannes [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Rondak, Ina-Christine [Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Devecka, Michal; Wilkens, Jan J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Geinitz, Hans [Department of Radiation Oncology, Krankenhaus Barmherzige Schwestern Linz (Austria); Combs, Stephanie Elisabeth; Oechsner, Markus [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany)

    2015-01-01

    The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc—RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (D{sub min}) and mean dose (D{sub mean}) to the esophagus within the planning target volume, the volume changes of the lungs, the D{sub mean} and the total lung volume receiving at least 40 Gy (V{sub 40}), and the V{sub 30}, V{sub 20}, V{sub 10}, and V{sub 5}. For the heart we assessed the D{sub mean} and the V{sub 25}. Over all techniques and all patients the change in D{sub mean} as compared with the planned D{sub mean} (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT-insp) and 0.55% in maximum free expiration (CT-exp). The D{sub min} CT-insp change was 0.86% and CT-exp change was 0.89%. The D{sub mean} change of the lungs (heart) was in CT-insp 1.95% (2.89%) and 3.88% (2.38%) in CT-exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% D{sub mean} to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors.

  17. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  18. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    International Nuclear Information System (INIS)

    Lee, Deuk Hee; Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik

    2016-01-01

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm 3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way

  19. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  20. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-01-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  1. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage

    DEFF Research Database (Denmark)

    Aarup, Lasse Rye; Nahum, Alan E; Zacharatou, Christina

    2009-01-01

    PURPOSE: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung tumour coverage in stereotactic body radiotherapy (SBRT) conditions. MATERIALS AND METHODS: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatm...... target dose, the AAA(Ecl) and CCC(OMP) algorithms appear to be adequate alternatives to MC....

  2. The effect of rib and lung heterogeneities on the computed dose to lung in Ir-192 High-Dose-Rate breast brachytherapy: Monte Carlo versus a treatment planning system

    Directory of Open Access Journals (Sweden)

    Hossein Salehi Yazdi

    2012-01-01

    Conclusions: Taking into account the ribs and entering the actual data for breasts, ribs, and lungs, revealed an average overestimation of the dose by a factor of 8% in the lung for TPS calculations. Therefore, the accuracy of the TPS results may be limited to regions near the implants where the treatment is planned, and is a more conservative approach for regions at boundaries with curvatures or tissues with a different material than that in the breast.

  3. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Schubert, Leah; Diot, Quentin; Waxweiller, Timothy; Koo, Phillip; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Rusthoven, Chad; Gaspar, Laurie; Kavanagh, Brian; Miften, Moyed

    2016-01-01

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assess each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance

  4. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Schubert, Leah; Diot, Quentin; Waxweiller, Timothy [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Koo, Phillip [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas (United States); Castillo, Edward; Guerrero, Thomas [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Rusthoven, Chad; Gaspar, Laurie; Kavanagh, Brian; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)

    2016-07-15

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assess each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional

  5. Automated lung module detection at low-dose CT: preliminary experience

    International Nuclear Information System (INIS)

    Goo, Jin-Mo; Lee, Jeong-Won; Lee, Hyun-Ju; Kim, Seung-Wan; Kim, Jong-Hyo; Im, Jung-Gi

    2003-01-01

    To determine the usefulness of a computer-aided diagnosis (CAD) system for the automated detection of lung nodules at low-dose CT. A CAD system developed for detecting lung nodules was used to process the data provided by 50 consecutive low-dose CT scans. The results of an initial report, a second look review by two chest radiologists, and those obtained by the CAD system were compared, and by reviewing all of these, a gold standard was established. By applying the gold standard, a total of 52 nodules were identified (26 with a diameter ≤ 5 mm; 26 with a diameter > 5 mm). Compared to an initial report, four additional nodules were detected by the CAD system. Three of these, identified only at CAD, formed part of the data used to derive the gold standard. For the detection of nodules > 5 mm in diameter, sensitivity was 77% for the initial report, for the second look review, and 88% for the second look review,and 65% for the CAD system. There were 8.0 ± 5.2 false-positive CAD results per CT study. These preliminary results indicate that a CAD system may improve the detection of pulmonary nodules at low-dose CT

  6. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  7. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  8. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    International Nuclear Information System (INIS)

    Nelson, Geoff; Fahrig, Rebecca; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  9. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  10. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  11. Efficacy of virtual block objects in reducing the lung dose in helical tomotherapy planning for cervical oesophageal cancer: a planning study.

    Science.gov (United States)

    Ito, Makoto; Shimizu, Hidetoshi; Aoyama, Takahiro; Tachibana, Hiroyuki; Tomita, Natsuo; Makita, Chiyoko; Koide, Yutaro; Kato, Daiki; Ishiguchi, Tsuneo; Kodaira, Takeshi

    2018-04-04

    Intensity-modulated radiotherapy is useful for cervical oesophageal carcinoma (CEC); however, increasing low-dose exposure to the lung may lead to radiation pneumonitis. Nevertheless, an irradiation technique that avoids the lungs has never been examined due to the high difficulty of dose optimization. In this study, we examined the efficacy of helical tomotherapy that can restrict beamlets passing virtual blocks during dose optimization computing (block plan) in reducing the lung dose. Fifteen patients with CEC were analysed. The primary/nodal lesion and prophylactic nodal region with adequate margins were defined as the planning target volume (PTV)-60 Gy and PTV-48 Gy, respectively. Nineteen plans per patient were made and compared (total: 285 plans), including non-block and block plans with several shapes and sizes. The most appropriate block model was semi-circular, 8 cm outside of the tracheal bifurcation, with a significantly lower lung dose compared to that of non-block plans; the mean lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and the mean lung dose were 31.3% vs. 48.0% (p block and non-block plans were comparable in terms of the homogeneity and conformity indexes of PTV-60 Gy: 0.05 vs. 0.04 (p = 0.100) and 0.82 vs. 0.85 (p = 0.616), respectively. The maximum dose of the spinal cord planning risk volume increased slightly (49.4 Gy vs. 47.9 Gy, p = 0.002). There was no significant difference in the mean doses to the heart and the thyroid gland. Prolongation of the delivery time was less than 1 min (5.6 min vs. 4.9 min, p = 0.010). The block plan for CEC could significantly reduce the lung dose, with acceptable increment in the spinal dose and a slightly prolonged delivery time.

  12. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    International Nuclear Information System (INIS)

    Artemova, N.A.

    2008-01-01

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  13. SU-E-J-149: Establishing the Relationship Between Pre-Treatment Lung Ventilation, Dose, and Toxicity Outcome

    International Nuclear Information System (INIS)

    Mistry, N; D'Souza, W; Sornsen de Koste, J; Senan, S

    2014-01-01

    Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity. Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique

  14. Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy

    International Nuclear Information System (INIS)

    Espana, Samuel; Paganetti, Harald

    2011-01-01

    Dose calculation for lung tumors can be challenging due to the low density and the fine structure of the geometry. The latter is not fully considered in the CT image resolution used in treatment planning causing the prediction of a more homogeneous tissue distribution. In proton therapy, this could result in predicting an unrealistically sharp distal dose falloff, i.e. an underestimation of the distal dose falloff degradation. The goal of this work was the quantification of such effects. Two computational phantoms resembling a two-dimensional heterogeneous random lung geometry and a swine lung were considered applying a variety of voxel sizes for dose calculation. Monte Carlo simulations were used to compare the dose distributions predicted with the voxel size typically used for the treatment planning procedure with those expected to be delivered using the finest resolution. The results show, for example, distal falloff position differences of up to 4 mm between planned and expected dose at the 90% level for the heterogeneous random lung (assuming treatment plan on a 2 x 2 x 2.5 mm 3 grid). For the swine lung, differences of up to 38 mm were seen when airways are present in the beam path when the treatment plan was done on a 0.8 x 0.8 x 2.4 mm 3 grid. The two-dimensional heterogeneous random lung phantom apparently does not describe the impact of the geometry adequately because of the lack of heterogeneities in the axial direction. The differences observed in the swine lung between planned and expected dose are presumably due to the poor axial resolution of the CT images used in clinical routine. In conclusion, when assigning margins for treatment planning for lung cancer, proton range uncertainties due to the heterogeneous lung geometry and CT image resolution need to be considered.

  15. Automated detection of lung nodules in low-dose computed tomography

    International Nuclear Information System (INIS)

    Cascio, D.; Cheran, S.C.; Chincarini, A.; De Nunzio, G.; Delogu, P.; Fantacci, M.E.; Gargano, G.; Gori, I.; Retico, A.; Masala, G.L.; Preite Martinez, A.; Santoro, M.; Spinelli, C.; Tarantino, T.

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (∝300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan. (orig.)

  16. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  17. Lung dose calculation with SPECT/CT for ⁹⁰Yittrium radioembolization of liver cancer.

    Science.gov (United States)

    Yu, Naichang; Srinivas, Shaym M; Difilippo, Frank P; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ((99m)Tc-MAA) single photon emission CT (SPECT)/CT for (90)Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Images of 71 patients who had SPECT/CT and PS images of (99m)Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on (99m)Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. China National Lung Cancer Screening Guideline with Low-dose Computed 
Tomography (2018 version

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2018-02-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related death in China. The results from a randomized controlled trial using annual low-dose computed tomography (LDCT in specific high-risk groups demonstrated a 20% reduction in lung cancer mortality. The aim of tihs study is to establish the China National lung cancer screening guidelines for clinical practice. Methods The China lung cancer early detection and treatment expert group (CLCEDTEG established the China National Lung Cancer Screening Guideline with multidisciplinary representation including 4 thoracic surgeons, 4 thoracic radiologists, 2 medical oncologists, 2 pulmonologists, 2 pathologist, and 2 epidemiologist. Members have engaged in interdisciplinary collaborations regarding lung cancer screening and clinical care of patients with at risk for lung cancer. The expert group reviewed the literature, including screening trials in the United States and Europe and China, and discussed local best clinical practices in the China. A consensus-based guidelines, China National Lung Cancer Screening Guideline (CNLCSG, was recommended by CLCEDTEG appointed by the National Health and Family Planning Commission, based on results of the National Lung Screening Trial, systematic review of evidence related to LDCT screening, and protocol of lung cancer screening program conducted in rural China. Results Annual lung cancer screening with LDCT is recommended for high risk individuals aged 50-74 years who have at least a 20 pack-year smoking history and who currently smoke or have quit within the past five years. Individualized decision making should be conducted before LDCT screening. LDCT screening also represents an opportunity to educate patients as to the health risks of smoking; thus, education should be integrated into the screening process in order to assist smoking cessation. Conclusion A lung cancer screening guideline is recommended for the high-risk population in China

  19. Analysis of the risk factors for exposure of the lung to low irradiation doses

    International Nuclear Information System (INIS)

    Hogeweg, B.

    1986-02-01

    In this report a description is presented of the risk factors for induction of lungtumours. The contribution of natural radioactivity from uranium and thorium to the lungs is mainly caused by inhalation of alpha-emitting radon and thorium daughter products. Apart from exposure by inhalation the lungs are also exposed to external radiation. For internal as well as external exposure a value of 10 -3 lungcancers per Sv lung dose equivalence is found to be acceptable for the riskfactor. (Auth.)

  20. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    Energy Technology Data Exchange (ETDEWEB)

    Titt, Uwe, E-mail: utitt@mdanderson.org; Mirkovic, Dragan; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Sell, Martin [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Bangert, Mark [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Oelfke, Uwe [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany and Department of Physics, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP (United Kingdom)

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  1. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    International Nuclear Information System (INIS)

    Titt, Uwe; Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses

  2. A brief measure of Smokers' knowledge of lung cancer screening with low-dose computed tomography

    Directory of Open Access Journals (Sweden)

    Lisa M. Lowenstein

    2016-12-01

    Full Text Available We describe the development and psychometric properties of a new, brief measure of smokers' knowledge of lung cancer screening with low-dose computed tomography (LDCT. Content experts identified key facts smokers should know in making an informed decision about lung cancer screening. Sample questions were drafted and iteratively refined based on feedback from content experts and cognitive testing with ten smokers. The resulting 16-item knowledge measure was completed by 108 heavy smokers in Houston, Texas, recruited from 12/2014 to 09/2015. Item difficulty, item discrimination, internal consistency and test-retest reliability were assessed. Group differences based upon education levels and smoking history were explored. Several items were dropped due to ceiling effects or overlapping constructs, resulting in a 12-item knowledge measure. Additional items with high item uncertainty were retained because of their importance in informed decision making about lung cancer screening. Internal consistency reliability of the final scale was acceptable (KR-20 = 0.66 and test-retest reliability of the overall scale was 0.84 (intraclass correlation. Knowledge scores differed across education levels (F = 3.36, p = 0.04, while no differences were observed between current and former smokers (F = 1.43, p = 0.24 or among participants who met or did not meet the 30-pack-year screening eligibility criterion (F = 0.57, p = 0.45. The new measure provides a brief, valid and reliable indicator of smokers' knowledge of key concepts central to making an informed decision about lung cancer screening with LDCT, and can be part of a broader assessment of the quality of smokers' decision making about lung cancer screening.

  3. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): Predictors for radiation pneumonitis and fibrosis

    International Nuclear Information System (INIS)

    Kong, F.-M.; Hayman, James A.; Griffith, Kent A.; Kalemkerian, Gregory P.; Arenberg, Douglas; Lyons, Susan; Turrisi, Andrew; Lichter, Allen; Fraass, Benedick; Eisbruch, Avraham; Lawrence, Theodore S.; Haken, Randall K. ten

    2006-01-01

    Purpose: We aimed to report the final toxicity results on a radiation-dose escalation trial designed to test a hypothesis that very high doses of radiation could be safely administered to patients with non-small-cell lung cancer (NSCLC) by quantifying the dose-volume toxicity relationship of the lung. Methods and Materials: A total of 109 patients with unresectable or medically inoperable NSCLC were enrolled and treated with radiation-dose escalation (on the basis of predicted normal-lung toxicity) either alone or with neoadjuvant chemotherapy by use of 3D conformal techniques. Eighty-four patients (77%) received more than 69 Gy, the trial was stopped after the dose reached 103 Gy. Estimated median follow-up was 110 months. Results: There were 17 (14.6%) Grade 2 to 3 pneumonitis and 15 (13.8%) Grade 2 to 3 fibrosis and no Grade 4 to 5 lung toxicity. Multivariate analyses showed them to be (1) not associated with the dose prescribed to the tumor, and (2) significantly (p < 0.001) associated with lung-dosimetric parameters such as the mean lung dose (MLD), volume of lung that received at least 20 Gy (V20), and the normal-tissue complication probability (NTCP) of the lung. If cutoffs are 30% for V20, 20 Gy for MLD, and 10% for NTCP, these factors have positive predictive values of 50% to 71% and negative predictive value of 85% to 89%. Conclusions: With long-term follow-up for toxicity, we have demonstrated that much higher doses of radiation than are traditionally administered can be safely delivered to a majority of patients with NSCLC. Quantitative lung dose-volume toxicity-based dose escalation can form the basis for individualized high-dose radiation treatment to maximize the therapeutic ratio in these patients

  4. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  5. Objective and structured assessment of lung ultrasound competence

    DEFF Research Database (Denmark)

    Skaarup, Søren Helbo; Laursen, Christian B.; Bjerrum, Anne Sofie

    2017-01-01

    RATIONALE: Point-of-care lung ultrasound imaging has substantial diagnostic value and is widely used in respiratory, emergency and critical care medicine. Like other ultrasound examinations, lung ultrasound is operator-dependent. The current recommendations for competence in lung ultrasound sets...... a fixed number of ultrasound procedures to be performed without considering different learning rates. Recommendations do not consider different uses of lung ultrasound across specialties. OBJECTIVE: To create a reliable, valid and feasible instrument to assess lung ultrasound competence that includes...... 23 ultrasound operators of different competence levels. Examination time was measured and skill was rated by experienced observers using the assessment tool. Inter-rater agreement was examined by two observers in 9 lung ultrasound examinations. RESULTS: Consensus was obtained within 3 Delphi rounds...

  6. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  7. A prospective study of whether radiation pneumonitis is influenced by low-dose irradiated lung volume in primary lung cancer with chronic pulmonary disease

    International Nuclear Information System (INIS)

    Niibe, Yuzuru; Hayakawa, Kazushige; Masuda, Noriyuki; Yoshimura, Hirokuni

    2007-01-01

    The current study prospectively investigated the optimal dose-volume condition in cases of lung cancer with chronic pulmonary disease compared to those without chronic pulmonary disease. Cases of primary lung cancer treated with intended curative radiation therapy were registered in the current study. Their fraction size was limited to 2-3 Gy, so-called standard fractionation. They were prescribed a total dose of 60 Gy for non-small cell lung cancer (NSCLC; n=17) and a total dose of 54 Gy for small cell lung cancer (SCLC; n=4). Of the 21 patients enrolled in this study, 4 had chronic pulmonary disease (study arm), and the others had no chronic pulmonary disease (control arm). Seven received chemotherapy. Symptomatic radiation pneumonitis occurred in 5. Of the four patients in the study arm, two (50%) experienced symptomatic radiation pneumonitis; only 3 of the 17 patients in the control arm (17.6%) experienced symptomatic radiation pneumonitis. Furthermore, the median V 20 of patients who experienced symptomatic radiation pneumonitis in the study arm was 14%, which was higher than that of patients with no symptomatic radiation pneumonitis in the study arm, 5.8%. On the other hand, in the control arm, the median V 20 of patients with symptomatic radiation pneumonitis was 14.2%, about the same as that of patients with no symptomatic radiation pneumonitis in the control arm, 15.1%. The current study suggested that, as much as 15% of V 20 , might play an important role in cases of lung cancer with chronic pulmonary disease. (author)

  8. Quantitative measurement of Y90 brehmmstrahlung images after of Y90 Sir-Spheres implantation to assess lung shunting

    International Nuclear Information System (INIS)

    Forwood, Nicholas J.; Pocock, Nicholas; Shin, Jane; Young, Andy M; Szeto, Edwin R.

    2009-01-01

    Full text: Background: In clinical practice the dose of Y 9 0 Sir-Spheres is calculated using a pre injection of Tc 9 9 m MAA. There is however a potential difference due to the different properties of Tc 9 9 m MAA and Y 9 0 Sir-Spheres. We assessed the concordance of lung shunting of Y 9 0 Sir-Spheres estimated using Y 9 0 Bremsstrahlung imaging, compared to shunting assessed using Tc 9 9 m MAA. Methods: 15 Patients were evaluated using 150-200 MBq of Tc 9 9 m MAA injected into the hepatic artery under angiographic guidance. Whole body images were acquired using a LEAP collimator (window of 140 kEv+/-10%). The patients were subsequently treated with Y 9 0 Sir-Spheres. After microspheres injection, whole body brehmsstrahlung images were acquired using a medium energy collimator (window settings of 75 kEv +/- 20%). Tc 9 9 m MAA images were paired with their corresponding bremsstrahlung image and lung shunting in the stu ides calculated simultaneously. Each paired dataset was analyzed by 5 operators. Results: The mean lung shunting for Tc 9 9 m MAA acquisition was 3.32% (SD 2.03) which was significantly lower than the lung shunting using the Y 9 0 acquisitions: mean 16.19% (SD of 6.43). The Pearson coefficient was r = 0.62 (p 9 0 Sir-Spheres bremsstrahlung imaging is higher than that calculated by Tc 9 9 m MAA imaging. The relationship is not sufficiently strong to use bremsstahlung imaging to retrospectively quantify the lung-to-liver shunting as indicated using Tc 9 9 M AA. Further studies are underway to assess the reliability of Tc 9 9 m MAA lung uptake calculations in determining the dose of Y 9 0 Sir-Spheres.

  9. Assessment of Effective Dose Equivalent of Indoor 222Rn Daughters in Inchass

    International Nuclear Information System (INIS)

    Ali, E.M.; Taha, T.M.; Gomaa, M.A.; El-Hussein, A.M.; Ahmad, A.A.

    2000-01-01

    The dominant component of natural radiation dose for the general population comes from the radon gas 222 Rn and its short-lived decay products, Ra A ( 214 Po), Ra B ( 214 Pb), Ra C ( 214 Bi), Ra C( 214 Po) in the breathing air. The objective of the present work is to assess the affective dose equivalent of the inhalation exposure of indoor 222 Rn for occupational workers. Average indon concentrations (Bqm -3 ) were monitored in several departments in Nuclear Research Center by radon monitor. We have calculated the lung dose equivalent and the effective dose equivalent for the Egyptian workers due to inhalation exposure of an equilibrium equivalent concentrations of radon daughters which varies from 0.27 to 2.5 mSvy -1 and 0.016 to 0.152mSvy -1 respectively. The annual effective doses obtained are within the accepted range of ICRP recommendations

  10. MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP).

    Science.gov (United States)

    Ngwa, Wilfred; Korideck, Houari; Chin, Lee M; Makrigiorgos, G Mike; Berbeco, Ross I

    2011-12-01

    The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice. Surgically implanted metal oxide semiconductor field effect transistors (MOSFET) dosimeters were employed for the dose assessment. The results reveal differences between the calculated and measured dose of -3.5 to 0.5%, -5.2 to -0.7%, -3.9 to 0.5%, -5.9 to 2.5%, -5.5 to 0.5%, and -4.3 to 0% for the left kidney, liver, pancreas, prostate, left lung, and brain, respectively. Overall, the findings show less than 6% difference between the delivered and calculated dose, without tissue heterogeneity corrections. These results provide a useful assessment of the need for tissue heterogeneity corrections in SARRP dose calculations for clinically relevant tumor model sites.

  11. SU-E-T-50: A Multi-Institutional Study of Independent Dose Verification Software Program for Lung SBRT

    International Nuclear Information System (INIS)

    Kawai, D; Takahashi, R; Kamima, T; Baba, H; Yamamoto, T; Kubo, Y; Ishibashi, S; Higuchi, Y; Takahashi, H; Tachibana, H

    2015-01-01

    Purpose: The accuracy of dose distribution depends on treatment planning system especially in heterogeneity-region. The tolerance level (TL) of the secondary check using the independent dose verification may be variable in lung SBRT plans. We conducted a multi-institutional study to evaluate the tolerance level of lung SBRT plans shown in the AAPM TG114. Methods: Five institutes in Japan participated in this study. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiological path length. Analytical Anisotropic Algorithm (AAA), Pencil Beam Convolution with modified Batho-method (PBC-B) and Adaptive Convolve (AC) were used for lung SBRT planning. A measurement using an ion-chamber was performed in a heterogeneous phantom to compare doses from the three different algorithms and the SMU to the measured dose. In addition to it, a retrospective analysis using clinical lung SBRT plans (547 beams from 77 patients) was conducted to evaluate the confidence limit (CL, Average±2SD) in dose between the three algorithms and the SMU. Results: Compared to the measurement, the AAA showed the larger systematic dose error of 2.9±3.2% than PBC-B and AC. The Clarkson-based SMU showed larger error of 5.8±3.8%. The CLs for clinical plans were 7.7±6.0 % (AAA), 5.3±3.3 % (AC), 5.7±3.4 % (PBC -B), respectively. Conclusion: The TLs from the CLs were evaluated. A Clarkson-based system shows a large systematic variation because of inhomogeneous correction. The AAA showed a significant variation. Thus, we must consider the difference of inhomogeneous correction as well as the dependence of dose calculation engine

  12. SU-E-T-50: A Multi-Institutional Study of Independent Dose Verification Software Program for Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, D [Kanagawa Cancer Center, Yokohama, Kanagawa-prefecture (Japan); Takahashi, R; Kamima, T [The Cancer Institute Hospital of JFCR, Koutou-ku, Tokyo (Japan); Baba, H [The National Cancer Center Hospital East, Kashiwa-city, Chiba prefecture (Japan); Yamamoto, T; Kubo, Y [Otemae Hospital, Chuou-ku, Osaka-city (Japan); Ishibashi, S; Higuchi, Y [Sasebo City General Hospital, Sasebo, Nagasaki (Japan); Takahashi, H [St Lukes International Hospital, Chuou-ku, Tokyo (Japan); Tachibana, H [National Cancer Center Hospital East, Kashiwa, Chiba (Japan)

    2015-06-15

    Purpose: The accuracy of dose distribution depends on treatment planning system especially in heterogeneity-region. The tolerance level (TL) of the secondary check using the independent dose verification may be variable in lung SBRT plans. We conducted a multi-institutional study to evaluate the tolerance level of lung SBRT plans shown in the AAPM TG114. Methods: Five institutes in Japan participated in this study. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiological path length. Analytical Anisotropic Algorithm (AAA), Pencil Beam Convolution with modified Batho-method (PBC-B) and Adaptive Convolve (AC) were used for lung SBRT planning. A measurement using an ion-chamber was performed in a heterogeneous phantom to compare doses from the three different algorithms and the SMU to the measured dose. In addition to it, a retrospective analysis using clinical lung SBRT plans (547 beams from 77 patients) was conducted to evaluate the confidence limit (CL, Average±2SD) in dose between the three algorithms and the SMU. Results: Compared to the measurement, the AAA showed the larger systematic dose error of 2.9±3.2% than PBC-B and AC. The Clarkson-based SMU showed larger error of 5.8±3.8%. The CLs for clinical plans were 7.7±6.0 % (AAA), 5.3±3.3 % (AC), 5.7±3.4 % (PBC -B), respectively. Conclusion: The TLs from the CLs were evaluated. A Clarkson-based system shows a large systematic variation because of inhomogeneous correction. The AAA showed a significant variation. Thus, we must consider the difference of inhomogeneous correction as well as the dependence of dose calculation engine.

  13. TH-AB-207A-12: CT Lung Cancer Screening and the Effects of Further Dose Reduction On CAD Performance

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Hoffman, J; Kim, H; Hsu, W; Flores, C; Lee, G; Brown, M; McNitt-Gray, M

    2016-01-01

    Purpose: CT lung screening is already performed at low doses. In this study, we investigated the effects of further dose reduction on a lung-nodule CAD detection algorithm. Methods: The original raw CT data and images from 348 patients were obtained from our local database of National Lung Screening Trial (NLST) cases. 61 patients (17.5%) had at least one nodule reported on the NLST reader forms. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, a CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST forms. Sensitivities and false-positive rates (FPR) were calculated for each dose level, with a sub-analysis by nodule LungRADS category. Results: For larger category 4 nodules, median sensitivities were 100% at all three dose levels, and mean sensitivity decreased with dose. For the more challenging category 2 and 3 nodules, the dose dependence was less obvious. Overall, mean subject-level sensitivity varied from 38.5% at 100% dose to 40.4% at 50% dose, a difference of only 1.9%. However, median FPR quadrupled from 1 per case at 100% dose to 4 per case at 25% dose. Conclusions: Dose reduction affected nodule detectability differently depending on the LungRADS category, and FPR was very sensitive at sub-screening levels. Care should be taken to adapt CAD for the very challenging noise characteristics of screening. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens

  14. TH-AB-207A-12: CT Lung Cancer Screening and the Effects of Further Dose Reduction On CAD Performance

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Hoffman, J; Kim, H; Hsu, W; Flores, C; Lee, G; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: CT lung screening is already performed at low doses. In this study, we investigated the effects of further dose reduction on a lung-nodule CAD detection algorithm. Methods: The original raw CT data and images from 348 patients were obtained from our local database of National Lung Screening Trial (NLST) cases. 61 patients (17.5%) had at least one nodule reported on the NLST reader forms. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, a CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST forms. Sensitivities and false-positive rates (FPR) were calculated for each dose level, with a sub-analysis by nodule LungRADS category. Results: For larger category 4 nodules, median sensitivities were 100% at all three dose levels, and mean sensitivity decreased with dose. For the more challenging category 2 and 3 nodules, the dose dependence was less obvious. Overall, mean subject-level sensitivity varied from 38.5% at 100% dose to 40.4% at 50% dose, a difference of only 1.9%. However, median FPR quadrupled from 1 per case at 100% dose to 4 per case at 25% dose. Conclusions: Dose reduction affected nodule detectability differently depending on the LungRADS category, and FPR was very sensitive at sub-screening levels. Care should be taken to adapt CAD for the very challenging noise characteristics of screening. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens

  15. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Zanca, F., E-mail: Federica.Zanca@med.kuleuven.be [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium and Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven (Belgium); Jacobs, A. [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); Crijns, W. [Department of Radiotherapy, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); De Wever, W. [Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven, Belgium and Department of Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  16. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    International Nuclear Information System (INIS)

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-01-01

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure

  17. Variability in CT lung-nodule volumetry: Effects of dose reduction and reconstruction methods.

    Science.gov (United States)

    Young, Stefano; Kim, Hyun J Grace; Ko, Moe Moe; Ko, War War; Flores, Carlos; McNitt-Gray, Michael F

    2015-05-01

    Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter

  18. Extracting the normal lung dose–response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance

    International Nuclear Information System (INIS)

    Gordon, J J; Snyder, K; Zhong, H; Barton, K; Sun, Z; Chetty, I J; Matuszak, M; Ten Haken, R K

    2015-01-01

    In conventionally fractionated radiation therapy for lung cancer, radiation pneumonitis’ (RP) dependence on the normal lung dose-volume histogram (DVH) is not well understood. Complication models alternatively make RP a function of a summary statistic, such as mean lung dose (MLD). This work searches over damage profiles, which quantify sub-volume damage as a function of dose. Profiles that achieve best RP predictive accuracy on a clinical dataset are hypothesized to approximate DVH dependence.Step function damage rate profiles R(D) are generated, having discrete steps at several dose points. A range of profiles is sampled by varying the step heights and dose point locations. Normal lung damage is the integral of R(D) with the cumulative DVH. Each profile is used in conjunction with a damage cutoff to predict grade 2 plus (G2+) RP for DVHs from a University of Michigan clinical trial dataset consisting of 89 CFRT patients, of which 17 were diagnosed with G2+ RP.Optimal profiles achieve a modest increase in predictive accuracy—erroneous RP predictions are reduced from 11 (using MLD) to 8. A novel result is that optimal profiles have a similar distinctive shape: enhanced damage contribution from low doses (<20 Gy), a flat contribution from doses in the range ∼20–40 Gy, then a further enhanced contribution from doses above 40 Gy. These features resemble the hyper-radiosensitivity / increased radioresistance (HRS/IRR) observed in some cell survival curves, which can be modeled using Joiner’s induced repair model.A novel search strategy is employed, which has the potential to estimate RP dependence on the normal lung DVH. When applied to a clinical dataset, identified profiles share a characteristic shape, which resembles HRS/IRR. This suggests that normal lung may have enhanced sensitivity to low doses, and that this sensitivity can affect RP risk. (paper)

  19. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  20. Dose Constraints to Prevent Radiation-Induced Brachial Plexopathy in Patients Treated for Lung Cancer

    International Nuclear Information System (INIS)

    Amini, Arya; Yang Jinzhong; Williamson, Ryan; McBurney, Michelle L.; Erasmus, Jeremy; Allen, Pamela K.; Karhade, Mandar; Komaki, Ritsuko; Liao, Zhongxing; Gomez, Daniel; Cox, James; Dong, Lei; Welsh, James

    2012-01-01

    Purpose: As the recommended radiation dose for non-small-cell lung cancer (NSCLC) increases, meeting dose constraints for critical structures like the brachial plexus becomes increasingly challenging, particularly for tumors in the superior sulcus. In this retrospective analysis, we compared dose-volume histogram information with the incidence of plexopathy to establish the maximum dose tolerated by the brachial plexus. Methods and Materials: We identified 90 patients with NSCLC treated with definitive chemoradiation from March 2007 through September 2010, who had received >55 Gy to the brachial plexus. We used a multiatlas segmentation method combined with deformable image registration to delineate the brachial plexus on the original planning CT scans and scored plexopathy according to Common Terminology Criteria for Adverse Events version 4.03. Results: Median radiation dose to the brachial plexus was 70 Gy (range, 56–87.5 Gy; 1.5–2.5 Gy/fraction). At a median follow-up time of 14.0 months, 14 patients (16%) had brachial plexopathy (8 patients [9%] had Grade 1, and 6 patients [7%] had Grade ≥2); median time to symptom onset was 6.5 months (range, 1.4–37.4 months). On multivariate analysis, receipt of a median brachial plexus dose of >69 Gy (odds ratio [OR] 10.091; 95% confidence interval [CI], 1.512–67.331; p = 0.005), a maximum dose of >75 Gy to 2 cm 3 of the brachial plexus (OR, 4.909; 95% CI, 0.966–24.952; p = 0.038), and the presence of plexopathy before irradiation (OR, 4.722; 95% CI, 1.267–17.606; p = 0.021) were independent predictors of brachial plexopathy. Conclusions: For lung cancers near the apical region, brachial plexopathy is a major concern for high-dose radiation therapy. We developed a computer-assisted image segmentation method that allows us to rapidly and consistently contour the brachial plexus and establish the dose limits to minimize the risk of brachial plexopathy. Our results could be used as a guideline in future

  1. Mean esophageal radiation dose is predictive of the grade of acute esophagitis in lung cancer patients treated with concurrent radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Ozgen, A.; Hayran, M.; Kahraman, F.

    2012-01-01

    The intention of this research was to define the predictive factors for acute esophagitis (AE) in lung cancer patients treated with concurrent chemotherapy and three-dimensional conformal radiotherapy. The data for 72 lung cancer patients treated with concurrent chemoradiotherapy between 2008 and 2010 were prospectively evaluated. Mean lung dose, mean dose of esophagus, volume of esophagus irradiated and percentage of esophagus volume treated were analysed according to esophagitis grades. The mean esophageal dose was associated with an increased risk of esophageal toxicity (Kruskal-Wallis test, P<0.001). However, the mean lung dose and the volume of esophagus irradiated were not associated with an increased risk of esophageal toxicity (Kruskal-Wallis test, P=0.50 and P=0.41, respectively). The mean radiation dose received by the esophagus was found to be highly correlated with the duration of Grade 2 esophagitis (Spearman test, r=0.82, P<0.001). The mean dose of esophagus ≥28 Gy showed statistical significance with respect to AE Grade 2 or worse (receiver operating characteristic curve analysis, 95% confidence interval (CI), 0.929-1.014). In conclusion, the mean esophageal dose was significantly associated with a risk of esophageal toxicity in patients with lung cancer treated with concurrent radiotherapy and chemotherapy. (author)

  2. Assessments for high dose radionuclide therapy treatment planning

    International Nuclear Information System (INIS)

    Fisher, D.R.

    2003-01-01

    Advances in the biotechnology of cell specific targeting of cancer and the increased number of clinical trials involving treatment of cancer patients with radiolabelled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high dose radionuclide therapy procedures. Optimised radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be the lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential timepoints using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organ tissues of concern, for the whole body and sometimes for selected tumours. Patient specific factors often require that dose estimates be customised for each patient. In the United States, the Food and Drug Administration regulates the experimental use of investigational new drugs and requires 'reasonable calculation of radiation absorbed dose to the whole body and to critical organs' using the methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high dose studies shows that some are conducted with minimal dosimetry, that the marrow dose is difficult to establish and is subject to large uncertainties. Despite the general availability of software, internal dosimetry methods often seem to be inconsistent from one clinical centre to another. (author)

  3. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Yang, Cungeng [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Wu, Hui [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou (China); Tai, An [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dalah, Entesar [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah (United Arab Emirates); Zheng, Cheng [Biostatistics, Joseph. J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (United States); Johnstone, Candice [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Kong, Feng-Ming [Department of Radiation Oncology, Indiana University, Indianapolis, Indiana (United States); Gore, Elizabeth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2017-06-01

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.

  4. Lung dosimetry for inhaled radon progeny

    International Nuclear Information System (INIS)

    Hofmann, W.

    1986-01-01

    Lung cancer risk assessment for inhaled radon progeny requires a detailed knowledge of the dose distribution pattern throughout the human respiratory tract. Current lung dosimetry models take into acocunt aerosol deposition in a formalized airway structrue, modification of the initial deposition pattern by clearance mechanisms, and the energy deposited by alpha particles in sensitive cells of the bronchial epithelium. The resulting dose distribution pattern depends on the characteristics of the inhaled aerosol and the breathing pattern. Special emphasis has been laid on the age dependency of the anatomical structure of the human lung and the resulting doses, as well as on the rediological significance of enhanced aerosol deposition at bronchial bifuraction. The biological variability inherent in all morphometric, physiological and histological parameters involved in lung dosimetry suggests the application of stochastic modelling techniques. Examples for the use of Monte Carlo methods presented here are the random walk of inhaled particles through a random airway geometry, and the influence of the intra-subject variability of radiation doses on radiation protection standards. At the cellular level the concept of absorbed dose loses its significance and has to be replaced by microdosimetric concepts, such as internal microdosimtry or track structure theory. An image-analysis model allows us to construct specific energy distributions in sensitive lung cells. Application of a track structure model of alpha particle interaction with bronchial epithelial cells permits the calculation of probabilities for inactivation, transformation, and tumor induction. The latter has been used to analyse lung cancer risk at low doses in Chinese high background areas

  5. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  6. Noninvasive Computed Tomography-based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial.

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Karwoski, Ronald A; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A; Bartholmai, Brian J; Peikert, Tobias

    2015-09-15

    Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas.

  7. Learning From Trials on Radiation Dose in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Jeffrey, E-mail: jbradley@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Hu, Chen [Division of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2016-11-15

    In this issue of the International Journal of Radiation Oncology • Biology • Physics, Taylor et al present a meta-analysis of published data supporting 2 findings: (1) radiation dose escalation seems to benefit patients who receive radiation alone for non-small cell lung cancer; and (2) radiation dose escalation has a detrimental effect on overall survival in the setting of concurrent chemotherapy. The latter finding is supported by data but has perplexed the oncology community. Perhaps these findings are not perplexing at all. Perhaps it is simply another lesson in the major principle in radiation oncology, to minimize radiation dose to normal tissues.

  8. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study

    International Nuclear Information System (INIS)

    Howe, G.R.

    1995-01-01

    Current lung cancer risk estimates after exposure to low-linear energy transfer radiation such as X rays are based on studies of people exposed to such radiation at high dose rates, for example the atomic bomb survivors. Radiobiology and animal experiments suggest that risks from exposure at low to moderate dose rates, for example medical diagnostic procedures, may be overestimated by such risk models, but data for humans to examine this issue are limited. In this paper we report on lung cancer mortality between 1950 and 1987 in a cohort of 64,172 Canadian tuberculosis patients, of whom 39% were exposed to highly fractionated multiple chest fluoroscopies leading to a mean lung radiation dose of 1.02 Sv received at moderate dose rates. These data have been used to estimate the excess relative risk per sievert of lung cancer mortality, and this is compared directly to estimates derived from 75,991 atomic bomb survivors. Based on 1,178 lung cancer deaths in the fluoroscopy study, there was no evidence of any positive association between risk and dose, with the relative risk at 1 Sv being 1.00 (95% confidence interval 0.94, 1.07), which contrasts with that based on the atomic bomb survivors, 1.60 (1.27, 1.99). The difference in effect between the two studies almost certainly did not arise by chance (P = 0.0001). This study provides strong support from data for humans for a substantial fractionation/dose-rate effect for low-linear energy transfer radiation and lung cancer risk. This implies that lung cancer risk from exposures to such radiation at present-day dose rates is likely to be lower than would be predicted by current radiation risk models based on studies of high-dose-rate exposures. 25 refs., 8 tabs

  9. More than lung cancer: Automated analysis of low-dose screening CT scans

    NARCIS (Netherlands)

    Mets, O.M.

    2012-01-01

    Smoking is a major health care problem and is projected to cause over 8 million deaths per year worldwide in the coming decades. To reduce lung cancer mortality in heavy smokers, several randomized screening trials were initiated in the past years using screening with low-dose Computed Tomography

  10. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  11. Assessments of risk following the inhalation of plutonium oxide using observed lung clearance patterns

    International Nuclear Information System (INIS)

    Ramsden, D.

    1977-10-01

    Dose commitments and risk estimates for the inhalation of plutonium oxide are calculated using the lung clearance patterns observed at AEE Winfrith. These risks are compared with published data on risks arising from a lung clearance based on the ICRP Lung Model. (author)

  12. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures

    International Nuclear Information System (INIS)

    Proctor, Deborah M.; Suh, Mina; Campleman, Sharan L.; Thompson, Chad M.

    2014-01-01

    Highlights: • No published or well recognized MOA for Cr(VI)-induced lung tumors exists. • MOA analysis for Cr(VI)-induced lung cancer was conducted to inform risk assessment. • Cr(VI) epidemiologic, toxicokinetic, toxicological, mechanistic data were evaluated. • Weight of evidence does not support a mutagenic MOA for Cr(VI)-induced lung cancer. • Non-linear approaches should be considered for evaluating Cr(VI) lung cancer risk. - Abstract: Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m 3 ), for which clear exposure–response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose–response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation

  13. Measurement and evaluation of internal dose

    International Nuclear Information System (INIS)

    Lee, Tae Young; Chang, S. Y.; Lee, J. I.; Song, M. Y.

    2006-01-01

    This report describes the contents and results for implementation of internal radiation monitoring programme, measurement of uranium present in lung by lung counter and assessment of committed effective dose for radiation workers of the KNFC. The aim of radiation protection was achieved by implementing this activity

  14. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    Science.gov (United States)

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  15. Enjebi Island dose assessment

    International Nuclear Information System (INIS)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and 137 Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  16. Risk considerations related to lung modeling

    International Nuclear Information System (INIS)

    Masse, R.; Cross, F.T.

    1989-01-01

    Improved lung models provide a more accurate assessment of dose from inhalation exposures and, therefore, more accurate dose-response relationships for risk evaluation and exposure limitation. Epidemiological data for externally irradiated persons indicate that the numbers of excess respiratory tract carcinomas differ in the upper airways, bronchi, and distal lung. Neither their histogenesis and anatomical location nor their progenitor cells are known with sufficient accuracy for accurate assessment of the microdosimetry. The nuclei of sensitive cells generally can be assumed to be distributed at random in the epithelium, beneath the mucus and tips of the beating cilia and cells. In stratified epithelia, basal cells may be considered the only cells at risk. Upper-airway tumors have been observed in both therapeutically irradiated patients and in Hiroshima-Nagasaki survivors. The current International Commission on Radiological Protection Lung-Model Task Group proposes that the upper airways and lung have a similar relative risk coefficient for cancer induction. The partition of the risk weighting factor, therefore, will be proportional to the spontaneous death rate from tumors, and 80% of the weighting factor for the respiratory tract should be attributed to the lung. For Weibel lung-model branching generations 0 to 16 and 17 to 23, the Task Group proposes an 80/20 partition of the risk, i.e., 64% and 16%, respectively, of the total risk. Regarding risk in animals, recent data in rats indicate a significantly lower effectiveness for lung-cancer induction at low doses from insoluble long-lived alpha-emitters than from Rn daughters. These findings are due, in part, to the fact that different regions of the lung are irradiated. Tumors in the lymph nodes are rare in people and animals exposed to radiation.44 references

  17. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  18. Estimation of lung tissue doses following exposure to low-LET radiation in the Canadian study of cancer following multiple fluoroscopies

    International Nuclear Information System (INIS)

    Howe, G.R.; Yaffe, M.

    1992-02-01

    Lung tissue doses from exposure to external low-LET radiation have been estimated for each year between 1930 and 1960 for 92,707 tuberculosis patients first treated in Canadian institutions between 1930 and 1952. Many of these patients received multiple chest fluoroscopies together with treatment by artificial pneumothorax, and thus accumulated doses up to 15.7 grays. The estimated doses have been used in a statistical analysis of lung cancer mortality between 1950 and 1987 occurring among 64,698 patients known to be alive at the start of 1950, and followed by linkage to the Canadian national mortality data base. There were substantial variations in the total cumulative lung tissue dose received by the cohort, with 2,490 individuals having doses in excess of 1.7 grays. A total of 1,156 lung cancer deaths was observed in the cohort, and these have been used to estimate relative risks. The most appropriate risk model appears to be a simple linear relative risk function, with an excess relative risk coefficient of 0.089 for an absorbed dose of 1 gray. This contrasts with estimates of relative risk based on the atomic bomb survivors study, for which the excess relative risk coefficient for males 20 years after the first exposure is estimated to be 0.64. The difference is statistically significant. It is postulated that fractionation and dose rate effectiveness factors may account for some of the discrepancy. (Modified author abstract) (14 refs., 20 tabs.)

  19. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  20. Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH)

    International Nuclear Information System (INIS)

    Kapp, Karin Sigrid; Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter

    2010-01-01

    Purpose: Comparison of the amount of irradiated lung tissue volume and mass in patients with breast cancer treated with an optimized tangential-field technique with and without a deep inspiration breath-hold (DIBH) technique and its impact on the normal-tissue complication probability (NTCP). Material and Methods: Computed tomography datasets of 60 patients in normal breathing (NB) and subsequently in DIBH were compared. With a Real-Time Position Management Respiratory Gating System (RPM), anteroposterior movement of the chest wall was monitored and a lower and upper threshold were defined. Ipsilateral lung and a restricted tangential region of the lung were delineated and the mean and maximum doses calculated. Irradiated lung tissue mass was computed based on density values. NTCP for lung was calculated using a modified Lyman-Kutcher-Burman (LKB) model. Results: Mean dose to the ipsilateral lung in DIBH versus NB was significantly reduced by 15%. Mean lung mass calculation in the restricted area receiving ≤ 20 Gy (M 20 ) was reduced by 17% in DIBH but associated with an increase in volume. NTCP showed an improvement in DIBH of 20%. The correlation of individual breathing amplitude with NTCP proved to be independent. Conclusion: The delineation of a restricted area provides the lung mass calculation in patients treated with tangential fields. DIBH reduces ipsilateral lung dose by inflation so that less tissue remains in the irradiated region and its efficiency is supported by a decrease of NTCP. (orig.)

  1. A unified dose response relationship to predict high dose fractionation response in the lung cancer stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Than S Kehwar

    2017-01-01

    Full Text Available Aim: This study is designed to investigate the superiority and applicability of the model among the linear-quadratic (LQ, linear-quadratic-linear (LQ-L and universal-survival-curve (USC models by fitting published radiation cell survival data of lung cancer cell lines. Materials and Method: The radiation cell survival data for small cell (SC and non-small cell (NSC lung cancer cell lines were obtained from published reports, and were used to determine the LQ and cell survival curve parameters, which ultimately were used in the curve fitting of the LQ, LQ-L and USC models. Results: The results of this study demonstrate that the LQ-L(Dt-mt model, compared with the LQ and USC models, provides best fit with smooth and gradual transition to the linear portion of the curve at transition dose Dt-mt, where the LQ model loses its validity, and the LQ-L(Dt-2α/β and USC(Dt-mt models do not transition smoothly to the linear portion of the survival curve. Conclusion: The LQ-L(Dt-mt model is able to fit wide variety of cell survival data over a very wide dose range, and retains the strength of the LQ model in the low-dose range.

  2. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  3. Noninvasive Computed Tomography–based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M.; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A.; Bartholmai, Brian J.

    2015-01-01

    Rationale: Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. Objectives: To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. Methods: We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. Measurements and Main Results: A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. Conclusions: CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas. PMID:26052977

  4. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R.; Kunisaki, Shaun M.

    2015-01-01

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI vol was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  5. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Kunisaki, Shaun M. [University of Michigan Health System, Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States)

    2015-07-15

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI{sub vol} was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  6. Nutrient intake and nutrient patterns and risk of lung cancer among heavy smokers: results from the COSMOS screening study with annual low-dose CT

    International Nuclear Information System (INIS)

    Gnagnarella, Patrizia; Maisonneuve, Patrick; Bellomi, Massimo; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Palli, Domenico; Veronesi, Giulia

    2013-01-01

    The role of nutrients in lung cancer aetiology remains controversial and has never been evaluated in the context of screening. Our aim was to investigate the role of single nutrients and nutrient patterns in the aetiology of lung cancer in heavy smokers. Asymptomatic heavy smokers (≥20 pack-years) were invited to undergo annual low-dose computed tomography. We assessed diet using a self-administered food frequency questionnaire and collected information on multivitamin supplement use. We performed principal component analysis identifying four nutrient patterns and used Cox proportional Hazards regression to assess the association between nutrients and nutrients patterns and lung cancer risk. During a mean follow-up of 5.7 years, 178 of 4,336 participants were diagnosed with lung cancer by screening. We found a significant risk reduction of lung cancer with increasing vegetable fat consumption (HR for highest vs. lowest quartile = 0.50, 95 % CI = 0.31–0.80; P-trend = 0.02). Participants classified in the high “vitamins and fiber” pattern score had a significant risk reduction of lung cancer (HR = 0.57; 95 % CI = 0.36–0.90, P-trend = 0.01). Among heavy smokers enrolled in a screening trial, high vegetable fat intake and adherence to the “vitamin and fiber” nutrient pattern were associated with reduced lung cancer incidence.

  7. Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels.

    Science.gov (United States)

    Ernst, Caroline W; Basten, Ines A; Ilsen, Bart; Buls, Nico; Van Gompel, Gert; De Wachter, Elke; Nieboer, Koenraad H; Verhelle, Filip; Malfroot, Anne; Coomans, Danny; De Maeseneer, Michel; de Mey, Johan

    2014-11-01

    To investigate a computed tomographic (CT) protocol with iterative reconstruction at conventional radiography dose levels for the assessment of structural lung abnormalities in patients with cystic fibrosis ( CF cystic fibrosis ). In this institutional review board-approved study, 38 patients with CF cystic fibrosis (age range, 6-58 years; 21 patients 18 years) underwent investigative CT (at minimal exposure settings combined with iterative reconstruction) as a replacement of yearly follow-up posteroanterior chest radiography. Verbal informed consent was obtained from all patients or their parents. CT images were randomized and rated independently by two radiologists with use of the Bhalla scoring system. In addition, mosaic perfusion was evaluated. As reference, the previous available conventional chest CT scan was used. Differences in Bhalla scores were assessed with the χ(2) test and intraclass correlation coefficients ( ICC intraclass correlation coefficient s). Radiation doses for CT and radiography were assessed for adults (>18 years) and children (chest CT protocol can replace the two yearly follow-up chest radiographic examinations without major dose penalty and with similar diagnostic quality compared with conventional CT.

  8. Computer-aided detection of early interstitial lung diseases using low-dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Cheol; Kim, Soo Hyung [School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Tan, Jun; Wang Xingwei; Lederman, Dror; Leader, Joseph K; Zheng Bin, E-mail: zhengb@upmc.edu [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2011-02-21

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 {+-} 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  9. Is a reduction in radiation lung volume and dose necessary with paclitaxel chemotherapy for node-positive breast cancer?

    Science.gov (United States)

    Taghian, Alphonse G; Assaad, Sherif I; Niemierko, Andrzej; Floyd, Scott R; Powell, Simon N

    2005-06-01

    To evaluate and quantify the effect of irradiated lung volume, radiation dose, and paclitaxel chemotherapy on the development of radiation pneumonitis (RP) in breast cancer patients with positive lymph nodes. We previously reported the incidence of RP among 41 patients with breast cancer treated with radiotherapy (RT) and adjuvant paclitaxel-containing chemotherapy. We recorded the central lung distance, a measure of the extent of lung included in the RT volume, in these patients. We used this measure and the historical and observed rates of RP in our series to model the lung tolerance to RT in patients receiving chemotherapy (CHT) both with and without paclitaxel. To evaluate the risk factors for the development of RP, we performed a case-control study comparing paclitaxel-treated patients who developed RP with those who did not, and a second case-control study comparing patients receiving paclitaxel in addition to standard CHT/RT (n = 41) and controls receiving standard CHT/RT alone (n = 192). The actuarial rate of RP in the paclitaxel-treated group was 15.4% compared with 0.9% among breast cancer patients treated with RT and non-paclitaxel-containing CHT. Our mathematical model found that the effective lung tolerance for patients treated with paclitaxel was reduced by approximately 24%. No statistically significant difference was found with regard to the dose delivered to specific radiation fields, dose per fraction, central lung distance, or percentage of lung irradiated in the case-control study of paclitaxel-treated patients who developed RP compared with those who did not. In the comparison of 41 patients receiving RT and CHT with paclitaxel and 192 matched controls receiving RT and CHT without paclitaxel, the only significant differences identified were the more frequent use of a supraclavicular radiation field and a decrease in the RT lung dose among the paclitaxel-treated patients. This finding indicates that the major factor associated with development

  10. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments.

    Science.gov (United States)

    Stambaugh, Cassandra; Nelms, Benjamin E; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2013-09-01

    The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments. VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤ 8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D99%), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found. For the motion amplitudes and periods obtained from the 4DCT, the interplay effect

  11. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    International Nuclear Information System (INIS)

    Stambaugh, Cassandra; Nelms, Benjamin E.; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2013-01-01

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D 99% ), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from the

  12. Dosimetric lung models

    International Nuclear Information System (INIS)

    James, A.C.; Roy, M.

    1986-01-01

    The anatomical and physiological factors that vary with age and influence the deposition of airborne radionuclides in the lung are reviewed. The efficiency with which aerosols deposit in the lung for a given exposure at various ages from birth to adulthood is evaluated. Deposition within the lung is considered in relation to the clearance mechanisms acting in different regions or compartments. The procedure for evaluating dose to sensitive tissues in lung and transfer to other organs that is being considered by the Task Group established by ICRP to review the Lung Model is outlined. Examples of the application of this modelling procedure to evaluate lung dose as a function of age are given, for exposure to radon daughters in dwellings, and for exposure to an insoluble 239 Pu aerosol. The former represents exposure to short-lived radionuclides that deliver relatively high doses to bronchial tissue. In this case, dose rates are marginally higher in children than in adults. Plutonium exposure represents the case where dose is predominantly delivered to respiratory tissue and lymph nodes. In this case, the life-time doses tend to be lower for exposure in childhood. Some of the uncertainties in this modelling procedure are noted

  13. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Senan, Suresh; De Ruysscher, Dirk; Giraud, Philippe; Mirimanoff, Rene; Budach, Volker

    2004-01-01

    Background and purpose: To review the literature on techniques used in high-dose radiotherapy of lung cancer in order to develop recommendations for clinical practice and for use in research protocols. Patients and methods: A literature search was performed for articles and abstracts that were considered both clinically relevant and practical to use. The relevant information was arbitrarily categorized under the following headings: patient positioning, CT scanning, incorporating tumour mobility, definition of target volumes, radiotherapy planning, treatment delivery, and scoring of response and toxicity. Results: Recommendations were made for each of the above steps from the published literature. Although most of the recommended techniques have yet to be evaluated in multicenter clinical trials, their use in high-dose radiotherapy to the thorax appears to be rational on the basis of current evidence. Conclusions: Recommendations for the clinical implementation of high-dose conformal radiotherapy for lung tumours were identified in the literature. Procedures that are still considered to be investigational were also highlighted

  14. Whole-lung densitometry versus visual assessment of emphysema

    International Nuclear Information System (INIS)

    Cavigli, Edoardo; Orlandi, Ilaria; Grassi, Luca; Farfalla, Carmela; Mascalchi, Mario; Camiciottoli, Gianna; Meoni, Eleonora; Pistolesi, Massimo; Diciotti, Stefano; Spinelli, Cheti; Falaschi, Fabio

    2009-01-01

    We compared whole-lung densitometry with visual evaluation of pulmonary emphysema. Thirty patients with chronic obstructive pulmonary disease underwent multi-detector CT (150 mAs and 0.75 collimation) with double reconstruction: thick (5-mm) slices with smooth filter for whole-lung densitometry and thin (1 mm) slices with sharp filter for visual assessment (one of every ten slices). Densitometry and visual assessment were performed by three operators each, and the time required for assessment, the inter-observer agreement and the correlation with the results of the diffusion capacity of carbon monoxide (DL CO ) in the same patients were computed. The average time for densitometry (8.49 ± 0.13 min) was significantly longer (p CO with relative area at -960 and -970 Hounsfield units (HU) (both r = -0.66) and of the first percentile point of lung density (r = 0.66) were slightly stronger than that of the visual score (r = -0.62). Densitometry should be preferred to visual assessment because it enables a more reproducible evaluation of the extent of pulmonary emphysema, which can be carried out on the entire lung in a reasonable amount of time. (orig.)

  15. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  16. Clinical outcome of stereotactic body radiotherapy for primary and oligometastatic lung tumors: a single institutional study with almost uniform dose with different five treatment schedules

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Hatayama, Yoshiomi; Kawaguchi, Hideo; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Fujioka, Ichitaro; Ono, Shuichi; Tsushima, Eiki; Takai, Yoshihiro

    2016-01-01

    To evaluate clinical outcomes of stereotactic body radiotherapy (SBRT) for localized primary and oligometastatic lung tumors by assessing efficacy and safety of 5 regimens of varying fraction size and number. One-hundred patients with primary lung cancer (n = 69) or oligometastatic lung tumors (n = 31), who underwent SBRT between May 2003 and August 2010, were included. The median age was 75 years (range, 45–88). Of them, 98 were judged to have medically inoperable disease, predominantly due to chronic illness or advanced age. SBRT was performed using 3 coplanar and 3 non-coplanar fixed beams with a standard linear accelerator. Fraction sizes were escalated by 1 Gy, and number of fractions given was decreased by 1 for every 20 included patients. Total target doses were between 50 and 56 Gy, administered as 5–9 fractions. The prescribed dose was defined at the isocenter, and median overall treatment duration was 10 days (range, 5–22). The median follow-up was 51.1 months for survivors. The 3-year local recurrence rates for primary lung cancer and oligometastasis was 6 % and 3 %, respectively. The 3-year local recurrence rates for tumor sizes ≤3 cm and >3 cm were 3 % and 14 %, respectively (p = 0.124). Additionally, other factors (fraction size, total target dose, and BED 10 ) were not significant predictors of local control. Radiation pneumonia (≥ grade 2) was observed in 2 patients. Radiation-induced rib fractures were observed in 22 patients. Other late adverse events of greater than grade 2 were not observed. Within this dataset, we did not observe a dose response in BED 10 values between 86.4 and 102.6 Gy. SBRT with doses between 50 and 56 Gy, administered over 5–9 fractions achieved acceptable tumor control without severe complications

  17. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131.

  18. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M

    2015-01-01

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131

  19. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  20. Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality

    Energy Technology Data Exchange (ETDEWEB)

    Buckens, C.F. [University Medical Center Utrecht, Radiology Department, Utrecht (Netherlands); University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Graaf, Y. van der [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Verkooijen, H.M.; Mali, W.P.; Jong, P.A. de [University Medical Center Utrecht, Radiology Department, Utrecht (Netherlands); Isgum, I.; Mol, C.P. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Verhaar, H.J. [University Medical Center Utrecht, Department of Geriatric Medicine, Utrecht (Netherlands); Vliegenthart, R.; Oudkerk, M. [Medical Center Groningen, Department of Radiology, Utrecht (Netherlands); Aalst, C.M. van; Koning, H.J. de [Erasmus MC Rotterdam, Department of Public Health, Rotterdam (Netherlands)

    2015-01-15

    Further survival benefits may be gained from low-dose chest computed tomography (CT) by assessing vertebral fractures and bone density. We sought to assess the association between CT-measured vertebral fractures and bone density with all-cause mortality in lung cancer screening participants. Following a case-cohort design, lung cancer screening trial participants (N = 3,673) who died (N = 196) during a median follow-up of 6 years (inter-quartile range: 5.7-6.3) were identified and added to a random sample of N = 383 from the trial. We assessed vertebral fractures using Genant and acute;s semiquantative method on sagittal reconstructions and measured bone density (Hounsfield Units (HU)) in vertebrae. Cox proportional hazards modelling was used to determine if vertebral fractures or bone density were independently predictive of mortality. The prevalence of vertebral fractures was 35 % (95 % confidence interval 30-40 %) among survivors and 51 % (44-58 %) amongst cases. After adjusting for age, gender, smoking status, pack years smoked, coronary and aortic calcium volume and pulmonary emphysema, the adjusted hazard ratio (HR) for vertebral fracture was 2.04 (1.43-2.92). For each 10 HU decline in trabecular bone density, the adjusted HR was 1.08 (1.02-1.15). Vertebral fractures and bone density are independently associated with all-cause mortality. (orig.)

  1. Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality

    International Nuclear Information System (INIS)

    Buckens, C.F.; Graaf, Y. van der; Verkooijen, H.M.; Mali, W.P.; Jong, P.A. de; Isgum, I.; Mol, C.P.; Verhaar, H.J.; Vliegenthart, R.; Oudkerk, M.; Aalst, C.M. van; Koning, H.J. de

    2015-01-01

    Further survival benefits may be gained from low-dose chest computed tomography (CT) by assessing vertebral fractures and bone density. We sought to assess the association between CT-measured vertebral fractures and bone density with all-cause mortality in lung cancer screening participants. Following a case-cohort design, lung cancer screening trial participants (N = 3,673) who died (N = 196) during a median follow-up of 6 years (inter-quartile range: 5.7-6.3) were identified and added to a random sample of N = 383 from the trial. We assessed vertebral fractures using Genant and acute;s semiquantative method on sagittal reconstructions and measured bone density (Hounsfield Units (HU)) in vertebrae. Cox proportional hazards modelling was used to determine if vertebral fractures or bone density were independently predictive of mortality. The prevalence of vertebral fractures was 35 % (95 % confidence interval 30-40 %) among survivors and 51 % (44-58 %) amongst cases. After adjusting for age, gender, smoking status, pack years smoked, coronary and aortic calcium volume and pulmonary emphysema, the adjusted hazard ratio (HR) for vertebral fracture was 2.04 (1.43-2.92). For each 10 HU decline in trabecular bone density, the adjusted HR was 1.08 (1.02-1.15). Vertebral fractures and bone density are independently associated with all-cause mortality. (orig.)

  2. Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations

    Science.gov (United States)

    Masunaga, S; Matsumoto, Y; Kashino, G; Hirayama, R; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kinashi, Y; Maruhashi, A; Ono, K

    2010-01-01

    The purpose of this study was to evaluate the influence of manipulating intratumour oxygenation status and radiation dose rate on local tumour response and lung metastases following radiotherapy, referring to the response of quiescent cell populations within irradiated tumours. B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation at high dose rate (HDR) or reduced dose rate (RDR) following treatment with the acute hypoxia-releasing agent nicotinamide or local hyperthermia at mild temperatures (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the quiescent (Q) and total (proliferating + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Following HDR irradiation, nicotinamide and MTH enhanced the sensitivity of the total and Q-cell populations, respectively. The decrease in sensitivity at RDR irradiation compared with HDR irradiation was slightly inhibited by MTH, especially in Q cells. Without γ-ray irradiation, nicotinamide treatment tended to reduce the number of lung metastases. With γ-rays, in combination with nicotinamide or MTH, especially the former, HDR irradiation decreased the number of metastases more remarkably than RDR irradiation. Manipulating both tumour hypoxia and irradiation dose rate have the potential to influence lung metastasis. The combination with the acute hypoxia-releasing agent nicotinamide may be more promising in HDR than RDR irradiation in terms of reducing the number of lung metastases. PMID:20739345

  3. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  4. Lung cancer risk and exposure from incorporated plutonium

    International Nuclear Information System (INIS)

    Koshurnikova, N.A.; Bolotnikova, M.G.; Il'in, L.A.

    1996-01-01

    Coefficients of risk of death from lung cancer caused by incorporated plutonium for the personnel of the Mayak plant, working there since its foundation are obtained. Values of mortality from lung cancer are analysed as well as individual incorporated dose per lung assessed from regular measurement of plutonium in the urine and radiometry of autopsy material and from the results of individual photocontrol of external exposure. It was shown that the risk of death from lung cancer caused by external gamma-irradiation is statistically unreliable, whereas that from disease caused by incorporated plutonium is dose-dependent. The risk of death from lung cancer is two times higher for the personnel with increased level of plutonium carriership as against the level stated in ICRP Publication 60. The conclusion is made that hygienic standards for lung exposure should be specified. 11 refs.; 3 figs.; 5 tabs

  5. Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice

    DEFF Research Database (Denmark)

    Gosens, Ilse; Kermanizadeh, Ali; Jacobsen, Nicklas Raun

    2015-01-01

    , or by systemic inflammation. A decrease in glutathione levels was demonstrated in the liver following exposure to high doses of all three nanomaterials irrespective of any noticeable inflammatory or cytotoxic effects in the lung. By applying benchmark dose (BMD) modeling statistics to compare potencies...

  6. Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose

    International Nuclear Information System (INIS)

    Schuring, Danny; Hurkmans, Coen W

    2008-01-01

    To investigate the influence of inhomogeneity corrections on stereotactic treatment plans for non-small cell lung cancer and determine the dose delivered to the PTV and OARs. For 26 patients with stage-I NSCLC treatment plans were optimized with unit density (UD), an equivalent pathlength algorithm (EPL), and a collapsed-cone (CC) algorithm, prescribing 60 Gy to the PTV. After optimization the first two plans were recalculated with the more accurate CC algorithm. Dose parameters were compared for the three different optimized plans. Dose to the target and OARs was evaluated for the recalculated plans and compared with the planned values. For the CC algorithm dose constraints for the ratio of the 50% isodose volume and the PTV, and the V 20 Gy are harder to fulfill. After recalculation of the UD and EPL plans large variations in the dose to the PTV were observed. For the unit density plans, the dose to the PTV varied from 42.1 to 63.4 Gy for individual patients. The EPL plans all overestimated the PTV dose (average 48.0 Gy). For the lungs, the recalculated V 20 Gy was highly correlated to the planned value, and was 12% higher for the UD plans (R 2 = 0.99), and 15% lower for the EPL plans (R 2 = 0.96). Inhomogeneity corrections have a large influence on the dose delivered to the PTV and OARs for SBRT of lung tumors. A simple rescaling of the dose to the PTV is not possible, implicating that accurate dose calculations are necessary for these treatment plans in order to prevent large discrepancies between planned and actually delivered doses to individual patients

  7. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  8. WE-FG-202-03: Quantitative CT-Based Analysis to Assess Lung Injury Following Proton Radiotherapy

    International Nuclear Information System (INIS)

    Underwood, T; Grassberger, C; Willers, H; MacDonald, S; Jimenez, R; Paganetti, H

    2016-01-01

    Purpose: Relative to photon alternatives, the increased dose-conformity associated with proton therapy is expected to reduce the extent of radiation-induced lung toxicity. However, analysis of follow-up data is yet to be published in this area. In this study we retrospectively analyzed late-phase HU changes for proton therapy cohorts of chest wall and lung patients. Methods: From our institution’s register of patients treated using double-scattered protons, all chest wall and stereotactic lung cases (treated 2011–2012 and 2008–2014 respectively) were initially considered. Follow-up CT data were accessible for 10 chest wall cases (prescribed 50.4 GyRBE in 28 fractions) and 16 lung cases (prescribed 42–50 GyRBE in 3–4 fractions). CT time-points ranged from 0.5–3.5 years post-treatment. Planning doses were recalculated using TOPAS Monte Carlo simulations and mapped onto the follow-up images using deformable registration. Excluding internal target volumes, changes in HU between each patient’s planning and follow-up CT(s) were evaluated for dose bins of 2–30 GyRBE (2 GyRBE increments). Results: Linear increases in HU per unit dose, with correlations statistically significant at the 1% level (one-sided Spearman’s rank test), were evident for all 10 chest wall cases and 14/16 lung cases. The mean changes in HU/Gy were: 1.76 (SD=0.73) for the chest wall cohort, and 1.40 (SD=0.87) for the lung cohort. The median scan times post treatment were 21 and 12 months respectively. All 26 patients developed solid consolidation (scar-like radiographic opacities) within the exposed lung(s). Conclusion: Analysis of follow-up CTs revealed statistically significant correlations in HU-change/dose for two proton cohorts (lung and chest wall). Quantitatively, the late-phase changes we report broadly match published photon data. Further analysis of such radiographic changes, particularly via matched cohort studies drawing upon consistent imaging protocols, could play an

  9. WE-FG-202-03: Quantitative CT-Based Analysis to Assess Lung Injury Following Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); Grassberger, C; Willers, H; MacDonald, S; Jimenez, R; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Relative to photon alternatives, the increased dose-conformity associated with proton therapy is expected to reduce the extent of radiation-induced lung toxicity. However, analysis of follow-up data is yet to be published in this area. In this study we retrospectively analyzed late-phase HU changes for proton therapy cohorts of chest wall and lung patients. Methods: From our institution’s register of patients treated using double-scattered protons, all chest wall and stereotactic lung cases (treated 2011–2012 and 2008–2014 respectively) were initially considered. Follow-up CT data were accessible for 10 chest wall cases (prescribed 50.4 GyRBE in 28 fractions) and 16 lung cases (prescribed 42–50 GyRBE in 3–4 fractions). CT time-points ranged from 0.5–3.5 years post-treatment. Planning doses were recalculated using TOPAS Monte Carlo simulations and mapped onto the follow-up images using deformable registration. Excluding internal target volumes, changes in HU between each patient’s planning and follow-up CT(s) were evaluated for dose bins of 2–30 GyRBE (2 GyRBE increments). Results: Linear increases in HU per unit dose, with correlations statistically significant at the 1% level (one-sided Spearman’s rank test), were evident for all 10 chest wall cases and 14/16 lung cases. The mean changes in HU/Gy were: 1.76 (SD=0.73) for the chest wall cohort, and 1.40 (SD=0.87) for the lung cohort. The median scan times post treatment were 21 and 12 months respectively. All 26 patients developed solid consolidation (scar-like radiographic opacities) within the exposed lung(s). Conclusion: Analysis of follow-up CTs revealed statistically significant correlations in HU-change/dose for two proton cohorts (lung and chest wall). Quantitatively, the late-phase changes we report broadly match published photon data. Further analysis of such radiographic changes, particularly via matched cohort studies drawing upon consistent imaging protocols, could play an

  10. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh. [Tehran University of Medical Scienced(TUMS), School of Medicine, Department of Nedical Physics and Biomedical Engineering, Tehran (Iran, Islamic Republic of); Paydar, R. [Iran University of Medical Sciences(IUMS), Allied Medicine Faculty, Department of radiation Sciences, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  11. Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident.

    Science.gov (United States)

    Field, R William

    2005-01-01

    Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident.

  12. Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident

    International Nuclear Information System (INIS)

    Field, R. W.

    2005-01-01

    Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident. (authors)

  13. Occupational dose assessment and national dose registry system in Iran

    International Nuclear Information System (INIS)

    Jafari-Zadeh, M.; Nazeri, F.; Hosseini-Pooya, S. M.; Taheri, M.; Gheshlaghi, F.; Kardan, M. R.; Babakhani, A.; Rastkhah, N.; Yousefi-Nejad, F.; Darabi, M.; Oruji, T.; Gholamali-Zadeh, Z.; Karimi-Diba, J.; Kazemi-Movahed, A. A.; Dashti-Pour, M. R.; Enferadi, A.; Jahanbakhshian, M. H.; Sadegh-Khani, M. R.

    2011-01-01

    This report presents status of external and internal dose assessment of workers and introducing the structure of National Dose Registry System of Iran (NDRSI). As well as types of individual dosemeters in use, techniques for internal dose assessment are presented. Results obtained from the International Atomic Energy Agency intercomparison programme on measurement of personal dose equivalent H p (10) and consistency of the measured doses with the delivered doses are shown. Also, implementation of dosimetry standards, establishment of quality management system, authorisation and approval procedure of dosimetry service providers are discussed. (authors)

  14. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  15. Steep Dose-Response Relationship for Stage I Non-Small-Cell Lung Cancer Using Hypofractionated High-Dose Irradiation by Real-Time Tumor-Tracking Radiotherapy

    International Nuclear Information System (INIS)

    Onimaru, Rikiya; Fujino, Masaharu; Yamazaki, Koichi; Onodera, Yuya; Taguchi, Hiroshi; Katoh, Norio; Hommura, Fumihiro; Oizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the clinical outcomes of patients with pathologically proven, peripherally located, Stage I non-small-cell lung cancer who had undergone stereotactic body radiotherapy using real-time tumor tracking radiotherapy during the developmental period. Methods and Materials: A total of 41 patients (25 with Stage T1 and 16 with Stage T2) were admitted to the study between February 2000 and June 2005. A 5-mm planning target volume margin was added to the clinical target volume determined with computed tomography at the end of the expiratory phase. The gating window ranged from ±2 to 3 mm. The dose fractionation schedule was 40 or 48 Gy in four fractions within 1 week. The dose was prescribed at the center of the planning target volume, giving more than an 80% dose at the planning target volume periphery. Results: For 28 patients treated with 48 Gy in four fractions, the overall actuarial survival rate at 3 years was 82% for those with Stage IA and 32% for those with Stage IB. For patients treated with 40 Gy in four fractions within 1 week, the overall actuarial survival rate at 3 years was 50% for those with Stage IA and 0% for those with Stage IB. A significant difference was found in local control between those with Stage IB who received 40 Gy vs. 48 Gy (p = 0.0015) but not in those with Stage IA (p = 0.5811). No serious radiation morbidity was observed with either dose schedule. Conclusion: The results of our study have shown that 48 Gy in four fractions within 1 week is a safe and effective treatment for peripherally located, Stage IA non-small-cell lung cancer. A steep dose-response curve between 40 and 48 Gy using a daily dose of 12 Gy delivered within 1 week was identified for Stage IB non-small-cell lung cancer in stereotactic body radiotherapy using real-time tumor tracking radiotherapy

  16. Smoking habits in the randomised Danish Lung Cancer Screening Trial with low-dose CT

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Saghir, Zaigham; Dirksen, Asger

    2014-01-01

    BACKGROUND: We present the final results of the effect of lung cancer screening with low-dose CT on the smoking habits of participants in a 5-year screening trial. METHODS: The Danish Lung Cancer Screening Trial (DLCST) was a 5-year screening trial that enrolled 4104 subjects; 2052 were randomised...... to annual low-dose CT (CT group) and 2052 received no intervention (control group). Participants were current and ex-smokers (≥4 weeks abstinence from smoking) with a tobacco consumption of ≥20 pack years. Smoking habits were determined annually. Missing values for smoking status at the final screening...... round were handled using two different models. RESULTS: There were no statistically significant differences in annual smoking status between the CT group and control group. Overall the ex-smoker rates (CT + control group) significantly increased from 24% (baseline) to 37% at year 5 of screening (p

  17. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  18. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    Energy Technology Data Exchange (ETDEWEB)

    Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-09-15

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D{sub 99%}), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from

  19. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    International Nuclear Information System (INIS)

    Bian Wenchao; Qi Liangchen

    2012-01-01

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125 I seeds with different doses, and to study the growth inhibition of 125 I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125 I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC 50 of the radioactive 125 I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC 50 of the radioactive 125 I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125 I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC 50 of the radioactive 125 I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125 I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125 I seeds has the stronger effect. The IC 50 of the radioactive 125 I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  20. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z [Rutgers Cancer Institute of New Jersey, New Brunswick, NJ (United States); Zou, J; Yue, N [Rutgers University, New Brunswick, NJ (United States); Zhang, M [Rutgers Cancer Institute of New Jersey, Rutgers The State University of New, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For alung V5 would associated with less complications. However, proton plans with a lower normal lung V5 could yield a higher gEUD than photon if the real “a” is larger than a-crossing. Since a-crossing was within the possible range of real “a”, simply following the normal lung V5 guideline for proton plan would not be a good practice. More comprehensive methods should be developed to evaluate the proton plan.

  1. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    International Nuclear Information System (INIS)

    Xiao, Z; Zou, J; Yue, N; Zhang, M

    2016-01-01

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For a< a-crossing, gEUD-proton was less than gEUD-photon and vice versa. Conclusion: The current clinical guideline is the lower normal lung V5 would associated with less complications. However, proton plans with a lower normal lung V5 could yield a higher gEUD than photon if the real “a” is larger than a-crossing. Since a-crossing was within the possible range of real “a”, simply following the normal lung V5 guideline for proton plan would not be a good practice. More comprehensive methods should be developed to evaluate the proton plan.

  2. SU-E-I-34: Evaluating Use of AEC to Lower Dose for Lung Cancer Screening CT Protocols

    International Nuclear Information System (INIS)

    Arbique, G; Anderson, J; Guild, J; Duan, X; Malguria, N; Omar, H; Brewington, C; Zhang, D

    2015-01-01

    Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD) image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems

  3. Response of mouse lung to irradiation at different dose-rates

    International Nuclear Information System (INIS)

    Hill, R.P.

    1983-01-01

    Groups of LAF1 mice were given thoracic irradiation using 60 Co γ-rays at dose-rates of 0.05 Gy/min (LDR) or 1.1 Gy/min (HDR) and the death of the animals was monitored as a function of time. It was found that the time pattern of animal deaths was similar for the two different dose-rates. Dose response curves for animals dying at various times up to 500 days after irradiation were calculated and the LD 50 values determined. The curves for the LD 50 values, plotted as a function of the time at analysis for treatment at HDR or LDR, were essentially parallel to each other but separated by a factor (LDR/HDR) of about 1.8. This indicates that the sparing effect of LDR treatment is the same for deaths occurring during the early pneumonitis phase or during the late fibrotic phase of lung damage. The available information on the response of patients to whole thoracic irradiation, given for either palliation or piror to bone marrow transplantation, suggests that for similar dose-rates to those studied here the ratio (LDR/HDR) is only 1.2 to 1.3. This difference between the animal and human data may reflect the modifying effect of the large doses of cytotoxic drugs used in combination with the irradiation of bone marrow transplant patients

  4. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung, and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis, which now is known to be unsupported by a large volume of data.

  5. Histomorphologic change of radiation pneumonitis in rat lungs: captopril reduces rat lung injury induced by irradiation

    International Nuclear Information System (INIS)

    Kim, Jin Hee

    1999-01-01

    To assess the histomorphologic changes in the rat lung injury induced by radiation, to determine whether captopril reduces the rat lung injury and to evaluate change in TNF-α and TGF β and rat lung damage by radiation and captopril. Right lungs in male Sprague-Dawley rats were divided irradiation alone (10, 20, 30 Gy) or radiation (same dose with radiation alone group) with captopril (500 mg/L). Radiation alone group were sacrificed at twelve hours and eleven weeks after radiation and radiation with captopril group (captopril group) were sacrificed at eleven weeks after radiation with captopril. We examined the light microscope and electron microscopic features in the groups. In radiation alone group, there were patch parenchymal collapse and consolidation at twelve hours after radiation. The increase of radiation dose shows more prominent the severity and broader the affected areas. Eleven weeks after radiation, the severity and areas of fibrosis had increased in proportion to radiation dose given in the radiation alone group. There was notable decrease of lung fibrosis in captopril group than in radiation alone group. The number of mast cells rapidly increased with increase of radiation dose in radiation alone group and the degree of increase of mast cell number and severity of collagen accumulation more decreased in captopril group than in radiation alone group. In radiation alone group expression of TNF-α and TGF-β] increased according to increase of radiation dose at twelve hours after radiation in both group. At eleven weeks after radiation, expression of TGF- P increased according to increase of radiation dose in radiation group but somewhat decreased in captopril group. In the captopril group the collagen deposition increased but less dense than those of radiation alone group. The severity of perivascular thickening, capillary change, the number and degranulation of mast cells more decreased in the captopril group than in the radiation alone group. It

  6. Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose

    Directory of Open Access Journals (Sweden)

    Hurkmans Coen W

    2008-07-01

    Full Text Available Abstract Purpose To investigate the influence of inhomogeneity corrections on stereotactic treatment plans for non-small cell lung cancer and determine the dose delivered to the PTV and OARs. Materials and methods For 26 patients with stage-I NSCLC treatment plans were optimized with unit density (UD, an equivalent pathlength algorithm (EPL, and a collapsed-cone (CC algorithm, prescribing 60 Gy to the PTV. After optimization the first two plans were recalculated with the more accurate CC algorithm. Dose parameters were compared for the three different optimized plans. Dose to the target and OARs was evaluated for the recalculated plans and compared with the planned values. Results For the CC algorithm dose constraints for the ratio of the 50% isodose volume and the PTV, and the V20 Gy are harder to fulfill. After recalculation of the UD and EPL plans large variations in the dose to the PTV were observed. For the unit density plans, the dose to the PTV varied from 42.1 to 63.4 Gy for individual patients. The EPL plans all overestimated the PTV dose (average 48.0 Gy. For the lungs, the recalculated V20 Gy was highly correlated to the planned value, and was 12% higher for the UD plans (R2 = 0.99, and 15% lower for the EPL plans (R2 = 0.96. Conclusion Inhomogeneity corrections have a large influence on the dose delivered to the PTV and OARs for SBRT of lung tumors. A simple rescaling of the dose to the PTV is not possible, implicating that accurate dose calculations are necessary for these treatment plans in order to prevent large discrepancies between planned and actually delivered doses to individual patients.

  7. Calculations of dose distributions in the lungs of a rat model irradiated in the thermal column of the TRIGA reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy)], E-mail: nicoletta.protti@pv.infn.it; Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy); Gadan, M.A. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); De Bari, A.; Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); Ferrari, C.; Clerici, A.M.; Zonta, C. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia (Italy); Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); Dionigi, P.; Zonta, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy)

    2009-07-15

    To test the possibility to apply boron neutron capture therapy (BNCT) to lung tumors, some rats are planned to be irradiated in the thermal column of the TRIGA reactor of University of Pavia. Before the irradiation, lung metastases will be induced in BDIX rats, which will be subsequently infused with boronophenylalanine (BPA). During the irradiation, the rats will be positioned in a box designed to shield the whole animal except the thorax area. In order to optimize the irradiation set-up and to design a suitable shielding box, a set of calculations were performed with the MCNP Monte Carlo transport code. A rat model was constructed using the MCNP geometry capabilities and was positioned in a box with walls filled with lithium carbonate. A window was opened in front of the lung region. Different shapes of the holder and of the window were tested and analyzed in terms of the dose distribution obtained in the lungs and of the dose absorbed by the radiosensitive organs in the rat. The best configuration of the holder ensures an almost uniform thermal neutron flux inside the lungs ({phi}{sub max}/{phi}{sub min}=1.5), an irradiation time about 10 min long, to deliver at least 40 Gy{sub w} to the tumor, a mean lung dose of 5.9{+-}0.4 Gy{sub w}, and doses absorbed by all the other healthy tissues below the tolerance limits.

  8. Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Mizuho, E-mail: nmizuho@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Matsumoto, Sumiaki, E-mail: sumatsu@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Seki, Shinichiro, E-mail: sshin@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Fujisawa, Yasuko, E-mail: yasuko1.fujisawa@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); and others

    2014-12-15

    Highlights: • Emphysema quantification (LAV% and D) was affected by image noise on low-dose CT. • For LAV% and D, AIDR 3D improved agreement of quantification on low-dose CT. • AIDR 3D has the potential to quantify emphysema accurately on low-dose CT. - Abstract: Purpose: To evaluate the effects of adaptive iterative dose reduction using 3D processing (AIDR 3D) for quantification of two measures of emphysema: percentage of low-attenuation volume (LAV%) and size distribution of low-attenuation lung regions. Method and materials: : Fifty-two patients who underwent standard-dose (SDCT) and low-dose CT (LDCT) were included. SDCT without AIDR 3D, LDCT without AIDR 3D, and LDCT with AIDR 3D were used for emphysema quantification. First, LAV% was computed at 10 thresholds from −990 to −900 HU. Next, at the same thresholds, linear regression on a log–log plot was used to compute the power law exponent (D) for the cumulative frequency-size distribution of low-attenuation lung regions. Bland–Altman analysis was used to assess whether AIDR 3D improved agreement between LDCT and SDCT for emphysema quantification of LAV% and D. Results: The mean relative differences in LAV% between LDCT without AIDR 3D and SDCT were 3.73%–88.18% and between LDCT with AIDR 3D and SDCT were −6.61% to 0.406%. The mean relative differences in D between LDCT without AIDR 3D and SDCT were 8.22%–19.11% and between LDCT with AIDR 3D and SDCT were 1.82%–4.79%. AIDR 3D improved agreement between LDCT and SDCT at thresholds from −930 to −990 HU for LAV% and at all thresholds for D. Conclusion: AIDR 3D improved the consistency between LDCT and SDCT for emphysema quantification of LAV% and D.

  9. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    International Nuclear Information System (INIS)

    Jong, W L; Ung, N M; Wong, J H D; Ng, K H

    2016-01-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved. (paper)

  10. Low-dose budesonide treatment improves lung function in patients with infrequent asthma symptoms at baseline

    DEFF Research Database (Denmark)

    Reddel, H. K.; Busse, W. W.; Pedersen, Søren

    2015-01-01

    symptom frequency groups (Figure). CONCLUSIONS: Long-term, once-daily, low-dose budesonide treatment plus usual asthma medication improves lung function in patients with mild, recent-onset asthma. These beneficial effects were seen even in patients with the lowest baseline asthma symptom frequency (0......RATIONALE: Inhaled corticosteroids (ICS) are highly effective in low doses for improving asthma outcomes, including lung function. In the past, ICS treatment was recommended for patients with 'persistent' asthma, defined by symptoms >2 days/week.1 However, evidence is lacking for the benefit of ICS...... in patients with less frequent symptoms at presentation. This was investigated in a post-hoc analysis of the multinational inhaled Steroid Treatment As Regular Therapy in early asthma (START) study.2 METHODS: Patients aged 4-66 years (median 21 years) with a history of recent-onset mild asthma (11 years...

  11. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    Science.gov (United States)

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  12. Association of High-Dose Ibuprofen Use, Lung Function Decline, and Long-Term Survival in Children with Cystic Fibrosis.

    Science.gov (United States)

    Konstan, Michael W; VanDevanter, Donald R; Sawicki, Gregory S; Pasta, David J; Foreman, Aimee J; Neiman, Evgueni A; Morgan, Wayne J

    2018-04-01

    Cystic fibrosis deaths result primarily from lung function loss, so chronic respiratory therapies, intended to preserve lung function, are cornerstones of cystic fibrosis care. Although treatment-associated reduction in rate of lung function loss should ultimately improve cystic fibrosis survival, no such relationship has been described for any chronic cystic fibrosis therapy. In part, this is because the ages of most rapid lung function decline-early adolescence-precede the median age of cystic fibrosis deaths by more than a decade. To study associations of high-dose ibuprofen treatment with the rate of forced expiratory volume in 1 second decline and mortality among children followed in the Epidemiologic Study of Cystic Fibrosis and subsequently in the U.S. Cystic Fibrosis Foundation Patient Registry. We performed a matched cohort study using data from Epidemiologic Study of Cystic Fibrosis. Exposure was defined as high-dose ibuprofen use reported at ≥80% of encounters over 2 years. Unexposed children were matched to exposed children 5:1 using propensity scores on the basis of demographic, clinical, and treatment covariates. The rate of decline of percent predicted forced expiratory volume in 1 second during the 2-year follow-up period was estimated by mixed-effects modeling with random slopes and intercepts. Survival over 16 follow-up years in the U.S. Cystic Fibrosis Foundation Patient Registry was compared between treatment groups by using proportional hazards modeling controlling for matching and covariates. We included 775 high-dose ibuprofen users and 3,665 nonusers who were well matched on demographic, clinical, and treatment variables. High-dose ibuprofen users declined on average 1.10 percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 0.51, 1.69) during the 2-year treatment period, whereas nonusers declined at a rate of 1.76% percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 1.48, 2

  13. Deterioration in lung function following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.

    1991-01-01

    Thirty-four patients receiving high-dose hemithorax irradiation as part of the treatment for pleural mesothelioma were studied with regard to changes in lung function following irradiation, and these changes were correlated with the radiologically-assessed lung injury. The latter was scored from 0 to 500 and found to be severe by 6 months (mean score 360), very severe by 9 months (mean score 430), and nearly total by 12 months (mean score 480) after treatment. Forced vital capacity and diffusing capacity both showed a significant decline at 1.5-2 months following the end of radiotherapy and thereafter up to the end of the 1 year follow-up period. Neither of these variables could be correlated consistently with the radiologically-assessed changes. Hypoxemia and pathological physiological shunting increased transiently 1-2 months after irradiation in 2 of the 6 patients monitored. The observed radiologically-assessed final effects of high-dose hemithorax irradiation are compatible with a total loss of lung function on the irradiated side. Before this form of treatment is used, lung function should be evaluated as for pneumonectomy

  14. Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: Effect on target and normal-structure dose-volume metrics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Mara W. [Broad Institute of MIT and Harvard, Cambridge, MA (United States); Department of Physics, Brandeis University, Waltham, MA (United States); Kato, Catherine M. [Macalester College, St. Paul, MN (United States); Carson, Kelly M.P. [The University of North Carolina, Chapel Hill, NC (United States); Matsunaga, Nathan M. [Santa Clara University, Santa Clara, CA (United States); Arao, Robert F. [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Doss, Emily J. [Department of Internal Medicine, Providence St. Vincent Medical Center, Portland, OR (United States); McCracken, Charles L. [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Meng, Lu Z. [Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA (United States); Chen, Yiyi [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Laub, Wolfram U.; Fuss, Martin [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States); Tanyi, James A., E-mail: tanyij@ohsu.edu [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States)

    2013-01-01

    To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non–small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60 Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ∼ 150% PD) for a 6-MV photon beam. Plan conformality, R{sub 50} (ratio of volume circumscribed by the 50% isodose line and the PTV), and D{sub 2} {sub cm} (D{sub max} at a distance ≥2 cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} Gy were assessed. Spinal cord and esophagus D{sub max} and D{sub 5}/D{sub 50} were computed. Chest wall (CW) D{sub max} and absolute V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} {sub Gy} were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V{sub 10}/V{sub 5} {sub Gy}, as well as contralateral CW D{sub max} and V{sub 10}/V{sub 5} {sub Gy} (all p < 0.001). Nominal reductions of D{sub max} and D{sub 5}/D{sub 50} for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R{sub 50} significantly improved with IMRT

  15. WE-B-207-00: CT Lung Cancer Screening Part 1

    International Nuclear Information System (INIS)

    2015-01-01

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  16. WE-B-207-00: CT Lung Cancer Screening Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  17. Dramatic response to high-dose icotinib in a lung adenocarcinoma patient after erlotinib failure.

    Science.gov (United States)

    Guan, Yin; Zhao, Hong; Meng, Jing; Yan, Xiang; Jiao, ShunChang

    2014-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) retreatment is rarely administered for non-small cell lung cancer (NSCLC) patients who did not respond to previous TKI treatment. A high dose of TKI may overcome resistance to the standard dose of TKI and have different effectiveness toward cancer compared with the standard dose of TKI. This manuscript describes a dramatic and durable response to high-dose icotinib in a NSCLC patient who did not respond to a previous standard dose of erlotinib. The treatment extended the life of the patient for one additional year. A higher dose of icotinib deserves further study not only for patients whose therapy failed with the standard dose of TKI but also for newly diagnosed NSCLC patients with a sensitive mutation. Serial mutation testing during disease development is necessary for analysis and evaluation of EGFR TKI treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Assessment of lung function in a large cohort of patients with acromegaly.

    Science.gov (United States)

    Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W

    2017-07-01

    Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P  acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.

  19. Stereotactic ablative radiotherapy for small lung tumors with a moderate dose. Favorable results and low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Duncker-Rohr, V.; Nestle, U. [Universitaetsklinikum Freiburg (Germany); Momm, F. [Ortenau Klinikum Offenburg (Germany)] [and others

    2013-01-15

    Background: Stereotactic ablative body radiotherapy (SBRT, SABR) is being increasingly applied because of its high local efficacy, e.g., for small lung tumors. However, the optimum dosage is still under discussion. Here, we report data on 45 lung lesions [non-small cell lung cancer (NSCLC) or metastases] in 39 patients treated between 2009 and 2010 by SABR. Patients and methods: SABR was performed with total doses of 35 Gy (5 fractions) or 37.5 Gy (3 fractions) prescribed to the 60% isodose line encompassing the planning target volume. Three-monthly follow-up CT scans were supplemented by FDG-PET/CT if clinically indicated. Results: The median follow-up was 17 months. Local progression-free survival rates were 90.5% (all patients), 95.0% (NSCLC), and 81.8% (metastases) at 1 year. At 2 years, the respective local progression-free survival rates were 80.5%, 95.0%, and 59.7%. Overall survival rates were 71.1% (all patients), 65.4% (NSCLC), and 83.3% (metastases) at 1 year. Overall survival rates at 2 years were 52.7%, 45.9%, and 66.7%, respectively. Acute side effects were mild. Conclusion: With the moderate dose schedule used, well-tolerated SABR led to favorable local tumor control as in other published series. Standardization in reporting the dose prescription for SABR is needed to allow comparison of different series in order to determine optimum dosage. (orig.)

  20. WE-B-207-01: CT Lung Cancer Screening and the Medical Physicist: Background, Findings and Participant Dosimetry Summary of the National Lung Screening Trial (NLST)

    International Nuclear Information System (INIS)

    Kruger, R.

    2015-01-01

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  1. WE-B-207-01: CT Lung Cancer Screening and the Medical Physicist: Background, Findings and Participant Dosimetry Summary of the National Lung Screening Trial (NLST)

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, R. [Marshfield Clinic, Marshfield, WI (United States)

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  2. Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis

    DEFF Research Database (Denmark)

    Wille, Mathilde M. W.; Thomsen, Laura H.; Petersen, Jens

    2016-01-01

    Objectives: Screening for lung cancer should be limited to a high-risk-population, and abnormalities in low-dose computed tomography (CT) screening images may be relevant for predicting the risk of lung cancer. Our aims were to compare the occurrence of visually detected emphysema and interstitial...... abnormalities in subjects with and without lung cancer in a screening population of smokers. Methods: Low-dose chest CT examinations (baseline and latest possible) of 1990 participants from The Danish Lung Cancer Screening Trial were independently evaluated by two observers who scored emphysema and interstitial...... abnormalities. Emphysema (lung density) was also measured quantitatively. Results: Emphysema was seen more frequently and its extent was greater among participants with lung cancer on baseline (odds ratio (OR), 1.8, p = 0.017 and p = 0.002) and late examinations (OR 2.6, p

  3. Fully automated bone mineral density assessment from low-dose chest CT

    Science.gov (United States)

    Liu, Shuang; Gonzalez, Jessica; Zulueta, Javier; de-Torres, Juan P.; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2018-02-01

    A fully automated system is presented for bone mineral density (BMD) assessment from low-dose chest CT (LDCT). BMD assessment is central in the diagnosis and follow-up therapy monitoring of osteoporosis, which is characterized by low bone density and is estimated to affect 12.3 million US population aged 50 years or older, creating tremendous social and economic burdens. BMD assessment from DXA scans (BMDDXA) is currently the most widely used and gold standard technique for the diagnosis of osteoporosis and bone fracture risk estimation. With the recent large-scale implementation of annual lung cancer screening using LDCT, great potential emerges for the concurrent opportunistic osteoporosis screening. In the presented BMDCT assessment system, each vertebral body is first segmented and labeled with its anatomical name. Various 3D region of interest (ROI) inside the vertebral body are then explored for BMDCT measurements at different vertebral levels. The system was validated using 76 pairs of DXA and LDCT scans of the same subject. Average BMDDXA of L1-L4 was used as the reference standard. Statistically significant (p-value correlation is obtained between BMDDXA and BMDCT at all vertebral levels (T1 - L2). A Pearson correlation of 0.857 was achieved between BMDDXA and average BMDCT of T9-T11 by using a 3D ROI taking into account of both trabecular and cortical bone tissue. These encouraging results demonstrate the feasibility of fully automated quantitative BMD assessment and the potential of opportunistic osteoporosis screening with concurrent lung cancer screening using LDCT.

  4. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-01-01

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing

  5. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Oetzel, Dieter; Schraube, Peter; Hensley, Frank; Sroka-Perez, Gabriele; Menke, Markus; Flentje, Michael

    1995-01-01

    Purpose: Investigations to study correlations between the estimations of biophysical models in three dimensional (3D) treatment planning and clinical observations are scarce. The development of clinically symptomatic pneumonitis in the radiotherapy of thoracic malignomas was chosen to test the predictive power of Lyman's normal tissue complication probability (NTCP) model for the assessment of side effects for nonuniform irradiation. Methods and Materials: In a retrospective analysis individual computed-tomography-based 3D dose distributions of a random sample of (46(20)) patients with lung/esophageal cancer were reconstructed. All patients received tumor doses between 50 and 60 Gy in a conventional treatment schedule. Biological isoeffective dose-volume histograms (DVHs) were used for the calculation of complication probabilities after applying Lyman's and Kutcher's DVH-reduction algorithm. Lung dose statistics were performed for single lung (involved ipsilateral and contralateral) and for the lung as a paired organ. Results: In the lung cancer group, about 20% of the patients (9 out of 46) developed pneumonitis 3-12 (median 7.5) weeks after completion of radiotherapy. For the majority of these lung cancer patients, the involved ipsilateral lung received a much higher dose than the contralateral lung, and the pneumonitis patients had on average a higher lung exposure with a doubling of the predicted complication risk (38% vs. 20%). The lower lung exposure for the esophagus patients resulted in a mean lung dose of 13.2 Gy (lung cancer: 20.5 Gy) averaged over all patients in correlation with an almost zero complication risk and only one observed case of pneumonitis (1 out of 20). To compare the pneumonitis risk estimations with observed complication rates, the patients were ranked into bins of mean ipsilateral lung dose. Particularly, in the bins with the highest patient numbers, a good correlation was achieved. Agreement was not reached for the lung functioning as

  6. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes.

    Science.gov (United States)

    Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil

    2017-02-01

    The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.

  7. A national survey of lung cancer specialists' views on low-dose CT screening for lung cancer in Korea.

    Directory of Open Access Journals (Sweden)

    Dong Wook Shin

    Full Text Available Lung cancer specialists play an important role in designing and implementing lung cancer screening. We aimed to describe their 1 attitudes toward low-dose lung computed tomography (LDCT screening, 2 current practices and experiences of LDCT screening and 3 attitudes and opinions towards national lung cancer screening program (NLCSP. We conducted a national web-based survey of pulmonologists, thoracic surgeons, medical oncologists, and radiological oncologists who are members of Korean Association for Lung Cancer (N = 183. Almost all respondents agreed that LDCT screening increases early detection (100%, improves survival (95.1%, and gives a good smoking cessation counseling opportunity (88.6%. Most were concerned about its high false positive results (79.8% and the subsequent negative effects. Less than half were concerned about radiation hazard (37.2%. Overall, most (89.1% believed that the benefits outweigh the risks and harms. Most (79.2% stated that they proactively recommend LDCT screening to those who are eligible for the current guidelines, but the screening propensity varied considerably. The majority (77.6% agreed with the idea of NLCSP and its beneficial effect, but had concerns about the quality control of CT devices (74.9%, quality assurance of radiologic interpretation (63.3%, poor access to LDCT (56.3%, and difficulties in selecting eligible population using self-report history (66.7%. Most (79.2% thought that program need to be funded by a specialized fund rather than by the National Health Insurance. The opinions on the level of copayment for screening varied. Our findings would be an important source for health policy decision when considering for NLCSP in Korea.

  8. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  9. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  10. Development of irradiation techniques and assessment of tumor response carbon ion radiotherapy in ultra-short fraction and time for a small lung cancer

    International Nuclear Information System (INIS)

    Baba, Masayuki; Miyamoto, Tadaaki; Sugawara, Toshiyuki

    2005-01-01

    For planning safety carbon therapy for lung cancer, the minimum (threshold) dose to generate lung reaction on CT image was investigated at each fraction regimen. From 1995 January to 2003 December, 44 patients with stage I non-small cell lung cancer who were treated with carbon ion beams of various fractions (1-12 fractions a port) and total doses (28-90 GyE). The 78 irradiated fields for the early reaction (within 6 months) and 67 for the late (1 year after) were divided into the two groups: the positive (+) and the negative (-) after the reactions on CT image were graded according to Libshits's criteria. The α/βvalue of biological effective dose (BED) responsive curve was determined by assuming the biserial correlation coefficient between positive rate of lung reaction and BED dose. From the BED responsive curve, in turn, the dose responsive curve for lung reaction rate at each fraction regimen was obtained. Based on the curve, D10 (to generate the lung reaction at 10% of the patients) in single fraction regimen was determined to be 10.6 GyE for the late reaction and 9.96 GyE for the early reaction, respectively. These doses seem to be very useful to estimate lung injuries in singe-dose irradiation. (author)

  11. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Castillo, Richard; Castillo, Edward; Tucker, Susan L.; Liao, Zhongxing; Guerrero, Thomas; Martel, Mary K.

    2013-01-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dose–volume and ventilation-based dose function metrics were computed for each patient. The ability of the dose–volume and ventilation-based dose–function metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dose–function metrics (range P=.093-.250) than for their dose–volume equivalents (range, P=.331-.580). The AUC values were all greater for the dose–function metrics (range, 0.569-0.620) than for their dose–volume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dose–function metrics compared to dose–volume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests

  12. WE-FG-207B-07: Feasibility of Low Dose Lung Cancer Screening with a Whole-Body Photon Counting CT: First Human Results

    International Nuclear Information System (INIS)

    Symons, R; Cork, T; Folio, L; Bluemke, D; Pourmorteza, A

    2016-01-01

    Purpose: To evaluate the feasibility of using a whole-body photon counting detector (PCD) CT scanner for low dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Methods: Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom and 2 human volunteers were acquired. Phantom images were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp), while human images were acquired at vendor recommended low-dose lung cancer screening settings. EID and PCD images were compared for quantitative Hounsfield unit accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGNs) and emphysema. Results: The PCD Hounsfield unit accuracy was better for water at all scan parameters, and for lung, GGN and emphysema equivalent regions of interest (ROIs) at 1.5 and 0.75 mGy. PCD attenuation accuracy was more consistent for all scan parameters (all P<0.01), while Hounsfield units for lung, GGN and emphysema ROIs changed significantly for EID with decreasing dose (all P<0.001). PCD showed lower noise levels at the lowest dose setting at 120, 100 and 80 kVp (15.2±0.3 vs 15.8±0.2, P=0.03; 16.1±0.3 vs 18.0±0.4, P=0.003; and 16.1±0.3 vs 17.9±0.3, P=0.001, respectively), resulting in superior CNR for the detection of GGNs and emphysema at 100 and 80 kVp. Significantly lower PCD noise levels were confirmed in volunteer images. Conclusion: PCD provided better Hounsfield unit accuracy for lung, ground-glass, and emphysema-equivalent foams at 1.5 and 0.75 mGy with less variability than EID. Additionally, PCD showed less noise, and higher CNR at 0.75 mGy for both 100 and 80 kVp. PCD technology may help reduce radiation exposure in lung cancer screening while maintaining diagnostic quality.

  13. WE-FG-207B-07: Feasibility of Low Dose Lung Cancer Screening with a Whole-Body Photon Counting CT: First Human Results

    Energy Technology Data Exchange (ETDEWEB)

    Symons, R; Cork, T; Folio, L; Bluemke, D; Pourmorteza, A [National Institutes of Health Clinical Center, Bethesda, MD (United States)

    2016-06-15

    Purpose: To evaluate the feasibility of using a whole-body photon counting detector (PCD) CT scanner for low dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Methods: Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom and 2 human volunteers were acquired. Phantom images were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp), while human images were acquired at vendor recommended low-dose lung cancer screening settings. EID and PCD images were compared for quantitative Hounsfield unit accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGNs) and emphysema. Results: The PCD Hounsfield unit accuracy was better for water at all scan parameters, and for lung, GGN and emphysema equivalent regions of interest (ROIs) at 1.5 and 0.75 mGy. PCD attenuation accuracy was more consistent for all scan parameters (all P<0.01), while Hounsfield units for lung, GGN and emphysema ROIs changed significantly for EID with decreasing dose (all P<0.001). PCD showed lower noise levels at the lowest dose setting at 120, 100 and 80 kVp (15.2±0.3 vs 15.8±0.2, P=0.03; 16.1±0.3 vs 18.0±0.4, P=0.003; and 16.1±0.3 vs 17.9±0.3, P=0.001, respectively), resulting in superior CNR for the detection of GGNs and emphysema at 100 and 80 kVp. Significantly lower PCD noise levels were confirmed in volunteer images. Conclusion: PCD provided better Hounsfield unit accuracy for lung, ground-glass, and emphysema-equivalent foams at 1.5 and 0.75 mGy with less variability than EID. Additionally, PCD showed less noise, and higher CNR at 0.75 mGy for both 100 and 80 kVp. PCD technology may help reduce radiation exposure in lung cancer screening while maintaining diagnostic quality.

  14. A case of central type early stage lung cancer receiving 60Co high dose-rate postoperative endobronchial radiation

    International Nuclear Information System (INIS)

    Nakamori, Syouji; Kodama, Ken; Kurokawa, Eiji; Doi, Osamu; Terasawa, Toshio; Chatani, Masashi; Inoue, Toshihiko; Tateishi, Ryuhei

    1985-01-01

    Right middle-lower lobectomy and mediastinal lymph node dissection were performed for a case of central type early stage lung cancer. Tumor extended very closely to the line of incision margin of the resected specimen, appearing as carcinoma in situ. To inprove curativity, postoperative radiation therapy was performed with 60 Co high dose-rate endobronchial radiation by a remote afterloading system. A total dose of 40Gy was administered to the target area without any severe side effects. The patient is healthy and has no evidence of metastasis. This procedure is considered to be an effective treatment for postoperative lung cancer with possible residual malignancy. (author)

  15. WE-B-207-02: CT Lung Cancer Screening and the Medical Physicist: A Dosimetry Summary of CT Participants in the National Lung Cancer Screening Trial (NLST)

    International Nuclear Information System (INIS)

    Lee, C.

    2015-01-01

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  16. WE-B-207-02: CT Lung Cancer Screening and the Medical Physicist: A Dosimetry Summary of CT Participants in the National Lung Cancer Screening Trial (NLST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. [National Cancer Institute (United States)

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  17. Lung and heart dose volume analyses with CT simulator in radiation treatment of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Freedman, Gary; Fowble, Barbara

    1998-01-01

    Purpose: Radiation pneumonitis and cardiac effects are directly related to the irradiated lung and heart volumes in the treatment fields. The central lung distance (CLD) from a tangential breast radiograph is shown to be a significant indicator of ipsilateral irradiated lung volume. Retrospective analysis of the pattern of dose volume of lung and heart with actual volume data from a CT simulator in the treatment of breast cancer is presented with respect to CLD. Methods and Materials: The heart and lung volumes in the tangential treatment fields were analyzed in 108 consecutive cases (52 left and 56 right breast) referred for CT simulation. All patients in this study were immobilized and placed on an inclined breast board in actual treatment setup. Both arms were stretched over head to avoid collision with the scanner aperture. Radiopaque marks were placed on the medial and lateral borders of the tangential fields. All patients were scanned in spiral mode with slice width and thickness of 3 mm each, respectively. The lung and heart structures as well as irradiated areas were delineated on each slice and respective volumes were accurately measured. The treatment beam parameters were recorded and the digitally reconstructed radiographs (DRRs) were generated for the measurement of the CLD and analysis. Results: Using CT data the mean volume and standard deviation of left and right lungs were 1307.7 ± 297.7 cm 3 and 1529.6 ± 298.5 cm 3 , respectively. The magnitude of irradiated volume in left and right lung is nearly equal for the same CLD that produces different percent irradiated volumes (PIV). The left and right PIV lungs are 8.3 ± 4.7% and 6.6 ± 3.7%, respectively. The PIV data have shown to correlate with CLD with second- and third-degree polynomials; however, in this study a simple straight line regression is used to provide better confidence than the higher order polynomials. The regression lines for the left and right breasts are very different based on

  18. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Wang, Changlu; Nakayama, Hidetsugu; Sugahara, Shinji; Sakae, Takeji; Tokuuye, Koichi

    2009-01-01

    Dose-volume histograms (DVHs) were reviewed to determine if there is an advantage of the two modalities when treating patients with non-small cell lung cancer (NSCLC). 24 stage I NSCLC patients who underwent proton-beam therapy (PBT) from June 2003 to May 2007 were included in this study. Based on the same clinical target volumes (CTVs), treatment planning was made to cover CTV within 90% isodose lines. Each patient was evaluated by two sets of DVHs, one for PBT and the other for three-dimensional conformal X-ray therapy (3D-CRT). For all patients, the 95% isodose line covered 86.4% of the CTV for PBT, and 43.2% for 3D-CRT. PBT was associated with significantly lower mean doses to the ipsilateral lung, total lung, heart, esophagus, and spinal cord than 3D-CRT. PBT offered reduced radiation doses to the lung when evaluated in terms of percentage lung volumes receiving ≥ 5 Gy (V 5 ), ≥ 10 Gy (V 10 ), and ≥ 20 Gy (V 20 ) when compared to 3D-CRT. PBT is advantageous over 3D-CRT in reducing doses to the lung, heart, esophagus, and spinal cord in treating stage I NSCLC. (orig.)

  19. Application of a simple phantom in assessing the effects of dose reduction on image quality in chest radiography

    International Nuclear Information System (INIS)

    Egbe, N.O.; Heaton, B.; Sharp, P.F.

    2010-01-01

    Purpose: Firstly, to evaluate a commercial chest phantom incorporating a quasi anthropomorphic insert by comparing exposure measurements on the phantom with those of actual patients and, secondly, to assess the value of the phantom for image quality and dose optimisation. Methods: In the first part of the study entrance surface doses (ESD), Beam transmission (BT), and optical density (OD) were obtained for 77 chest radiography patients and compared with measurements made from exposures of the phantom using the respective patient exposure factors from chest examination. Differences were assessed with a student t-test, while the Pearson's linear correlation coefficient was used to test for any linear relationship. The second part assessed the applicability of the phantom to image quality studies by investigating the effect, on the clarity and detectability of lung lesions made from gelatine, of reducing patient dose below current dose levels. Clarity of linear objects of different dimensions was also studied. Lesion detectability and clarity was assessed by four observers. The possibility of extending dose reduction below current dose levels (D ref ) was assessed from comparison of doses that produced statistically significant differences in image quality from D ref . Results: Results show that, with the exception of entrance doses and beam transmission through the diaphragm (P > 0.05), differences in OD and beam transmission between patients and phantom were statistically significant (P ref produced significant changes in both clarity and detectability. Conclusion: Within limits posed by the observed differences, the phantom can be applied to image quality studies in diagnostic radiology.

  20. European position statement on lung cancer screening

    DEFF Research Database (Denmark)

    Oudkerk, Matthijs; Devaraj, Anand; Vliegenthart, Rozemarijn

    2017-01-01

    Lung cancer screening with low-dose CT can save lives. This European Union (EU) position statement presents the available evidence and the major issues that need to be addressed to ensure the successful implementation of low-dose CT lung cancer screening in Europe. This statement identified...... specific actions required by the European lung cancer screening community to adopt before the implementation of low-dose CT lung cancer screening. This position statement recommends the following actions: a risk stratification approach should be used for future lung cancer low-dose CT programmes...... need to set a timeline for implementing lung cancer screening....

  1. Dose distribution of IMRT and 3D-CRT on treating central non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Zhu Xiaoyang; Yu Guangwei

    2010-01-01

    3D-CRT and IMRT were used in the radiation therapy of Central Non-small-cell lung cancer (NSCLC), and the dose difference of the methods was estimated. Thirty-two patients suffering with II class NSCLC were selected. Based on CT images, each patient was given 1 3D-CRT (3 dimensional conformal radiotherapy) and 2 IMRT(intensity modulated radiation therapy) treatment plans (5 fields and 7 fields), respectively, and the dose distribution was evaluated too. The results showed that PTVD mean and the PTV max , PTVD max (%) and CI of IMRT were both higher than those of 3D-CRT, but the uniformity was not as good as 3D-CRT. All indexes of lung and spinal cord treated with IMRT were lower than that treated with 3D-CRT. Moreover, there was no significance of the difference between 5 fields and 7 fields. In a conclusion, IMRT could not only decrease the target dose of NSCLC, but it can protect normal tissue from radiation damage effectively. And when IMRT was used, 5 fields might be enough. (authors)

  2. The use of the multislice CT for the determination of respiratory lung tumor movement in stereotactic single-dose irradiation

    International Nuclear Information System (INIS)

    Hof, H.; Herfarth, K.K.; Muenter, M.; Debus, J.; Essig, M.; Wannenmacher, M.

    2003-01-01

    Background: In three-dimensional (3-D) precision high-dose radiation therapy of lung tumors, the exact definition of the planning target volume (PTV) is indispensable. Therefore, the feasibility of a 3-D determination of respiratory lung tumor movements by the use of a multislice CT scanner was investigated. Patients and Methods: The respiratory motion of 21 lung tumors in 20 consecutively treated patients was examined. An abdominal pressure device for the reduction of respiratory movement was used in 14 patients. Two regions of the tumor were each scanned repeatedly at the same table position, showing four simultaneously acquired slices for each cycle. Stereotactic coordinates were determined for one anatomic reference point in each tumor region (Figure 1). The 3-D differences of these coordinates between the sequentially obtained cycles were assessed (Figure 2), and a correlation with the tumor localization was performed. Results: In the craniocaudal (Z-)direction the mean tumor movement was 5.1 mm (standard deviation [SD] 2.4 mm, maximum 10 mm), in the ventrodorsal (Y-)direction 3.1 mm (SD 1.5 mm, maximum 6.7 mm), and in the lateral (X-)direction 2.6 mm (SD 1.4 mm, maximum 5.8 mm; Figures 3 to 5). Inter- and intraindividual differences were present in each direction. With an abdominal pressure device no clinically significant difference between tumors in different locations was seen. Conclusion: The 3-D assessment of lung tumor movements due to breathing is possible by the use of multislice CT. The determination, indispensable to the PTV definition, should be performed individually for several regions, because of the inter- and intraindividual deviations detected. (orig.)

  3. Screening for early lung cancer with low-dose spiral computed tomography: results of annual follow-up examinations in asymptomatic smokers

    International Nuclear Information System (INIS)

    Diederich, Stefan; Thomas, Michael; Semik, Michael; Lenzen, Horst; Roos, Nikolaus; Weber, Anushe; Heindel, Walter; Wormanns, Dag

    2004-01-01

    The aim of this study was analysis of incidence results in a prospective one-arm feasibility study of lung cancer screening with low-radiation-dose spiral computed tomography in heavy smokers. Eight hundred seventeen smokers (≥40 years, ≥20 pack years of smoking history) underwent baseline low-dose CT. Biopsy was recommended in nodules >10 mm with CT morphology suggesting malignancy. In all other lesions follow-up with low-dose CT was recommended. Annual repeat CT was offered to all study participants. Six hundred sixty-eight (81.8%) of the 817 subjects underwent annual repeat CT with a total of 1735 follow-up years. Follow-up of non-calcified nodules present at baseline CT demonstrated growth in 11 of 792 subjects. Biopsy was performed in 8 of 11 growing nodules 7 of which represented lung cancer. Of 174 new nodules, 3 represented lung cancer. The 10 screen-detected lung cancers were all non-small cell cancer (6 stage IA, 1 stage IB, 1 stage IIIA, 2 stage IV). Five symptom-diagnosed cancers (2 small cell lung cancer: 1 limited disease, 1 extensive disease, 3 central/endobronchial non-small cell lung cancer, 2 stage IIIA, 1 stage IIIB) were diagnosed because of symptoms in the 12-month interval between two annual CT scans. Incidence of lung cancer was lower than prevalence, screen-detected cancers were smaller, and stage I was found in 70% (7 of 10) of screen-detected tumors. Only 27% (4 of 15) of invasive procedures was performed for benign lesions; however, 33% (5 of 15) of all cancers diagnosed in the population were symptom-diagnosed cancers (3 central NSCLC, all stage III, 2 SCLC) demonstrating the limitations of CT screening. (orig.)

  4. Lung cancer after internal alpha-exposure of the lung from incorporated plutonium

    International Nuclear Information System (INIS)

    Mikhail, S.

    2004-01-01

    Several epidemiological studies among workers of first Russian nuclear complex Mayak which produced weapon-grade plutonium showed significant increase of lung cancer mortality. The estimated shape of the dose-response was linear with both alpha and gamma dose but risk coefficients for gamma-exposure are on the edge of the significance level. This study was performed in the cohort of male Mayak nuclear workers initially hired in 1948-1958 with known levels of plutonium exposure. Number of observed lung cancer cases available for analyses in this cohort was 217. The relative risk of death from lung cancer among smokers was 10.7 (5.5-25.2) comparatively to non-smokers. This is in good correspondence with results of other studies. The excess relative risk per one Gray was 63. (4.1-9.7) for internal alpha-exposure and 0.18 (0.01-0.5) for external gamma-exposure. According to a model this gives 16:112:60:29 cases of lung cancer attributed to background, smoking, internal alpha-and external gamma-exposure, correspondingly. The relative risks of death from lung cancer were also estimated in a nested case-control study with lung cancer deaths as cases. Controls were selected from the cohort and matched for birth year to account for trend in lung cancer mortality with time. The analyses with nested case-control approach gave relative risks for smoking 14.7 (6.8-38.9). Relative risk of lung cancer among non-smokers after accumulating 0.34 Gy of alpha-exposure to lung was 3.7 (1.7-9.0). It should be emphasized that in fact after accumulation 0.3-0.4 Gy of absorbed dose 3-4 fold increase in lung cancer mortality was observed. This dose is very close to the dose which would be produced after intake of plutonium in quantities which are permissible today. (Author)

  5. Assessment of prior image induced nonlocal means regularization for low-dose CT reconstruction: Change in anatomy.

    Science.gov (United States)

    Zhang, Hao; Ma, Jianhua; Wang, Jing; Moore, William; Liang, Zhengrong

    2017-09-01

    Repeated computed tomography (CT) scans are prescribed for some clinical applications such as lung nodule surveillance. Several studies have demonstrated that incorporating a high-quality prior image into the reconstruction of subsequent low-dose CT (LDCT) acquisitions can either improve image quality or reduce data fidelity requirements. Our proposed previous normal-dose image induced nonlocal means (ndiNLM) regularization method for LDCT is an example of such a method. However, one major concern with prior image based methods is that they might produce false information when the prior image and the current LDCT image show different structures (for example, if a lung nodule emerges, grows, shrinks, or disappears over time). This study aims to assess the performance of the ndiNLM regularization method in situations with change in anatomy. We incorporated the ndiNLM regularization into the statistical image reconstruction (SIR) framework for reconstruction of subsequent LDCT images. Because of its patch-based search mechanism, a rough registration between the prior image and the current LDCT image is adequate for the SIR-ndiNLM method. We assessed the performance of the SIR-ndiNLM method in lung nodule surveillance for two different scenarios: (a) the nodule was not found in a baseline exam but appears in a follow-up LDCT scan; (b) the nodule was present in a baseline exam but disappears in a follow-up LDCT scan. We further investigated the effect of nodule size on the performance of the SIR-ndiNLM method. We found that a relatively large search-window (e.g., 33 × 33) should be used for the SIR-ndiNLM method to account for misalignment between the prior image and the current LDCT image, and to ensure that enough similar patches can be found in the prior image. With proper selection of other parameters, experimental results with two patient datasets demonstrated that the SIR-ndiNLM method did not miss true nodules nor introduce false nodules in the lung nodule

  6. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Yeun; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang Ok [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee [Dept. of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

  7. Effects of genistein following fractionated lung irradiation in mice

    International Nuclear Information System (INIS)

    Para, Andrea E.; Bezjak, Andrea; Yeung, Ivan W.T.; Van Dyk, Jake; Hill, Richard P.

    2009-01-01

    Background and purpose: This study investigated protection of lung injury by genistein following fractionated doses of radiation and its effect on tumor response. Material and methods: C3H/HeJ mice were irradiated (100 kVp X-rays) with 9 fractions of 3.1 Gy over 30 days (approximately equivalent to 10 Gy single dose) and were maintained on a genistein diet (∼10 mg/kg). Damage was assessed over 28 weeks in lung cells by a cytokinesis block micronucleus (MN) assay and by changes in breathing rate and histology. Tumor protection was assessed using a colony assay to determine cell survival following in situ irradiation of small lung nodules (KHT fibrosarcoma). Results: Genistein caused about a 50% reduction in the MN damage observed during the fractionated radiation treatment and this damage continued to decrease at later times to background levels by 16 weeks. In mice not receiving Genistein MN levels remained well above background out to 28 weeks after irradiation. Genistein reduced macrophage accumulation by 22% and reduced collagen deposition by 28%. There was minimal protection against increases in breathing rate or severe morbidity during pneumonitis. No tumor protection by genistein treatment was observed. Conclusions: Genistein at the dose levels used in this study partially reduced the extent of fibrosis developing in mouse lung caused by irradiation but gave minimal protection against pneumonitis. There was no evidence that genistein caused protection of small tumors growing in the lung.

  8. Consultative exercise on dose assessments.

    Science.gov (United States)

    Bridges, B A; Parker, T; Simmonds, J R; Sumner, D

    2001-06-01

    A summary is given of a meeting held at Sussex University, UK, in October 2000, which allowed the exchange of ideas on methods of assessment of dose to the public arising from potential authorised radioactive discharges from nuclear sites in the UK. Representatives of groups with an interest in dose assessments were invited, and hence the meeting was called the Consultative Exercise on Dose Assessments (CEDA). Although initiated and funded by the Food Standards Agency, its organisation, and the writing of the report, were overseen by an independent Chairman and Steering Group. The report contains recommendations for improvement in co-ordination between different agencies involved in assessments, on method development and on the presentation of data on assessments. These have been prepared by the Steering Group, and will be taken forward by the Food Standards Agency and other agencies in the UK. The recommendations are included in this memorandum.

  9. Individualized Dose Prescription for Hypofractionation in Advanced Non-Small-Cell Lung Cancer Radiotherapy: An in silico Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Aswin L.; Troost, Esther G.C.; Huizenga, Henk; Kaanders, Johannes H.A.M. [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Bussink, Johan, E-mail: j.bussink@rther.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands)

    2012-08-01

    Purpose: Local tumor control and outcome remain poor in patients with advanced non-small-cell lung cancer (NSCLC) treated by external beam radiotherapy. We investigated the therapeutic gain of individualized dose prescription with dose escalation based on normal tissue dose constraints for various hypofractionation schemes delivered with intensity-modulated radiation therapy. Methods and Materials: For 38 Stage III NSCLC patients, the dose level of an existing curative treatment plan with standard fractionation (66 Gy) was rescaled based on dose constraints for the lung, spinal cord, esophagus, brachial plexus, and heart. The effect on tumor total dose (TTD) and biologic tumor effective dose in 2-Gy fractions (TED) corrected for overall treatment time (OTT) was compared for isotoxic and maximally tolerable schemes given in 15, 20, and 33 fractions. Rescaling was accomplished by altering the dose per fraction and/or the number of fractions while keeping the relative dose distribution of the original treatment plan. Results: For 30 of the 38 patients, dose escalation by individualized hypofractionation yielded therapeutic gain. For the maximally tolerable dose scheme in 33 fractions (MTD{sub 33}), individualized dose escalation resulted in a 2.5-21% gain in TTD. In the isotoxic schemes, the number of fractions could be reduced with a marginal increase in TED. For the maximally tolerable dose schemes, the TED could be escalated up to 36.6%, and for all patients beyond the level of the isotoxic and the MTD{sub 33} schemes (range, 3.3-36.6%). Reduction of the OTT contributed to the therapeutic gain of the shortened schemes. For the maximally tolerable schemes, the maximum esophageal dose was the dominant dose-limiting constraint in most patients. Conclusions: This modeling study showed that individualized dose prescription for hypofractionation in NSCLC radiotherapy, based on scaling of existing treatment plans up to normal tissue dose constraints, enables dose

  10. Cumulative Lung Dose for Several Motion Management Strategies as a Function of Pretreatment Patient Parameters

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Campbell, Jonathon; Zhang Tiezhi; Yan Di

    2009-01-01

    Purpose: To evaluate patient parameters that may predict for relative differences in cumulative four-dimensional (4D) lung dose among several motion management strategies. Methods and Materials: Deformable image registration and dose accumulation were used to generate 4D treatment plans for 18 patients with 4D computed tomography scans. Three plans were generated to simulate breath hold at normal inspiration, target tracking with the beam aperture, and mid-ventilation aperture (control of the target at the mean daily position and application of an iteratively computed margin to compensate for respiration). The relative reduction in mean lung dose (MLD) between breath hold and mid-ventilation aperture (ΔMLD BH ) and between target tracking and mid-ventilation aperture (ΔMLD TT ) was calculated. Associations between these two variables and parameters of the lesion (excursion, size, location, and deformation) and dose distribution (local dose gradient near the target) were also calculated. Results: The largest absolute and percentage differences in MLD were 1.0 Gy and 21.5% between breath hold and mid-ventilation aperture. ΔMLD BH was significantly associated (p TT was significantly associated with excursion, deformation, and local dose gradient. A linear model was constructed to represent ΔMLD vs. excursion. For each 5 mm of excursion, target tracking reduced the MLD by 4% compared with the results of a mid-ventilation aperture plan. For breath hold, the reduction was 5% per 5 mm of excursion. Conclusions: The relative difference in MLD among different motion management strategies varied with patient and tumor characteristics for a given dosimetric target coverage. Tumor excursion is useful to aid in stratifying patients according to appropriate motion management strategies.

  11. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    International Nuclear Information System (INIS)

    Lopez-Rendon, X.; Bosmans, H.; Zanca, F.; Oyen, R.

    2015-01-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  12. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  13. Recent developments in human biomonitoring: non-invasive assessment of target tissue dose and effects of pneumotoxic metals.

    Science.gov (United States)

    Mutti, A; Corradi, M

    2006-01-01

    Tobacco smoke and polluted environments substantially increase the lung burden of pneumotoxic chemicals, particularly pneumotoxic metallic elements. To achieve a better understanding of the early events between exposure to inhaled toxicants and the onset of adverse effects on the lung, the characterization of dose at the target organ would be extremely useful. Exhaled breath condensate (EBC), obtained by cooling exhaled air under conditions of spontaneous breathing, is a novel technique that could provide a non-invasive assessment of pulmonary pathobiology. Considering that EBC is water practically free of interfering solutes, it represents an ideal biological matrix for elemental characterization. Published data show that several toxic metals and trace elements are detectable in EBC, raising the possibility of using this medium to quantify the lung tissue dose of pneumotoxic substances. This novel approach may represent a significant advance over the analysis of alternative media (blood, serum, urine, hair), which are not as reliable (owing to interfering substances in the complex matrix) and reflect systemic rather than lung (target tissue) levels of both toxic metals and essential trace elements. Data obtained among workers occupationally exposed to either hard metals or chromium (VI) and in smokers with or without chronic obstructive pulmonary disease (COPD) are reviewed to show that--together with biomarkers of exposure--EBC also allows the simultaneous quantification of biomarkers of effect directly sampled from the epithelial lining fluid, thus providing novel insights on both kinetic and dynamic aspects of metal toxicology.

  14. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  15. Preliminary assessment of the dose to the interventional radiologist in fluoro-CT-guided procedures

    International Nuclear Information System (INIS)

    Pereira, M. F.; Alves, J. G.; Sarmento, S.; Santos, J. A. M.; Sousa, M. J.; Gouvea, M.; Oliveira, A. D.; Cardoso, J. V.; Santos, L. M.

    2011-01-01

    A preliminary assessment of the occupational dose to the intervention radiologist received in fluoroscopy computerised tomography (CT) used to guide the collection of lung and bone biopsies is presented. The main aim of this work was to evaluate the capability of the reading system as well as of the available whole-body (WB) and extremity dosemeters used in routine monthly monitoring periods to measure per procedure dose values. The intervention radiologist was allocated 10 WB detectors (LiF: Mg, Ti, TLD-100) placed at chest and abdomen levels above and below the lead apron, and at both right and left arms, knees and feet. A special glove was developed with casings for the insertion of 11 extremity detectors (LiF:Mg, Cu, P, TLD-100H) for the identification of the most highly exposed fingers. The H p (10) dose values received above the lead apron (ranged 0.20-0.02 mSv) depend mainly on the duration of the examination and on the placement of physician relative to the beam, while values below the apron are relatively low. The left arm seems to receive a higher dose value. H p (0.07) values to the hand (ranged 36.30-0.06 mSv) show that the index, middle and ring fingers are the most highly exposed. In this study, the wrist dose was negligible compared with the finger dose. These results are preliminary and further studies are needed to better characterise the dose assessment in CT fluoroscopy. (authors)

  16. Whole body exposure of mice to secondhand smoke induces dose-dependent and persistent promutagenic DNA adducts in the lung

    International Nuclear Information System (INIS)

    Kim, Sang-In; Arlt, Volker M.; Yoon, Jae-In; Cole, Kathleen J.; Pfeifer, Gerd P.; Phillips, David H.; Besaratinia, Ahmad

    2011-01-01

    Secondhand smoke (SHS) exposure is a known risk factor for lung cancer in lifelong nonsmokers. However, the underlying mechanism of action of SHS in lung carcinogenesis remains elusive. We have investigated, using the 32 P-postlabeling assay, the genotoxic potential of SHS in vivo by determining the formation and kinetics of repair of DNA adducts in the lungs of mice exposed whole body to SHS for 2 or 4 months (5 h/day, 5 days/week), and an ensuing one-month recovery period. We demonstrate that exposure of mice to SHS elicits a significant genotoxic response as reflected by the elevation of DNA adduct levels in the lungs of SHS-exposed animals. The increases in DNA adduct levels in the lungs of SHS-exposed mice are dose-dependent as they are related to the intensity and duration of SHS exposure. After one month of recovery in clean air, the levels of lung DNA adducts in the mice exposed for 4 months remain significantly higher than those in the mice exposed for 2 months (P < 0.0005), levels in both groups being significantly elevated relative to controls (P < 0.00001). Our experimental findings accord with the epidemiological data showing that exposure to smoke-derived carcinogens is a risk factor for lung cancer; not only does the magnitude of risk depend upon carcinogen dose, but it also becomes more irreversible with prolonged exposure. The confirmation of epidemiologic data by our experimental findings is of significance because it strengthens the case for the etiologic involvement of SHS in nonsmokers' lung cancer. Identifying the etiologic factors involved in the pathogenesis of lung cancer can help define future strategies for prevention, early detection, and treatment of this highly lethal malignancy.

  17. Lung tuberculosis in children, and radiation doses imported during multiple exposures

    International Nuclear Information System (INIS)

    Milkovic, Dj.; Ranogajec Komor, M.; Knezevic, Z.; Milkovic, I.

    1996-01-01

    Most of the artificial ionizing radiation sources are located in medical institutions. The largest contribution to popular irradiation, apart from natural sources, also originates from their use. The application of ionizing radiation in medicine is continuously developing and spreading. Not only the individual absorbed dose is steadily growing, the whole population is more and more exposed. By lung radiogram analysis, important diagnostic data are obtained for tuberculosis treatment. So chest radiography remains the most important method at diagnosing and attending TB patients, children or adults equally. Unfortunately, radiological treatment is accompanied by the risk of radiation doses being received on organs which are unprotectable during examination. It should be remembered that TB patients are frequently x-rayed, whereby the accumulated dose, and the damage risk increase. To make the risk as small, and the benefit of ionizing radiation use as big as possible, certain principles have to be followed: a) Treat a patient with x-rays only if there is a positive and justified medical indication. b) If it is unavoidable, it has to be performed in an institution where technique and protection methods are well known to the staff. c) Monitor the received radiation doses by using suitable and precise dosimetry equipment. (author)

  18. Empirical evaluation of lung solubilities of airborne contamination at Harwell facilities

    International Nuclear Information System (INIS)

    Bull, R. K.; Wilson, G.

    2011-01-01

    Lung solubility is the key parameter in determining intakes and doses from inhalation of airborne contamination. However, information on lung solubility can be difficult to acquire, particularly for the historical exposures that are of relevance to lifetime-dose reconstruction. In this study, an empirical approach has been made in which over 200 dose assessments, mainly for Pu and Am, from the period 1986 to 2005 were re-evaluated and the solubility mix required for the best fit to the data was determined. The average of these solubility mixtures for any building or facility can be used as the default solubility for retrospective dose assessments for that facility. Results are presented for a radiochemistry facility, a materials development facility and a waste-storage/handling building at Harwell. The latter two areas are characterised by aerosols that are predominantly insoluble (type S), whereas the radiochemistry facility has a heterogeneous mixture of insoluble and soluble aerosols. The implications of these results for dose reconstruction are discussed in the paper. (authors)

  19. Physiological Interaction of Heart and Lung in Thoracic Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-12-01

    Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to

  20. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  1. Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Britton, Keith R.; Starkschall, George; Liu, Helen; Chang, Joe Y.; Bilton, Stephen; Ezhil, Muthuveni; John-Baptiste, Sandra C.; Kantor, Michael; Cox, James D.; Komaki, Ritsuko; Mohan, Radhe

    2009-01-01

    Purpose: To determine the effect of interfractional changes in anatomy on the target and normal tissue dose distributions during course of radiotherapy in non-small-cell lung cancer patients. Methods and Materials: Weekly respiration-correlated four-dimensional computed tomography scans were acquired for 10 patients. Original beam arrangements from conventional and inverse treatment plans were transferred into each of the weekly four-dimensional computed tomography data sets, and the dose distributions were recalculated. Dosimetric changes to the target volumes and relevant normal structures relative to the baseline treatment plans were analyzed by dose-volume histograms. Results: The overall difference in the mean ± standard deviation of the doses to 95% of the planning target volume and internal target volume between the initial and weekly treatment plans was -11.9% ± 12.1% and -2.5% ± 3.9%, respectively. The mean ± standard deviation change in the internal target volume receiving 95% of the prescribed dose was -2.3% ± 4.1%. The overall differences in the mean ± standard deviation between the initial and weekly treatment plans was 3.1% ± 6.8% for the total lung volume exceeding 20 Gy, 2.2% ± 4.8% for mean total lung dose, and 34.3% ± 43.0% for the spinal cord maximal dose. Conclusion: Serial four-dimensional computed tomography scans provided useful anatomic information and dosimetric changes during radiotherapy. Although the observed dosimetric variations were small, on average, the interfractional changes in tumor volume, mobility, and patient setup was sometimes associated with dramatic dosimetric consequences. Therefore, for locally advanced lung cancer patients, efforts to include image-guided treatment and to perform repeated imaging during the treatment course are recommended

  2. Dose verification of radiotherapy for lung cancer by using plastic scintillator dosimetry and a heterogeneous phantom

    DEFF Research Database (Denmark)

    Ottosson, Wiviann; Behrens, C. F.; Andersen, Claus E.

    2015-01-01

    Bone, air passages, cavities, and lung are elements present in patients, but challenging to properly correct for in treatment planning dose calculations. Plastic scintillator detectors (PSDs) have proven to be well suited for dosimetry in non-reference conditions such as small fields. The objective...... of this study was to investigate the performance of a commercial treatment planning system (TPS) using a PSD and a specially designed thorax phantom with lung tumor inserts. 10 treatment plans of different complexity and phantom configurations were evaluated. Although the TPS agreed well with the measurements...

  3. ESR/ERS white paper on lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von [University Hospital Heidelberg, Dept of Diagnostic and Interventional Radiology, Heidelberg (Germany); Member of the German Lung Research Center, Translational Lung Research Center, Heidelberg (Germany); Bonomo, Lorenzo [A. Gemelli University Hospital, Institute of Radiology, Rome (Italy); Gaga, Mina [Athens Chest Hospital, 7th Resp. Med. Dept and Asthma Center, Athens (Greece); Nackaerts, Kristiaan [KU Leuven-University of Leuven, University Hospitals Leuven, Department of Respiratory Diseases/Respiratory Oncology Unit, Leuven (Belgium); Peled, Nir [Tel Aviv University, Davidoff Cancer Center, Rabin Medical Center, Tel Aviv (Israel); Prokop, Mathias [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Remy-Jardin, Martine [Department of Thoracic Imaging, Hospital Calmette (EA 2694), CHRU et Universite de Lille, Lille (France); Sculier, Jean-Paul [Universite Libre de Bruxelles, Thoracic oncology, Institut Jules Bordet, Brussels (Belgium); Collaboration: on behalf of the European Society of Radiology (ESR) and the European Respiratory Society (ERS)

    2015-09-15

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  4. ESR/ERS white paper on lung cancer screening

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von; Bonomo, Lorenzo; Gaga, Mina; Nackaerts, Kristiaan; Peled, Nir; Prokop, Mathias; Remy-Jardin, Martine; Sculier, Jean-Paul

    2015-01-01

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  5. Assessment of airway lesion in obstructive lung diseases by CT

    International Nuclear Information System (INIS)

    Niimi, Akio; Matsumoto, Hisako; Ueda, Tetsuya; Mishima, Michiaki

    2002-01-01

    Airway lesion in obstructive pulmonary diseases, such as asthma or chronic obstructive pulmonary disease (COPD), has recently been assessed quantitatively. Especially in asthma, wall thickening of central airways, and its relation to the severity of disease or airflow obstruction has been clarified. Pathophysiologic importance of peripheral airway lesion has also been highlighted by pathologic or physiologic studies. However, direct evaluation of peripheral airway lesion is beyond resolutional limitation of CT. To assess airway trapping, an indirect CT finding of peripheral airway disease, by quantitative and semiquantitative measures and compare them with clinical indices such as pulmonary function, airway responsiveness, or airway inflammation. Patients with stable asthma (n=20) were studied. HRCT at 3 levels of both lungs were scanned. Low attenuation area (LAA)% and mean lung density were quantitatively assessed by an automatic method. Distribution of mosaic pattern was visually scored semiquantitatively. LAA% and mean lung density at full expiratory phase correlated with the degree of airflow obstruction. Mosaic score at full inspiratory phase correlated with the severity of disease and airflow obstruction. Expiratory/inspiratory ratio of mean lung density was also associated with airway responsiveness or residual volume/total lung capacity (RV/TLC). These CT findings may be useful as markers of asthma pathophysiology. (author)

  6. Characterization of aerosols in uranium handling facilities and its impact on the assessment of internal dose

    International Nuclear Information System (INIS)

    Roy, Ankush; Rao, D.D.; Sawant, Pramilla D.; Khan, Arshad; Srinivasan, P.; Chandrashekara, A.

    2016-01-01

    In nuclear facilities, compounds of uranium such as Magnesium DiUranate (MDU) U 3 O 8 , UO 2 etc. are handled in different stages of operation. There may be a possibility of intake of these compounds by radiation workers during the course of their work. The internal doses received by the workers depend not only on the quantity but also the physiochemical characteristics of the radioactive contaminant. The depositions in different regions of lung of these inhaled aerosols depend on their particle size; whereas the clearance is dependent upon the chemical nature. In this study, aerosol characterization is carried out in four different Uranium Handling Facilities (UF) for realistic assessment of internal dose to the radiation worker

  7. Occupational dose assessment in interventional cardiology in Serbia

    International Nuclear Information System (INIS)

    Kaljevic, J.; Ciraj-Bjelac, O.; Stankovic, J.; Arandjic, D.; Bozovic, P.; Antic, V.

    2016-01-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent H p (10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. (authors)

  8. A study to 3D dose measurement and evaluation for respiratory motion in lung cancer stereotactic body radiotherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byeong Geol; Choi, Chang Heon; Yun, Il Gyu; Yang, Jin Seong; Lee, Dong Myeong; Park, Ju Mi [Dept. of Radiation Oncology, VHS Medical Center, Seoul (Korea, Republic of)

    2014-06-15

    This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four dimensional computed tomography (4DCT) study was performed . We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03∼0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with V{sub 20}, V{sub 10}, V{sub 5} of Lung was -0.04%∼2.32%. The average Homogeneity Index difference between MIP and each phase 3D data of all patient was -0.03∼0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V{sub 20}, V{sub 10}, V{sub 5} of Lung show bo certain trend. There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

  9. Approach to derive doses for case-control studies of lung cancer and leukaemia among workers internally exposed to uranium and plutonium

    International Nuclear Information System (INIS)

    Thierry-Chef, Isabelle; Berard, Philippe; Bingham, Derek; Blanchardon, Eric; Challeton-de Vathaire, Cecile; Birchall, Alan; Puncher, Matthew; Bull, Richard; Hurtgen, Christian; Riddell, Tony; Vrijheid, Martine; Cardis, Elisabeth

    2008-01-01

    Case-control studies are currently conducted in 3 European countries (Belgium, France and the United Kingdom) to estimate the risk of lung cancer and leukaemia in relation to internal exposure to uranium and plutonium amongst workers in the nuclear industry. The project requires calculating doses absorbed by the lung and the bone marrow for many hundreds of cases and controls internally exposed. In order to establish a common approach to dose reconstruction, a detailed dosimetry protocol and a database of individual exposure were set up and will be presented. The dose reconstruction relies heavily on bioassay data, which are usually urine analysis, extending back over 50 years in some cases. Inevitably, data obtained over such a time span are of variable quality. It is important to review the monitoring practices at the various laboratories and to assess the reliability of these data in order to estimate possible biases as well as random uncertainties. Another key step in the reconstruction process is to decide upon the likely intake regimes consistent with the data. Generally, chronic intakes will be assumed and acute intakes will be added only when their existence is supported by operational data. Biokinetic models are used both to calculate intakes from bioassay data and to convert intakes to doses. The ICRP publication 66 respiratory tract model will be used along with the latest systemic models described by ICRP. These will be supplemented by the Leggett 2005 model for plutonium. These various models will be implemented by the code IMBA-Expert. Since it is essential to obtain central estimates for the doses, a particular problem is encountered with datasets consisting only of values below the limit of detection. For these cases Bayesian statistics will be employed using a non-informative prior probability distribution. (author)

  10. The value of regional nodal radiotherapy (dose/volume) in the treatment of unresectable non-small cell lung cancer: an RTOG analysis

    International Nuclear Information System (INIS)

    Emami, Bahman; Scott, Charles; Byhardt, Roger; Graham, Mary V.; Andras, E. James; John, Madhu; Herskovic, Arnold; Urtasun, Raul C.; Asbell, Sucha O.; Perez, Carlos A.; Cox, James

    1996-01-01

    PURPOSE/OBJECTIVE: To evaluate whether or not the traditional practice of including all thoracic regional nodal areas in the radiotherapy volume in the treatment of unresectable lung cancer is of any therapeutic benefit. MATERIALS AND METHODS: A total of 1,705 patients from four large RTOG trials (78-11, 79-17, 83-11, 84-07) were analyzed for this purpose. Each of these trials had data on dose delivered to the nodal regions and assessment of nodal borders. The nodes were separated into mediastinal, contralateral hilar, ipsilateral hilar, and supraclavicular. Each node site was assessed for progression, defined as in-field or out-of-field, at the node site. In patients with adequate nodal field borders, the results were also analyzed according to the dose delivered. RESULTS: The majority (74%) of patients were between the age of 55 to 75. Forty-six percent of patients had KPS of 60 to 80 and 52% KPS of 90 to 100. Sixty percent of patients had a weight loss of less than 5%, and 40% had a weight loss of over 5% six months prior to diagnosis. Major variations from protocol in defining field borders (unacceptable field borders) were lowest for ipsilateral hilum ((42(727))) and the highest for mediastinal borders ((158(743))). Three groups had statistically significant differences in outcome (progression) between the per protocol and the unacceptable per protocol: ipsilateral hilar nodes (field borders), 14% versus 26% (p = 0.03); dose to mediastinal nodes in CALGB eligible patients, 9% versus 19% (p = 0.02); and ipsilateral hilar nodes (field borders) for high-dose patients assigned to greater than or equal to 69.6 Gy, 14% versus 31% (p = 0.007). CONCLUSION: These data suggest that inclusion of the ipsilateral hilar and mediastinal nodes affect outcome in unresectable non-small cell lung cancer. Exclusion of the other thoracic lymph node regions did not affect outcome in this study. These findings have important implications for combined modality therapy and three

  11. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines

    NARCIS (Netherlands)

    Groen, H. J.; Sleijfer, S.; Meijer, C.; Kampinga, H. H.; Konings, A. W. T.; de Vries, E. G. E.; Mulder, N. H.

    1995-01-01

    The interaction between moderate-dose radiation and cisplatin or carboplatin was studied in a cisplatin-sensitive (GLC(4)) and -resistant (GLC(4)-CDDP) human small-cell lung cancer cell line. Cellular toxicity was analysed under oxic conditions with the microculture tetrazolium assay. For the

  12. Assessment of low-dose radiotherapy (two 2 Gy sessions) for the cure of MALT lymphoma of the lung; evaluation de la radiotherapie faible (deux seances de 2 Gy) a visee curative dans le lymphome du Malt pulmonaire

    Energy Technology Data Exchange (ETDEWEB)

    Paumier, A.; Ghalibafian, M.; Gilmore, J.; Girinsky, T. [Departement de radiotherapie, institut de cancerologie Gustave-Roussy, Villejuif (France); Hanna, C.; Raphael, J.; Ferme, C.; Ribrag, V. [Departement d' hematologie, institut de cancerologie Gustave-Roussy, Villejuif (France)

    2011-10-15

    The authors report the assessment of low-dose radiotherapy (two sessions of 2 Gy in two days) for the curative treatment of mucosa-associated lymphoid tissue (MALT) lymphoma of the lung. The treatment of this lymphoma is discussed in terms of surgery, chemotherapy, radiotherapy, or even simple monitoring. The authors analyse the results obtained on nine patients who have been treated this way since 2002, straight away for some of them, after surgery or chemotherapy for others. Survival rate, recurrence, evolutions and responses are discussed. Short communication

  13. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    Selected Molecular Mechanisms of Metal Toxicity and Carcinogenicity General Considerations of Dose-Effect and Dose-Response Relationships Interactions in Metal Toxicology Epidemiological Methods for Assessing Dose-Response and Dose-Effect Relationships Essential Metals: Assessing Risks from Deficiency......Description Handbook of the Toxicology of Metals is the standard reference work for physicians, toxicologists and engineers in the field of environmental and occupational health. This new edition is a comprehensive review of the effects on biological systems from metallic elements...... access to a broad range of basic toxicological data and also gives a general introduction to the toxicology of metallic compounds. Audience Toxicologists, physicians, and engineers in the fields of environmental and occupational health as well as libraries in these disciplines. Will also be a useful...

  14. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics

    International Nuclear Information System (INIS)

    Eichinger, Monika; Tetzlaff, Ralf; Puderbach, Michael; Woodhouse, Neil; Kauczor, H.-U.

    2007-01-01

    Since many pulmonary diseases present with a variable regional involvement, modalities for assessment of regional lung function gained increasing attention over the last years. Together with lung perfusion and gas exchange, ventilation, as a result of the interaction of the respiratory pump and the lungs, is an indispensable component of lung function. So far, this complex mechanism is still mainly assessed indirectly and globally. A differentiation between the individual determining factors of ventilation would be crucial for precise diagnostics and adequate treatment. By dynamic imaging of the respiratory pump, the mechanical components of ventilation can be assessed regionally. Amongst imaging modalities applicable to this topic, magnetic resonance imaging (MRI), as a tool not relying on ionising radiation, is the most attractive. Recent advances in MRI technology have made it possible to assess diaphragmatic and chest wall motion, static and dynamic lung volumes, as well as regional lung function. Even though existing studies show large heterogeneity in design and applied methods, it becomes evident that MRI is capable to visualise pulmonary function as well as diaphragmatic and thoracic wall movement, providing new insights into lung physiology. Partly contradictory results and conclusions are most likely caused by technical limitations, limited number of studies and small sample size. Existing studies mainly evaluate possible imaging techniques and concentrate on normal physiology. The few studies in patients with lung cancer and emphysema already give a promising outlook for these techniques from which an increasing impact on improved and quantitative disease characterization as well as better patient management can be expected

  15. 3D delivered dose assessment using a 4DCT-based motion model

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj, E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu; Lewis, John H., E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Seco, Joao [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  16. 3D delivered dose assessment using a 4DCT-based motion model

    International Nuclear Information System (INIS)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj; Lewis, John H.; Seco, Joao

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  17. Methanolic extract of Moringa oleifera leaf and low doses of gamma radiation alleviated amiodarone-induced lung toxicity in albino rats

    Directory of Open Access Journals (Sweden)

    Hasan Hesham F.

    2016-01-01

    Full Text Available This study aimed to evaluate the effects of methanolic extract of Moringa oleifera (MO and/or low doses of gamma radiation (LDR on amiodarone (AMD-induced lung toxicity in rats. AMD administered to female albino rats (100 mg/kg body weight for 10 consecutive days. Rats received methanolic extract of MO (250 mg/kg bwt for 15 successive days and/or were exposed to whole body LDR (0.25Gy on the 1st and 10th days, up to a total dose of 0.5Gy. MO administration induced a significant decrease in serum tumor necrosis factor-alpha (TNF-α and transforming growth factor-beta (TGF-β levels as well as lactate dehydrogenase (LDH activity. Also, the content of malondialdehyde (MDA and hydroxyproline (HYP was significantly decreased in lung tissue. Furthermore, MO significantly increased reduced glutathione (GSH content in lung tissue as compared with AMD. The histopathological investigation of lung tissue revealed the appearance of interstitial pneumonia in rats treated with AMD. The oral administration of MO and/or exposure to LDR reversed the biochemical and histopathological alterations induced by AMD. It can be posited that MO and LDR might have a considerable role in the prevention of lung toxicity induced by AMD.

  18. Study of the heterogeneity effects of lung in the evaluation of absorbed dose in radiotherapy

    International Nuclear Information System (INIS)

    Campos, Luciana Tourinho

    2006-02-01

    The main objective of radiotherapy is to deliver the highest possible dose to the tumour, in order to destroy it, reducing as much as possible the doses to healthy tissues adjacent to the target volume. Therefore, it is necessary to do a planning of the treatment. The more complex is the treatment, the more difficult the planning will be, demanding computation sophisticated methods in its execution, in order to consider the heterogeneities present in the human body. Additionally, with the appearing of new radiotherapeutic techniques, that used irradiation fields of small area, for instance, the intensity modulated radiotherapy, the difficulties for the execution of a reliable treatment planning, became still larger. In this work it was studied the influence of the lung heterogeneity in the planning of the curves of percentage depth dose, PDP, obtained with the Eclipse R planning system for different sizes of irradiation fields, using the correction algorithms for heterogeneities available in the planning system: modified Batho, general Batho and equivalent tissue-air ratio. A thorax phantom, manufactured in acrylic, containing a region made of cork to simulate the lung tissue, was used. The PDP curves generated by the planning system were compared to those obtained by Monte Carlo simulation and with the use of thermoluminescent, TL, dosimetry. It was verified that the algorithms used by the Eclipse R system for the correction of heterogeneity effects are not able to generate correct results for PDP curves in the case of small fields, occurring differences of up to 100%, when the 1x1 cm 2 treatment field is considered. These differences can cause a considerable subdosage in the lung tissue, reducing the possibility of the patient cure. (author)

  19. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  20. Effect of radiation dose and iterative reconstruction on lung lesion conspicuity at MDCT: Does one size fit all?

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marcos Paulo Ferreira; Agrawal, Rishi, E-mail: rishi.agrawal@northwestern.edu; Gonzalez-Guindalini, Fernanda Dias; Hart, Eric M.; Patel, Suresh K.; Töre, Hüseyin Gürkan; Yaghmai, Vahid

    2013-11-01

    Objective: To evaluate the effect of different acquisition parameters and reconstruction algorithms in lung lesions conspicuity in chest MDCT. Methods: An anthropomorphic chest phantom containing 6 models of lung disease (ground glass opacity, bronchial polyp, solid nodule, ground glass nodule, emphysema and tree-in-bud) was scanned using 80, 100 and 120 kVp, with fixed mAs ranging from 10 to 110. The scans were reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Three blinded thoracic radiologists reviewed the images and scored lesions conspicuity and overall image quality. Image noise and radiation dose parameters were recorded. Results: All acquisitions with 120 kVp received a score of 3 (acceptable) or higher for overall image quality. There was no significant difference between IR and FBP within each setting for overall image quality (p > 0.05), even though image noise was significantly lower using IR (p < 0.0001). When comparing specific lower radiation acquisition parameters 100 kVp/10 mAs [Effective Dose (ED): 0.238 mSv] vs 120 kVp/10 mAs (ED: 0.406 mSv) vs 80 kVp/40 mAs (ED: 0.434 mSv), we observed significant difference in lesions conspicuity (p < 0.02), as well as significant difference in overall image quality, independent of the reconstruction algorithm (p < 0.02), with higher scores on the 120 kV/10 mAs setting. Tree-in-bud pattern, ground glass nodule and ground glass opacity required lower radiation doses to get a diagnostic score using IR when compared to FBP. Conclusion: Designing protocols for specific lung pathologies using lower dose acquisition parameters is feasible, and by applying iterative reconstruction, radiologists may have better diagnostic confidence to evaluate some lesions in very low dose settings, preserving acceptable image quality.

  1. Improved dosimetry and risk assessment for plutonium-induced lung disease using a microdosimetric approach

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Hahn, F.F.; Guilmette, R.A. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States); Romanov, S.A.; Muksinova, K.N.; Nifatov, A.P.; Revina, V.S.

    2000-05-01

    The risk of developing radiation-induced lung cancer is currently estimated using models based on epidemiological data from populations exposed either to relatively uniform, low-LET radiation, or from uranium miners exposed to radon and its progeny. Because inhaled alpha-emitting radionuclides (e.g., Pu, Am) produce nonuniform, chronic irradiation of the parenchymal region of the lung, a better scientific basis is needed for assessing the risk of developing radiation-induced disease from these radionuclides. Scientists at FIB-1 and LRRI are using a unique resource at the FIB-1, i.e., a set of about 600 lung specimens fixed in 10% formalin, and obtained from a population of workers at the Mayak Production Association, many of whom inhaled significant quantities of Pu and other alpha-emitting radionuclides during their careers. The objectives of this research are to measure the microscopic distribution of Pu by quantitative autoradiography, to determine the spatial distribution of Pu in human lung tissue with respect to specific lung structures and to determine the effect of chronic tobacco-smoke exposure on the distribution of local Pu radiation dose. The approach to analyzing these lung samples is to utilize contemporary stereological sampling and analysis techniques together with quantitative alpha-particle autoradiography. Our initial results have validated the usefulness of these lung specimens for determining Pu particle distribution with respect to anatomic location, as well as identifying normal and diseased compartments in the lung. In brief, particles were most often found associated with parenchymal and nonparenchymal scars, with other particles in organized lymphoid tissue or the interstitium of the pulmonary parenchyma (respiratory bronchioles and alveolar region). Based on comparison of one lung from a smoker and one from a nonsmoker, there was an increased fraction of Pu particles associated with tissue scars in the smoker vs the nonsmoker, and this

  2. Radiation doses to lungs and whole body from use of tritium in luminous paint industry

    International Nuclear Information System (INIS)

    Rudran, K.

    1988-01-01

    The radiation dose to persons exposed to tritium in the luminous paint industry is reported. The biological half-life of labile tritium is observed to be 7 to 10 days. There is evidence of exposure of lung tissue from tritium labelled polystyrene deposited in the pulmonary region and of soft tissue from organically bound tritium. Delayed excretion of labile tritium in urine following removal of the individuals from tritium handling, presence of tritium in organic constituents of blood and urine, and presence of non-volatile tritium in faecal excretion have been verified. From in vitro studies using fresh bovine serum, solubilisation half-life of tritium from the labelled paint is estimated to be 35 to 70 days after the initial fast clearance. Probable annual doses to the whole body, soft tissue and lungs under the prevailing working conditions have been estimated from the urinary and faecal excretion data. It is revealed that the actual values thus estimated are likely to exceed the values estimated by the conventional technique based on urine analysis for tritiated water. (author)

  3. Assessment of bioequivalence of rifampicin, isoniazid and pyrazinamide in a four drug fixed dose combination with separate formulations at the same dose levels.

    Science.gov (United States)

    Agrawal, Shrutidevi; Kaur, Kanwal Jit; Singh, Inderjit; Bhade, Shantaram R; Kaul, Chaman Lal; Panchagnula, Ramesh

    2002-02-21

    Tuberculosis (TB) needs treatment with three to five different drugs simultaneously, depending on the patient category. These drugs can be given as single drug preparations or fixed dose combinations (FDCs) of two more drugs in a single formulation. World Health Organization and International Union against Tuberculosis and Lung Disease (IUATLD) recommend FDCs only of proven bioavailability. The relative bioavailability of rifampicin (RIF), isoniazid (INH) and pyrazinamide (PYZ) was assessed on a group of 13 healthy male subjects from a four drug FDC versus separate formulations at the same dose levels. The study was designed to be an open, crossover experiment. A total of nine blood samples each of 3 ml volume were collected over a period of 24-h. The concentrations of RIF, its main metabolite desacetyl RIF (DRIF), INH and PYZ in plasma were assessed by HPLC analysis. Pharmacokinetic parameters namely AUC(0-24), AUC(0-inf), C(max), T(max), were calculated and subjected to different statistical tests (Hauschke analysis, two way ANOVA, normal and log transformed confidence interval) at 90% confidence interval. In addition, elimination rate constant (K(el)) and absorption efficiencies for each drug were also calculated. It was concluded that four drugs FDC tablet is bioequivalent for RIF, INH and PYZ to separate formulation at the same dose levels.

  4. Accuracy and Utility of Deformable Image Registration in 68Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Hofman, Michael S.; Hicks, Rodney J.; Callahan, Jason; Kron, Tomas; MacManus, Michael P.; Ball, David L.; Jackson, Price; Siva, Shankar

    2015-01-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: 68 Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration. Conclusions

  5. Detection of lung cancer through low-dose CT screening (NELSON): a prespecified analysis of screening test performance and interval cancers.

    Science.gov (United States)

    Horeweg, Nanda; Scholten, Ernst Th; de Jong, Pim A; van der Aalst, Carlijn M; Weenink, Carla; Lammers, Jan-Willem J; Nackaerts, Kristiaan; Vliegenthart, Rozemarijn; ten Haaf, Kevin; Yousaf-Khan, Uraujh A; Heuvelmans, Marjolein A; Thunnissen, Erik; Oudkerk, Matthijs; Mali, Willem; de Koning, Harry J

    2014-11-01

    Low-dose CT screening is recommended for individuals at high risk of developing lung cancer. However, CT screening does not detect all lung cancers: some might be missed at screening, and others can develop in the interval between screens. The NELSON trial is a randomised trial to assess the effect of screening with increasing screening intervals on lung cancer mortality. In this prespecified analysis, we aimed to assess screening test performance, and the epidemiological, radiological, and clinical characteristics of interval cancers in NELSON trial participants assigned to the screening group. Eligible participants in the NELSON trial were those aged 50-75 years, who had smoked 15 or more cigarettes per day for more than 25 years or ten or more cigarettes for more than 30 years, and were still smoking or had quit less than 10 years ago. We included all participants assigned to the screening group who had attended at least one round of screening. Screening test results were based on volumetry using a two-step approach. Initially, screening test results were classified as negative, indeterminate, or positive based on nodule presence and volume. Subsequently, participants with an initial indeterminate result underwent follow-up screening to classify their final screening test result as negative or positive, based on nodule volume doubling time. We obtained information about all lung cancer diagnoses made during the first three rounds of screening, plus an additional 2 years of follow-up from the national cancer registry. We determined epidemiological, radiological, participant, and tumour characteristics by reassessing medical files, screening CTs, and clinical CTs. The NELSON trial is registered at www.trialregister.nl, number ISRCTN63545820. 15,822 participants were enrolled in the NELSON trial, of whom 7915 were assigned to low-dose CT screening with increasing interval between screens, and 7907 to no screening. We included 7155 participants in our study, with

  6. Clinical Results of Mean GTV Dose Optimized Robotic-Guided Stereotactic Body Radiation Therapy for Lung Tumors

    Directory of Open Access Journals (Sweden)

    Rene Baumann

    2018-05-01

    Full Text Available IntroductionWe retrospectively evaluated the efficacy and toxicity of gross tumor volume (GTV mean dose optimized stereotactic body radiation therapy (SBRT for primary and secondary lung tumors with and without robotic real-time motion compensation.Materials and methodsBetween 2011 and 2017, 208 patients were treated with SBRT for 111 primary lung tumors and 163 lung metastases with a median GTV of 8.2 cc (0.3–174.0 cc. Monte Carlo dose optimization was performed prioritizing GTV mean dose at the potential cost of planning target volume (PTV coverage reduction while adhering to safe normal tissue constraints. The median GTV mean biological effective dose (BED10 was 162.0 Gy10 (34.2–253.6 Gy10 and the prescribed PTV BED10 ranged 23.6–151.2 Gy10 (median, 100.8 Gy10. Motion compensation was realized through direct tracking (44.9%, fiducial tracking (4.4%, and internal target volume (ITV concepts with small (≤5 mm, 33.2% or large (>5 mm, 17.5% motion. The local control (LC, progression-free survival (PFS, overall survival (OS, and toxicity were analyzed.ResultsMedian follow-up was 14.5 months (1–72 months. The 2-year actuarial LC, PFS, and OS rates were 93.1, 43.2, and 62.4%, and the median PFS and OS were 18.0 and 39.8 months, respectively. In univariate analysis, prior local irradiation (hazard ratio (HR 0.18, confidence interval (CI 0.05–0.63, p = 0.01, GTV/PTV (HR 1.01–1.02, CI 1.01–1.04, p < 0.02, and PTV prescription, mean GTV, and maximum plan BED10 (HR 0.97–0.99, CI 0.96–0.99, p < 0.01 were predictive for LC while the tracking method was not (p = 0.97. For PFS and OS, multivariate analysis showed Karnofsky Index (p < 0.01 and tumor stage (p ≤ 0.02 to be significant factors for outcome prediction. Late radiation pneumonitis or chronic rip fractures grade 1–2 were observed in 5.3% of the patients. Grade ≥3 side effects did not occur.ConclusionRobotic SBRT is a safe and

  7. Lung Parenchymal Assessment in Primary and Secondary Pneumothorax.

    Science.gov (United States)

    Bintcliffe, Oliver J; Edey, Anthony J; Armstrong, Lynne; Negus, Ian S; Maskell, Nick A

    2016-03-01

    The definition of primary spontaneous pneumothorax excludes patients with known lung disease; however, the assumption that the underlying lung is normal in these patients is increasingly contentious. The purpose of this study was to assess lung structure and compare the extent of emphysema in patients with primary versus secondary spontaneous pneumothorax and to patients with no pneumothorax in an otherwise comparable control group. We identified patients treated for pneumothorax by screening inpatient and outpatient medical records at one medical center in the United Kingdom. From this group, 20 patients had no clinically apparent underlying lung disease and were classified as having a primary spontaneous pneumothorax, and 20 patients were classified as having a secondary spontaneous pneumothorax. We assembled a control group composed of 40 subjects matched for age and smoking history who had a unilateral pleural effusion or were suspected to have a thoracic malignancy and had a chest computed tomography scan suitable for quantitative analysis. Demographics and smoking histories were collected. Quantitative evaluation of low-attenuation areas of the lung on computed tomography imaging was performed using semiautomated software, and the extent of emphysema-like destruction was assessed visually. The extent of emphysema and percentage of low-attenuation areas was greater for patients with primary spontaneous pneumothorax than for control subjects matched for age and smoking history (median, 0.25 vs. 0.00%; P = 0.019) and was also higher for patients with secondary pneumothorax than those with primary spontaneous pneumothorax (16.15 vs. 0.25%, P pneumothorax who smoked had significantly greater low-attenuation area than patients with primary pneumothorax who were nonsmokers (0.7 vs. 0.1%, P = 0.034). The majority of patients with primary spontaneous pneumothorax had quantifiable evidence of parenchymal destruction and emphysema. The exclusion of patients

  8. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2018-01-01

    Conclusion: Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  9. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients

    Energy Technology Data Exchange (ETDEWEB)

    Palma, David A., E-mail: david.palma@uwo.ca [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Soernsen de Koste, John van; Verbakel, Wilko F.A.R. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Vincent, Andrew [Department of Biometrics, Netherlands Cancer Institute, Amsterdam (Netherlands); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)

    2011-11-15

    Purpose: Radiologic lung density changes are observed in more than 50% of patients after stereotactic body radiotherapy (SBRT) for lung cancer. We studied the relationship between SBRT dose and posttreatment computed tomography (CT) density changes, a surrogate for lung injury. Methods and Materials: The SBRT fractionation schemes used to treat Stage I lung cancer with RapidArc were three fractions of 18 Gy, five fractions of 11 Gy, or eight fractions of 7.5 Gy, prescribed at the 80% isodose. Follow-up CT scans performed at less than 6 months (n = 50) and between 6 and 9 months (n = 30) after SBRT were reviewed. Posttreatment scans were coregistered with baseline scans using a B-spline deformable registration algorithm. Voxel-Hounsfield unit histograms were created for doses between 0.5 and 50 Gy. Linear mixed effects models were used to assess the effects of SBRT dose on CT density, and the influence of possible confounders was tested. Results: Increased CT density was associated with higher dose, increasing planning target volume size, and increasing time after SBRT (all p < 0.0001). Density increases were apparent in areas receiving >6 Gy, were most prominent in areas receiving >20 Gy, and seemed to plateau above 40 Gy. In regions receiving >36 Gy, the reduction in air-filled fraction of lung after treatment was up to 18%. No increase in CT density was observed in the contralateral lung receiving {>=}3 Gy. Conclusions: A dose-response relationship exists for quantitative CT density changes after SBRT. A threshold of effect is seen at low doses, and a plateau at highest doses.

  10. Lung radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP

  11. Patient dose in neonatal units

    International Nuclear Information System (INIS)

    Smans, K.; Struelens, L.; Smet, M.; Bosmans, H.; Vanhavere, F.

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is therefore the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Hence, knowledge of the patient dose is necessary to justify the exposures. A study to assess the patient doses was started at the neonatal intensive care unit (NICU) of the Univ. Hospital in Leuven. Between September 2004 and September 2005, prematurely born babies underwent on average 10 X-ray examinations in the NICU. In this sample, the maximum was 78 X-ray examinations. For chest radiographs, the median entrance skin dose was 34 μGy and the median dose area product was 7.1 mGy.cm 2 . By means of conversion coefficients, the measured values were converted to organ doses. Organ doses were calculated for three different weight classes: extremely low birth weight infants ( 2500 g). The doses to the lungs for a single chest radiograph for infants with extremely low birth weights, low birth weights and normal birth weights were 24, 25 and 32 μGy, respectively. (authors)

  12. Impact of setup variability on incidental lung irradiation during tangential breast treatment

    International Nuclear Information System (INIS)

    Carter, D.C.; Marks, L.B.; Bentel, G.B.

    1995-01-01

    Purpose: 1) To determine the variability in treatment setup during a 5 week course of tangential breast treatment. 2) To assess the relationship between the height of the lung shadow at the central axis (Central Lung Distance: CLD) on the tangential port film and the percent of total lung volume included within the tangential fields (to verify the previously reported result from Bornstein, et al, IJROBP 18:181, 90). 3) To determine the impact of the variabilities in treatment setup on the volume of lung that is incidentally included within the radiation fields. Methods: 1) 172 port films of tangential breast/chest wall fields were reviewed from 20 patients who received tangential beam treatment for breast cancer. All patients were immobilized in customized hemibody foam cradles during simulation and treatment. The CLD (height of the lung shadow at the central axis) seen on each of the port films was compared to the corresponding simulator film (correcting for differences in magnification) as an assessment of setup variability. Both inter and intrapatient differences were considered. 2) A three-dimensional dose calculation (reflecting lung density) was performed, and the percent of total lung volume within the field was compared to the CLD. 3) The three-dimensional dose calculation was repeated for selected patients with the location of the treatment beams modified to reflect typical setup variations, in order to assess the impact of this variability on the volume of lung irradiated. Results: 1) The CLD measured on the port films was within 3 mm of that prescribed on the simulator film in 43% ((74(172))) of the port films. The variation was 3-5 mm in 26 %, 5-10 mm in 25 % and > 10 mm in 6 %. The data are shown in Figure 1. 2) There was an excellent correlation found between the height of the lung shadow and the percent of total lung volume seen within the radiation field, (Figure 2), thus verifying the concept previously reported by Bornstein. 3) A 1 cm setup

  13. SU-E-T-87: Comparison Study of Dose Reconstruction From Cylindrical Diode Array Measurements, with TLD Measurements and Treatment Planning System Calculations in Anthropomorphic Head and Neck and Lung Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Benhabib, S; Cardan, R; Huang, M; Brezovich, I; Popple, R [University of Alabama at Birmingham, Birmingham, AL (United States); Faught, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: To assess dose calculated by the 3DVH software (Sun Nuclear Systems, Melbourne, FL) against TLD measurements and treatment planning system calculations in anthropomorphic phantoms. Methods: The IROC Houston (RPC) head and neck (HN) and lung phantoms were scanned and plans were generated using Eclipse (Varian Medical Systems, Milpitas, CA) following IROC Houston procedures. For the H and N phantom, 6 MV VMAT and 9-field dynamic MLC (DMLC) plans were created. For the lung phantom 6 MV VMAT and 15 MV 9-field dynamic MLC (DMLC) plans were created. The plans were delivered to the phantoms and to an ArcCHECK (Sun Nuclear Systems, Melbourne, FL). The head and neck phantom contained 8 TLDs located at PTV1 (4), PTV2 (2), and OAR Cord (2). The lung phantom contained 4 TLDs, 2 in the PTV, 1 in the cord, and 1 in the heart. Daily outputs were recorded before each measurement for correction. 3DVH dose reconstruction software was used to project the calculated dose to patient anatomy. Results: For the HN phantom, the maximum difference between 3DVH and TLDs was -3.4% and between 3DVH and Eclipse was 1.2%. For the lung plan the maximum difference between 3DVH and TLDs was 4.3%, except for the spinal cord for which 3DVH overestimated the TLD dose by 12%. The maximum difference between 3DVH and Eclipse was 0.3%. 3DVH agreed well with Eclipse because the dose reconstruction algorithm uses the diode measurements to perturb the dose calculated by the treatment planning system; therefore, if there is a problem in the modeling or heterogeneity correction, it will be carried through to 3DVH. Conclusion: 3DVH agreed well with Eclipse and TLD measurements. Comparison of 3DVH with film measurements is ongoing. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)

  14. Reduced lung lesions in pigs challenged 25 weeks after the administration of a single dose of Mycoplasma hyopneumoniae vaccine at approximately 1 week of age.

    Science.gov (United States)

    Reynolds, S C; St Aubin, L B; Sabbadini, L G; Kula, J; Vogelaar, J; Runnels, P; Peters, A R

    2009-09-01

    Two independent studies assessed the duration of immunity of an inactivated adjuvanted Mycoplasma hyopneumoniae vaccine against mycoplasmal pneumonia in seronegative (study A, n=52) and seropositive (study B, n=52) pigs. The pigs were allocated randomly to treatment and were then injected with a single dose of either the vaccine or a placebo at approximately 1 week of age. Twenty-five weeks after treatment administration, the pigs were challenged with a virulent strain (LI 36, Strain 232) of M. hyopneumoniae and the extent of lung lesions consistent with mycoplasmal pneumonia was assessed 4 weeks later. In study A, the geometric mean lung lesion score (expressed as least squares mean percentages of lung lesions) was significantly (P=0.0001) lower in vaccinated (0.3%, n=20) than in control pigs (5.9%, n=24) seronegative to M. hyopneumoniae at enrolment; similarly, in study B, the extent of lung lesions was significantly reduced (P=0.0385) in seropositive vaccinated pigs (2.0%, n=22) compared to controls (4.5%, n=26). At the end of the investigation period, 4 weeks after challenge, mean antibody sample-to-positive (S/P) ratios were significantly higher both in seronegative (P=0.0012) and seropositive (P=0.0001) vaccinated pigs (mean values=0.77 and 0.81, respectively) than in controls (mean values=0.51 and 0.38, respectively).

  15. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  16. SU-F-T-628: An Evaluation of Grid Size in Eclipse AcurosXB Dose Calculation Algorithm for SBRT Lung

    Energy Technology Data Exchange (ETDEWEB)

    Pokharel, S [21st Century Oncology, Naples, FL (United States); Rana, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States)

    2016-06-15

    Purpose: purpose of this study is to evaluate the effect of grid size in Eclipse AcurosXB dose calculation algorithm for SBRT lung. Methods: Five cases of SBRT lung previously treated have been chosen for present study. Four of the plans were 5 fields conventional IMRT and one was Rapid Arc plan. All five cases have been calculated with five grid sizes (1, 1.5, 2, 2.5 and 3mm) available for AXB algorithm with same plan normalization. Dosimetric indices relevant to SBRT along with MUs and time have been recorded for different grid sizes. The maximum difference was calculated as a percentage of mean of all five values. All the plans were IMRT QAed with portal dosimetry. Results: The maximum difference of MUs was within 2%. The time increased was as high as 7 times from highest 3mm to lowest 1mm grid size. The largest difference of PTV minimum, maximum and mean dose were 7.7%, 1.5% and 1.6% respectively. The highest D2-Max difference was 6.1%. The highest difference in ipsilateral lung mean, V5Gy, V10Gy and V20Gy were 2.6%, 2.4%, 1.9% and 3.8% respectively. The maximum difference of heart, cord and esophagus dose were 6.5%, 7.8% and 4.02% respectively. The IMRT Gamma passing rate at 2%/2mm remains within 1.5% with at least 98% points passing with all grid sizes. Conclusion: This work indicates the lowest grid size of 1mm available in AXB is not necessarily required for accurate dose calculation. The IMRT passing rate was insignificant or not observed with the reduction of grid size less than 2mm. Although the maximum percentage difference of some of the dosimetric indices appear large, most of them are clinically insignificant in absolute dose values. So we conclude that 2mm grid size calculation is best compromise in light of dose calculation accuracy and time it takes to calculate dose.

  17. High-resolution CT of the lung in asbestos-exposed subjects. Comparison of low-dose and high-dose HRCT

    International Nuclear Information System (INIS)

    Majurin, M.L.; Varpula, M.; Kurki, T.; Pakkala, L.

    1994-01-01

    The lowest possible mAs settings for high-resolution CT (HRCT) were studied on 45 individuals with suspected asbestos-related lung disease. All patients were investigated with 5 to 6 high-dose HRCT images (120 kVp/160 mA/2 s) at 3-cm intervals. At a selected level 4 additional low-dose images were obtained on each patient with lower mAs settings (100 mA/2 s, 80 mA/2 s, 60 mA/2 s, 30 mA/2 s). Thirty-seven subjects out of 45 had HRCT lesions compatible with asbestosis. HRCT images obtained with as low as 60 mA/2 s settings clearly showed pleural tractions and thickenings, parenchymal bands, honeycombing and subpleural curvilinear shadows, whereas in the evaluation of subpleural short lines and ground glass findings 80 mA/2 s were required. The lowest setting, 30 mA/2 s, was sufficient only in detecting and evaluating pleural tractions and thickenings. We conclude that 160 mAs yield good quality HRCT images, with substantial decrease of radiation dose, for the evaluation of asbestos-related lesions. (orig.)

  18. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  19. Updated radiological dose assessment of Bikini and Eneu Islands at Bikini Atoll

    International Nuclear Information System (INIS)

    Robison, W.L.; Mount, M.E.; Phillips, W.A.; Stuart, M.L.; Thompson, S.E.; Conrado, C.L.; Stoker, A.C.

    1982-01-01

    This report is part of a continuing effort to refine dose assessments for resettlement options at Bikini Atoll. Radionuclide concentration data developed at Bikini Atoll since 1977 have been used in conjunction with recent dietary information and current dose models to develop the annual dose rate and 30- and 50-y integral doses presented here for Bikini and Eneu Island living patterns. The terrestrial food chain is the most significant exposure pathway--it contributes more than 50% of the total dose--and external gamma exposure is the second most significant pathway. Other pathways evaluated are the marine food chain, drinking water, and inhalation. Cesium-137 produces more than 85% of the predicted dose; 90 Sr is the second most significant radionuclide; 60 Co contributes to the external gamma exposure in varying degrees, but is a small part of the total predicted dose; the transuranic radionuclides contribute a small portion of the total predicted lung and bone doses but do present a long-term source of exposure. Maximum annual dose rates for Bikini Island are about 1 rem/y for the whole body and bone marrow when imported foods are available and about 1.9 rem/y when imports are unavailable. Maximum annual dose rates for Eneu Island when imports are available are 130 mrem/y for the whole body and 136 mrem/y for bone marrow. Similar doses when imported foods are unavailable are 245 and 263 mrem/y, respectively. The 30-y integral doses for Bikini Island are about 23 rem for whole body and bone marrow when imported foods are available and more than 40 rem when imports are unavailable. The Eneu Island 30-y integral doses for whole body and bone marrow are about 3 rem when imports are available and 5.5 and 6.1 rem, respectively, when imports are unavailable. Doses from living patterns involving some combination of Bikini and Eneu Islands fall between the doses listed above for each island separately

  20. Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Mathilde M.W.; Dirksen, Asger; Shaker, Saher B. [Gentofte Hospital, Department of Respiratory Medicine, Hellerup (Denmark); Thomsen, Laura H. [Hvidovre Hospital, Department of Respiratory Medicine, Hvidovre (Denmark); Petersen, Jens [University of Copenhagen, Department of Computer Science, DIKU, Koebenhavn Oe (Denmark); Bruijne, Marleen de [University of Copenhagen, Department of Computer Science, DIKU, Koebenhavn Oe (Denmark); Erasmus MC -University Medical Center Rotterdam, Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Rotterdam (Netherlands); Pedersen, Jesper H. [Copenhagen University Hospital, Department of Thoracic Surgery, Rigshospitalet, Koebenhavn Oe (Denmark)

    2016-02-15

    Screening for lung cancer should be limited to a high-risk-population, and abnormalities in low-dose computed tomography (CT) screening images may be relevant for predicting the risk of lung cancer. Our aims were to compare the occurrence of visually detected emphysema and interstitial abnormalities in subjects with and without lung cancer in a screening population of smokers. Low-dose chest CT examinations (baseline and latest possible) of 1990 participants from The Danish Lung Cancer Screening Trial were independently evaluated by two observers who scored emphysema and interstitial abnormalities. Emphysema (lung density) was also measured quantitatively. Emphysema was seen more frequently and its extent was greater among participants with lung cancer on baseline (odds ratio (OR), 1.8, p = 0.017 and p = 0.002) and late examinations (OR 2.6, p < 0.001 and p < 0.001). No significant difference was found using quantitative measurements. Interstitial abnormalities were more common findings among participants with lung cancer (OR 5.1, p < 0.001 and OR 4.5, p < 0.001).There was no association between presence of emphysema and presence of interstitial abnormalities (OR 0.75, p = 0.499). Even early signs of emphysema and interstitial abnormalities are associated with lung cancer. Quantitative measurements of emphysema - regardless of type - do not show the same association. (orig.)

  1. Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis

    International Nuclear Information System (INIS)

    Wille, Mathilde M.W.; Dirksen, Asger; Shaker, Saher B.; Thomsen, Laura H.; Petersen, Jens; Bruijne, Marleen de; Pedersen, Jesper H.

    2016-01-01

    Screening for lung cancer should be limited to a high-risk-population, and abnormalities in low-dose computed tomography (CT) screening images may be relevant for predicting the risk of lung cancer. Our aims were to compare the occurrence of visually detected emphysema and interstitial abnormalities in subjects with and without lung cancer in a screening population of smokers. Low-dose chest CT examinations (baseline and latest possible) of 1990 participants from The Danish Lung Cancer Screening Trial were independently evaluated by two observers who scored emphysema and interstitial abnormalities. Emphysema (lung density) was also measured quantitatively. Emphysema was seen more frequently and its extent was greater among participants with lung cancer on baseline (odds ratio (OR), 1.8, p = 0.017 and p = 0.002) and late examinations (OR 2.6, p < 0.001 and p < 0.001). No significant difference was found using quantitative measurements. Interstitial abnormalities were more common findings among participants with lung cancer (OR 5.1, p < 0.001 and OR 4.5, p < 0.001).There was no association between presence of emphysema and presence of interstitial abnormalities (OR 0.75, p = 0.499). Even early signs of emphysema and interstitial abnormalities are associated with lung cancer. Quantitative measurements of emphysema - regardless of type - do not show the same association. (orig.)

  2. Bystander effects of exposure to low-dose-rate 125I seeds on human lung cancers cells in vitro

    International Nuclear Information System (INIS)

    Jia Rongfei; Chen Honghong; Yu Lei; Zhao Meijia; Shao Chunlin; Cheng Wenying

    2007-01-01

    The bystander effects induced by continuous low-dose-rate (LDR) 125 I seeds radiation on damage of human lung cancer cells were investigated. Human adenocarcinoma cell line A549 and human small cell lung cancer cell line NCI-H446, which have different sensitivities to high-dose rate (HDR) external irradiation, were exposed directly to 125 I seeds in vitro and co-cultured with unirradiated cells for 24 h. Using cytokinesis-blocking micronucleus method and γ H2AX fluorescence immunoassay, bystander effects induced by 2Gy and 4Gy 125 I seed irradiation on micronucleus formation and DNA double-strand breaks (DSBs) of human lung cancer cells were detected and evaluated. The results showed that irradiation with 125 I seeds can induce medium-mediated bystander effects in A549 cells and NCI-H446 cells, exhibiting that both micronuclei formation and γ H2AX focus formation in bystander cells were increased significantly compared with non-irradiated cells. The extent of DNA damage induced by bystander effects was correlated with accumulated radiation dose and radiosensitive of tumor cells. NCI-H446 cells that were sensitive to HDR γ irradiation were more sensitive to continuous LDR irradiation and bystander effects than A549. However, a comparison between the bystander effects and direct effects elicits the intensity of bystander responses of A549 cells was higher than that of NCI-H446 cells. A dose-related reduction in bystander responses was observed both in A549 cells and NCI-H446 cells, suggesting that the signaling factors involved in the bystander signaling pathways may decrease with the increase of cell damages. (authors)

  3. A real-time internal dose assessment exercise

    International Nuclear Information System (INIS)

    Bingham, D.; Bull, R. K.

    2013-01-01

    A real-time internal dose assessment exercise has been conducted in which participants were required to make decisions about sampling requirements, seek relevant information about the 'incident' and make various interim dose assessments. At the end of the exercise, each participant was requested to make a formal assessment, providing statements of the methods, models and assumptions used in that assessment. In this paper we describe how the hypothetical assessment case was set up and the exercise was conducted, the responses of the participants and the assessments of dose that they made. Finally we discuss the lessons learnt from the exercise and suggest how the exercise may be adapted to a wider range of participants. (authors)

  4. Lung deposition and systemic availability of fluticasone Diskus and budesonide Turbuhaler in children

    DEFF Research Database (Denmark)

    Agertoft, Lone; Pedersen, Soren

    2003-01-01

    Pharmacokinetic studies can be used to measure lung dose of inhaled drugs. The aim of this study was to compare the lung deposition of budesonide (BUD) inhaled from Turbuhaler (AstraZeneca, Lund, Sweden) and fluticasone propionate (FP) inhaled from Diskus (GlaxoSmithKline, London, UK) and to assess...

  5. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Liu, Jian-xiang; Huang, Min-yan; Ruan, Jian-lei; Bai, Yu-shu; Xu, Su

    2008-01-01

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 10 10 Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  6. Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors

    International Nuclear Information System (INIS)

    Chapet, Olivier; Fraass, Benedick A.; Haken, Randall K. ten

    2006-01-01

    Purpose: To evaluate whether increasing numbers of intensity-modulated radiation therapy (IMRT) fields enhance lung-tumor dose without additional predicted toxicity for difficult planning geometries. Methods and Materials: Data from 8 previous three dimensional conformal radiation therapy (3D-CRT) patients with tumors located in various regions of each lung, but with planning target volumes (PTVs) overlapping part of the esophagus, were used as input. Four optimized-beamlet IMRT plans (1 plan that used the 3D-CRT beam arrangement and 3 plans with 3, 5, or 7 axial, but predominantly one-sided, fields) were compared. For IMRT, the equivalent uniform dose (EUD) in the whole PTV was optimized simultaneously with that in a reduced PTV exclusive of the esophagus. Normal-tissue complication probability-based costlets were used for the esophagus, heart, and lung. Results: Overall, IMRT plans (optimized by use of EUD to judiciously allow relaxed PTV dose homogeneity) result in better minimum PTV isodose surface coverage and better average EUD values than does conformal planning; dose generally increases with the number of fields. Even 7-field plans do not significantly alter normal-lung mean-dose values or lung volumes that receive more than 13, 20, or 30 Gy. Conclusion: Optimized many-field IMRT plans can lead to escalated lung-tumor dose in the special case of esophagus overlapping PTV, without unacceptable alteration in the dose distribution to normal lung

  7. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    Science.gov (United States)

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  8. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas, E-mail: nick.hardcastle@gmail.com [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Hofman, Michael S. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Hicks, Rodney J. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Department of Medicine, University of Melbourne, Melbourne (Australia); Callahan, Jason [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Medical Imaging and Radiation Sciences, Monash University, Clayton (Australia); The Sir Peter MacCallum Department of Oncology, Melbourne University, Victoria (Australia); MacManus, Michael P.; Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne (Australia); Jackson, Price [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia)

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  9. Lung cancer screening with low-dose helical CT in Korea: experiences at the Samsung Medical Center.

    Science.gov (United States)

    Chong, Semin; Lee, Kyung Soo; Chung, Myung Jin; Kim, Tae Sung; Kim, Hojoong; Kwon, O Jung; Choi, Yoon-Ho; Rhee, Chong H

    2005-06-01

    To determine overall detection rates of lung cancer by low-dose CT (LDCT) screening and to compare histopathologic and imaging differences of detected cancers between high- and low-risk groups, this study included 6,406 asymptomatic Korean adults with >or=45 yr of age who underwent LDCT for lung cancer screening. All were classified into high- (>or=20 pack-year smoking; 3,353) and low-risk (3,053; <20 pack-yr smoking and non-smokers) groups. We compared CT findings of detected cancers and detection rates between high- and low-risk. At initial CT, 35% (2,255 of 6,406) had at least one or more non-calcified nodule. Lung cancer detection rates were 0.36% (23 of 6,406). Twenty-one non-small cell lung cancers appeared as solid (n=14) or ground-glass opacity (GGO) (n=7) nodules. Cancer likelihood was higher in GGO nodules than in solid nodules (p<0.01). Fifteen of 23 cancers occurred in high-risk group and 8 in low-risk group (p=0.215). Therefore, LDCT screening help detect early stage of lung cancer in asymptomatic Korean population with detection rate of 0.36% on a population basis and may be useful for discovering early lung cancer in low-risk group as well as in high-risk group.

  10. Differences in dose-volumetric data between the analytical anisotropic algorithm and the x-ray voxel Monte Carlo algorithm in stereotactic body radiation therapy for lung cancer

    International Nuclear Information System (INIS)

    Mampuya, Wambaka Ange; Matsuo, Yukinori; Nakamura, Akira; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Miyabe, Yuki; Narabayashi, Masaru; Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2013-01-01

    The objective of this study was to evaluate the differences in dose-volumetric data obtained using the analytical anisotropic algorithm (AAA) vs the x-ray voxel Monte Carlo (XVMC) algorithm for stereotactic body radiation therapy (SBRT) for lung cancer. Dose-volumetric data from 20 patients treated with SBRT for solitary lung cancer generated using the iPlan XVMC for the Novalis system consisting of a 6-MV linear accelerator and micro-multileaf collimators were recalculated with the AAA in Eclipse using the same monitor units and identical beam setup. The mean isocenter dose was 100.2% and 98.7% of the prescribed dose according to XVMC and AAA, respectively. Mean values of the maximal dose (D max ), the minimal dose (D min ), and dose received by 95% volume (D 95 ) for the planning target volume (PTV) with XVMC were 104.3%, 75.1%, and 86.2%, respectively. When recalculated with the AAA, those values were 100.8%, 77.1%, and 85.4%, respectively. Mean dose parameter values considered for the normal lung, namely the mean lung dose, V 5 , and V 20 , were 3.7 Gy, 19.4%, and 5.0% for XVMC and 3.6 Gy, 18.3%, and 4.7% for the AAA, respectively. All of these dose-volumetric differences between the 2 algorithms were within 5% of the prescribed dose. The effect of PTV size and tumor location, respectively, on the differences in dose parameters for the PTV between the AAA and XVMC was evaluated. A significant effect of the PTV on the difference in D 95 between the AAA and XVMC was observed (p = 0.03). Differences in the marginal doses, namely D min and D 95 , were statistically significant between peripherally and centrally located tumors (p = 0.04 and p = 0.02, respectively). Tumor location and volume might have an effect on the differences in dose-volumetric parameters. The differences between AAA and XVMC were considered to be within an acceptable range (<5 percentage points)

  11. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary

  12. Lung and heart dose volume analyses with CT simulator in tangential field irradiation of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Fowble, Barbara

    1997-01-01

    Objective: Radiation pneumonitis and cardiac effects are directly related to the irradiated lung and heart volumes in the treatment fields. The central lung distance (CLD) from a tangential breast radiograph is shown to be a significant indicator of ipsilateral irradiated lung volume based on empirically derived functions which accuracy depends on the actual measured volume in treatment position. A simple and accurate linear relationship with CLD and retrospective analysis of the pattern of dose volume of lung and heart is presented with actual volume data from a CT simulator in the treatment of breast cancer. Materials and Methods: The heart and lung volumes in the tangential treatment fields were analyzed in 45 consecutive (22 left and 23 right breast) patients referred for CT simulation of the cone down treatment. All patients in this study were immobilized and placed on an inclined breast board in actual treatment setup. Both arms were stretched over head uniformly to avoid collision with the scanner aperture. Radiopaque marks were placed on the medial and lateral borders of the tangential fields. All patients were scanned in spiral mode with slice width and thickness of 3 mm each, respectively. The lung and heart structures as well as irradiated areas were delineated on each slice and respective volumes were accurately measured. The treatment beam parameters were recorded and the digitally reconstructed radiographs (DRRs) were generated for the CLD and analysis. Results: Table 1 shows the volume statistics of patients in this study. There is a large variation in the lung and heart volumes among patients. Due to differences in the shape of right and left lungs the percent irradiated volume (PIV) are different. The PIV data have shown to correlate with CLD with 2nd and 3rd degree polynomials; however, in this study a simple straight line regression is used to provide better confidence than the higher order polynomial. The regression lines for the left and right

  13. Gene expression dose-response changes in microarrays after exposure of human peripheral lung epithelial cells to nickel(II).

    Science.gov (United States)

    Cheng, Robert Y S; Zhao, Ailian; Alvord, W Gregory; Powell, Douglas A; Bare, Robert M; Masuda, Akira; Takahashi, Takashi; Anderson, Lucy M; Kasprzak, Kazimierz S

    2003-08-15

    Occupational exposure to nickel compounds is associated with lung cancer risk; both genotoxic and epigenetic mechanisms have been proposed. For comprehensive examination of the acute effects of nickel(II) acetate on gene expression in cultured human peripheral lung epithelial HPL1D cells, microarray analyses were carried out with cDNA chips (approximately 8000 cDNAs). Cells were exposed for 24 h to nontoxic (50, 100, and 200 microM) or toxic (400, 800, and 1600 microM) nickel(II) concentrations. Cluster analysis was applied to the 868 genes with > or = 2-fold change at any concentration. Two main clusters showed marked up- or down-regulation at the highest, toxic concentrations. The data further subdivided into 10 highly cohesive clusters with high probability, and of these only 2 had the same response trend at low nontoxic as at high concentrations, an observation of clear relevance to the process of high- to low-dose extrapolation in risk assessment. There were 113 genes showing > or = 2-fold change at the three lower nontoxic concentrations, those most relevant to in vivo carcinogenesis. In addition to expected responses of metallothionein, ferritin, and heat-shock proteins, the results revealed for the first time changed expression of some potential cancer-related genes in response to low-dose Ni(II): RhoA, dyskerin, interferon regulatory factor 1, RAD21 homologue, and tumor protein, translationally controlled. Overall, most of the genes impacted by nontoxic concentrations of nickel(II) acetate related to gene transcription, protein synthesis and stability, cytoskeleton, signaling, metabolism, cell membrane, and extracellular matrix.

  14. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  15. The effect of irradiation on lung function and perfusion in patients with lung cancer

    International Nuclear Information System (INIS)

    Abratt, Raymond P.; Willcox, Paul A.

    1995-01-01

    Purpose: To prospectively study the changes in lung function in patients with lung carcinoma treated with relatively high doses of irradiation. Methods and Materials: Lung function was assessed prior to and at 6 and 12 months following radiation therapy by a clinical dyspnea score, formal pulmonary function tests (lung volume spirometry and diffusion capacity) as well as an ipsilateral hemithorax lung perfusion scan. Changes in dyspnea score were evaluated by the chi-square and the Fishers exact test. Changes in formal lung function tests were compared with the t-test for dependent data and correlations with the t-test for independent data. Fifty-one patients were entered into the study. There were 42 evaluable patients at 6 months after irradiation and 22 evaluable patients at 12 months after irradiation. Results: A worsening of dyspnea score from 1 to 2, which is clinically acceptable, occurred in 50% or more of patients. However, a dyspnea score of 3, which is a serious complication, developed in only 5% of patients. The diffusion capacity (DLCO) decreased by 14% at 6 months and 12% at 12 months) (p < 0.0001). The forced vital capacity and total lung capacity decreased between 6% and 8% at 6 month and 12 months, which was statistically significant. The forced expiratory volume in 1 s decreased between 2 and 3% at 6 month and 12 months, which was not statistically significant. The ipsilateral hemithorax perfusion decreased by 17 and 20% at 6 and 12 months (p < 0.0001). There was no correlation between the initial hemithorax perfusion, or its decrease at follow up and the decrease in DLCO. Conclusion: Lung irradiation results in some loss of lung function in patients with lung cancer with a projected survival of 6 months or more. The pretreatment DLCO assessment should be useful in predicting clinical tolerance to irradiation

  16. Dissolution rates of airborne uranium in simulated lung fluid

    International Nuclear Information System (INIS)

    Thein, M.; Maitz, A.H.; Austin, M.A.; Rao, G.R.; Gur, D.

    1982-01-01

    The airborne uranium, collected on three sets of air filter samples at different times, near a uranium fuel fabrication plant, was classified to assess the potential radiological and toxicological hazards of respirable particles with aerodynamic equivalent diameters of less than 15 μm. A model was developed to calculate radiation dose from radionuclides deposited in the lung by inhalation. Knowing the solubility category and dissolution half-time, the likely doses to residents near such plants can be assessed. (U.K.)

  17. Lung inhomogeneity effect in the radiotherapy treatments using the BPW-34 photodiode detector; Estudo do efeito do pulmao na dose em tratamentos radioterapicos utilizando o fotodiodo BPW-34

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Lopes Filho, F de

    1990-09-01

    The presence, in the radiation field, of regions with composition and/or differing from soft tissue may significantly affect the tumoral dose distribution in radiotherapy treatments. The effect of the lung on the dose distribution in the near by tissues was studied with high energy rays c{gamma} of {sup 60} Co and 10 MV, 6 MV - X-ray and using a BPW-34 photodiode as a detector. The results obtained showed that the tumoral dose is reduced in the region anterior to the lung, due to backscattering reduction, whereas it is enhanced beyond the lung due to the lower attenuation in the inhomogeneity. (author). 36 refs, 11 figs, 12 tabs.

  18. Low doses of prophylactic cranial irradiation effective in limited stage small cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Rubenstein, James H.; Dosoretz, Daniel E.; Katin, Michael J.; Blitzer, Peter H.; Salenius, Sharon A.; Floody, Patrick A.; Harwin, William N.; Teufel, Thomas E.; Raymond, Michael G.; Reeves, James A.; Hart, Lowell L.; McCleod, Michael J.; Pizarro, Alejandro; Gabarda, Antonio L.; Rana, Van G.

    1995-01-01

    Purpose: Prophylactic cranial irradiation (PCI) for the prevention of brain metastasis in small cell lung cancer remains controversial, both in terms of efficacy and the optimal dose-fractionation scheme. We performed this study to evaluate the efficacy of PCI at low doses. Methods and Materials: One hundred and ninety-seven patients were referred to our institution for treatment of limited stage small cell carcinoma of the lung between June 1986 and December 1992. Follow-up ranged from 1.1 to 89.8 months, with a mean of 19 months. Eighty-five patients received PCI. Results: Patients receiving PCI exhibited brain failure in 15%, while 38% of untreated patients developed metastases. This degree of prophylaxis was achieved with a median total dose of 25.20 Gy and a median fraction size of 1.80 Gy. At these doses, acute and late complications were minimal. Patients receiving PCI had significantly better 1-year and 2-year overall survivals (68% and 46% vs. 33% and 13%). However, patients with a complete response (CR) to chemotherapy and better Karnofsky performance status (KPS) were overrepresented in the PCI group. In an attempt to compare similar patients in both groups (PCI vs. no PCI), only patients with KPS ≥ 80, CR or near-CR to chemotherapy, and treatment with attempt to cure, were compared. In this good prognostic group, survival was still better in the PCI group (p = 0.0018). Conclusion: In this patient population, relatively low doses of PCI have accomplished a significant reduction in the incidence of brain metastasis with little toxicity. Whether such treatment truly improves survival awaits the results of additional prospective randomized trials

  19. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Eldh, T.; Heinzelmann, F.; Velalakan, A. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Budach, W. [Duesseldorf Univ. (Germany). Dept. of Radiation Oncology; Belka, C. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Muenchen Univ. (Germany). Dept. of Radiation Oncology; Jendrossek, V. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Duisburg-Essen Univ., Essen (DE). Inst. of Cell Biology (Cancer Research)

    2012-03-15

    Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice. C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis. Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects. Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

  20. SU-C-202-04: Adapting Biologically Optimized Dose Escalation Based On Mid-Treatment PET/CT for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P; Kuo, L; Yorke, E; Hu, Y; Lockney, N; Mageras, G; Deasy, J; Rimner, A [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a biological modeling strategy which incorporates the response observed on the mid-treatment PET/CT into a dose escalation design for adaptive radiotherapy of non-small-cell lung cancer. Method: FDG-PET/CT was acquired midway through standard fractionated treatment and registered to pre-treatment planning PET/CT to evaluate radiation response of lung cancer. Each mid-treatment PET voxel was assigned the median SUV inside a concentric 1cm-diameter sphere to account for registration and imaging uncertainties. For each voxel, the planned radiation dose, pre- and mid-treatment SUVs were used to parameterize the linear-quadratic model, which was then utilized to predict the SUV distribution after the full prescribed dose. Voxels with predicted post-treatment SUV≥2 were identified as the resistant target (response arm). An adaptive simultaneous integrated boost was designed to escalate dose to the resistant target as high as possible, while keeping prescription dose to the original target and lung toxicity intact. In contrast, an adaptive target volume was delineated based only on the intensity of mid-treatment PET/CT (intensity arm), and a similar adaptive boost plan was optimized. The dose escalation capability of the two approaches was compared. Result: Images of three patients were used in this planning study. For one patient, SUV prediction indicated complete response and no necessary dose escalation. For the other two, resistant targets defined in the response arm were multifocal, and on average accounted for 25% of the pre-treatment target, compared to 67% in the intensity arm. The smaller response arm targets led to a 6Gy higher mean target dose in the adaptive escalation design. Conclusion: This pilot study suggests that adaptive dose escalation to a biologically resistant target predicted from a pre- and mid-treatment PET/CT may be more effective than escalation based on the mid-treatment PET/CT alone. More plans and ultimately clinical

  1. Phase I Study of Concurrent High-Dose Three-Dimensional Conformal Radiotherapy With Chemotherapy Using Cisplatin and Vinorelbine for Unresectable Stage III Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Ikuo, E-mail: isekine@ncc.go.jp [Division of Internal Medicine and Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako; Ito, Yoshinori [Division of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Horinouchi, Hidehito; Nokihara, Hiroshi; Yamamoto, Noboru; Kunitoh, Hideo; Ohe, Yuichiro; Kubota, Kaoru; Tamura, Tomohide [Division of Internal Medicine and Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan)

    2012-02-01

    Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of the 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.

  2. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  3. A review of occupational dose assessment uncertainties and approaches

    International Nuclear Information System (INIS)

    Anderson, R. W.

    2004-01-01

    The Radiological Protection Practitioner (RPP) will spend a considerable proportion of his time predicting or assessing retrospective radiation exposures to occupational personnel for different purposes. The assessments can be for a variety of purposes, such as to predict doses for occupational dose control, or project design purposes or to make retrospective estimates for the dose record, or account for dosemeters which have been lost or damaged. There are other less frequent occasions when dose assessment will be required such as to support legal cases and compensation claims and to provide the detailed dose information for epidemiological studies. It is important that the level of detail, justification and supporting evidence in the dose assessment is suitable for the requirements. So for instance, day to day operational dose assessments often rely mainly on the knowledge of the RPP in discussion with operators whilst at the other end of the spectrum a historical dose assessment for a legal case will require substantial research and supporting evidence for the estimate to withstand forensic challenge. The robustness of the assessment will depend on many factors including a knowledge of the work activities, the radiation dose uptake and field characteristics; all of which are affected by factors such as the time elapsed, the memory of operators and the dosemeters employed. This paper reviews the various options and uncertainties in dose assessments ranging from use of personal dosimetry results to the development of upper bound assessments. The level of assessment, the extent of research and the evidence adduced should then be appropriate to the end use of the estimate. (Author)

  4. Regional Lung Density Changes After Radiation Therapy for Tumors in and Around Thorax

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2010-01-01

    Purpose: To study the temporal nature of regional lung density changes and to assess whether the dose-dependent nature of these changes is associated with patient- and treatment-associated factors. Methods and Materials: Between 1991 and 2004, 118 patients with interpretable pre- and post-radiation therapy (RT) chest computed tomography (CT) scans were evaluated. Changes in regional lung density were related to regional dose to define a dose-response curve (DRC) for RT-induced lung injury using three-dimensional planning tools and image fusion. Multiple post-RT follow-up CT scans were evaluated by fitting linear-quadratic models of density changes on dose with time as the covariate. Various patient- and treatment-related factors were examined as well. Results: There was a dose-dependent increase in regional lung density at nearly all post-RT follow-up intervals. The population volume-weighted changes evolved over the initial 6-month period after RT and reached a plateau thereafter (p < 0.001). On univariate analysis, patient age greater than 65 years (p = 0.003) and/or the use of pre-RT surgery (p < 0.001) were associated with significantly greater changes in CT density at both 6 and 12 months after RT, but the magnitude of this effect was modest. Conclusions: There appears to be a temporal nature for the dose-dependent increases in lung density. Nondosimetric clinical factors tend to have no, or a modest, impact on these changes.

  5. Two quantitative methods for assessment of [Tc-99m]-MAA in the lung in the treatment of liver metastases: a case study

    International Nuclear Information System (INIS)

    Willowson, Kathy P.; Bailey, Dale L.; Baldock, Clive

    2009-01-01

    Full text: Objective: The use of Y-90 microspheres to treat metastatic liver cancer is becoming widely utilized. Despite the fact that the microspheres are delivered directly to the liver, some activity may bypass the liver capillaries and be shunted to the lungs. To evaluate the percentage of pulmonary breakthrough, a pre-therapy test is performed using Tc- 9 9 m labeled spheres. The aim of this project was to compare two quantitative methods for assessing lung uptake, and consider the possibility of organ specific quantification. Method: A previously validated method for achieving CT-based quantitative SPECTI was compared to a simple planar approach. A 44 year old man suffering from metastatic liver sarcoma was referred to the clinic for pre-therapy evaluation. After injection of Tc- 9 9 m labeled microspheres and routine imaging, a SPECT/CT was acquired and specific organ uptake values calculated. A further calibrated injection of [Tc- 9 9 m ]-MAA was then given as a simplified alternative to quantify lung uptake by comparing pre and post counts. Results: The quantitative SPECT/CT method correctly accounted for all injected activity and found 80% of the dose was retained in the liver and 4% in the lungs. The planar method found -4% of the dose in the lungs. Conclusion: The quantitative technique we have developed allows for accurate calculation of organ specific uptake, which has important implications for treatment. The additional MAA injection offers a simplified but accurate method to quantify lung uptake. I. K Willow son, D.L Bailey and C Baldock (2008) Quantitative SPECT reconstructions using CT-derived corrections Phys Med Bioi 53:3099-3112.

  6. The study on the dose-effect relationship of radiation from α particles of plutonium on certain lung cells (in vivo and in vitro)

    International Nuclear Information System (INIS)

    Wu Dechang; Ye Changqing; Gong Yifen; Yan Xiaoshan; Xie Guoliang; Liu Guolian; Chen Winchung; Hu Lianping; Shen Zhiyuan

    1993-01-01

    It is well known that plutonium is one of the most toxic radionuclides and its carcinogenic risk has been seriously concerned. In this study, the dose effect relationship of radiation from α particles of plutonium on certain lung cells (in vivo and in vitro) were investigated. The topics of study are as following: In vivo: deposition and clearance of Pu in respiratory tract, dose-effect relationship of lung cancer induced, histopathological type of lung cancer, primary hemangiosarcoma occurred in thoracic lumph node, radiation effects on Alveolar Macrophage (AM), radiation effect on Natural Killer Cell (NK) and radiation effect on Alveolar Type II (AT-II). In vitro: radiation effect on the immunological functions of AM, radiation effect on the membrane of AM, possible relationship between cytotoxicity and membranes of AM, effects of radiation (X, α) on the transformation of Wistar rat lung fibroblast cell line (WAL-F1) and protective effect of Se 4+ against transformation

  7. Esophagus and contralateral lung-sparing IMRT for locally advanced lung cancer in the community hospital setting

    Directory of Open Access Journals (Sweden)

    Johnny eKao

    2015-06-01

    Full Text Available Background: The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue sparing IMRT can allow for safe dose escalation resulting in decreased acute and late toxicity. Methods: We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of 3-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT. From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity and overall survival.Results: Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 Gy vs. 60.8 Gy, p=0.04, patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, maximum esophagus and mean esophagus doses compared to patients treated with standard RT (p≤0.001. Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0% vs. 11%, p<0.001, acute grade ≥2 weight loss (2% vs. 16%, p=0.04, late grade ≥2 pneumonitis (7% vs. 21%, p=0.02. The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p=0.015.Conclusion: These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose volume constraints are feasible in the community hospital setting without sacrificing disease control.

  8. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dinh, Tru-Khang T.; Fendler, Wojciech; Chałubińska-Fendler, Justyna; Acharya, Sanket S.; O’Leary, Colin; Deraska, Peter V.; D’Andrea, Alan D.; Chowdhury, Dipanjan; Kozono, David

    2016-01-01

    Risk of normal tissue toxicity limits the amount of thoracic radiation therapy (RT) that can be routinely prescribed to treat non-small cell lung cancer (NSCLC). An early biomarker of response to thoracic RT may provide a way to predict eventual toxicities—such as radiation pneumonitis—during treatment, thereby enabling dose adjustment before the symptomatic onset of late effects. MicroRNAs (miRNAs) were studied as potential serological biomarkers for thoracic RT. As a first step, we sought to identify miRNAs that correlate with delivered dose and standard dosimetric factors. We performed miRNA profiling of plasma samples obtained from five patients with Stage IIIA NSCLC at five dose-points each during radical thoracic RT. Candidate miRNAs were then assessed in samples from a separate cohort of 21 NSCLC patients receiving radical thoracic RT. To identify a cellular source of circulating miRNAs, we quantified in vitro miRNA expression intracellularly and within secreted exosomes in five NSCLC and stromal cell lines. miRNA profiling of the discovery cohort identified ten circulating miRNAs that correlated with delivered RT dose as well as other dosimetric parameters such as lung V20. In the validation cohort, miR-29a-3p and miR-150-5p were reproducibly shown to decrease with increasing radiation dose. Expression of miR-29a-3p and miR-150-5p in secreted exosomes decreased with radiation. This was concomitant with an increase in intracellular levels, suggesting that exosomal export of these miRNAs may be downregulated in both NSCLC and stromal cells in response to radiation. miR-29a-3p and miR-150-5p were identified as circulating biomarkers that correlated with delivered RT dose. miR-150 has been reported to decrease in the circulation of mammals exposed to radiation while miR-29a has been associated with fibrosis in the human heart, lungs, and kidneys. One may therefore hypothesize that outlier levels of circulating miR-29a-3p and miR-150-5p may eventually help

  9. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H; Neelakkantan, Harini; Meeks, Sanford L; Kupelian, Patrick A

    2010-01-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  10. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  11. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  12. Plutonium dose-effect relationship

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1976-01-01

    Dose in internal exposure to Pu was investigated, and dose-effect relationship was discussed. Dose-effect relationship in internal exposure was investigated by means of two methods, which were relationship between dose and its effect (relationship between μ Ci/Kg and its effect), and exposure dose and its effects (rad-effect), and merits and demerits of two methods were mentioned. Problems in a indication method such as mean dose were discussed with respect to the dose in skeleton, the liver and the lung. Pu-induced osteosarcoma in mice rats, and beagles was described, and differences in its induction between animals were discussed. Pulmonary neoplasma induced by 239 PuO 2 inhalation in beagles was reported, and description was made as to differences in induction of lung cancer between animals when Pu was inhaled and was taken into the lung. A theoretical and experimental study of a extrapolation of the results of the animal experiment using Pu to human cases is necessary. (Serizawa, K.)

  13. Risk of second primary lung cancer in women after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Grantzau, Trine; Thomsen, Mette Skovhus; Væth, Michael; Overgaard, Jens

    2014-01-01

    Background: Several epidemiological studies have reported increased risks of second lung cancers after breast cancer irradiation. In this study we assessed the effects of the delivered radiation dose to the lung and the risk of second primary lung cancer. Methods: We conducted a nested case–control study of second lung cancer in a population based cohort of 23,627 early breast cancer patients treated with post-operative radiotherapy from 1982 to 2007. The cohort included 151 cases diagnosed with second primary lung cancer and 443 controls. Individual dose-reconstructions were performed and the delivered dose to the center of the second lung tumor and the comparable location for the controls were estimated, based on the patient specific radiotherapy charts. Results: The median age at breast cancer diagnosis was 54 years (range 34–74). The median time from breast cancer treatment to second lung cancer diagnosis was 12 years (range 1–26 years). 91% of the cases were categorized as ever smokers vs. 40% among the controls. For patients diagnosed with a second primary lung cancer five or more years after breast cancer treatment the rate of lung cancer increased linearly with 8.5% per Gray (95% confidence interval = 3.1–23.3%; p < 0.001). This rate was enhanced for ever smokers with an excess rate of 17.3% per Gray (95% CI = 4.5–54%; p < 0.005). Conclusions: Second lung cancer after radiotherapy for early breast cancer is associated with the delivered dose to the lung. Although the absolute risk is relative low, the growing number of long-time survivors after breast cancer treatment highlights the need for advances in normal tissue sparing radiation techniques

  14. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality

    International Nuclear Information System (INIS)

    Geleijns, J.; Veldkamp, W.J.H.; Salvado Artells, M.; Lopez Tortosa, M.; Calzado Cantera, A.

    2006-01-01

    This study aimed at assessment of efficacy of selective in-plane shielding in adults by quantitative evaluation of the achieved dose reduction and image quality. Commercially available accessories for in-plane shielding of the eye lens, thyroid and breast, and an anthropomorphic phantom were used for the evaluation of absorbed dose and image quality. Organ dose and total energy imparted were assessed by means of a Monte Carlo technique taking into account tube voltage, tube current, and scanner type. Image quality was quantified as noise in soft tissue. Application of the lens shield reduced dose to the lens by 27% and to the brain by 1%. The thyroid shield reduced thyroid dose by 26%; the breast shield reduced dose to the breasts by 30% and to the lungs by 15%. Total energy imparted (unshielded/shielded) was 88/86 mJ for computed tomography (CT) brain, 64/60 mJ for CT cervical spine, and 289/260 mJ for CT chest scanning. An increase in image noise could be observed in the ranges were bismuth shielding was applied. The observed reduction of organ dose and total energy imparted could be achieved more efficiently by a reduction of tube current. The application of in-plane selective shielding is therefore discouraged. (orig.)

  15. SU-G-BRC-12: Isotoxic Dose Escalation for Advanced Lung Cancer: Comparison of Different Boosting Strategiesfor Patients with Recurrent Disease

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Sharp, G; Choi, N [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDG PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.

  16. SU-G-BRC-12: Isotoxic Dose Escalation for Advanced Lung Cancer: Comparison of Different Boosting Strategiesfor Patients with Recurrent Disease

    International Nuclear Information System (INIS)

    Shusharina, N; Khan, F; Sharp, G; Choi, N

    2016-01-01

    Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDG PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.

  17. Dose escalation of radical radiation therapy in non-small-cell lung cancer using positron emission tomography/computed tomography-defined target volumes: Are class solutions obsolete?

    International Nuclear Information System (INIS)

    Everitt, S.; Schneider-Kolsky, M.; Budd, R.; Yuen, K.; Manus, M Mac

    2008-01-01

    Full text: This study investigated the maximum theoretical radiation dose that could safely be delivered to 20 patients diagnosed with non-small-cell lung cancer. Two three-dimensional conformal radiation therapy (RT) class-solution techniques (A and B) and an individualized three-dimensional conformal RT technique (C) were compared at the standard dose of 60 Gy (part I). Dose escalation was then attempted for each technique successfully at 60 Gy, constrained by predetermined limits for lung and spinal canal (part II). Part I and part II data were reanalysed to include oesophageal dose constraints (part III). In part I, 60 Gy was successfully planned using techniques A, B and C in 19 (95%), 18 (90%) and 20 (100%) patients, respectively. The mean escalated dose attainable for part II using techniques A, B and C were 76.4, 74 and 97.8 Gy, respectively (P < 0.0005). One (5%) patient was successfully planned for 120 Gy using techniques A and B, whereas four (20%) were successfully planned using technique C. Following the inclusion of additional constraints applied to the oesophagus in part III, the amount of escalated dose remained the same for all patients who were successfully planned at 60 Gy apart from two patients when technique C was applied. In conclusion, individualized three-dimensional conformal RT facilitated greater dose conformation and higher escalation of dose in most patients. With modern planning tools, simple class solutions are obsolete for conventional dose radical RT in non-small-cell lung cancer. Highly individualized conformal planning is essential for dose escalation.

  18. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    Science.gov (United States)

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p wave speeds of patients' lung were significantly higher than those of healthy patients (p ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  19. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  20. The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Spencer, David P.; Sherouse, George W.; Bentel, Gunilla; Clough, Robert; Vann, Karen; Jaszczak, Ronald; Coleman, R. Edward; Prosnitz, Leonard R.

    1995-01-01

    Purpose: During thoracic irradiation (XRT), treatment fields are usually designed to minimize the volume of nontumor-containing lung included. Generally, functional heterogeneities within the lung are not considered. The three dimensional (3D) functional information provided by single photon emission computed tomography (SPECT) lung perfusion scans might be useful in designing beams that minimize incidental irradiation of functioning lung tissue. We herein review the pretreatment SPECT scans in 86 patients (56 with lung cancer) to determine which are likely to benefit from this technology. Methods and Materials: Prior to thoracic XRT, SPECT lung perfusion scans were obtained following the intravenous injection of ∼4 mCi of 99m Tc-labeled macro-aggregated albumin. The presence of areas of decreased perfusion, their location relative to the tumor, and the potential clinical usefulness of their recognition, were scored. Patients were grouped and compared (two-tailed chi-square) based on clinical factors. Conventional dose-volume histograms (DVHs) and functional DVHs (DV F Hs) are calculated based on the dose distribution throughout the computed tomography (CT)-defined lung and SPECT-defined perfused lung, respectively. Results: Among 56 lung cancer patients, decreases in perfusion were observed at the tumor, adjacent to the tumor, and separate from the tumor in 94%, 74%, and 42% of patients, respectively. Perfusion defects adjacent to the tumor were often large with centrally placed tumors. Hypoperfusion in regions separate from the tumor were statistically most common in patients with relatively poor pulmonary function and chronic obstructive pulmonary disease (COPD). Considering all SPECT defects adjacent to and separate from the tumor, corresponding CT abnormalities were seen in only ∼50% and 20% of patients, respectively, and were generally not as impressive. Following XRT, hypoperfusion at and separate from the tumor persisted, while defects adjacent to the

  1. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  2. An Internal Dose Assessment Associated with Personal Food Intake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of); Hwang, Wontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    ICRP (International Commission on Radiological Protection), Therefore, had recommended the concept of 'Critical Group'. Recently the ICRP has recommended the use of 'Representative Person' on the new basic recommendation 103. On the other hand the U.S. NRC (Nuclear Regulatory Commission) has adopted more conservative concept, 'Maximum Exposed Individuals (MEI)' of critical Group. The dose assessment in Korea is based on MEI. Although dose assessment based on MEI is easy to receive the permission of the regulatory authority, it is not efficient. Meanwhile, the internal dose by food consumption takes an important part. Therefore, in this study, the internal dose assessment was performed in accordance with ICRP's new recommendations. The internal dose assessment was performed in accordance with ICRP's new recommendations. It showed 13.2% decreased of the annual internal dose due to gaseous effluents by replacing MEI to the concept of representative person. Also, this calculation based on new ICRP's recommendation has to be extended to all areas of individual dose assessment. Then, more accurate and efficient values might be obtained for dose assessment.

  3. Use of FDG-PET to guide dose prescription heterogeneity in stereotactic body radiation therapy for lung cancers with volumetric modulated arc therapy: a feasibility study

    International Nuclear Information System (INIS)

    Henriques de Figueiredo, Bénédicte; Antoine, Mikael; Trouette, Renaud; Lagarde, Philippe; Petit, Adeline; Lamare, Frédéric; Hatt, Mathieu; Fernandez, Philippe

    2014-01-01

    The aim of this study was to assess if FDG-PET could guide dose prescription heterogeneity and decrease arbitrary location of hotspots in SBRT. For three patients with stage I lung cancer, a CT-simulation and a FDG-PET were registered to define respectively the PTV CT and the biological target volume (BTV). Two plans involving volumetric modulated arc therapy (VMAT) and simultaneous integrated boost (SIB) were calculated. The first plan delivered 4 × 12 Gy within the PTV CT and the second plan, with SIB, 4 × 12 Gy and 13.8 Gy (115% of the prescribed dose) within the PTV CT and the BTV respectively. The Dmax-PTV CT had to be inferior to 60 Gy (125% of the prescribed dose). Plans were evaluated through the D95%, D99% and Dmax-PTV CT , the D2 cm, the R50% and R100% and the dice similarity coefficient (DSC) between the isodose 115% and BTV. DSC allows verifying the location of the 115% isodose (ideal value = 1). The mean PTV CT and BTV were 36.7 (±12.5) and 6.5 (±2.2) cm 3 respectively. Both plans led to similar target coverage, same doses to the OARs and equivalent fall-off of the dose outside the PTV CT . On the other hand, the location of hotspots, evaluated through the DSC, was improved for the SIB plans with a mean DSC of 0.31 and 0.45 for the first and the second plans respectively. Use of PET to decrease arbitrary location of hotspots is feasible with VMAT and SIB for lung cancer

  4. Use of FDG-PET to guide dose prescription heterogeneity in stereotactic body radiation therapy for lung cancers with volumetric modulated arc therapy: a feasibility study.

    Science.gov (United States)

    de Figueiredo, Bénédicte Henriques; Antoine, Mikael; Trouette, Renaud; Lagarde, Philippe; Petit, Adeline; Lamare, Frédéric; Hatt, Mathieu; Fernandez, Philippe

    2014-12-23

    The aim of this study was to assess if FDG-PET could guide dose prescription heterogeneity and decrease arbitrary location of hotspots in SBRT. For three patients with stage I lung cancer, a CT-simulation and a FDG-PET were registered to define respectively the PTVCT and the biological target volume (BTV). Two plans involving volumetric modulated arc therapy (VMAT) and simultaneous integrated boost (SIB) were calculated. The first plan delivered 4 × 12 Gy within the PTV(CT) and the second plan, with SIB, 4 × 12 Gy and 13.8 Gy (115% of the prescribed dose) within the PTV(CT) and the BTV respectively. The Dmax-PTV(CT) had to be inferior to 60 Gy (125% of the prescribed dose). Plans were evaluated through the D95%, D99% and Dmax-PTV(CT), the D2 cm, the R50% and R100% and the dice similarity coefficient (DSC) between the isodose 115% and BTV. DSC allows verifying the location of the 115% isodose (ideal value = 1). The mean PTV(CT) and BTV were 36.7 (±12.5) and 6.5 (±2.2) cm3 respectively. Both plans led to similar target coverage, same doses to the OARs and equivalent fall-off of the dose outside the PTV(CT). On the other hand, the location of hotspots, evaluated through the DSC, was improved for the SIB plans with a mean DSC of 0.31 and 0.45 for the first and the second plans respectively. Use of PET to decrease arbitrary location of hotspots is feasible with VMAT and SIB for lung cancer.

  5. Lung cancer and inhaled uranium ore dust in rats

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Jackson, J.S.

    1997-01-01

    Using a nose only inhalation system, 187 nine week old male Sprague-Dawley rats were exposed to two different concentrations of natural uranium ore dust aerosol (44% U) without significant radon content. Inhalation exposures averaged about 4.2 h/day, 5 days/week for 65 weeks at which point lung uranium burdens in the two groups averaged 0.9 and 1.9 mg/g dry weight. Animals (63) exposed to the air stream without dust served as controls. After inhalation exposure ceased, the rats were allowed to live for their natural lifetime, a maximum of about 900 days after the start of dust inhalation. Lung uranium burdens were measured at the time of death of each animal. Lung burdens were found to decline exponentially after dust inhalation ceased, and the rate of decline was independent of the initial lung burden. All lungs were examined at necropsy and histologically for lung tumors. Lung tumors of lung origin were observed in both exposed groups and in the control group. The frequency of primary malignant lung tumors was 0.016, 0.175 and 0.328 and primary non-malignant lung tumors 0.016, 0.135 and 0.131 in the control low and high aerosol exposed groups respectively. Absorbed dose to the lung was calculated for each animal in the study. The average maximum doses for all the animals exposed to the low or high concentration of dust aerosol were 0.87 Gy and 1.64 Gy respectively. The average risk of malignant lung tumors from inhaled natural uranium ore dust was therefore about 0.20 tumors/animal/Gy. For animals with lung tumors, the average doses were 0.98 and 1.90 in the exposed groups. In both exposed groups, the frequency of primary malignant or non-malignant lung tumors was significantly greater than in the control group (p < 0.02) and the frequency of primary malignant lung tumors in the two exposed group were significantly different from each other (p = 0.05). The frequency of primary lung tumors (malignant and non-malignant) was calculated as a function of dose

  6. Ultralow dose CT for pulmonary nodule detection with chest X-ray equivalent dose - a prospective intra-individual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael [University Zurich, Department of Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard; Desbiolles, Lotus; Bauer, Ralf W.; Wildermuth, Simon [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University of Montreal, Department of Radiology, CHU Sainte-Justine, Montreal, Quebec (Canada); Rengier, Fabian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Warschkow, Rene [Cantonal Hospital St. Gallen, Department of Surgery, St. Gallen (Switzerland); Alkadhi, Hatem [University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Leschka, Sebastian [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland)

    2017-08-15

    To prospectively evaluate the accuracy of ultralow radiation dose CT of the chest with tin filtration at 100 kV for pulmonary nodule detection. 202 consecutive patients undergoing clinically indicated chest CT (standard dose, 1.8 ± 0.7 mSv) were prospectively included and additionally scanned with an ultralow dose protocol (0.13 ± 0.01 mSv). Standard dose CT was read in consensus by two board-certified radiologists to determine the presence of lung nodules and served as standard of reference (SOR). Two radiologists assessed the presence of lung nodules and their locations on ultralow dose CT. Sensitivity and specificity of the ultralow dose protocol was compared against the SOR, including subgroup analyses of different nodule sizes and types. A mixed effects logistic regression was used to test for independent predictors for sensitivity of pulmonary nodule detection. 425 nodules (mean diameter 3.7 ± 2.9 mm) were found on SOR. Overall sensitivity for nodule detection by ultralow dose CT was 91%. In multivariate analysis, nodule type, size and patients BMI were independent predictors for sensitivity (p < 0.001). Ultralow dose chest CT at 100 kV with spectral shaping enables a high sensitivity for the detection of pulmonary nodules at exposure levels comparable to plain film chest X-ray. (orig.)

  7. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    Science.gov (United States)

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  8. The impact of iterative reconstruction in low-dose computed tomography on the evaluation of diffuse interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyun Ju; Chung, Myung Jin; Shin, Kyung Eun; Hwang, Hye Sun; Lee, Kyung Soo [Dept. of Radiology nd Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-11-15

    To evaluate the impact of iterative reconstruction (IR) on the assessment of diffuse interstitial lung disease (DILD) using CT. An American College of Radiology (ACR) phantom (module 4 to assess spatial resolution) was scanned with 10-100 effective mAs at 120 kVp. The images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), with blending ratios of 0%, 30%, 70% and 100%, and model-based iterative reconstruction (MBIR), and their spatial resolution was objectively assessed by the line pair structure method. The patient study was based on retrospective interpretation of prospectively acquired data, and it was approved by the institutional review board. Chest CT scans of 23 patients (mean age 64 years) were performed at 120 kVp using 1) standard dose protocol applying 142-275 mA with dose modulation (high-resolution computed tomography [HRCT]) and 2) low-dose protocol applying 20 mA (low dose CT, LDCT). HRCT images were reconstructed with FBP, and LDCT images were reconstructed using FBP, ASIR, and MBIR. Matching images were randomized and independently reviewed by chest radiologists. Subjective assessment of disease presence and radiological diagnosis was made on a 10-point scale. In addition, semi-quantitative results were compared for the extent of abnormalities estimated to the nearest 5% of parenchymal involvement. In the phantom study, ASIR was comparable to FBP in terms of spatial resolution. However, for MBIR, the spatial resolution was greatly decreased under 10 mA. In the patient study, the detection of the presence of disease was not significantly different. The values for area under the curve for detection of DILD by HRCT, FBP, ASIR, and MBIR were as follows: 0.978, 0.979, 0.972, and 0.963. LDCT images reconstructed with FBP, ASIR, and MBIR tended to underestimate reticular or honeycombing opacities (-2.8%, -4.1%, and -5.3%, respectively) and overestimate ground glass opacities (+4.6%, +8.9%, and

  9. Three-dimensional dose-response models of competing risks and natural life span

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1987-01-01

    Three-dimensional dose-rate/time/response surfaces for chronic exposure to carcinogens, toxicants, and ionizing radiation dramatically clarify the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. An illustration with computer graphics shows the contributions with the passage of time of the competing risks of death from radiation pneumonitis/fibrosis, lung cancer, and natural aging consequent to the inhalation of plutonium-239 dioxide by beagles. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each fatal effect. Radiation pneumonitis predominates at high dose rates and lung cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for lung cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to the planning and evaluation of epidemiological analyses and experimental studies involving chronic exposure to toxicants

  10. High-resolution pulmonary ventilation and perfusion PET/CT allows for functionally adapted intensity modulated radiotherapy in lung cancer

    International Nuclear Information System (INIS)

    Siva, Shankar; Thomas, Roshini; Callahan, Jason; Hardcastle, Nicholas; Pham, Daniel; Kron, Tomas; Hicks, Rodney J.; MacManus, Michael P.; Ball, David L.; Hofman, Michael S.

    2015-01-01

    Background and purpose: To assess the utility of functional lung avoidance using IMRT informed by four-dimensional (4D) ventilation/perfusion (V/Q) PET/CT. Materials and methods: In a prospective clinical trial, patients with non-small cell lung cancer (NSCLC) underwent 4D-V/Q PET/CT scanning before 60 Gy of definitive chemoradiation. Both “highly perfused” (HPLung) and “highly ventilated” (HVLung) lung volumes were delineated using a 70th centile SUV threshold, and a “ventilated lung volume” (VLung) was created using a 50th centile SUV threshold. For each patient four IMRT plans were created, optimised to the anatomical lung, HPLung, HVLung and VLung volumes, respectively. Improvements in functional dose volumetrics when optimising to functional volumes were assessed using mean lung dose (MLD), V5, V10, V20, V30, V40, V50 and V60 parameters. Results: The study cohort consisted of 20 patients with 80 IMRT plans. Plans optimised to HPLung resulted in a significant reduction of functional MLD by a mean of 13.0% (1.7 Gy), p = 0.02. Functional V5, V10 and V20 were improved by 13.2%, 7.3% and 3.8% respectively (p-values < 0.04). There was no significant sparing of dose to functional lung when adapting to VLung or HVLung. Plan quality was highly consistent with a mean PTV D95 and D5 ranging from 60.8 Gy to 61.0 Gy and 63.4 Gy to 64.5 Gy, respectively, and mean conformity and heterogeneity index ranging from 1.11 to 1.17 and 0.94 to 0.95, respectively. Conclusion: IMRT plans adapted to perfused but not ventilated lung on 4D-V/Q PET/CT allowed for reduced dose to functional lung whilst maintaining consistent plan quality

  11. Dosimetric evaluation of the impacts of different heterogeneity correction algorithms on target doses in stereotactic body radiation therapy for lung tumors

    International Nuclear Information System (INIS)

    Narabayashi, Masaru; Mizowaki, Takashi; Matsuo, Yukinori; Nakamura, Mitsuhiro; Takayama, Kenji; Norihisa, Yoshiki; Sakanaka, Katsuyuki; Hiraoka, Masahiro

    2012-01-01

    Heterogeneity correction algorithms can have a large impact on the dose distributions of stereotactic body radiation therapy (SBRT) for lung tumors. Treatment plans of 20 patients who underwent SBRT for lung tumors with the prescribed dose of 48 Gy in four fractions at the isocenter were reviewed retrospectively and recalculated with different heterogeneity correction algorithms: the pencil beam convolution algorithm with a Batho power-law correction (BPL) in Eclipse, the radiological path length algorithm (RPL), and the X-ray Voxel Monte Carlo algorithm (XVMC) in iPlan. The doses at the periphery (minimum dose and D95) of the planning target volume (PTV) were compared using the same monitor units among the three heterogeneity correction algorithms, and the monitor units were compared between two methods of dose prescription, that is, an isocenter dose prescription (IC prescription) and dose-volume based prescription (D95 prescription). Mean values of the dose at the periphery of the PTV were significantly lower with XVMC than with BPL using the same monitor units (P<0.001). In addition, under IC prescription using BPL, RPL and XVMC, the ratios of mean values of monitor units were 1, 0.959 and 0.986, respectively. Under D95 prescription, they were 1, 0.937 and 1.088, respectively. These observations indicated that the application of XVMC under D95 prescription results in an increase in the actually delivered dose by 8.8% on average compared with the application of BPL. The appropriateness of switching heterogeneity correction algorithms and dose prescription methods should be carefully validated from a clinical viewpoint. (author)

  12. IAEA/IDEAS intercomparison exercise on internal dose assessment

    International Nuclear Information System (INIS)

    Doerfel, H.; Andrasi, A.; Cruz-Suarez, R.; Castellani, C. M.; Hurtgen, C.; Marsh, J.; Zeger, J.

    2007-01-01

    An Internet based intercomparison exercise on assessment of occupational exposure due to intakes of radionuclides has been performed to check the applicability of the 'General Guidelines for the Assessment of Internal Dose from Monitoring Data' developed by the IDEAS group. There were six intake cases presented on the Internet and 81 participants worldwide reported solutions to these cases. Results of the exercise indicate that the guidelines have a positive influence on the methodologies applied for dose assessments and, if correctly applied, improve the harmonisation of assessed doses. (authors)

  13. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  14. Does the IMRT technique allow improvement of treatment plans (e.g. lung sparing) for lung cancer patients with small lung volume: a planning study

    International Nuclear Information System (INIS)

    Komosinska, K.; Kepka, L.; Gizynska, M.; Zawadzka, A.

    2008-01-01

    Aim: We evaluated whether intensity-modulated radiation therapy (IMRT) may offer any advantages in comparison with three-dimensional conformal radiotherapy (3D-CRT) for patients with small lung volume (SLV). Methods: Treatment planning was performed for 10 NSCLC patients with the smallest lung volume (mean: 2241 cc) among 200 patients from our database. For each patient 3D-CRT and IMRT plans were prepared. The goal was to deliver 66 Gy/33 fractions, with dose constraints: mean lung dose (MLD) < 20 Gy, V20 < 35%; spinal cord - Dmax < 45 Gy. When the plan could not meet these criteria, total dose was reduced. The 3D-CRT and IMRT plans were compared. We investigated: prescribed dose, coverage and conformity indices, MLD, V5-V65 in the lung. Results: In 4 out of 10 plans, 3D-CRT did not allow 66 Gy to be delivered, because of predicted pulmonary toxicity. These 4 cases included 3 for which we did not reach 66 Gy with IMRT; still, for these 3 plans the total dose was increased by an average of 9 Gy with IMRT in comparison with 3D-CRT. Coverage indices were similar for both techniques. Conformity indices were better for IMRT plans. MLD was lower in five IMRT and two 3D-CRT plans if equal doses were delivered. The decrease in MLD was seen for cases with large PTV and high PTV/lung volume ratio. Lung V5 was lower for all 3D-CRT plans, 47% vs. 57% for IMRT; V15 and above were larger for 3D-CRT Conclusion: In the planning study, IMRT seems to be a promising technique for cases with SLV, especially when associated with large PT V. (authors)

  15. Cardiac Toxicity After Radiotherapy for Stage III Non–Small-Cell Lung Cancer: Pooled Analysis of Dose-Escalation Trials Delivering 70 to 90 Gy

    Science.gov (United States)

    Eblan, Michael J.; Deal, Allison M.; Lipner, Matthew; Zagar, Timothy M.; Wang, Yue; Mavroidis, Panayiotis; Lee, Carrie B.; Jensen, Brian C.; Rosenman, Julian G.; Socinski, Mark A.; Stinchcombe, Thomas E.; Marks, Lawrence B.

    2017-01-01

    Purpose The significance of radiotherapy (RT) –associated cardiac injury for stage III non–small-cell lung cancer (NSCLC) is unclear, but higher heart doses were associated with worse overall survival in the Radiation Therapy Oncology Group (RTOG) 0617 study. We assessed the impact of heart dose in patients treated at our institution on several prospective dose-escalation trials. Patients and Methods From 1996 to 2009, 127 patients with stage III NSCLC (Eastern Cooperative Oncology Group performance status, 0 to 1) received dose-escalated RT to 70 to 90 Gy (median, 74 Gy) in six trials. RT plans and cardiac doses were reviewed. Records were reviewed for the primary end point: symptomatic cardiac events (symptomatic pericardial effusion, acute coronary syndrome, pericarditis, significant arrhythmia, and heart failure). Cardiac risk was assessed by noting baseline coronary artery disease and calculating the WHO/International Society of Hypertension score. Competing risks analysis was used. Results In all, 112 patients were analyzed. Median follow-up for surviving patients was 8.8 years. Twenty-six patients (23%) had one or more events at a median of 26 months to first event (effusion [n = 7], myocardial infarction [n = 5], unstable angina [n = 3], pericarditis [n = 2], arrhythmia [n = 12], and heart failure [n = 1]). Heart doses (eg, heart mean dose; hazard ratio, 1.03/Gy; P = .002,), coronary artery disease (P < .001), and WHO/International Society of Hypertension score (P = .04) were associated with events on univariable analysis. Heart doses remained significant on multivariable analysis that accounted for baseline risk. Two-year competing risk–adjusted event rates for patients with heart mean dose < 10 Gy, 10 to 20 Gy, or ≥ 20 Gy were 4%, 7%, and 21%, respectively. Heart doses were not associated with overall survival. Conclusion Cardiac events were relatively common after high-dose thoracic RT and were independently associated with both heart dose and

  16. The assessment of severity of lung injury in sepsis

    Directory of Open Access Journals (Sweden)

    Arsenijević Ljubica

    2004-01-01

    Full Text Available Adult respiratory distress syndrome (ARDS is an acute and severe pulmonary dysfunction. It is clinically characterized by dyspnea and tachypnea, progressive hypoxemia (within 12-48 hours, reduction of pulmonary compliance and diffuse bilateral infiltrates seen on pulmonary radiogram. Etiological factors giving rise to development of the syndrome are numerous. The acute lung injury (AU is defined as the inflammation syndrome and increased permeability, which is associated with radiological and physiological disorders. Lung injury score (LIS, which is composed of four components, is used for making a distinction between two separate but rather similar syndromes. The study was aimed at the assessment of the severity of the lung injury in patients who had suffered from sepsis of the gynecological origin and its influence on the outcome of the disease. The total of 43 female patients was analyzed. Twenty patients (46.51% were diagnosed as having ARDS based on the lung injury score, while 23 patients (53.48% were diagnosed with acute lung injury. In our series, lung injury score ranged from 0.7 to 3.3 in ARDS patients, and lethal outcome ensued in 11 (55% cases in this group. As for the patients with the acute lung injury, the score values ranged from 0.3 to 1.3 and only one patient from this group died (4.34%. The obtained results indicate that high values of the lung injury score are suggestive of the severe respiratory dysfunction as well as that lethal outcome is dependent on LIS value.

  17. Radon dose assessment in underground mines in Brazil

    International Nuclear Information System (INIS)

    Santos, T.O.; Rocha, Z.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B.; Oliveira, A.H.

    2014-01-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a -1 (mean 9 mSv a -1 ). (authors)

  18. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-01-01

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  19. New estimates for human lung dimensions

    International Nuclear Information System (INIS)

    Kennedy, Christine; Sidavasan, Sivalal; Kramer, Gary

    2008-01-01

    Full text: The currently used lung dimensions in dosimetry were originally estimated in the 1940s from Army recruits. This study provides new estimates of lung dimensions based on images acquired from a sample from the general population (varying age and sex). Building accurate models, called phantoms, of the human lung requires that the spatial dimensions (length, width, and depth) be quantified, in addition to volume. Errors in dose estimates may result from improperly sized lungs as the counting efficiency of externally mounted detectors (e.g., in a lung counter) is dependent on the position of internally deposited radioactive material (i.e., the size of the lung). This study investigates the spatial dimensions of human lungs. Lung phantoms have previously been made in one of two sizes. The Lawrence Livermore National Laboratory Torso Phantom (LLNL) has deep, short lungs whose dimensions do not comply well with the data published in Report 23 (Reference Man) issued by the International Commission on Radiological Protection (ICRP). The Japanese Atomic Energy Research Institute Torso Phantom(JAERI), has longer, shallower lungs that also deviate from the ICRP values. However, careful examination of the ICRP recommended values shows that they are soft. In fact, they have been dropped from the ICRP's Report 89 which updates Report 23. Literature surveys have revealed a wealth of information on lung volume, but very little data on the spatial dimensions of human lungs. Better lung phantoms need to be constructed to more accurately represent a person so that dose estimates may be quantified more accurately in view of the new, lower, dose limits for occupationally exposed workers and the general public. Retrospective chest images of 60 patients who underwent imaging of the chest- lungs as part of their healthy persons occupational screening for lung disease were chosen. The chosen normal lung images represent the general population). Ages, gender and weight of the

  20. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol [Gyeongsang National University Hospital, Jinju (Korea, Republic of)] (and others)

    2006-05-15

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration ({rho} < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn ({rho} < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules

  1. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    International Nuclear Information System (INIS)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol

    2006-01-01

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration (ρ < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn (ρ < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules or

  2. Program for rapid dose assessment in criticality accident, RADAPAS

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki

    2006-09-01

    In a criticality accident, a person near fissile material can receive extremely high dose which can cause acute health effect. For such a case, medical treatment should be carried out for the exposed person, according to severity of the exposure. Then, radiation dose should be rapidly assessed soon after an outbreak of an accident. Dose assessment based upon the quantity of induced 24 Na in human body through neutron exposure is expected as one of useful dosimetry techniques in a criticality accident. A dose assessment program, called RADAPAS (RApid Dose Assessment Program from Activated Sodium in Criticality Accidents), was therefore developed to assess rapidly radiation dose to exposed persons from activity of induced 24 Na. RADAPAS consists of two parts; one is a database part and the other is a part for execution of dose calculation. The database contains data compendiums of energy spectra and dose conversion coefficients from specific activity of 24 Na induced in human body, which had been derived in a previous analysis using Monte Carlo calculation code. Information for criticality configuration or characteristics of radiation in the accident field is to be interactively given with interface displays in the dose calculation. RADAPAS can rapidly derive radiation dose to the exposed person from the given information and measured 24 Na specific activity by using the conversion coefficient in database. This report describes data for dose conversions and dose calculation in RADAPAS and explains how to use the program. (author)

  3. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.

    Science.gov (United States)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-04-22

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.

  4. Impact of setup variability on incidental lung irradiation during tangential breast treatment

    International Nuclear Information System (INIS)

    Carter, Dennis L.; Marks, Lawrence B.; Bentel, Gunilla C.

    1997-01-01

    Purpose: This study aimed to determine the variability in treatment setup during a 5-week course of tangential breast treatment for patients immobilized in a customized hemibody cradle, to assess the relationship between the height of the lung shadow on the tangential port film and the percentage of lung volume irradiated, and to estimate the impact of setup variabilities on irradiated lung volume. Methods: One hundred seventy-two port films were reviewed from 20 patients who received tangential beam treatment for breast cancer. The height of the lung shadow at the central axis (CLD) on each port film was compared to the corresponding simulator film as an assessment of setup variability. A three-dimensional dose calculation was performed, and the percentage of total lung volume within the field was correlated with the CLD. The three-dimensional dose calculation was repeated for selected patients with the location of the treatment beams modified to reflect typical setup variations. Results: The CLD measured on the port films was within 3 mm of that prescribed on the simulator film in 43% (74 of 172) of the port films. The variation was 3-5 mm in 26%, 5-10 mm in 25%, and >10 mm in 6%. The height of the lung shadow correlated with the percentage of lung volume included in the radiation field (r 2 = 0.6). Typical variations in treatment setup resulted in ≤5% fluctuation in the absolute volume of ipsilateral lung irradiated. Conclusion: The current immobilization system used in our clinic provides a clinically acceptable reproducibility of patient setup. The height of the lung shadow is reasonably well correlated with the percentage of irradiated lung volume. During a typical 5-week course of radiotherapy, the ipsilateral irradiated lung volume fluctuates <5%

  5. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    International Nuclear Information System (INIS)

    Konijnenberg, Mark W; Olch, Arthur

    2010-01-01

    Intracavitary injections of 32 P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32 P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V 30 ) for 340 MBq 32 P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V 30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V 30 of 43%. At higher densities of the lung tissue V 30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm 2 . Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  6. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xinyue Liang

    2016-01-01

    Full Text Available Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR. In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK/extracellular signal-regulated kinase (ERK and phosphatidylinositol 3′ -kinase(PI3K-Akt (PI3K/AKT phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy. In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  7. A radiological dose assessment for the Port Hope conversion facility

    International Nuclear Information System (INIS)

    Garisto, N.C.; Cooper, F.; Janes, A.; Stager, R.; Peters, R.

    2011-01-01

    The Port Hope Conversion Facility (PHCF) receives uranium trioxide for conversion to uranium hexafluoride (UF 6 ) or uranium dioxide (UO 2 ). The PHCF Site has a long history of industrial use. A Radiological Dose Assessment was undertaken as part of a Site Wide Risk Assessment. This assessment took into account all possible human receptors, both workers and members of the public. This paper focuses on a radiological assessment of dose to members of the public. The doses to members of the public from terrestrial pathways were added to the doses from aquatic pathways to obtain overall dose to receptors. The benchmark used in the assessment is 1 mSv/y. The estimated doses related to PHCF operations are much lower than the dose limit. (author)

  8. Radiation-Induced Reductions in Regional Lung Perfusion: 0.1-12 Year Data From a Prospective Clinical Study

    International Nuclear Information System (INIS)

    Zhang Junan; Ma Jinli; Zhou Sumin; Hubbs, Jessica L.; Wong, Terence Z.; Folz, Rodney J.; Evans, Elizabeth S.; Jaszczak, Ronald J.; Clough, Robert; Marks, Lawrence B.

    2010-01-01

    Purpose: To assess the time and regional dependence of radiation therapy (RT)-induced reductions in regional lung perfusion 0.1-12 years post-RT, as measured by single photon emission computed tomography (SPECT) lung perfusion. Materials/Methods: Between 1991 and 2005, 123 evaluable patients receiving RT for tumors in/around the thorax underwent SPECT lung perfusion scans before and serially post-RT (0.1-12 years). Registration of pre- and post-RT SPECT images with the treatment planning computed tomography, and hence the three-dimensional RT dose distribution, allowed changes in regional SPECT-defined perfusion to be related to regional RT dose. Post-RT follow-up scans were evaluated at multiple time points to determine the time course of RT-induced regional perfusion changes. Population dose response curves (DRC) for all patients at different time points, different regions, and subvolumes (e.g., whole lungs, cranial/caudal, ipsilateral/contralateral) were generated by combining data from multiple patients at similar follow-up times. Each DRC was fit to a linear model, and differences statistically analyzed. Results: In the overall groups, dose-dependent reductions in perfusion were seen at each time post-RT. The slope of the DRC increased over time up to 18 months post-RT, and plateaued thereafter. Regional differences in DRCs were only observed between the ipsilateral and contralateral lungs, and appeared due to tumor-associated changes in regional perfusion. Conclusions: Thoracic RT causes dose-dependent reductions in regional lung perfusion that progress up to ∼18 months post-RT and persists thereafter. Tumor shrinkage appears to confound the observed dose-response relations. There appears to be similar dose response for healthy parts of the lungs at different locations.

  9. Dose assessment for Greifswald and Cadarache

    International Nuclear Information System (INIS)

    Raskob, W.

    1996-07-01

    Probabilistic dose assessments for accidental atmospheric releases of tritium and activation products as well as releases under normal operation conditions were performed for the sites of Greifswald, Germany, and Cadarache, France. Additionally, aquatic releases were considered for both sites. No country specific rules were applied and the input parameters were adapted as far as possible to those used within former ITER studies to have a better comparison to site independent dose assessments performed in the frame of ITER. The main goal was to complete the generic data base with site specific values. The agreement between the results from the ITER study on atmospheric releases and the two sites are rather good for tritium, whereas the ITER reference dose values for the activation product releases are often lower, than the maximum doses for Greifswald and Cadarache. However, the percentile values fit better to the deterministic approach of ITER. Within all scenarios, the consequences of aquatic releases are in nearly all cases smaller than those from comparable releases to the atmosphere (HTO and steel). This rule is only broken once in case of accidental releases of activated steel from Cadarache. However, the uncertainties associated with the aquatic assessments are rather high and a better data base is needed to obtain more realistic and thus more reliable dose values. (orig.) [de

  10. Neglectable benefit of searching for incidental findings in the Dutch-Belgian lung cancer screening trial (NELSON) using low-dose multidetector CT

    International Nuclear Information System (INIS)

    Wiel, J.C.M. van de; Wang, Y.; Xu, D.M.; Zaag-Loonen, H.J. van der; Jagt, E.J. van der; Oudkerk, M.; Klaveren, R.J. van

    2007-01-01

    The purpose of this study was to prospectively determine the frequency and spectrum of incidental findings (IFs) and their clinical implications in a high risk population for lung cancer undergoing low-dose multidetector computed tomography (MDCT) screening for lung cancer. Scans of 1,929 participants were evaluated for lung lesions and IFs by two radiologists. IFs were categorised as not clinically relevant or possibly clinically relevant. Findings were considered possibly clinically relevant if they could require further evaluation or could have substantial clinical implications. All possibly clinically relevant IFs were reviewed by a third radiologist, who determined its clinical relevance. Of all 1,929 participants, 1,410 (73%) had not clinically relevant IFs and 163 (8%) had possibly clinically relevant IFs of which 129 (79%) were indeed considered clinically relevant. Additional imaging was performed mainly by ultrasound (112 of 118, 96%). All but one lesion were concluded to be benign, mostly cysts (n = 115, 80%). Only 21 (1%) participants had findings with clinical implications. In one participant a malignancy was found, yet without any clinical benefit since no curative treatment was possible. Based on our results, we advise against systematically searching for and reporting of IFs in lung cancer screening studies using low-dose MDCT. (orig.)

  11. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.

    2004-01-01

    An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm 2 ) and two lung equivalent materials (CIRS, ρ e w =0.195 and St. Bartholomew Hospital, London, ρ e w =0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm 2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm 2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0

  12. Optimization of filtration for reduction of lung dose from Rn decay products: Part I--Theoretical

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Ryan, P.B.; Moeller, D.W.

    1990-01-01

    A theoretical model was developed for the optimization of filter characteristics that would minimize the dose from the inhalation of Rn decay products. Modified forms of the Jacobi-Porstendorfer room model and the Jacobi-Eisfeld lung dose model were chosen for use in the mathematical simulation. Optimized parameters of the filter were the thickness, solidity, and fiber diameter. For purposes of the calculations, the room dimensions, air exchange rate, particle-size distribution and concentration, and the Rn concentration were specified. The resulting computer-aided optimal design was a thin filter (the minimum thickness used in the computer model was 0.1 mm) having low solidity (the minimum solidity used was 0.5%) and large diameter fibers (the maximum diameter used was 100 microns). The simulation implies that a significant reduction in the dose rate can be achieved using a well-designed recirculating filter system. The theoretical model, using the assumption of ideal mixing, predicts an 80% reduction in the dose rate, although inherent in this assumption is the movement of 230 room volumes per hour through the fan

  13. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    International Nuclear Information System (INIS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J

    2013-01-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons ( 5 × 5 cm 2 ) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm 2 , 3 × 3 cm 2 , or 5 × 5 cm 2 were applied. However, in the patient, 3 × 1 cm 2 , 3 × 2 cm 2 , 3 × 2.5 cm 2 , or 3 × 3 cm 2 field sizes were used in simulations to assure target coverage in the superior–inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated

  14. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  15. Clinical Value of a One-Stop-Shop Low-Dose Lung Screening Combined with (18)F-FDG PET/CT for the Detection of Metastatic Lung Nodules from Colorectal Cancer.

    Science.gov (United States)

    Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee

    2016-06-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional lung setting image and additional LD-HRCT were 0.712 and 0.827 respectively. Additional LD-HRCT with maximum inspiration was superior to conventional lung setting image of (18)F-FDG PET

  16. Effects of irradiation on the vascularity of lung

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K; Takegawa, Y; Nagase, M; Akiyama, H [Tokushima Univ. (Japan). School of Medicine

    1975-06-01

    Effects of irradiation on the intravascular volume of the lung were studied with respect to changes in intravascular volume over a period of time after irradiation, the effect of fractionation of the dose and the influence of the irradiation dose rate. After a single irradiation with 1000 rad or 3000 rad, applied locally to the lung, the intravascular volume decreased significantly in 1 to 3 months after irradiation. The changes in the intravascular volumes of lungs could be lessened by fractionation of the dose or by low dose rate irradiation.

  17. Dose assessment in radiological accidents

    International Nuclear Information System (INIS)

    Donkor, S.

    2013-04-01

    The applications of ionizing radiation bring many benefits to humankind, ranging from power generation to uses in medicine, industry and agriculture. Facilities that use radiation source require special care in the design and operation of equipment to prevent radiation injury to workers or to the public. Despite considerable development of radiation safety, radiation accidents do happen. The purpose of this study is therefore to discuss how to assess doses to people who will be exposed to a range of internal and external radiation sources in the event of radiological accidents. This will go a long way to complement their medical assessment thereby helping to plan their treatment. Three radiological accidents were reviewed to learn about the causes of those accidents and the recommendations that were put in place to prevent recurrence of such accidents. Various types of dose assessment methods were discussed.(au)

  18. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose.

    Science.gov (United States)

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa'n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-01-01

    Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dose and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V(20 Gy)), heart volume percentage receiving at least 25 Gy (V(25 Gy)). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p dose was higher in the electron-only (mean = 69.7 ± 56.1 cm(3)) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm(3)) and photon-only beams (mean = 32.2 ± 28.1 cm(3), p = 0.114). Heart V(25 Gy) was not statistically different among the plans (p = 0.999). Total lung V(20 Gy) was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots

  19. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukihiro, E-mail: yatsushi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Takahashi, Masashi; Murata, Kiyoshi [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Ikeda, Mitsuru [Department of Radiological and Medical Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Aichi (Japan); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Miyara, Tetsuhiro [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Department of Radiology, Okinawa Prefectural Yaeyama Hospital, Ishigaki 907-0022, Okinawa (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Koyama, Mitsuhiro [Department of Radiology, Osaka Medical College, Takatsuki 569-8686, Osaka (Japan); Sato, Yukihisa [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Department of Radiology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka 537-8511, Osaka (Japan); Moriya, Hiroshi [Department of Radiology, Ohara General Hospital, Fukushima 960-8611 (Japan); Noma, Satoshi [Department of Radiology, Tenri Hospital, Tenri 632-8552, Nara (Japan); Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Murayama, Sadayuki [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan)

    2015-07-15

    Highlights: • Using AIDR 3D, ULDCT showed comparable LND of solid nodules to LDCT. • Using AIDR 3D, LND of smaller GGN in ULDCT was inferior to that in LDCT. • Effective dose in ULDCT was about only twice of that in chest X-ray. • BMI values in study population were mostly in the normal range body habitus. - Abstract: Purpose: To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). Materials and methods: This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3 mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). Results: For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC

  20. Non-human biota dose assessment. Sensitivity analysis and knowledge quality assessment

    International Nuclear Information System (INIS)

    Smith, K.; Robinson, C.; Jackson, D.; La Cruz, I. de; Zinger, I.; Avila, R.

    2010-10-01

    This report provides a summary of a programme of work, commissioned within the BIOPROTA collaborative forum, to assess the quantitative and qualitative elements of uncertainty associated with biota dose assessment of potential impacts of long-term releases from geological disposal facilities (GDF). Quantitative and qualitative aspects of uncertainty were determined through sensitivity and knowledge quality assessments, respectively. Both assessments focused on default assessment parameters within the ERICA assessment approach. The sensitivity analysis was conducted within the EIKOS sensitivity analysis software tool and was run in both generic and test case modes. The knowledge quality assessment involved development of a questionnaire around the ERICA assessment approach, which was distributed to a range of experts in the fields of non-human biota dose assessment and radioactive waste disposal assessments. Combined, these assessments enabled critical model features and parameters that are both sensitive (i.e. have a large influence on model output) and of low knowledge quality to be identified for each of the three test cases. The output of this project is intended to provide information on those parameters that may need to be considered in more detail for prospective site-specific biota dose assessments for GDFs. Such information should help users to enhance the quality of their assessments and build greater confidence in the results. (orig.)

  1. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    International Nuclear Information System (INIS)

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-01-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment

  2. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Maiellaro, Marília [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Correa-Costa, Matheus [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Câmara, Niels Olsen Saraiva [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Tavares-de-Lima, Wothan [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Farsky, Sandra Helena Poliselli [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Lino-dos-Santos-Franco, Adriana, E-mail: adrilino@usp.br [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil)

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  3. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis.

    Science.gov (United States)

    Nagatani, Yukihiro; Takahashi, Masashi; Murata, Kiyoshi; Ikeda, Mitsuru; Yamashiro, Tsuneo; Miyara, Tetsuhiro; Koyama, Hisanobu; Koyama, Mitsuhiro; Sato, Yukihisa; Moriya, Hiroshi; Noma, Satoshi; Tomiyama, Noriyuki; Ohno, Yoshiharu; Murayama, Sadayuki

    2015-07-01

    To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC curve (AUC) was 0.844 ± 0.017 in ULDCT and 0.876 ± 0.026 in LDCT (p=0.057). For ground glass nodules with LD 8mm or more, LNDP was similar between both methods, as AUC 0.899 ± 0.038 in ULDCT and 0.941 ± 0.030 in LDCT. (p=0.144). ULDCT using AIDR3D with an equivalent radiation dose to chest x-ray could have comparable LNDP to LDCT with AIDR3D except for smaller ground

  4. Evaluation of the absorbed dose to the lungs due to Xe{sup 133} and Tc{sup 99m} (MAA); Evaluacion de la dosis absorbida en los pulmones debido al Xe{sup 133} y Tc{sup 99m} (MAA)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Rojas P, E. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima (Peru); Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe{sup 133} or Tc{sup 99m} (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to {sup 133}Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the {sup 133}Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc{sup 99m} (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc{sup 99m} biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  5. SU-F-T-106: A Dosimetric Study of Intensity Modulated Radiation Therapy to Decrease Radiation Dose to the Thoracic Vertebral Bodies in Patients Receiving Concurrent Chemoradiation for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    DiCostanzo, Dominic; Barney, Christian L.; Bazan, Jose G. [The Ohio State University, Columbus, Ohio (United States)

    2016-06-15

    Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone-marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed on the TVB structure initially. A subset were re-planned with BMS-IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs-PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS-IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS-IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV-mean dose was not affected by BMS-IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS-IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS-IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.

  6. The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs

    International Nuclear Information System (INIS)

    Cerello, Piergiorgio

    2010-01-01

    Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Universita e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.

  7. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    International Nuclear Information System (INIS)

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-01-01

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  8. The impact of radiation dose and fractionation on the risk factor of radiation pneumonitis on four radiation therapy oncology group (RTOG) lung cancer trials

    International Nuclear Information System (INIS)

    Roach, Mack; Pajak, Thomas F; Byhardt, Roger; Graham, Mary L; Asbell, Sucha O; Russell, Anthony H; Fu, Karen K; Urtasun, Raul C; Herskovic, Arnold M; Cox, James D

    1997-01-01

    Purpose/Objective: To assess the relationship between total dose of radiation delivered, the fractionation scheme used, age, and Karnofsky Performance Status (KPS) on the risk of moderate to severe (≥ Grade 2) radiation pneumonitis in patients treated with radiotherapy alone for lung cancer on four RTOG Trials. Materials and Methods: Between February of 1984 and April of 1989, 1701 patients with clinically localized (I-IIIb) lung cancer were entered on clinical trials employing radiotherapy alone. Twelve hundred and forty-seven patients were entered on RTOG 8311 or 8407 (phase I/II trials) and 454 patients were entered on RTOG 8321 or 8403 (phase III trials). RTOG 8403 and 8321 patients received once-a-day irradiation to 60 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 64.8, 69.6, 74.4 or 79.2 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 63 Gy or 70.2 Gy. All patients were assessed for the incidence of Grade 2-5, radiation pneumonitis. One hundred and seven (6%) of patients were either ineligible or canceled (n=60), or were excluded because of incomplete data (n=47). The factors evaluated included total dose of radiation, the fractionation scheme, age and pre-treatment KPS. Patients treated to doses ≥ 72 Gy were considered to have received high doses (72.0 - 81.6 Gy), while the remaining patients treated to doses < 72 Gy (57.6 - 71.9 Gy) were considered to have received standard dose radiation. For the this analysis, information regarding field size and baseline pulmonary function was not available. Results: Age, sex, stage distribution, and the percentage of patients with a KPS ≥90 were similar among the patients treated on these four studies. Patients receiving hyperfractionated radiotherapy to doses ≥ 72 Gy experienced a higher incidence of radiation pneumonitis ≥ Grade 2, than patients treated with standard doses < 72

  9. Howard Hughes Medical Institute dose assessment survey

    International Nuclear Information System (INIS)

    O'Brien, S.L.; McDougall, M.M.; Barkley, W.E.

    1996-01-01

    Biomedical science researchers often express frustration that health physics practices vary widely between individual institutions. A survey examining both internal and external dose assessment practices was devised and mailed to fifty institutions supporting biomedical science research. The results indicate that health physics dose assessment practices and policies are highly variable. Factors which may contribute to the degree of variation are discussed. 2 tabs

  10. Radionuclide injury to the lung

    International Nuclear Information System (INIS)

    Dagle, G.E.; Sanders, C.L.

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequently observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. 88 references

  11. Lung toxicity determination by in vitro exposure at the air liquid interface with an integrated online dose measurement

    International Nuclear Information System (INIS)

    Muelhopt, Sonja; Paur, H-R; Diabate, S; Weiss, C; Krebs, T

    2009-01-01

    Epidemiological studies show an association between the concentration of ultrafine particles in the atmosphere and the rate of mortality or morbidity due to respiratory and cardiovascular diseases. For the quantitative assessment of the toxicity of airborne nanoparticles the dose-response relationship is tested in in vitro test systems using bioassays of cell cultures as sensor. For the air-liquid interface exposure of cell cultures towards aerosols the Karlsruhe exposure system was developed. The human lung cell cultures are exposed in VITROCELL (registered) system modules with a constant flow of the conditioned aerosol. After exposure the cells are analyzed to measure the biological responses such as viability, inflammatory or oxidative stress. For the determination of the dose response relationship the accurate knowledge of the deposited particle mass is essential. A new online method is developed in the Karlsruhe exposure system: the sensor of a quartz crystal microbalance is placed in an exposure chamber instead of the membrane insert and exposed to the aerosol in the same way as the cell cultures. The deposited mass per area unit is monitored as a function of exposure time showing a linear relationship for a constant aerosol flow with defined particle concentration. A comparison of this new dose signal to a dosimetry method using fluorescein sodium particles shows a very good correlation between the sensor signal of the quartz crystal microbalance and the deposited mass on the membranes shown by spectroscopy. This system for the first time provides an online dose measurement for in vitro experiments with nanoparticles.

  12. Dose assessment in the Marshall Islands

    International Nuclear Information System (INIS)

    Robison, William L.

    1978-01-01

    Bikini Atoll and Enewetak Atoll in the Marshall Islands were the sites of major U.S. weapons testing from 1948 through 1958. Both the Bikini and Knewetak people have expressed a desire to return to their native Atolls. In 1968 clean-up and resettlement of Bikini was begun. In 1972-73 the initial survey of Enewetak Atoll was conducted and clean-up began in 1977. Surveys have been conducted at both Atolls to establish the concentrations of radionuclides in the biota and to determine the external exposure rates. Subsequent to the surveys dose assessments have been made to determine the potential dose to returning (100) populations at both Atolls. This talk will include discussions of the relative importance of the critical exposure pathways (i.e., external exposure, inhalation, marine, terrestrial and drinking water), the predominant radionuclides contributing to the predicted doses for each pathway, the doses predicted for alternate living patterns, comparison to Federal Guidelines, the comparison between Atolls, some of the social problems created by adherence to Federal Guidelines and the follow-up research identified and initiated to help refine the dose assessments and better predict the long term use of the Atolls (86). (author)

  13. Inhalation dose assessment for Maralinga and Emu

    International Nuclear Information System (INIS)

    Johnston, P.N.; Lokan, K.H.; Williams, G.A.

    1990-01-01

    Dose assessments for the inhalation of artificial radionuclides are presented for all types of contaminated areas at Maralinga and Emu. These enable Committed Effective Dose Equivalent (CEDE), to be estimated by scaling at any area of interest where activity concentrations are known. In the case of Aborigines, these dose are estimated assuming respirable dust loadings of 1 mg/m 3 for adults and 1.5 mg/m 3 for children and infants. Details of the calculations are presented in the appendix. The model of the respiratory system used in this assessment is that described in Interantional Commission on Radiological Protection (ICRP) Publication 30 (ICRP, 1979a). With the exception of Kuli, which is contaminated with uranium, at all other sites it is only the inhalation of plutonium and americium that contributes significantly to the dose, and of these 239 Pu is the largest contributor. Therefore, considering the long half lives of the radionuclides concerned, it appears that the inhalation problems highlighted by this dose assessment will not diminish significantly within any reasonable period of time and hence management strategies must be developed to deal with such problems. 32 refs., 5 tabs., 1 fig

  14. Lung radiopharmaceuticals; Radioformacos pulmonares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B M [Instituto Nacional de Pediatroa (Mexico)

    1994-12-31

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP.

  15. The UK Lung Cancer Screening Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer.

    Science.gov (United States)

    Field, John K; Duffy, Stephen W; Baldwin, David R; Brain, Kate E; Devaraj, Anand; Eisen, Tim; Green, Beverley A; Holemans, John A; Kavanagh, Terry; Kerr, Keith M; Ledson, Martin; Lifford, Kate J; McRonald, Fiona E; Nair, Arjun; Page, Richard D; Parmar, Mahesh Kb; Rintoul, Robert C; Screaton, Nicholas; Wald, Nicholas J; Weller, David; Whynes, David K; Williamson, Paula R; Yadegarfar, Ghasem; Hansell, David M

    2016-05-01

    Lung cancer kills more people than any other cancer in the UK (5-year survival high-risk UK population, determine optimum recruitment, screening, reading and care pathway strategies; and (2) assess the psychological consequences and the health-economic implications of screening. A pilot randomised controlled trial comparing intervention with usual care. A population-based risk questionnaire identified individuals who were at high risk of developing lung cancer (≥ 5% over 5 years). Thoracic centres with expertise in lung cancer imaging, respiratory medicine, pathology and surgery: Liverpool Heart & Chest Hospital, Merseyside, and Papworth Hospital, Cambridgeshire. Individuals aged 50-75 years, at high risk of lung cancer, in the primary care trusts adjacent to the centres. A thoracic LDCT scan. Follow-up computed tomography (CT) scans as per protocol. Referral to multidisciplinary team clinics was determined by nodule size criteria. Population-based recruitment based on risk stratification; management of the trial through web-based database; optimal characteristics of CT scan readers (radiologists vs. radiographers); characterisation of CT-detected nodules utilising volumetric analysis; prevalence of lung cancer at baseline; sociodemographic factors affecting participation; psychosocial measures (cancer distress, anxiety, depression, decision satisfaction); and cost-effectiveness modelling. A total of 247,354 individuals were approached to take part in the trial; 30.7% responded positively to the screening invitation. Recruitment of participants resulted in 2028 in the CT arm and 2027 in the control arm. A total of 1994 participants underwent CT scanning: 42 participants (2.1%) were diagnosed with lung cancer; 36 out of 42 (85.7%) of the screen-detected cancers were identified as stage 1 or 2, and 35 (83.3%) underwent surgical resection as their primary treatment. Lung cancer was more common in the lowest socioeconomic group. Short-term adverse psychosocial

  16. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    Science.gov (United States)

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  17. Effective avoidance of a functional spect-perfused lung using intensity modulated radiotherapy (IMRT) for non-small cell lung cancer (NSCLC): An update of a planning study

    International Nuclear Information System (INIS)

    Lavrenkov, Konstantin; Singh, Shalini; Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; Bedford, James L.; Brada, Michael

    2009-01-01

    IMRT and 3-dimensional conformal radiotherapy (3-DCRT) plans of 25 patients with non-small cell lung (NSCLC) were compared in terms of planning target volume (PTV) coverage and sparing of functional lung (FL) defined by a SPECT perfusion scan. IMRT resulted in significant reduction of functional V 20 and mean lung dose in stage III patients with inhomogeneous hypoperfusion. If the dose to FL is shown to be the determinant of lung toxicity, IMRT would allow for effective dose escalation by specific avoidance of functional lung.

  18. Lung cancer attributable to indoor radon exposure in France using different risk models

    International Nuclear Information System (INIS)

    Catelinois, O.C.; Laurier, D.L.; Rogel, A.R.; Billon, S.B.; Tirmarche, M.T.; Hemon, Dh.; Verger, P.V.

    2006-01-01

    Full text of publication follows: Radon exposure is omnipresent for the general public, but at variable levels, because radon mainly comes from granitic and volcanic subs oils as well as from certain construction materials. Inhalation of radon is the main source of exposure to radioactivity in the general population of most countries. In 1988, the International Agency for Research on Cancer declared radon to be carcinogenic for humans (lung cancer): radon is classed in the group 1. The exposure of the overall general population to a carcinogenic component led scientists to assess the lung cancer risk associated to indoor radon. The aim of this work is to provide the first lung cancer risk assessment associated with indoor radon exposure in France, using all available epidemiological results and performing an uncertainty analysis. The number of lung cancer deaths potentially associated with radon in houses is estimated for the year 1999 according to several dose-response relationships which come from either cohorts of miners or joint analysis of residential case-controls studies. The variability of indoor radon exposure in France and uncertainties related to each of the dose-response relationships are considered. The assessment of lung cancer risk associated with domestic radon exposure considers 10 dose-response relationships resulting from miners cohorts and case-control studies in the general population. A critical review of available data on smoking habits has been performed and allowed to consider the interaction between radon and tobacco. The exposure data come from measurements campaigns carried out since the beginning of the 1980's by the Institute for Radiation protection and Nuclear Safety and the Health General Directory in France. The French lung cancer mortality data are provided by the INSERM. Estimates of the number of attributable cancers are carried out for the whole country, stratified by 8 large regions and b y 96 departments for the year 1999

  19. Once-Weekly, High-Dose Stereotactic Body Radiotherapy for Lung Cancer: 6-Year Analysis of 60 Early-Stage, 42 Locally Advanced, and 7 Metastatic Lung Cancers

    International Nuclear Information System (INIS)

    Salazar, Omar M.; Sandhu, Taljit S.; Lattin, Paul B.; Chang, Jung H.; Lee, Choon K.; Groshko, Gayle A.; Lattin, Cheryl J.

    2008-01-01

    Purpose: To explore once-weekly stereotactic body radiotherapy (SBRT) in nonoperable patients with localized, locally advanced, or metastatic lung cancer. Methods and Materials: A total of 102 primary (89 untreated plus 13 recurrent) and 7 metastatic tumors were studied. The median follow-up was 38 months, the average patient age was 75 years. Of the 109 tumors studied, 60 were Stage I (45 IA and 15 IB), 9 were Stage II, 30 were Stage III, 3 were Stage IV, and 7 were metastases. SBRT only was given in 73% (40 Gy in four fractions to the planning target volume to a total dose of 53 Gy to the isocenter for a biologically effective dose of 120 Gy 10 ). SBRT was given as a boost in 27% (22.5 Gy in three fractions once weekly for a dose of 32 Gy at the isocenter) after 45 Gy in 25 fractions to the primary plus the mediastinum. The total biologically effective dose was 120 Gy 10 . Respiration gating was used in 46%. Results: The overall response rate was 75%; 33% had a complete response. The overall response rate was 89% for Stage IA patients (40% had a complete response). The local control rate was 82%; it was 100% and 93% for Stage IA and IB patients, respectively. The failure rate was 37%, with 17% within the planning target volume. No Grade 3-4 acute toxicities developed in any patient; 12% and 7% of patients developed Grade 1 and 2 toxicities, respectively. Late toxicity, all Grade 2, developed in 3% of patients. The 5-year cause-specific survival rate for Stage I was 70% and was 74% and 64% for Stage IA and IB patients, respectively. The 3-year Stage III cause-specific survival rate was 30%. The patients with metastatic lung cancer had a 57% response rate, a 27% complete response rate, an 86% local control rate, a median survival time of 19 months, and 23% 3-year survival rate. Conclusions: SBRT is noninvasive, convenient, fast, and economically attractive; it achieves results similar to surgery for early or metastatic lung cancer patients who are older

  20. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    International Nuclear Information System (INIS)

    Hashim, S.; Karim, M.K.A.; Bakar, K.A.; Sabarudin, A.; Chin, A.W; Saripan, M.I.; Bradley, D.A.

    2016-01-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose. - Highlights: • Using TLD-100 dosimeters and a RANDO phantom 5 CT thorax protocol organ doses were assessed. • The specific k coefficient for effective dose estimation of protocols differed with approach. • Organ dose was observed to decrease in the order: thyroid>skin>lung>liver>breast. • E103 k factors were constant for all protocols, lower by ~8% compared to the universal k factor.

  1. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  2. Evaluating which plan quality metrics are appropriate for use in lung SBRT.

    Science.gov (United States)

    Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A

    2018-02-01

    Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.

  3. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: Accuracy, complications and radiation dose

    International Nuclear Information System (INIS)

    Prosch, Helmut; Stadler, Alfred; Schilling, Matthias; Bürklin, Sandra; Eisenhuber, Edith; Schober, Ewald; Mostbeck, Gerhard

    2012-01-01

    Background: The aim of this retrospective study was to compare the diagnostic accuracy, the frequency of complications, the duration of the interventions and the radiation doses of CT fluoroscopy (CTF) guided biopsies of lung lesions with those of multislice CT (MS-CT) biopsy mode-guided biopsies. Methods: Data and images from 124 consecutive patients undergoing CTF-guided lung biopsy (group A) and 132 MS-CT-biopsy mode-guided lung biopsy (group B) were reviewed. CTF-guided biopsies were performed on a Siemens Emotion 6 CT scanner with intermittent or continuous CT-fluoroscopy, MS-CT biopsy mode-guided biopsies were performed on a Siemens Emotion 16 CT scanner. All biopsies were performed with a coaxial needle technique. Results: The two groups (A vs. B) did not differ significantly regarding sensitivity (95.5% vs. 95.9%), specificity (96.7% vs. 95.5%), negative predictive value (87.9% vs. 84%) or positive predictive value (98.8% vs. 98.9%). Pneumothorax was observed in 30.0% and 32.5% of the patients, respectively. Chest tube placement was necessary in 4% (group A) and 13% (group B) of the patients. The duration of the intervention was significantly longer in group A (median 37 min vs. 32 min, p = 0.04). The mean CT dose index (CTDI) was 422 in group A and 36.3 in group B (p < 0.001). Conclusion: Compared to CTF-guided biopsies, chest biopsies using the MS-CT biopsy mode show dramatically lower CTDI levels. Although the diagnostic yield of the procedures do not differ significantly, biopsies using the MS-CT-biopsy mode have a three-fold higher rate of chest tube placement.

  4. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-01-01

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003–2008, 41 patients with 42 lung tumors were treated with SBRT to 54–56 Gy in 9–7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16–48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10–55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures

  5. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  6. Effect of contrast on treatment planning system dose calculations in the lung

    International Nuclear Information System (INIS)

    Lees, J.; Holloway, L.; Fuller, M.; Forstner, D.

    2004-01-01

    Full text: Contrast-enhanced x-ray computed tomography is utilised in the planning of radiotherapy lung treatments to allow greater accuracy in defining tumour volume and nodal areas. The use of contrast results in increased density in the region of the tumour and may result in an overall increased density in the lung volume. It is possible that this change in density may affect the accuracy of any dose calculations based on this CT data. As yet, the effect of the contrast agent on the calculations performed by the treatment planning computer is unclear. Ideally, a study would be undertaken using pre- and post- contrast patient data, however this may be considered unethical as an extra CT scan would be required. For this reason, the following study was undertaken to assess the possible impact in a simulated environment. The object of this study was to explore the effect of the contrast agent upon the isodose curves and the monitor units calculated by the treatment planning system. Two investigations were made. Initially, pre- and post-contrast images were acquired using an anthropomorphic phantom. Contrast-enhancement was simulated by replacing cylindrical sections of the lung with lengths of drinking straw containing contrast agent. The effect of increased density in the tumour volume was considered in this comparison. Secondly, block density corrections were used in an existing patient dataset to simulate an increase in lung density and compared with the original dataset. In the two investigations, a treatment was generated using both datasets. Fields were placed on the non contrast-enhanced scan, and then transferred onto the contrast-enhanced scan. The numbers of monitor units calculated in each of the plans were compared, as were the resulting isodose curves. In the first investigation, the relative electron density in the contrast-enhanced scan varied between 0.523 and 1.705 within the tumour volume. This resulted from the presence of undiluted contrast agent

  7. Influence of Sinogram-Affirmed Iterative Reconstruction on Computed Tomography-Based Lung Volumetry and Quantification of Pulmonary Emphysema.

    Science.gov (United States)

    Baumueller, Stephan; Hilty, Regina; Nguyen, Thi Dan Linh; Weder, Walter; Alkadhi, Hatem; Frauenfelder, Thomas

    2016-01-01

    The purpose of this study was to evaluate the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on quantification of lung volume and pulmonary emphysema in low-dose chest computed tomography compared with filtered back projection (FBP). Enhanced or nonenhanced low-dose chest computed tomography was performed in 20 patients with chronic obstructive pulmonary disease (group A) and in 20 patients without lung disease (group B). Data sets were reconstructed with FBP and SAFIRE strength levels 3 to 5. Two readers semiautomatically evaluated lung volumes and automatically quantified pulmonary emphysema, and another assessed image quality. Radiation dose parameters were recorded. Lung volume between FBP and SAFIRE 3 to 5 was not significantly different among both groups (all P > 0.05). When compared with those of FBP, total emphysema volume was significantly lower among reconstructions with SAFIRE 4 and 5 (mean difference, 0.56 and 0.79 L; all P emphysema is affected at higher strength levels.

  8. Dose escalation of chart in non-small cell lung cancer: is three-dimensional conformal radiation therapy really necessary?

    International Nuclear Information System (INIS)

    McGibney, Carol; Holmberg, Ola; McClean, Brendan; Williams, Charles; McCrea, Pamela; Sutton, Phil; Armstrong, John

    1999-01-01

    Purpose: To evaluate, pre clinically, the potential for dose escalation of continuous, hyperfractionated, accelerated radiation therapy (CHART) for non small-cell lung cancer (NSCLC), we examined the strategy of omission of elective nodal irradiation with and without the application of three-dimensional conformal radiation technology (3DCRT). Methods and Materials: 2D, conventional therapy plans were designed according to the specifications of CHART for 18 patients with NSCLC (Stages Ib, IIb, IIIa, and IIIb). Further plans were generated with the omission of elective nodal irradiation (ENI) from the treatment portals (2D minus ENI plans [2D-ENI plans]). Both sets were inserted in the patient's planning computed tomographies (CTs). These reconstructed plans were then compared to alternative, three-dimensional treatment plans which had been generated de novo, with the omission of ENI: 3D minus elective nodal irradiation (3D-ENI plans). Dose delivery to the planning target volumes (PTVs) and to the organs at risk were compared between the 3 sets of corresponding plans. The potential for dose escalation of each patient's 2D-ENI and 3D-ENI plan beyond 54 Gy, standard to CHART, was also determined. Results: PTV coverage was suboptimal in the 2D CHART and the 2D-ENI plans. Only in the 3D-ENI plans did 100% of the PTV get ≥95% of the dose prescribed (i.e., 51.5 Gy [51.3-52.2]). Using 3D-ENI plans significantly reduced the dose received by the spinal cord, the mean and median doses to the esophagus and the heart. It did not significantly reduce the lung dose when compared to 2D-ENI plans. Escalation of the dose (minimum ≥1 Gy) with optimal PTV coverage was possible in 55.5% of patients using 3D-ENI, but was possible only in 16.6% when using the 2D-ENI planning strategy. Conclusions: 3DCRT is fundamental to achieving optimal PTV coverage in NSCLC. A policy of omission of elective nodal irradiation alone (and using 2D technology) will not achieve optimal PTV coverage or

  9. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L., E-mail: adamliss68@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kapadia, Nirav S. [Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (United States); McShan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Rogers, Virginia E. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Moran, Jean M.; Brock, Kristy K.; Schipper, Matt J.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Flaherty, Kevin R. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Frey, Kirk A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2017-02-01

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of

  10. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; McNair, Helen A.; Cronin, Bernadette; Courbon, Frederic; Bedford, James L.; Brada, Michael

    2005-01-01

    Background and purpose: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. Patients and methods: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. Results: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm 3 (range 596.2-1581.1 cm 3 ). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV 2 (the percentage volume of functioning lung receiving ≥20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. Conclusion: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits

  11. Late regional density changes of the lung after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Vagane, Randi; Danielsen, Turi; Fossa, Sophie Dorothea; Lokkevik, Erik; Olsen, Dag Rune

    2009-01-01

    Background and purpose: To investigate density changes in lung tissue, 3-4 years after postoperative adjuvant radiotherapy for breast cancer, based on dose dependence and regional differences. Material and methods: Sixty-one breast cancer patients, who had received computed tomography (CT) based postoperative radiotherapy, were included. CT scans were performed 35-51 months after start of radiotherapy. Dose information and CT scans from before and after radiotherapy were geometrically aligned in order to analyse changes in air-filled fraction (derived from CT density) as a function of dose for different regions of the lung. Results: Dose-dependent reduction of the air-filled fraction was shown to vary between the different regions of the lung. For lung tissue receiving about 50 Gy, the largest reduction in air-filled fraction was found in the cranial part of the lung. An increased air-filled fraction was observed for lung tissue irradiated to doses below 20 Gy, indicating compensatory response. Conclusions: The treatment-induced change in whole-lung density is a weighted response, involving the different regions, the irradiated volumes, and dose levels to these volumes. Simplistic models may therefore not be appropriate for describing the whole-lung dose-volume-response relationship following inhomogeneous irradiation

  12. Quality of life assessment in advanced non-small-cell lung cancer patients undergoing an accelerated radiotherapy regimen: report of ECOG study 4593

    International Nuclear Information System (INIS)

    Auchter, Richard M.; Scholtens, Denise; Adak, Sudeshna; Wagner, Henry; Cella, David F.; Mehta, Minesh P.

    2001-01-01

    Purpose: To prospectively evaluate the quality of life (QOL) before, at completion, and after therapy for patients receiving an accelerated fractionation schedule of radiotherapy for advanced, unresectable non-small-cell lung cancer in a Phase II multi-institutional trial. Methods and Materials: The Functional Assessment of Cancer Therapy-Lung (FACT-L) patient questionnaire was used to score the QOL in patients enrolled in the Eastern Cooperative Oncology Group Phase II trial (ECOG 4593) of hyperfractionated accelerated radiotherapy in non-small-cell lung cancer. Radiotherapy (total dose 57.6 Gy in 36 fractions) was delivered during 15 days, with three radiation fractions given each treatment day. The protocol was activated in 1993, and 30 patients had accrued by November 1995. The FACT-L questionnaire was administered at study entry (baseline), on the last day of radiotherapy (assessment 2), and 4 weeks after therapy (assessment 3). The FACT-L includes scores for physical, functional, emotional, and social well-being (33 items), and a subscale of lung cancer symptoms (10 additional items). The summation of the physical, functional, and lung cancer symptom subscales (21 items) constitutes the Trial Outcome Index (TOI), considered the most clinically relevant outcome measure in lung cancer treatment trials. Results: The FACT-L completion rates at the designated study time points were as follows: baseline, 30 of 30 (100%); assessment 2, 29 (97%) of 30; and assessment 3, 24 (80%) of 30. At treatment completion, statistically significant declines in QOL scores were noted, compared with baseline for physical and functional well-being. Emotional well-being scores improved at both assessment 2 and assessment 3. The physical and functional scores returned approximately to baseline values at assessment 3. The change in TOI score was evaluated as a function of the clinical response to treatment, toxicity grade, and survival; no clear association was noted. A trend for the

  13. Radiation quality and effective dose equivalent of alpha particles from radon decay products indoors: uncertainties in risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A. (Velindre Hospital, Whitchurch, Cardiff (United Kingdom))

    1994-01-01

    In order to make a better estimate of cancer risk due to radon the radiation quality of alpha particles emitted from the element and its daughters has been re-assessed. In particular, uncertainties in all components involved in the calculations of the effective dose E, have been investigated. This has been done in the light of the recent draft report of the ICRU on quantities and units for use in radiation protection (Allisy et al (1991) ICRU NEWS 2). On the assumption of an indoor radon concentration of 30 Bq.m[sup -3], microdose spectra have been calculated for alpha particles hitting lung cells at different depths. Then the mean quality factor Q-bar in the lung, dose equivalent H[sub T] to the lung and the effective dose have been calculated. A comparison between lung cancer risk from radon and that arising from diagnostic X rays to the chest is made. A suggestion to make the lung weighting factor w[sub T] a function of the fraction of lung cells hit is discussed. (Author).

  14. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    Directory of Open Access Journals (Sweden)

    C. H. Wu

    2014-01-01

    Full Text Available This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer.

  15. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer

    International Nuclear Information System (INIS)

    Chandra, Anurag; Guerrero, Thomas M.; Liu, H. Helen; Tucker, Susan L.; Liao Zhongxing; Wang Xiaochun; Murshed, Hasan; Bonnen, Mark D.; Garg, Amit K.; Stevens, Craig W.; Chang, Joe Y.; Jeter, Melinda D.; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko

    2005-01-01

    Background and purpose: To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3DCRT) in treating distal esophageal malignancies. Patients and methods: Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3DCRT plan used clinically. IMRT and 3DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. Results: IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V 1 ), 20 Gy (V 2 ), mean lung dose (MLD), biological effective volume (V eff ), and lung integral dose (P 1 , 5% for V 2 , and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Conclusions: Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers

  16. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd→Be) for normal tissues. Pt. 3

    International Nuclear Information System (INIS)

    Rezvani, M.; Hopewell, J.W.; Robbins, M.E.C.; Hamlet, R.; Barnes, D.W.H.; Sansom, J.M.; Adams, P.J.V.

    1990-01-01

    The effect of single and fractionated doses of fast neutrons (42 MeV d→Bc ) on the early and late radiation responses of the pig lung have been assessed by the measurement of changes in lung function using a 133 Xe washout technique. The results obtained for irradiation schedules with fast neutrons have been compared with those after photon irradiation. There was no statistically significant difference between the values for the relative biological effectiveness (RBE) for the early and late radiation response of the lung. The RBE of the neutron beam increased with decreasing size of dose/fraction with an upper limit value of 4.39 ± 0.94 for infinitely small X-ray doses per fraction. (author)

  17. Dosimetric assessment from 212Pb inhalation at a thorium purification plant

    International Nuclear Information System (INIS)

    Campos, M. P.; Pecequilo, B. R. S.

    2004-01-01

    At the Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo (Brazil)), there is a facility (thorium purification plant) where materials with high thorium concentrations are manipulated. In order to estimate afterwards the lung cancer risk for the workers, the thoron daughter ( 212 Pb) levels were assessed and the committed effective and lung committed equivalent doses for workers in place. A total of 28 air filter samples were measured by total alpha counting through the modified Kusnetz method, to determine the 212 Pb concentration. The committed effective dose and lung committed equivalent dose due to 212 Pb inhalation were derived from compartmental analysis following the ICRP 66 lung compartmental model, and ICRP 67 lead metabolic model. (authors)

  18. Functional avoidance of lung in plan optimization with an aperture-based inverse planning system

    International Nuclear Information System (INIS)

    St-Hilaire, Jason; Lavoie, Caroline; Dagnault, Anne; Beaulieu, Frederic; Morin, Francis; Beaulieu, Luc; Tremblay, Daniel

    2011-01-01

    Purpose: To implement SPECT-based optimization in an anatomy-based aperture inverse planning system for the functional avoidance of lung in thoracic irradiation. Material and methods: SPECT information has been introduced as a voxel-by-voxel modulation of lung importance factors proportionally to the local perfusion count. Fifteen cases of lung cancer have been retrospectively analyzed by generating angle-optimized non-coplanar plans, comparing a purely anatomical approach and our functional approach. Planning target volume coverage and lung sparing have been compared. Statistical significance was assessed by a Wilcoxon matched pairs test. Results: For similar target coverage, perfusion-weighted volume receiving 10 Gy was reduced by a median of 2.2% (p = 0.022) and mean perfusion-weighted lung dose, by a median of 0.9 Gy (p = 0.001). A separate analysis of patients with localized or non-uniform hypoperfusion could not show which would benefit more from SPECT-based treatment planning. Redirection of dose sometimes created overdosage regions in the target volume. Plans consisted of a similar number of segments and monitor units. Conclusions: Angle optimization and SPECT-based modulation of importance factors allowed for functional avoidance of the lung while preserving target coverage. The technique could be also applied to implement PET-based modulation inside the target volume, leading to a safer dose escalation.

  19. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations

    International Nuclear Information System (INIS)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-01-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  20. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems

    Science.gov (United States)

    Panettieri, Vanessa; Wennberg, Berit; Gagliardi, Giovanna; Amor Duch, Maria; Ginjaume, Mercè; Lax, Ingmar

    2007-07-01

    The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm-3) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate

  1. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  2. Impact of PET reconstruction algorithm and threshold on dose painting of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Knudtsen, Ingerid Skjei; Elmpt, Wouter van; Öllers, Michel; Malinen, Eirik

    2014-01-01

    Purpose: In the current work, we investigate the impact of PET reconstruction methods (RMs) and threshold on two types of dose painting (DP) prescription strategies for non-small cell lung cancer (NSCLC). Materials and methods: Sixteen patients with NSCLC underwent an 18F-FDG-PET/CT examination prior to radiotherapy. Six different RMs were used. For both a dose painting by contours (DPBC) and a dose painting by numbers (DPBN) strategy, the prescribed radiation dose within the gross tumor volume (GTV) was mapped according to the spatial distribution of standardized uptake values (SUVs). SUV max and SUV peak were used for volume thresholding in DPBC and a linear SUV-dose scaling approach was used for DPBN. Deviations from the dose prescription as determined by the standard RM was scored by a quality factor (QF). Results: For DPBC, the mean difference in thresholded boost volume between RMs was typically within 10%. The difference in dose prescription was systematically lower for thresholding based on SUV peak (largest mean QF 2.8 ± 2.0%) compared to SUV max (largest mean QF 3.6 ± 3.0%). For DPBN, the resulting dose prescriptions were less dependent on RM and threshold; the largest mean QFs were 1.3 ± 0.3% both for SUV max and SUV peak . Conclusions: PET reconstruction algorithms will both influence DPBC and DPBN, although the impact is smaller for DPBN. For some patients, the resulting variations in dose prescriptions may result in clinically different dose distributions. SUV peak is a more robust thresholding parameter than SUV max

  3. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers.

    Science.gov (United States)

    Nyhan, Marguerite; McNabola, Aonghus; Misstear, Bruce

    2014-01-15

    Exposure to airborne particulate matter (PM) has been linked to cardiovascular morbidity and mortality. Heart rate variability (HRV) is a measure of the change in cardiac autonomic function, and consistent links between PM exposure and decreased HRV have been documented in studies. This study quantitatively assesses the acute relative variation of HRV with predicted PM dose in the lungs of commuters. Personal PM exposure, HR and HRV were monitored in 32 young healthy cyclists, pedestrians, bus and train passengers. Inhaled and lung deposited PM doses were determined using a numerical model of the human respiratory tract which accounted for varying ventilation rates between subjects and during commutes. Linear mixed models were used to examine air pollution dose and HRV response relationships in 122 commutes sampled. Elevated PM2.5 and PM10 inhaled and lung deposited doses were significantly (pbus (-3.2%, 95% CI: -6.4, -0.1) and train (-1.8%, -7.5, 3.8) passengers. A similar trend was observed in the case of PM2.5 lung deposited dose and results for rMSSD (the square root of the squared differences of successive normal RR intervals) followed similar trends to SDNN. Inhaled and lung deposited doses accounting for varying ventilation rates between modes, individuals and during commutes have been neglected in other studies relating PM to HRV. The findings here indicate that exercise whilst commuting has an influence on inhaled PM and PM lung deposited dose, and these were significantly associated with acute declines in HRV, especially in pedestrians and cyclists. © 2013.

  4. Clinical value of a one-stop-shop low-dose lung screening combined with 18F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer

    International Nuclear Information System (INIS)

    Han, Yeon Hee; Lim, Seok Tae; Jeong, Hwan Jeong; Sohn, Myung Hee

    2016-01-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with 18F-fluoro-2-deoxyglucose positron emission tomography with CT (18F-FDG PET/CT) compared with conventional lung setting image of 18F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with 18F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had  >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of 18F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of 18F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of 18F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional

  5. SU-F-BRD-15: The Impact of Dose Calculation Algorithm and Hounsfield Units Conversion Tables On Plan Dosimetry for Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, L; Yorke, E; Lim, S; Mechalakos, J; Rimner, A [Memorial Sloan-Kettering Cancer Center, NY, NY (United States)

    2014-06-15

    Purpose: To assess dosimetric differences in IMRT lung stereotactic body radiotherapy (SBRT) plans calculated with Varian AAA and Acuros (AXB) and with vendor-supplied (V) versus in-house (IH) measured Hounsfield units (HU) to mass and HU to electron density conversion tables. Methods: In-house conversion tables were measured using Gammex 472 density-plug phantom. IMRT plans (6 MV, Varian TrueBeam, 6–9 coplanar fields) meeting departmental coverage and normal tissue constraints were retrospectively generated for 10 lung SBRT cases using Eclipse Vn 10.0.28 AAA with in-house tables (AAA/IH). Using these monitor units and MLC sequences, plans were recalculated with AAA and vendor tables (AAA/V) and with AXB with both tables (AXB/IH and AXB/V). Ratios to corresponding AAA/IH values were calculated for PTV D95, D01, D99, mean-dose, total and ipsilateral lung V20 and chestwall V30. Statistical significance of differences was judged by Wilcoxon Signed Rank Test (p<0.05). Results: For HU<−400 the vendor HU-mass density table was notably below the IH table. PTV D95 ratios to AAA/IH, averaged over all patients, are 0.963±0.073 (p=0.508), 0.914±0.126 (p=0.011), and 0.998±0.001 (p=0.005) for AXB/IH, AXB/V and AAA/V respectively. Total lung V20 ratios are 1.006±0.046 (p=0.386), 0.975±0.080 (p=0.514) and 0.998±0.002 (p=0.007); ipsilateral lung V20 ratios are 1.008±0.041(p=0.284), 0.977±0.076 (p=0.443), and 0.998±0.018 (p=0.005) for AXB/IH, AXB/V and AAA/V respectively. In 7 cases, ratios to AAA/IH were within ± 5% for all indices studied. For 3 cases characterized by very low lung density and small PTV (19.99±8.09 c.c.), PTV D95 ratio for AXB/V ranged from 67.4% to 85.9%, AXB/IH D95 ratio ranged from 81.6% to 93.4%; there were large differences in other studied indices. Conclusion: For AXB users, careful attention to HU conversion tables is important, as they can significantly impact AXB (but not AAA) lung SBRT plans. Algorithm selection is also important for

  6. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  7. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  8. Determination of environmental radioactivity for dose assessment

    International Nuclear Information System (INIS)

    Nakoaka, A.; Fukushima, M.; Takagi, S.

    1980-01-01

    A method was devised to determine detection limits for radioactivity in environmental samples. The method is based on the 5 mrem/yr whole-body dose objective established by the Japan Atomic Enerty Commission and is valid for assessing the internal dose from radionuclides in the environment around a nuclear facility. Eleven samples and 15 radionuclides were considered. Internal dose was assumed to be one-half of the total dose (5 mrem/yr) and was assessed using the critical pathway method. Needed detection limits (NDLs) were established to confirm the dose of 5 mrem/yr when there was more than one radionuclide per sample. The NDLs for γ-emitters were 10 -5 pCi/l. for air; 10 -3 pCi/l. for seawater; 10 -1 pCi/l. for drinking water; 10 0 pCi/kg for vegetables and fish; 10 0 pCi/l. for milk; and 10 1 pCi/kg for molluscs, crustaceans, seaweeds, soil and submarine sediments. The NDLs for β-emitters were 1-1/100 of those for γ-emitters. (author)

  9. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb

  10. Comparison of cardiac and lung doses for breast cancer patients with free breathing and deep inspiration breath hold technique in 3 dimensional conformal radiotherapy - a dosimetric study

    Science.gov (United States)

    Raj Mani, Karthick; Poudel, Suresh; Maria Das, K. J.

    2017-12-01

    Purpose: To investigate the cardio-pulmonary doses between Deep Inspiration Breath Hold (DIBH) and Free Breathing (FB) technique in left sided breast irradiation. Materials & Methods: DIBH CT and FB CT were acquired for 10 left sided breast patients who underwent whole breast irradiation with or without nodal irradiation. Three fields single isocenter technique were used for patients with node positive patients along with two tangential conformal fields whereas only two tangential fields were used in node negative patients. All the critical structures like lungs, heart, esophagus, thyroid, etc., were delineated in both DIBH and FB scan. Both DIBH and FB scans were fused with the Dicom origin as they were acquired with the same Dicom coordinates. Plans were created in the DIBH scan for a dose range between 50 Gy in 25 fractions. Critical structures doses were recorded from the Dose Volume Histogram for both the DIBH and FB data set for evaluation. Results: The average mean heart dose in DIBH vs FB was 13.18 Gy vs 6.97 Gy, (p = 0.0063) significantly with DIBH as compared to FB technique. The relative reduction in average mean heart dose was 47.12%. The relative V5 reduced by 14.70% (i.e. 34.42% vs 19.72%, p = 0.0080), V10 reduced by 13.83% (i.e. 27.79 % vs 13.96%, p = 0.0073). V20 reduced by 13.19% (i.e. 24.54 % vs 11.35%, p = 0.0069), V30 reduced by 12.38% (i.e. 22.27 % vs 9.89 %, p = 0.0073) significantly with DIBH as compared to FB. The average mean left lung dose reduced marginally by 1.43 Gy (13.73 Gy vs 12.30 Gy, p = 0.4599) but insignificantly with DIBH as compared to FB. Other left lung parameters (V5, V10, V20 and V30) shows marginal decreases in DIBH plans compare to FB plans. Conclusion: DIBH shows a substantial reduction of cardiac doses but slight and insignificant reduction of pulmonary doses as compared with FB technique. Using the simple DIBH technique, we can effectively reduce the cardiac morbidity and at the same time radiation induced lung

  11. 4D planning over the full course of fractionation: assessment of the benefit of tumor trailing

    Science.gov (United States)

    McQuaid, D.; Bortfeld, T.

    2011-11-01

    Tumor trailing techniques have been proposed as a method of reducing the problem of intrafraction motion in radiotherapy. However the dosimetric assessment of trailing strategies is complicated by the requirement to study dose deposition over a full fraction delivery. Common 4D planning strategies allowing assessment of dosimetric motion effects study a single cycle acquired with 4DCT. In this paper, a methodology to assess dose deposited over an entire treatment course is advanced and used to assess the potential benefit of tumor trailing strategies for lung cancer patients. Two digital phantoms mimicking patient anatomy were each programmed to follow the tumor respiratory trajectory observed from 33 lung cancer patients. The two phantoms were designed to represent the cases of a small (volume = 13.6 cm3) and large (volume = 181.7 cm3) lung lesion. Motion margins required to obtain CTV coverage by 95% of the prescription dose to 90% of the available cases were computed for a standard treatment strategy and a trailing treatment strategy. The trailing strategy facilitated a margin reduction of over 30% relative to the conventional delivery. When the dose was computed across the entire delivery for the 33 cases, the trailing strategy was found to significantly reduce the underdosage to the outlier cases and the reduced trailing margin facilitated a 15% (small lesion) and 4% (large lesion) reduction for the mean lung dose and 7% (small lesion) and 10% (large lesion) for the mean esophagus dose. Finally, for comparison an ideal continuous tracking strategy was assessed and found to further reduce the mean lung and esophagus dose. However, this improvement comes at the price of increased delivery complexity and increased reliance on tumor localization accuracy.

  12. 4D planning over the full course of fractionation: assessment of the benefit of tumor trailing

    International Nuclear Information System (INIS)

    McQuaid, D; Bortfeld, T

    2011-01-01

    Tumor trailing techniques have been proposed as a method of reducing the problem of intrafraction motion in radiotherapy. However the dosimetric assessment of trailing strategies is complicated by the requirement to study dose deposition over a full fraction delivery. Common 4D planning strategies allowing assessment of dosimetric motion effects study a single cycle acquired with 4DCT. In this paper, a methodology to assess dose deposited over an entire treatment course is advanced and used to assess the potential benefit of tumor trailing strategies for lung cancer patients. Two digital phantoms mimicking patient anatomy were each programmed to follow the tumor respiratory trajectory observed from 33 lung cancer patients. The two phantoms were designed to represent the cases of a small (volume = 13.6 cm 3 ) and large (volume = 181.7 cm 3 ) lung lesion. Motion margins required to obtain CTV coverage by 95% of the prescription dose to 90% of the available cases were computed for a standard treatment strategy and a trailing treatment strategy. The trailing strategy facilitated a margin reduction of over 30% relative to the conventional delivery. When the dose was computed across the entire delivery for the 33 cases, the trailing strategy was found to significantly reduce the underdosage to the outlier cases and the reduced trailing margin facilitated a 15% (small lesion) and 4% (large lesion) reduction for the mean lung dose and 7% (small lesion) and 10% (large lesion) for the mean esophagus dose. Finally, for comparison an ideal continuous tracking strategy was assessed and found to further reduce the mean lung and esophagus dose. However, this improvement comes at the price of increased delivery complexity and increased reliance on tumor localization accuracy.

  13. Dose to level I and II axillary lymph nodes and lung by tangential field radiation in patients undergoing postmastectomy radiation with tissue expander reconstruction

    International Nuclear Information System (INIS)

    Russo, James K; Armeson, Kent E; Rhome, Ryan; Spanos, Michele; Harper, Jennifer L

    2011-01-01

    To define the dosimetric coverage of level I/II axillary volumes and the lung volume irradiated in postmastectomy radiotherapy (PMRT) following tissue expander placement. Twenty-three patients were identified who had undergone postmastectomy radiotherapy with tangent only fields. All patients had pre-radiation tissue expander placement and expansion. Thirteen patients had bilateral expander reconstruction. The level I/II axillary volumes were contoured using the RTOG contouring atlas. The patient-specific variables of expander volume, superior-to-inferior location of expander, distance between expanders, expander angle and axillary volume were analyzed to determine their relationship to the axillary volume and lung volume dose. The mean coverage of the level I/II axillary volume by the 95% isodose line (V D95% ) was 23.9% (range 0.3 - 65.4%). The mean Ipsilateral Lung V D50% was 8.8% (2.2-20.9). Ipsilateral and contralateral expander volume correlated to Axillary V D95% in patients with bilateral reconstruction (p = 0.01 and 0.006, respectively) but not those with ipsilateral only reconstruction (p = 0.60). Ipsilateral Lung V D50% correlated with angle of the expander from midline (p = 0.05). In patients undergoing PMRT with tissue expanders, incidental doses delivered by tangents to the axilla, as defined by the RTOG contouring atlas, do not provide adequate coverage. The posterior-superior region of level I and II is the region most commonly underdosed. Axillary volume coverage increased with increasing expander volumes in patients with bilateral reconstruction. Lung dose increased with increasing expander angle from midline. This information should be considered both when placing expanders and when designing PMRT tangent only treatment plans by contouring and targeting the axilla volume when axillary treatment is indicated

  14. Study of the heterogeneity effects of lung in the evaluation of absorbed dose in radiotherapy; Estudo dos efeitos da heterogeneidade de pulmao na avaliacao da dose absorvida em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Luciana Tourinho

    2006-02-15

    The main objective of radiotherapy is to deliver the highest possible dose to the tumour, in order to destroy it, reducing as much as possible the doses to healthy tissues adjacent to the target volume. Therefore, it is necessary to do a planning of the treatment. The more complex is the treatment, the more difficult the planning will be, demanding computation sophisticated methods in its execution, in order to consider the heterogeneities present in the human body. Additionally, with the appearing of new radiotherapeutic techniques, that used irradiation fields of small area, for instance, the intensity modulated radiotherapy, the difficulties for the execution of a reliable treatment planning, became still larger. In this work it was studied the influence of the lung heterogeneity in the planning of the curves of percentage depth dose, PDP, obtained with the Eclipse{sup R} planning system for different sizes of irradiation fields, using the correction algorithms for heterogeneities available in the planning system: modified Batho, general Batho and equivalent tissue-air ratio. A thorax phantom, manufactured in acrylic, containing a region made of cork to simulate the lung tissue, was used. The PDP curves generated by the planning system were compared to those obtained by Monte Carlo simulation and with the use of thermoluminescent, TL, dosimetry. It was verified that the algorithms used by the Eclipse{sup R} system for the correction of heterogeneity effects are not able to generate correct results for PDP curves in the case of small fields, occurring differences of up to 100%, when the 1x1 cm{sup 2} treatment field is considered. These differences can cause a considerable subdosage in the lung tissue, reducing the possibility of the patient cure. (author)

  15. SU-E-T-154: Calculation of Tissue Dose Point Kernels Using GATE Monte Carlo Simulation Toolkit to Compare with Water Dose Point Kernel

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, M [shahid beheshti university, Tehran, Tehran (Iran, Islamic Republic of); Asl, A Kamali [Shahid Beheshti University, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of); Geramifar, P [Shariati Hospital, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Purpose: the objective of this study was to assess utilizing water dose point kernel (DPK)instead of tissue dose point kernels in convolution algorithms.to the best of our knowledge, in providing 3D distribution of absorbed dose from a 3D distribution of the activity, the human body is considered equivalent to water. as a Result tissue variations are not considered in patient specific dosimetry. Methods: In this study Gate v7.0 was used to calculate tissue dose point kernel. the beta emitter radionuclides which have taken into consideration in this simulation include Y-90, Lu-177 and P-32 which are commonly used in nuclear medicine. the comparison has been performed for dose point kernels of adipose, bone, breast, heart, intestine, kidney, liver, lung and spleen versus water dose point kernel. Results: In order to validate the simulation the Result of 90Y DPK in water were compared with published results of Papadimitroulas et al (Med. Phys., 2012). The results represented that the mean differences between water DPK and other soft tissues DPKs range between 0.6 % and 1.96% for 90Y, except for lung and bone, where the observed discrepancies are 6.3% and 12.19% respectively. The range of DPK difference for 32P is between 1.74% for breast and 18.85% for bone. For 177Lu, the highest difference belongs to bone which is equal to 16.91%. For other soft tissues the least discrepancy is observed in kidney with 1.68%. Conclusion: In all tissues except for lung and bone, the results of GATE for dose point kernel were comparable to water dose point kernel which demonstrates the appropriateness of applying water dose point kernel instead of soft tissues in the field of nuclear medicine.

  16. SU-E-T-154: Calculation of Tissue Dose Point Kernels Using GATE Monte Carlo Simulation Toolkit to Compare with Water Dose Point Kernel

    International Nuclear Information System (INIS)

    Khazaee, M; Asl, A Kamali; Geramifar, P

    2015-01-01

    Purpose: the objective of this study was to assess utilizing water dose point kernel (DPK)instead of tissue dose point kernels in convolution algorithms.to the best of our knowledge, in providing 3D distribution of absorbed dose from a 3D distribution of the activity, the human body is considered equivalent to water. as a Result tissue variations are not considered in patient specific dosimetry. Methods: In this study Gate v7.0 was used to calculate tissue dose point kernel. the beta emitter radionuclides which have taken into consideration in this simulation include Y-90, Lu-177 and P-32 which are commonly used in nuclear medicine. the comparison has been performed for dose point kernels of adipose, bone, breast, heart, intestine, kidney, liver, lung and spleen versus water dose point kernel. Results: In order to validate the simulation the Result of 90Y DPK in water were compared with published results of Papadimitroulas et al (Med. Phys., 2012). The results represented that the mean differences between water DPK and other soft tissues DPKs range between 0.6 % and 1.96% for 90Y, except for lung and bone, where the observed discrepancies are 6.3% and 12.19% respectively. The range of DPK difference for 32P is between 1.74% for breast and 18.85% for bone. For 177Lu, the highest difference belongs to bone which is equal to 16.91%. For other soft tissues the least discrepancy is observed in kidney with 1.68%. Conclusion: In all tissues except for lung and bone, the results of GATE for dose point kernel were comparable to water dose point kernel which demonstrates the appropriateness of applying water dose point kernel instead of soft tissues in the field of nuclear medicine

  17. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    International Nuclear Information System (INIS)

    Husain, Mainul; Saber, Anne T.; Guo, Charles; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Williams, Andrew; Vogel, Ulla; Wallin, Hakan; Halappanavar, Sabina

    2013-01-01

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO 2 ). Female C57BL/6 mice were exposed to rutile nano-TiO 2 via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO 2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO 2 in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p 2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO 2 were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose group

  18. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol.2

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  19. Helical CT for lung-cancer screening. 3. Fundamental study for ultra-low-dose CT by application of small tube current and filter

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Koyama, Shuji; Tusaka, Masatoshi; Maekoshi, Hisashi; Satake, Hiroko; Ishigaki, Takeo.

    1996-01-01

    In order to develop ultra-low-dose helical CT for lung cancer screening, the effect of reduction of the tube current to 20 mA and application of a 10 mm thick aluminium filter upon radiation dose and image quality was evaluated with a phantom. Exposure dose at the center of a gantry and absorbed dose at the center of an acrylic phantom at 20 mA with the filter were 15% and 29% of the dose at 50 mA without the filter, respectively. For reduction of absorbed dose, reduction of the tube current was more useful than application of the filter. Image noise at 20 mA with the filter was double that at 50 mA without the filter. Neither reduction of the tube current nor application of the filter changed full width at half maximum on section sensitivity of the Z-axis. Although reduction of the tube current did not affect the difference in CT values between an acrylic sphere and styroform, application of the filter caused a reduction of 4.5% in the difference in CT values. Neither reduction of the tube current nor application of the filter affected the contrast resolution of the high-contrast phantom; however, that of the low-contrast phantom deteriorated. Although improvement of the filter and evaluation of clinical images are necessary, reduction of the tube current to 20 mA and application of the aluminium filter appear to be a promising method for ultra-low-dose helical CT of the lung. (author)

  20. SU-C-207A-07: Cumulative 18F-FDG Uptake Histogram Relative to Radiation Dose Volume Histogram of Lung After IMRT Or PSPT and Their Association with Radiation Pneumonitis

    International Nuclear Information System (INIS)

    Shusharina, N; Choi, N; Bortfeld, T; Liao, Z; Mohan, R

    2016-01-01

    Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained for each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.