WorldWideScience

Sample records for arable soils effects

  1. Conversion of Forests to Arable Land and its Effect on Soil Physical ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Conversion of Forests to Arable Land and its Effect on Soil ... greater hydraulic conductivity than those under cultivation and this may indicate greater pore ... stability and clay dispersion index were 10% higher and 28% lower in the .... degraded the physical properties, making the soil more prone to soil erosion by water.

  2. Relations between Agronomic Practice and Earthworms in Norwegian Arable Soils

    OpenAIRE

    Pommeresche, Reidun; Løes, Anne-Kristin

    2009-01-01

    This paper presents Norwegian studies of earthworms (density, biomass, burrows density, species, juvenile to adult ratios) in arable soil in Norway conducted during the last 20 years. The effects of crop rotations, fertilization, soil tillage and compaction on earthworms are presented, based on various field experiments. Geophagous (soil eating) species such as Aporrectodea caliginosa and A. rosea dominate the earthworm fauna in Norwegian arable soil. Lumbricus terrestris is also present; in ...

  3. Ecology of microarthropods in arable soil

    NARCIS (Netherlands)

    Vreeken - Buijs, M.J.

    1998-01-01

    Soil microarthropods are all free-living mites and collembolans, living in the soil. The study presented in this thesis formed part of the Dutch Programme on Soil Ecology of Arable Farming Systems, an integrated multidisciplinary research programme, focused on the functioning of two

  4. Soil health: a comparison between organically and conventionally managed arable soils in the Netherlands

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Blok, W.J.; Korthals, G.W.; Bruggen, van A.H.C.; Ariena, H.C.

    2005-01-01

    A comparative study of 13 organic and 13 neighboring conventional arable farming systems was conducted in the Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils were analyzed using a polyphasic approach combining traditional

  5. Soil organic (14)C dynamics : Effects of pasture installation on arable land

    NARCIS (Netherlands)

    Romkens, P.F A M; Hassink, J; van der Plicht, Johannes

    1998-01-01

    In a study addressing composition and recovery of soil carbon following pasture installation on arable land, radiocarbon isotope ratios were measured in size- and density-separated soil organic matter (SOM) fractions in a pasture and maize plot. The average soil carbon age increased with depth from

  6. Soil organic 14C dynamics: effects of pasture installation on arable land

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1998-01-01

    In a study addressing composition and recovery of soil carbon following pasture installation on arable land, radiocarbon isotope ratios were measured in size-and density-separated soil organic matter (SOM) fractions in a pasture and maize plot. The average soil carbon age increased with depth from

  7. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  8. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... results indicated that variability across arable landscapes makes footslope soils both a larger sink of buried soil C and a bigger potential CO2 source than upslope soils....

  9. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewski

    2014-08-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  10. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  11. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands

    NARCIS (Netherlands)

    Pulleman, M.M.; Jongmans, A.G.; Marinissen, J.C.Y.; Bouma, J.

    2003-01-01

    We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming

  12. Mycostimulation in a glyphosate treated arable soil: implications on ...

    African Journals Online (AJOL)

    Mycostimulation in a glyphosate treated arable soil: implications on the yield and agronomic characters of Talinum fruticosum (L.) Juss. ... If properly managed and stimulated, fungi can contribute significantly to improving soil health, thus improving food security in a sustainable manner. Keywords: Mycoaugmentation ...

  13. A RAINFALL SIMULATOR STUDY OF INFILTRATION INTO ARABLE SOILS

    NARCIS (Netherlands)

    WIERDA, A; VEEN, AWL

    Since Hortonian surface runoff is one possible mechanism for the fast transport of agricultural chemicals from arable soils to surface water, more information is needed on its significance in agricultural areas. The present study concerns the sandy soils of the Dutch Cover Sands area, and is based

  14. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  15. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  16. Assessment of various practices of the mitigation of N2O emissions from the arable soils of Poland

    Directory of Open Access Journals (Sweden)

    Sosulski Tomasz

    2017-03-01

    Full Text Available This review assesses the adaptability and effectiveness of the basic practices to mitigate the N2O emissions from the arable land in the climate, soil and agricultural conditions of Poland. We have analyzed the decrease in the nitrogen-based fertilization, selection of the fertilizer nitrogen forms, use of biological inhibitors of nitrogen transformation in the soil, control of the acidic soil reaction, reduction in the natural fertilizers use and afforestation of the low productive soils. The challenge evaluating the effectiveness of mitigation practices lies in the inadequacy of the national data on N2O soil emissions in particular agrotechnical conditions. In Poland, circumstances that favor intensive N2O emissions from the arable soils occur uncommonly, as shows the analysis of the literature reporting on the country climate, soil and agricultural conditions alongside the N2O emissions from soils under various cultivation conditions. Consequently, the effectiveness of mitigation practices that relies on an extensification of plant production may be insufficient. It can be assumed that, at the doses of nitrogen fitting the nutritional needs of crops, the soil N2O emissions are low and do not meaningfully differ from the emissions from untreated soils (literature data point to limited N2O emission from arable soils treated with N doses of ≤150-200 kg N·ha-1. The effectiveness of the nitrogen fertilization reduction as an N2O emissions mitigation practice is restricted to intensive farming. A universal registry of the mineral and natural fertilization use could help identify the agricultural holdings with a potential for high N2O emission and foster a targeted application of mitigation practices. It is suggested that normalization and maintenance of the optimum (i.e. close to neutral soil pH should become a more common practice of N2O emissions mitigation in Poland in view of the extent of arable soils acidification and the literature data

  17. Soil conservation practices among Arable Crop Farmers In Enugu ...

    African Journals Online (AJOL)

    Soil conservation practices among Arable Crop Farmers In Enugu – North Agricultural Zone, Nigeria: Implications for Climate Change. ... The paper recommends concerted efforts to promote among farmers the conservation practices that aid mitigation and adaptation to climate change and at the same time enhance ...

  18. Influence of long-term land use (arable and forest) and soil mineralogy on organic carbon stocks as well as composition and stability of soil organic matter

    Science.gov (United States)

    Kaiser, M.; Ellerbrock, R. H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M.

    2009-04-01

    The function of soils to sequester organic carbon (OC) and their related potential to mitigate the greenhouse effect is strongly affected by land use and soil mineralogy. This study is aimed to clarify long-term impacts of arable and forest land use as well as soil mineralogy on topsoil soil organic carbon (SOC) stocks as well as soil organic matter (SOM) composition and stability. Topsoil samples were taken from deciduous forest and adjacent arable sites (within Germany) that are continuously used for more than 100 years. The soils are different in genesis (Albic and Haplic Luvisol (AL, HL), Colluvic and Haplic Regosol (CR, HR), Haplic and Vertic Cambisol (HC, VC), Haplic Stagnosol (HSt)). First, particulate and water soluble organic matter were separated from the topsoil samples (Ap and Ah horizons). From the remaining solid extraction residues the Na-pyrophosphate soluble organic matter fractions (OM(PY)) were extracted, analysed for its OC content (OC(PY)) and characterized by FTIR spectroscopy and 14C analyses. The SOC stocks calculated for 0-40 cm depth are in general larger for the forest as compared to the adjacent arable soils (except VC). The largest difference between forest and arable topsoils was detected for the HR site (5.9 kg m-2) and seemed to be caused by a two times larger stock of exchangeable Ca of the forest topsoil. For the arable topsoils multiple regression analyses indicate a strong influence of clay, oxalate soluble Al and pyrophosphate soluble Mg on the content of OC(PY) weighted with its C=O content. Such relation is not found for the forest topsoils. Further, a positive relation between Δ14C values of OM(PY) and the following independent variables: (i) specific mineral surface area, (ii) relative C=O group content in OM(PY) and (iii) soil pH is found for the arable topsoils (pH 6.7 - 7.5) suggesting an increase in OM(PY) stability with increasing interactions between OM(PY) and soil mineral surfaces via cation bridging. A similar

  19. Effects of a copper tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    NARCIS (Netherlands)

    Boon, G.T.; Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.

    1998-01-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experimentfour pH/copper combinations from this field were

  20. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years.

    Science.gov (United States)

    Jones, Ainsley; Harrington, Paul; Turnbull, Gordon

    2014-12-01

    Concentrations of the neonicotinoid insecticides clothianidin, thiamethoxam and imidacloprid were determined in arable soils from a variety of locations in England. In soil samples taken from the central area of fields, concentrations of clothianidin ranged from 0.02 to 13.6 µg kg(-1) . Thiamethoxam concentrations were between clothianidin and thiamethoxam were lower in soil samples taken from the edges of fields than from the centres of fields, but this difference was less pronounced for imidacloprid. This work gives a clear indication of the levels of neonicotinoids in arable soils after typical use of these compounds as seed dressings in the United Kingdom. There was evidence that imidacloprid was more persistent in the soils studied than clothianidin and thiamethoxam. As clothianidin and thiamethoxam have largely superseded imidacloprid in the United Kingdom, neonicotinoid levels were lower than suggested by predictions based on imidacloprid alone. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.

  1. Vertical migration of 85Sr, 137Cs and 131I in various arable and undisturbed soils

    International Nuclear Information System (INIS)

    Palagyi, S.; Palagyiova, J.

    2002-01-01

    Vertical migration of 85 Sr, 137 Cs and 131 I in some arable and undisturbed single-contaminated soils was studied by gamma-spectrometry measurements in lysimetric laboratory conditions applying irrigation of the soil profiles with wet atmospheric precipitation for about one year (except radioiodine). A new simple exponential compartment (box) model was derived, allowing us to calculate the migration rate constants and migration rates in the individual soil layers (vertical sections) as well as the total vertical migration rate constants and total vertical migration rates of radionuclides in the bulk soil horizon. The data from the time dependence of the depth activity distribution (radionuclide concentration along the vertical soil profile) were used to test the model. The migration rate constants and migration rates were found to be affected by the contaminating radionuclides as well as by the site, type and depth of the soil. The relaxation times of the radionuclides in the soil horizons were calculated. The effects on the rate parameters of the permanent grass cover and the zeolite applied onto the arable soil surfaces were also investigated

  2. Ecological impacts of arable intensification in Europe.

    Science.gov (United States)

    Stoate, C; Boatman, N D; Borralho, R J; Carvalho, C R; de Snoo, G R; Eden, P

    2001-12-01

    Although arable landscapes have a long history, environmental problems have accelerated in recent decades. The effects of these changes are usually externalized, being greater for society as a whole than for the farms on which they operate, and incentives to correct them are therefore largely lacking. Arable landscapes are valued by society beyond the farming community, but increased mechanization and farm size, simplification of crop rotations, and loss of non-crop features, have led to a reduction in landscape diversity. Low intensity arable systems have evolved a characteristic and diverse fauna and flora, but development of high input, simplified arable systems has been associated with a decline in biodiversity. Arable intensification has resulted in loss of non-crop habitats and simplification of plant and animal communities within crops, with consequent disruption to food chains and declines in many farmland species. Abandonment of arable management has also led to the replacement of such wildlife with more common and widespread species. Soils have deteriorated as a result of erosion, compaction, loss of organic matter and contamination with pesticides, and in some areas, heavy metals. Impacts on water are closely related to those on soils as nutrient and pesticide pollution of water results from surface runoff and subsurface flow, often associated with soil particles, which themselves have economic and ecological impacts. Nitrates and some pesticides also enter groundwater following leaching from arable land. Greatest impacts are associated with simplified, high input arable systems. Intensification of arable farming has been associated with pollution of air by pesticides, NO2 and CO2, while the loss of soil organic matter has reduced the system's capacity for carbon sequestration. International trade contributes to global climate change through long distance transport of arable inputs and products. The EU Rural Development Regulation (1257/99) provides an

  3. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    Science.gov (United States)

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  4. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land

    Science.gov (United States)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2017-04-01

    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  5. Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey

    Science.gov (United States)

    Kashtanov, A. N.; Vernyuk, Yu. I.; Savin, I. Yu.; Shchepot'ev, V. V.; Dokukin, P. A.; Sharychev, D. V.; Li, K. A.

    2018-04-01

    Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.

  6. Soil structure and earthworm activity in an marine silt loam under pasture versus arable land

    NARCIS (Netherlands)

    Jongmans, A.G.; Pulleman, M.M.; Marinissen, J.C.Y.

    2001-01-01

    Agricultural management influences soil organic matter (SOM) and earthworm activity which interact with soil structure. We aimed to describe the change in earthworm activity and related soil (micro)structure and SOM in a loamy Eutrodept as affected by permanent pasture (PP) and conventional arable

  7. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Science.gov (United States)

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  8. Fate of metal resistance genes in arable soil after manure application in a microcosm study.

    Science.gov (United States)

    Xiong, Wenguang; Zeng, Zhenling; Zhang, Yiming; Ding, Xueyao; Sun, Yongxue

    2015-03-01

    Manure application contributes to the spread and persistence of metal resistance genes (MRGs) in the environment. We investigated the fate of copper (Cu) and zinc (Zn) resistance genes (pcoA, pcoD and zntA) in arable soil after Cu/Zn-containing manure application. Manure with or without addition of metals (Cu/Zn) was added in a soil microcosm over 2 months. Soil samples were collected for analysis on day 0, 30 and 60. The abundances of all MRGs (pcoA, pcoD and zntA) in manure group were significantly higher than those in untreated soil and manure+metals groups. All MRGs dissipated 1.2-1.3 times faster in manure group (from -90 ± 8% to -93 ± 7%) than those in manure+metals group (from -68 ± 8% to -78 ± 5%). The results indicated that manure from healthy pigs contributed to the occurrence of metals (Cu/Zn) and MRGs (pcoA, pcoD and zntA) in arable soil. The significant effects of manure application on the accumulation of pcoA, pcoD and zntA lasted for 1-2 months. Cu/Zn can slow down the dissipation of pcoA, pcoD and zntA after manure application. This is the first report to investigate the fate of MRGs in soil after manure application. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  10. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  11. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  12. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  13. Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction

    NARCIS (Netherlands)

    Kardol, P.; Van der Wal, A.; Bezemer, T.M.; De Boer, W.; Duyts, H.; Holtkamp, R.; Van der Putten, W.H.

    2008-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods

  14. Soil organic matter dynamics after the conversion of arable land to pasture

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1999-01-01

    Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and 13C analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the

  15. Changes in the Metagenome of Prokaryotic Community as an Indicator of Fertility of Arable Soddy-Podzolic Soils upon Fertilizer Application

    Science.gov (United States)

    Naliukhin, A. N.; Khamitova, S. M.; Glinushkin, A. P.; Avdeev, Yu. M.; Snetilova, V. S.; Laktionov, Yu. V.; Surov, V. V.; Siluyanova, O. V.; Belozerov, D. A.

    2018-03-01

    The influence of different systems of fertilization and liming on the changes in the taxonomic structure of prokaryotic community in arable soddy-podzolic soil (Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric)) was studied in a stationary field experiment of Vologda State Dairy Farming Academy with the use of high-performance sequencing method of gene 16S rRNA. The 25-year-old fallow plot, in which the intensity of microbiological processes was close to that in the virgin soddy-podzolic soils, was used as a control. At the first stage, dominant phyla were identified: Proteobacteria (45.3-56.2%), Actinobacteria (13.6-20.4%), Bacteroidetes (7.2-19.3%), Acidobacteria (7.1-11.5%), and Verrucomicrobia (4.3-10.3%). Several groups of microorganisms-indicators, whose portion changes in the arable soil under the influence of liming, fertilizer application, and soil treatment in comparison with the control, were determined. The applied approach made it possible to relate the taxonomic structure of the soil microbial cenosis with external factors for assessing changes in the structure of soil microbial complex under the impact of different uses of the arable soil.

  16. Assessment on the Impact of Arable Land Protection Policies in a Rapidly Developing Region

    Directory of Open Access Journals (Sweden)

    Jiadan Li

    2016-05-01

    Full Text Available To investigate the effect of arable land protection policies in China, a practical framework that integrates geographic information systems (GIS, soil quality assessment and landscape metrics analysis was employed to track and analyze arable land transformations and landscape changes in response to rampant urbanization within the Ningbo region (China from 2005 to 2013. The results showed that arable land loss and degradation have continued, despite the development of a comprehensive legal framework for arable land protection. The implementation of arable land protection policies is judged to be effective, but not entirely successful, because it guarantees the overall amount of arable land but does not consider soil quality and spatial distribution. In addition, there are distinct variations in arable land change dynamics between two temporal intervals. From 2005–2009, the transformation of arable land was diversified, with intensified conversion among arable land, built-up land, water and orchards. Moreover, many new arable land parcels were adjacent to built-up land, and are in danger of being occupied again through urban sprawl. By 2009–2013, most of the arable land was occupied by urban expansion, whereas a majority of newly increased arable land was reclaimed from coastal tideland. Although the newly increased arable land was contiguous and far from the urban area, it is of poor quality and has limited use. The permanent loss of high-quality arable land due to intensified urban sprawl may threaten sustainable development and food security on a larger scale.

  17. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  18. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E.; Balesdent, J.; Dambrine, E.; Zeller, B.; Loiseau, P.; Personeni, E.

    2002-01-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13 C for carbon, based on the use of enriched or depleted 13 C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  19. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  20. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    -14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... in spring, no legumes are grown, and aboveground plant material is removed at harvest. This practice is intended to stress the maintenance of soil organic matter in the arable system, to possibly reveal clearer effects of the experimental treatments. Within each cropping system, five experimental treatments...... by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  1. Dynamics of the agrochemical fertility parameters of arable soils in the southwestern region of Central Chernozemic zone of Russia

    Science.gov (United States)

    Lukin, S. V.

    2017-11-01

    Data of the agrochemical survey of arable soils in Belgorod oblast during the period from 1964 to 2014 have been analyzed. The soil cover mainly consists of typical chernozems (Haplic Chernozems) and leached chernozems (Luvic Chernozems) in the forest-steppe zone and ordinary chernozems (Calcic Chernozems) in the steppe zone. Under long-term agricultural use (from 1964 to 2014), the content of mobile phosphorus in arable soils of the region under study has increased from 55 to 137 mg/kg, and the content of mobile potassium has increased from 105 to 147 mg/kg. During the period of 1976-2014, the share of acid soils has increased from 22.8 to 45.8%, including medium-acid soils from 1.5 to 12.6%. No significant changes in the weighted average content of soil organic matter are revealed for the period from 1985 to 2014. The value of this parameter is within the range of 4.8-5.0%. In the 2010-2014, 95.0% of arable soils belonged to the category of low supplied with mobile sulfur; 99.2, 96.9, 94.1, and 54.4% of soils were poorly supplied with zinc, copper, cobalt, and manganese, respectively. During the same period, the maximum average productivity of the crop area (3710 f. u./ha) was noted at the application of 4.8 t/ha organic fertilizers and 97.9 kg/ha organic fertilizers on the average. The maximum long-term yields of sugar beet (36.8 t/ha) and corn grain (4.97 t/ha) were obtained at the application of relatively low fertilizer rates.

  2. Vertical migration of 85Sr, 137Cs and 131I in various arable and undisturbed soils

    International Nuclear Information System (INIS)

    Palagyi, S.; Palagyiova, J.

    2003-01-01

    The vertical migration of 85 Sr, 137 Cs and 131 I in some arable and undisturbed single-contaminated soils was studied by gamma-spectrometry measurements under lysimetric laboratory conditions during irrigation of the soil profiles with wet atmospheric precipitation for about one year, except 131 I. A new simple exponential compartment (box) model was derived, which makes it possible to calculate the migration rate constants and migration rates in the individual soil layers (vertical sections) as well as the total vertical migration rate constants and total vertical migration rates of radionuclides in the bulk soil horizon. The relaxation times of radionuclides in respective soil horizons can also be evaluated. (author)

  3. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    Science.gov (United States)

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  4. COMPARISON OF THE CHOSEN ENVIRONMENTAL FEATURES OF THE ARABLE LAND AND FALLOW

    Directory of Open Access Journals (Sweden)

    Stanisław Włodek

    2014-10-01

    Full Text Available The results and analysis of the chosen physico-chemical soil properties of the fallow, which was not cultivated for 7 years and of the arable land, situated close to it, are presented in this work. Soil moisture content was higher and the weed infestation rate was bigger on the arable land in comparison to fallow. Significant increase of C.org. as well as P, K and Mg availability for plant was noticed on the fallow. On the arable land segetal species were common, whereas on the fallow ruderal species occurred as well. In spite of the close neighborhood of fallow with Solidago gigantea and Solidago canadensis species domination, this species was not reported on the arable land.

  5. Emission of CO2 from the arable soils polluted by heavy metals of Baikal forest-steppe region

    International Nuclear Information System (INIS)

    Semenova, Yu.V.; Pomazkina, L.V.

    2008-01-01

    The influence of arable soil contamination by heavy metals on C0 2 emission in Lake Baikal region had been studied during the period from 1992 till 2005. It was shown, that the way of agroecosystems response on technogenic impact vary from year to year following the changes in both the temperature and humidity. The contamination mostly resulted in soil organic matter mineralization increase and, consequently, increased carbon losses in the form of CO 2 .

  6. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal.

    Directory of Open Access Journals (Sweden)

    Olena Glavatska

    Full Text Available Soil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms and nematodes, was investigated in two successive years along a depth transect. The community composition of nematodes was used as model to determine the changes in the rhizosphere, detritusphere and bulk soil food web. In the first growing season the impact of treatments on the soil micro-food web was minor. In the second year plant-feeding nematodes increased under maize, whereas after harvest the Channel Index assigned promotion of the detritivore food chain, reflecting decomposition of root residues. The amendment with litter did not foster microorganisms, instead biomass of Gram-positive and Gram-negative bacteria as well as that of fungi declined in the rooted zone. Likely higher grazing pressure by nematodes reduced microbial standing crop as bacterial and fungal feeders increased. However, populations at higher trophic levels were not promoted, indicating limited flux of litter resources along the food chain. After two years of bare soil microbial biomass and nematode density remained stable, pointing to soil organic matter-based resources that allow bridging periods with deprivation. Nematode communities were dominated by opportunistic taxa that are competitive at moderate resource supply. In sum, removal of plants from the system had less severe effects than expected, suggesting considerable food web resilience to the disruption of both the root and detrital carbon channel, pointing to a legacy of

  7. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal.

    Science.gov (United States)

    Glavatska, Olena; Müller, Karolin; Butenschoen, Olaf; Schmalwasser, Andreas; Kandeler, Ellen; Scheu, Stefan; Totsche, Kai Uwe; Ruess, Liliane

    2017-01-01

    Soil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms and nematodes, was investigated in two successive years along a depth transect. The community composition of nematodes was used as model to determine the changes in the rhizosphere, detritusphere and bulk soil food web. In the first growing season the impact of treatments on the soil micro-food web was minor. In the second year plant-feeding nematodes increased under maize, whereas after harvest the Channel Index assigned promotion of the detritivore food chain, reflecting decomposition of root residues. The amendment with litter did not foster microorganisms, instead biomass of Gram-positive and Gram-negative bacteria as well as that of fungi declined in the rooted zone. Likely higher grazing pressure by nematodes reduced microbial standing crop as bacterial and fungal feeders increased. However, populations at higher trophic levels were not promoted, indicating limited flux of litter resources along the food chain. After two years of bare soil microbial biomass and nematode density remained stable, pointing to soil organic matter-based resources that allow bridging periods with deprivation. Nematode communities were dominated by opportunistic taxa that are competitive at moderate resource supply. In sum, removal of plants from the system had less severe effects than expected, suggesting considerable food web resilience to the disruption of both the root and detrital carbon channel, pointing to a legacy of organic matter

  8. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  9. Erosion Losses of Soils on Arable Land in the European part of Russia

    Science.gov (United States)

    Maltsev, K. A.; Yermolaev, O. P.

    2018-01-01

    The quantitative assessment of potential soil losses in arable lands of the European part of Russia is carried out in the article. The assessment was carried out using a mathematical model based on the mathematical dependencies of the universal soil loss equation and the mathematical dependencies of the State Hydrological Institute of Russia. Assessment of potential soil losses was performed using calculations in a geographic information system. To perform the calculations the database was created containing information on: the relief; properties of soils; climate and land use. The raster model of data organization was used to create the database and subsequent calculations. The assessment shows that the average amount of soil loss in the plowed land of the European territory of Russia is 11 t/ha per year. At the same time, about half of the territories are located in conditions where the soil loss value does not exceed 0.5 t/ha per year. The potential loss of soil taking into account the soil protection role of vegetation is 3.3 tons/ha per year. In addition, a spatial analysis of the distribution of soil loss by landscape zones shows that there is a consistent reduction in the potential loss of soil from the forest zone (20.92 t/ha per year) to the forest-steppe (10.84 t / ha per year), steppe (8.13 t/ha per year) and semi-desert (4.7 tons/ha per year) zone.

  10. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Science.gov (United States)

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  11. Effects of three management strategies on the seedbank, emergence and the need for hand weeding in an organic arable cropping system

    NARCIS (Netherlands)

    Riemens, M.M.; Groeneveld, R.M.W.; Lotz, L.A.P.; Kropff, M.J.

    2007-01-01

    The effects of three different weed management strategies on the required input of hand weeding in an arable organic farming system, the weed seedbank in the soil and the emerging weed seedling emergence were studied from 1996 to 2003. Strategies were based on population dynamic models and aimed for

  12. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    Science.gov (United States)

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  13. Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography

    Science.gov (United States)

    Schlüter, S.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from

  14. Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure

    DEFF Research Database (Denmark)

    Jensen, Johannes Lund; Christensen, Bent Tolstrup; Schjønning, Per

    2018-01-01

    Assessments of changes in soil organic carbon (SOC) stocks depend heavily on reliable values of SOC content obtained by automated high‐temperature C analysers. However, historical as well as current research often relies on indirect SOC estimates such as loss‐on‐ignition (LOI). In this study, we...... revisit the conversion of LOI to SOC using soil from two long‐term agricultural field experiments and one arable field with different contents of SOC, clay and particles fractions were isolated from the arable soil. Samples were analysed for texture, LOI (500...

  15. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  16. Magnetic Measurements as a Useful Tool for the Evaluation of Spatial Variability of the Arable Horizon Thickness

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Ryzhikh, Lyudmila; Kosareva, Lina

    2017-04-01

    In normal practice, the thickness of the arable horizon is determined on the basis of field morphological descriptions, allowing the subjectivity of perception and judgment at the crucial role of experience of the researcher. The subject of special interest are independent analytical and technically relatively simple in design approaches to the diagnosis of the lower boundary of the blended plowing the profiles part. Theoretical premises to use spectrophotometry and magnetometry to arable horizon depth diagnose is based on the concept of regular color and magnetic properties vertical differentiation in a profile of virgin soils. This work is devoted to the comparative assessment of the possibility to objectively and reliably diagnose the lower boundary of the arable horizon in gray forest soils by determining the color characteristics and the magnetic susceptibility of their layer-wise samples. It was shown with arable gray forest soil (Cutanic Luvisols (Anthric)) as example that the magnetic susceptibility profile distribution curves can provide more reliable and objective assessment of the arable horizon thickness spatial variability than the profile curves of the color characteristics in the CIELAB coordinates. Therefore, magnetic measurements can be a useful tool for the tillage erosion estimation in the monitoring of soil characteristics in connection with the development of precision agriculture technologies and the organizing of agricultural field plot experiments.

  17. [Impacts of rice straw biochar on organic carbon and CO2 release in arable soil].

    Science.gov (United States)

    Ke, Yue-Jin; Hu, Xue-Yu; Yi, Qing; Yu, Zhong

    2014-01-01

    In order to investigate the stability of biochar and the effect of biochar when added into soil on soil organic carbon, a 130-day incubation experiment was conducted with rice straw biochar produced at 500 degrees C and 700 degrees C (RBC500 and RBC700) and with addition rates of 0% (control), 3%, 6% and 100% (pure biochar), to detect the change of total organic carbon (TOC), easily oxidized carbon (EOC) and status of CO2 release, following addition of biochar in arable soil. Results showed that: the content of both TOC and EOC in soil increased with biochar addition rates comparing with the control. RBC500 had greater contributions to both TOC and EOC increasing amounts than those of RBC700 under the same biochar addition rate. TOC contents of all treatments decreased during the initial 30 days with the largest decreasing amplitude of 15.8%, and tended to be stable in late incubation stages. Same to that of TOC, EOC contents of all treatments also tended to remain stable after 30 days, but in the 30 days of early incubation, EOC in the soil decreased by 72.4% and 81.7% respectively when the added amount of RBC500 was 3% and 6% , while it was reduced by 61.3% and 69.8% respectively when the added amount of RBC700 was 3% and 6%. EOC contents of soil added with biochar produced at the same temperature were similar in the end of incubation. The reduction of soil EOC content in early incubation may be related to mineralization caused by labile fractions of biochar. During the 130-day incubation, the accumulated CO2 releases showed an order of soil and biochar mixtures soil could reduce CO2 release, the largest reduction amplitude is 41.05%. In a long time scale, biochar as a soil amendment is favorable to the deduction of greenhouse gas release and soil carbon immobilization. Biochar could be used as a soil carbon sequestration carrier.

  18. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  19. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: Development of a predictive model

    Energy Technology Data Exchange (ETDEWEB)

    Maxted, A.P. [School of Biosciences, University of Nottingham, Biology Building, University Park, Nottingham NG7 2RD (United Kingdom); Black, C.R. [School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD (United Kingdom); West, H.M.; Crout, N.M.J. [School of Biosciences, University of Nottingham, Biology Building, University Park, Nottingham NG7 2RD (United Kingdom); McGrath, S.P. [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Young, S.D. [School of Biosciences, University of Nottingham, Biology Building, University Park, Nottingham NG7 2RD (United Kingdom)], E-mail: scott.young@nottingham.ac.uk

    2007-12-15

    The objectives of this study were to assess the potential for using Thlaspi caerulescens as a phytoextraction plant and develop a user-advice model, which can predict the frequency of phytoextraction operation required under prescribed conditions. Pot and field trials were conducted using soil collected from a dedicated sewage sludge disposal facility. Soil amendments (sulphuric acid, potassium chloride and EDTA) intended to increase Cd solubility were also tested. Predictive models of Cd and Zn uptake were developed which were able to reproduce the observed pH-dependence of Cd uptake with an apparent maximum around pH 6. Chemical treatments did not significantly increase the uptake of Cd. The periodic use of phytoextraction with T. caerulescens to maintain soils below statutory metal concentration limits, when modern sewage sludges are repeatedly applied, seems very attractive given the non-intrusive and cost-effective nature of the process. The major limitations lie with the large-scale husbandry of T. caerulescens. - A predictive model of Cd and Zn uptake by Thlaspi caerulescens is presented as a management tool in the phytoextraction of arable soils receiving sewage sludge.

  20. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: Development of a predictive model

    International Nuclear Information System (INIS)

    Maxted, A.P.; Black, C.R.; West, H.M.; Crout, N.M.J.; McGrath, S.P.; Young, S.D.

    2007-01-01

    The objectives of this study were to assess the potential for using Thlaspi caerulescens as a phytoextraction plant and develop a user-advice model, which can predict the frequency of phytoextraction operation required under prescribed conditions. Pot and field trials were conducted using soil collected from a dedicated sewage sludge disposal facility. Soil amendments (sulphuric acid, potassium chloride and EDTA) intended to increase Cd solubility were also tested. Predictive models of Cd and Zn uptake were developed which were able to reproduce the observed pH-dependence of Cd uptake with an apparent maximum around pH 6. Chemical treatments did not significantly increase the uptake of Cd. The periodic use of phytoextraction with T. caerulescens to maintain soils below statutory metal concentration limits, when modern sewage sludges are repeatedly applied, seems very attractive given the non-intrusive and cost-effective nature of the process. The major limitations lie with the large-scale husbandry of T. caerulescens. - A predictive model of Cd and Zn uptake by Thlaspi caerulescens is presented as a management tool in the phytoextraction of arable soils receiving sewage sludge

  1. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  2. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  3. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    Science.gov (United States)

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    Science.gov (United States)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  5. Soils in transition : dynamics and functioning of fungi

    NARCIS (Netherlands)

    Wal, Annemieke van der

    2007-01-01

    The focus of this thesis is on the dynamics and functions of saprotrophic soil fungi during conversion from an arable land into a natural ecosystem (heathland) and to asses their effects on soil ecosystem processes. Chapter 2 describes that fungal biomass in abandoned arable land is not increasing

  6. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    Science.gov (United States)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  7. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  8. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  9. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices.

    Science.gov (United States)

    Lugato, Emanuele; Bampa, Francesca; Panagos, Panos; Montanarella, Luca; Jones, Arwyn

    2014-11-01

    Bottom-up estimates from long-term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan-European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha(-1)  yr(-1) , while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101-336 Mt CO2 eq. by 2020 and 549-2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta-analysis confirmed the robustness of these estimates. © 2014 John Wiley & Sons Ltd.

  10. Quick test for infiltration of arable soils

    OpenAIRE

    Liebl, Boris; Spiegel, Ann-Kathrin

    2018-01-01

    The quick test makes the consequences of soil compaction on water infiltration and the yield of agricultural crops visible. It promotes an understanding of the effects of soil compaction and the importance of soil-conserving cultivation.

  11. New uses of clover-grass mixtures in the structure of fodder crops on arable land

    Directory of Open Access Journals (Sweden)

    Jiří Sláma

    2010-01-01

    Full Text Available The use of clover-grasses in the structure of fodder crops grown on arable soil, especially those with intergeneric hybrids as the main component part, could avert the negative current trend, i.e. further decreasing the area of perennial fodder plants or fodder crops as a whole on arable soil. They have an irreplaceable role in crop sequences and in preserving the cultural character of the countryside, above all due to the fact that they improve soil fertility and microbial life in the soil and that they have an excellent pre-produce value, and, at the same time, they are applied in various farming systems (both conventional and ecological and in various climatic conditions, and agricultural businesses are well equipped for growing, harvesting and storing them. In the Czech Republic, the area of fodder crops grown on arable soil was decreased from 1,019.9 thousand hectares to mere 396.7 thousand hectares between 1980 and 2009, which is 15.6 % of the total area of arable soil whereas perennial fodder plants only take up 8.5 %. Fodder from clover crops and clover-grass growths on arable soil are one of the main resources of voluminous fodder for dairy cows. Most of this fodder is preserved through a fermentation process (silages, hay storage; a smaller part is fed as fresh fodder, or serves for production of hay. Silages made with perennial fodder plants are the most important source of both proteins and other nutrients for ruminants, especially for high-yielding milch cows. The basis of fodder production systems are the conservative elements of the landscape area (geomorphology in combination with the progressive elements (weather conditions, plants and human labour and relict ones, the representative of which is the soil. The fodder production systems in Europe are divided into five main fodder production zones. From this point of view, the areas where short-term clover-grass mixtures are grown on arable soil could be classed with Zone 4, i

  12. Task-based agricultural mobile robots in arable farming: A review

    International Nuclear Information System (INIS)

    Aravind, K.R.; Raja, P.; Pérez-Ruiz, M.

    2017-01-01

    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  13. Task-based agricultural mobile robots in arable farming: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, K.R.; Raja, P.; Pérez-Ruiz, M.

    2017-09-01

    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  14. Task-based agricultural mobile robots in arable farming: A review

    Directory of Open Access Journals (Sweden)

    Krishnaswamy R. Aravind

    2017-04-01

    Full Text Available In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals, smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farmingincludestemporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  15. Distribution and Ecological Risk Assessment of Heavy Metals in Arable Soils in Bijiang Watershed, China

    Directory of Open Access Journals (Sweden)

    HUANG Wei-heng

    2017-08-01

    Full Text Available It has been paid much attention to soil heavy metal pollution in the Bijiang watershed caused by the Lanping lead-zinc mine. We collected 35 arable soil samples along Bijiang, then sampled and tested the contents of As, Cu, Zn, Cd, Pb, Hg. And then with Nemerow Multi-Factor Index and the Potential Ecological Risk Index method, we evaluated the heavy metal pollution risk. The results showed:(1The accumulation of Pb, Zn, Cd was in a relatively high level, the average was 1 146.97, 579.15, 4.85 mg·kg-1 respectively, which was seriously polluted; the average accumulation of As was 26.85 mg·kg-1; but Cu, Hg was slightly polluted. (2Statistical analysis showed that Lanping area was a main point source pollution of As, Zn, Pb, Cd, while Cu, Hg was pollution caused by different non-point source pollution.(3Within this basin, the Nemerow index was 17.69, which was serious heavy metal pollution, while the comprehensive potential ecological risk index was 773.38, which was a strong potential ecological risk. The contribution of pollutants was Cd > Pb > Zn> As> Hg > Cu. (4As a whole, the soil heavy metal pollution of paddy field was higher than of the dry land.

  16. Earthworm-induced distribution of organic matter in macro-aggregates from differently managed arable fields.

    NARCIS (Netherlands)

    Marinissen, J.C.Y.; Hillenaar, S.I.

    1997-01-01

    To study the influence of soil structure on organic matter decomposition, and the possible role of earthworms therein, aggregates of the size of earthworm casts (3-4.8 mm) were sieved from air-dry soil of three arable fields. Due to different management histories (in terms of manuring and pesticide

  17. ESTIMATION OF EROSION ACTIVITY IN THE RAVINE COMPLEX OF ARABLE SLOPES

    Directory of Open Access Journals (Sweden)

    L. N. Trofimetz

    2017-01-01

    Full Text Available The paper describes the results of the evaluation of erosion on arable slopes (in the thalweg part of the ancient microravines, no more than 400 m in length. The radiocesium method has been applied, augmented by the methods of the topographic survey, remote sensing and GIS analysis. It has been shown that layer-by-layer soil sampling in the thalwegs of the modern streams (which are clearly visible on arable slopes allows obtaining the dependence of soil runoff (in centimeters of layer from the activity of Cesium-137 presented in the arable horizon. Conversion of Cesium-137 activities onto a common time scale (by taking into account the radioactive decay made it possible to increase the analyzed data series (in comparison to the previously published data and to obtain the linear dependence with the correlation coefficient of 0.98 (significant at confidence level p=0.05. The 1 cm soil layer was washed out during 26 years on the watershed surface, according to the obtained dependence. About 6 cm layer over the same period was washed out in the thalwegs of the ravines in the lower part of the slope (in its concave part that is accumulation zone. We have found that very high resolution satellite imagery, or aerial photographs, of field surveys are needed for the correct implementation of the GIS analysis when modeling erosion activity of the streambeds. These supporting data have to be collected during the period of snowmelt or rainfall to understand the behavior of streams in the accumulation zones identified by negative values of profile curvature of the relief.

  18. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management

    DEFF Research Database (Denmark)

    Askegaard, M; Olesen, Jørgen E; Rasmussen, Ilse Ankjær

    2011-01-01

    Two main challenges facing organic arable farming are the supply of nitrogen (N) to the crop and the control of perennial weeds. Nitrate leaching from different organic arable crop rotations was investigated over three consecutive four-year crop rotations in a field experiment at three locations....../volunteers had on avg. 30 kg N ha−1, and the largest N leaching losses were found after stubble cultivation (avg. 55 kg N ha−1). The N leaching losses increased with increasing number of autumn soil cultivations...

  19. Analysis of Multi-Scale Changes in Arable Land and Scale Effects of the Driving Factors in the Loess Areas in Northern Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Lina Zhong

    2014-04-01

    Full Text Available In this study, statistical data on the national economic and social development, including the year-end actual area of arable land, the crop yield per unit area and 10 factors, were obtained for the period between 1980 and 2010 and used to analyze the factors driving changes in the arable land of the Loess Plateau in northern Shaanxi, China. The following areas of arable land, which represent different spatial scales, were investigated: the Baota District, the city of Yan’an, and the Northern Shaanxi region. The scale effects of the factors driving the changes to the arable land were analyzed using a canonical correlation analysis and a principal component analysis. Because it was difficult to quantify the impact of the national government policies on the arable land changes, the contributions of the national government policies to the changes in arable land were analyzed qualitatively. The primary conclusions of the study were as follows: between 1980 and 2010, the arable land area decreased. The trends of the year-end actual arable land proportion of the total area in the northern Shaanxi region and Yan’an City were broadly consistent, whereas the proportion in the Baota District had no obvious similarity with the northern Shaanxi region and Yan’an City. Remarkably different factors were shown to influence the changes in the arable land at different scales. Environmental factors exerted a greater effect for smaller scale arable land areas (the Baota District. The effect of socio-economic development was a major driving factor for the changes in the arable land area at the city and regional scales. At smaller scales, population change, urbanization and socio-economic development affected the crop yield per unit area either directly or indirectly. Socio-economic development and the modernization of agricultural technology had a greater effect on the crop yield per unit area at the large-scales. Furthermore, the qualitative analysis

  20. Structural properties of dissolved organic carbon in deep soil horizons of an arable and temporarily grassland.

    Science.gov (United States)

    Lavaud, A.; Chabbi, A.; Croue, J. P.

    2009-04-01

    It is commonly accepted that dissolved organic carbon (DOC) is the bio-available fraction of the largest amount of soil organic matter (SOM), even if it does represent only a very small proportion. Because most of the studies on DOC dynamics were mainly restricted to forest soils, studies on the factors governing the dynamics of DOC in deep soil horizons (>1 m) in arable system are still very little limited. The objective of this work is to better define the proportion of DOC in deep soil horizons and indicate their main characteristics and structural properties. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site). DOC collected using lysimeters plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. Depend on the amount of material; the chemical composition of DOC was performed using UV254 nm, fluorescence EEM, NMR and HPSEC/UV/COD. The results show that the concentration and structural properties of DOC in deep soil horizon were similar to those of groundwater (low SUVA (1.2 m-1.L.mg C-1), structures composed mainly of low molecular weight). Because of the relatively recent establishment of the treatment, the monitoring of the dynamics of the DOC concentrations did not show significant differences between arable and grassland. However, the temporal dynamic shows a slight increase in the DOC content regardless of the of land use. DOC concentrations between winter and the middle of spring tend to double going from 1 to 2.5 mg / L and then

  1. About the value of species diversity in arable weeds for weed management

    Directory of Open Access Journals (Sweden)

    Gerowitt, Bärbel

    2016-02-01

    Full Text Available Arable weeds accompany arable land use – we define them based on their affiliation to ar able systems. They are adapted to such a degree that most of them cannot exist without arable land use. Weeds are part of the total biodiversity on arable fields, as primary producers they are basic for important functions within the ecosystem. This paper elaborates the relevance of species diversity in arable weeds for their management. Arable systems can be regarded for the number of different methods for preventive and direct weed control which are realized. Historical arable land use is roughly divided into three periods, which differ concerning the diversity of weed management and the occurring diversity in weed species. Obviously divers weed management in arable systems and diversity in weed species depend on each other, this is illustrated with a simple abstract picture. Arable systems, which are characterised by simpleness, favor the domination of few species which ensure an effective use of the resources within the ecosystem. One consequence under continuous pressure of an overused tool in weed management is that the genetic diversity within a dominating weed population is exploited to ensure this resource use. Current herbicides represent this tool – the results are herbicide resistant biotypes within the weed populations. Species diversity in arable weeds as a rationale within arable production can assist to prevent this development.

  2. Changes in the Structure of a Nigerian Soil under Different Land Management Practices

    Directory of Open Access Journals (Sweden)

    Joshua Olalekan Ogunwole

    2015-06-01

    Full Text Available Quantification of soil physical quality (SPQ and pore size distribution (PSD can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system, and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n. Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice in relation to the continuous arable cropping system in regard to physical quality and structure.

  3. Mechanisms of adaptation of small grains to soil acidity

    OpenAIRE

    Đalović Ivica G.; Maksimović Ivana V.; Kastori Rudolf R.; Jelić Miodrag Ž.

    2010-01-01

    Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+) in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g....

  4. Effect of soil warming and rainfall patterns on soil N cycling in northern Europe

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind

    2010-01-01

    . These changes may affect soil moisture regimes, soil water drainage, soil nitrogen (N) availability and N leaching to aquatic environment and N2O emissions to atmosphere. Thus it is important to study the effects of increased soil temperature and varying rainfall patterns on soil N cycling in arable land from...... temperate climates, which is a major source of N pollution. An open-field lysimeter study was carried out during 2008-2009 in Denmark on loamy sand soil (Typic Hapludult) with three factors: number of rainy days, rainfall amount and soil warming. Number of rainy days included the mean monthly rainy days...... by 5 °C at 0.1 m depth as ‘heated' and non-heated as ‘control' treatments. Automated mobile rain-out shelter and irrigation system, and insulated buried heating cables were used to impose the treatments. Soil warming, compared with unheated control, advanced winter wheat crop development, and increased...

  5. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  6. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Department of Earth Sciences, National Taiwan University, Taipei (China); Wang, Jin; Li, Xiangping; Chen, Yongheng; Wu, Yingjuan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection (SCIES-MEP), Guangzhou (China); Wang, Chunlin [Research Center for Environmental Science, Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2012-07-15

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents ({mu}g/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Anthrosols in Iron Age Shetland: Implications for Arable and Economic Activity

    DEFF Research Database (Denmark)

    Guttmann, Erika B.; Simpson, Ian A.; Nielsen, Nina

    2008-01-01

    The soils surrounding three Iron Age settlements on South Mainland, Shetland, were sampled and compared for indicators of soil amendment. Two of the sites (Old Scatness and Jarlshof) were on lower-lying, better-drained, sheltered land; the third (Clevigarth) was in an acid, exposed environment...... at a higher elevation. The hypothesis, based on previous regional assessments, soil thicknesses, and excavations at Old Scatness, was that the lowland sites would have heavily fertilized soils and that the thin upland soil would show little if any amendment. Our findings indicate that the Middle Iron Age...... soils at Old Scatness had extremely high phosphorus levels, while the soil at Jarlshof had lower levels of enhancement. At Clevigarth, where charcoal from the buried soil was 14C dated to the Neolithic and Bronze Age, there was no evidence of arable activity or soil amendment associated with the Iron...

  8. Heavy Metals Technogenic Pollution of Plough Lands Arable Layer in the Chelyabinsk Region

    Science.gov (United States)

    Mantorova, G. F.

    2017-11-01

    Environmental protection and rational use of natural resources in agriculture are the main directions of this scientific research. Contamination is caused by the substances of chemical, radiation and biological origin above the maximum permissible concentration (MPC). The main source of soil contamination in the arable land, hayfields and pastures is the waste of livestock complexes, agricultural chemicals (fertilizers, pesticides), motor vehicle exhausts, industrial emissions, sewage from settlements, etc. The ecological state of the soil and vegetation cover is largely determined by agricultural activities. The agricultural production technology complicating is accompanied by increase in the degree of environmental risk, especially in the chemicalization of agriculture. Pollution also enters the soil with atmospheric precipitation, surface waste. They are also introduced into the soil layer by soil and groundwater. The most dangerous for human health is considered to be contamination with heavy metals (HM)-lead, mercury and cadmium. However, the concentration of the rest elements is no less harmful. The paradox of heavy metals is that in certain quantities they are necessary to ensure the normal life of plants and organisms but their excess can lead to serious diseases and even death. A nutritional cycle causes harmful compounds to enter the human body and often cause great harm to health. The present work reveals the results of the research of a long-term experience on accumulation and distribution of heavy metals on the arable layer profile depending on the concentration in humus soil and the system of ground processing.

  9. Effects of band-steaming on microbial activity and abundance in organic farming soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, Martin Heide; Elmholt, Susanne

    2010-01-01

    Band-steaming of arable soil at 80-90 ◦C kill off weed seeds prior to crop establishment which allows an extensive intra-row weed control. Here we evaluated the side-effects of in situ band-steaming on soil respiration, enzyme activities, and numbers of culturable bacteria and fungi in an organic...... insignificant or slightly stimulatory (P recovery during 90 days after band-steaming. Bacterial colony-forming units increased after soil steaming...... whereas the number of fungal propagules was reduced by 50% (P recovery potential...

  10. Soil friability - Concept, Assessment and Effects of Soil Properties and Management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    Soil friability is a key soil physical property yielding valuable information on the ease of productin a favorable seed- and root beds during tillage operations. Therefore, soil friability is acrucial soil property in relation to the ability of soil to support plant growth and to minimzethe energy...... required for tillage. The topic has interested farmers and soil scientiest for centuries, but is was the paper by Utomo and Dexter (1981) that significantly put the topic on the soil science agenda. The awareness of soil friability is growing, both in practiceand in soil science. This must be viewed...... in the light of the present renewed focus on global food security together with a focus on fossil fuel consumption and greenhouse gas emissions in crop production. Certainly, the demand for well-functioning, arable soils is rising to meet the global challenges....

  11. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  12. Soil temperature manipulation to study global warming effects in arable land

    DEFF Research Database (Denmark)

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  13. Distinct germination response of endangered and common arable weeds to reduced water potential.

    Science.gov (United States)

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Abandonment and expansion of arable land in Europe

    NARCIS (Netherlands)

    Hatna, E.; Bakker, M.M.

    2011-01-01

    Abandonment of arable land is often assumed to happen mostly in marginal areas where the conditions for arable cultivation are relatively unfavorable, whereas arable expansion is expected to occur mostly in areas with favorable conditions. This assumption, used in many land-use change forecasts, was

  15. The spectrum and occurrence of entomopathogenic fungi in soils from apple orchards

    Directory of Open Access Journals (Sweden)

    Barbara Marjańska-Cichoń

    2012-12-01

    Full Text Available The spectrum and occurrence of entomopathogenic fungi in orchard soil and arable soil were evaluated using an "insect bait method". Soil samples taken in autumn and spring from sward, herbicides fallow and arable soil were baited with Galleria mellonella larvae. Entomopathogenic fungi Beauveria bassiana (Bals. Vuill., Metarhizium anisopliae (Metsch. Sorok. and Paecilomyces fumosoroseus (Wize Brown et Smith were isolated from three species of orchards soil and adjacent arable soil. Infection levels of G. mellonella larvae were depended from species of soil . M. anisoopliae caused most frequent infections of bait insects in light loamy sand and P. fumosoroseus in alluvial silt and coarse sand. B. bassiana was dominated in alluvial silt. It was established that M. anisopliae and B. bassiana infected more larvae in autumn than in spring. In case of P. fumosoroseus an opposite tendency was observed. Generaly in arable soil and sward number of infected larvae was higher than other stands. In case of light loamy sand more infections of G. mellonella larvae were found in samples from herbicides fallow. Irrespective of soil type B. bassiana was the dominated species isolated from herbicides fallow, M. anisopliae from sward and P. fumosoroseus - from arable soil.

  16. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  17. OK-Net Arable online knowledge platform

    DEFF Research Database (Denmark)

    Rasmussen, Ilse Ankjær; Jensen, Allan Leck; Jørgensen, Margit Styrbæk

    2017-01-01

    The complexity of organic farming requires farmers to have a very high level of knowledge and skills, but exchange on organic farming techniques remains limited. In order to increase productivity and quality in organic arable cropping in Europe, the thematic network OK-Net Arable under Horizon 20...

  18. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  19. Effect of land use on some soil chemical properties and P fractions ...

    African Journals Online (AJOL)

    Land use directly or indirectly affects the soil chemical properties and phosphorus fractions. Two different land use types were studied. Soil chemical analysis and phosphorus fractionation of the soils was then done and the results were highly significant (p<0.001). Total C, N and P were low under the arable land use as ...

  20. Statistical analysis and modelling of surface runoff from arable fields in central Europe

    Directory of Open Access Journals (Sweden)

    P. Fiener

    2013-10-01

    Full Text Available Surface runoff generation on arable fields is an important driver of flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow. Despite the developments in our understanding of these processes it remains difficult to predict which processes govern runoff generation during the course of an event or throughout the year, when soil and vegetation on arable land are passing many states. We analysed the results from 317 rainfall simulations on 209 soils from different landscapes with a resolution of 14 286 runoff measurements to determine temporal and spatial differences in variables governing surface runoff, and to derive and test a statistical model of surface runoff generation independent from an a priori selection of modelled process types. Measured runoff was related to 20 time-invariant soil properties, three variable soil properties, four rain properties, three land use properties and many derived variables describing interactions and curvilinear behaviour. In an iterative multiple regression procedure, six of these properties/variables best described initial abstraction and the hydrograph. To estimate initial abstraction, the percentages of stone cover above 10% and of sand content in the bulk soil were needed, while the hydrograph could be predicted best from rain depth exceeding initial abstraction, rainfall intensity, soil organic carbon content, and time since last tillage. Combining the multiple regressions to estimate initial abstraction and surface runoff allowed modelling of event-specific hydrographs without an a priori assumption of the underlying process. The statistical model described the measured data well and performed equally well during validation. In both cases, the model explained 71 and 58% of variability in accumulated runoff volume and instantaneous

  1. Can Arable Land Alone Ensure Food Security? The Concept of Arable Land Equivalent Unit and Its Implications in Zhoushan City, China

    Directory of Open Access Journals (Sweden)

    Yongzhong Tan

    2018-03-01

    Full Text Available The requisition–compensation balance of farmlands (RCBF is a strict Chinese policy that aims to ensure food security. However, the process of supplementing arable land has substantially damaged the ecological environment through the blind development of grasslands, woodlands, and wetlands to supplement arable land. Can arable land alone ensure food security? To answer this question, this study introduced the concepts of arable land equivalent unit (ALEU and food equivalent unit (FEU based on the idea of food security. Zhoushan City in Zhejiang Province, China was selected as the research area. This study analyzed the ALEU supply and demand capabilities in the study area and presented the corresponding policy implications for the RCBF improvement. The results showed that the proportion of ALEU from arable land and waters for aquaculture is from 46:54 in 2009 to 31:69 in 2015, thereby suggesting that aquaculture waters can also be important in food security. Under three different living standards (i.e., adequate food and clothing, well-off, and affluence, ALEU from arable land can barely meet the needs of the permanent resident population in the study area. However, ALEU from aquaculture waters can provide important supplementation. Therefore, we suggest that food supply capability from land types other than the arable land be taken seriously. Furthermore, RCBF can be improved with ALEU as core of the balance.

  2. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  3. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...

  4. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    International Nuclear Information System (INIS)

    Smidt, Geerd Ahlrich

    2011-01-01

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg -1 ) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L -1 , the median 0.50 μg L -1 . 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L -1 . The regional distribution of U concentrations largely agrees with the geological setting reported for mineral waters

  5. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    Energy Technology Data Exchange (ETDEWEB)

    Smidt, Geerd Ahlrich

    2011-12-20

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg{sup -1}) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L{sup -1}, the median 0.50 μg L{sup -1}. 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L{sup -1}. The regional distribution of U concentrations largely agrees with the geological setting reported for

  6. Sensitive indicators of side-effects of pesticides on the epigeal fauna of Arable land

    NARCIS (Netherlands)

    Everts, J.W.

    1990-01-01

    The main objective of the present study was to evaluate the possible impact of pesticides on epigeal arthropods in arable land. It was also envisaged to develop a predictive model for possible undesirable effects of pesticides on the epigeal arthropod fauna using an indicator species from

  7. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    and reduced N fertilizer on seasonal fluxes and emission factors of N2O and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is classified as a sandy loam with a pH of 7.4 and a mean organic carbon and nitrogen content at 15 cm of 19 and 1.9 g kg(-1) dry soil, respectively....... Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...... nitrogen fertilizer by 50% compared to the normal field rate, N2O emissions could be reduced by 57% with no significant decrease on grain yield or quality. This was consistent over the 2 years of measurements....

  8. Soil organic phosphorus in soils under different land use systems in northeast Germany

    Science.gov (United States)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.

    2010-05-01

    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old

  9. Ecological impacts of arable intensification in Europe

    NARCIS (Netherlands)

    Stoate, C.; Boatman, N.D.; Borralho, R.J.; Rio Carvalho, C.; Snoo, de G.R.; Eden, P.

    2001-01-01

    Although arable landscapes have a long history, environmental problems have accelerated in recent decades. The effects of these changes are usually externalised, being greater for society as a whole than for the farms on which they operate, and incentives to correct them are therefore largely

  10. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland

    Directory of Open Access Journals (Sweden)

    Jerzy Rejman

    2014-01-01

    Full Text Available The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas.

  11. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage

    Institute of Scientific and Technical Information of China (English)

    Ayodele Ebenezer AJAYI; Rainer HORN

    2017-01-01

    Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.

  12. Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden

    NARCIS (Netherlands)

    Rosenqvist, L.; Hansen, K.; Vesterdal, L.; Salm, van der C.

    2010-01-01

    Precipitation, throughfall and soil moisture were measured, and interception, transpiration and water recharge were estimated in four afforestation chronosequences on former arable land at two Danish locations (Vestskoven and Gejlvang) and at one southern Swedish location (Tonnersjoheden).

  13. Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic

    Science.gov (United States)

    V. Podrazsky; O. Holubik; J. Vopravil; T. Khel; W. K. Moser; H. Prknova

    2015-01-01

    The aim of this study was to determine the effect of agricultural land afforestation on soil characteristics. Two sites in two regions of the Czech Republic were evaluated, at lower as well as higher submountain elevations: in the regions of the Orlicke hory Mts. and Kostelec nad Cernymi lesy, afforested, arable and pasture lands were compared for basic chemical and...

  14. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  15. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China.

    Science.gov (United States)

    Xu, Yueqing; McNamara, Paul; Wu, Yanfang; Dong, Yue

    2013-10-15

    Arable land in China has been decreasing as a result of rapid population growth and economic development as well as urban expansion, especially in developed regions around cities where quality farmland quickly disappears. This paper analyzed changes in arable land utilization during 1993-2008 in the Pinggu district, Beijing, China, developed a multinomial logit (MNL) model to determine spatial driving factors influencing arable land-use change, and simulated arable land transition probabilities. Land-use maps, as well as social-economic and geographical data were used in the study. The results indicated that arable land decreased significantly between 1993 and 2008. Lost arable land shifted into orchard, forestland, settlement, and transportation land. Significant differences existed for arable land transitions among different landform areas. Slope, elevation, population density, urbanization rate, distance to settlements, and distance to roadways were strong drivers influencing arable land transition to other uses. The MNL model was proved effective for predicting transition probabilities in land use from arable land to other land-use types, thus can be used for scenario analysis to develop land-use policies and land-management measures in this metropolitan area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Application of Soil-Agroclimatic Index for Assessing the Agronomic Potential of Arable Lands in the Forest-Steppe Zone of Russia

    Science.gov (United States)

    Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil'chevskaya, E. V.

    2018-04-01

    An assessment of the agronomic potential of arable lands in the forest-steppe zone of Russia (by the example of separate soil-agronomic districts) on the basis of the soil-agroclimatic index developed under the supervision of I.I. Karmanov is considered. The agricultural areas (64) separated on the territory of Russia and characterizing soil-agroclimatic conditions for cultivation of major and accompanying crops are differentiated into soil-agronomic districts (SADs) with due account for the administrative division of the country. A large diversity of agroclimatic and agronomical conditions creates the prerequisites for the inclusion of administrative regions into different SADs. The SADs concept implies a detailed analysis of information on the soil properties, geomorphic conditions, and farming conditions. The agronomic potential for major crops in the key SADs in the forest-steppe zone of the East European Plain (Voronezh and Penza oblasts) is high, though it is 25-30% lower than that in the North Caucasus (for winter wheat, sugar beet, sunflower, and spring barley) and in Kaliningrad oblast (for oats). In Western Siberia (Tyumen, Omsk, and Novosibirsk oblasts) and Eastern Siberia (Krasnoyarsk region and Irkutsk oblast), the agronomic potential of spring crops (wheat, barley, and oats) is only utilized by 35-45% in comparison with their European analogues. In the Far East with its monsoon climate and soil conditions (meadow podbels, brown forest soils), the crops characteristic of the European forest-steppe (soybean, rice, sugar beet) and the Trans-Ural forest-steppe (spring wheat) are cultivated. Their biological potential is utilized by only 50-60% in comparison with the European analogues. The materials of this study give us information on the degree of correspondence between the soilagroclimatic potential of the territory and the biological potential of cultivated crops. This is important in the context of improving the natural-agricultural zoning of Russia

  17. Soil nutrient content, soil moisture and yield of Katumani maize in a ...

    African Journals Online (AJOL)

    Administrator

    natural ecosystem of mesquite trees than in arable fields of maize and beans in the central highlands of Mexico. They attributed this to the higher ... Carbon and nitrogen mineralization in tall grass prairie and agricultural soil profiles. Soil. Sci.

  18. Exploring the Patterns and Mechanisms of Reclaimed Arable Land Utilization under the Requisition-Compensation Balance Policy in Wenzhou, China

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2017-12-01

    Full Text Available Arable land in China is undergoing significant changes, with massive losses of arable land due to rapid urbanization and the reclamation of arable land from other lands to compensate for these losses. Many studies have analyzed arable land loss, but less attention has been paid to land reclamation, and the utilization of reclaimed land remains unclear. The goal of our study was to characterize the patterns and efficiency of the utilization of reclaimed land and to identify the factors influencing the land utilization process in Wenzhou using remote sensing, geographic information systems and logistic regression. Our results showed that only 37% of the total reclaimed land area was under cultivation, and other lands were still bare or had been covered by trees and grasses. The likelihood that reclaimed land was used for cultivation was highly correlated with the land use type of its neighboring or adjacent parcels. Reclaimed land utilization was also limited at high elevations in lands with poor soil fertility and in lands at a great distance from rural residential areas. In addition, parcels located in the ecological protection zone were less likely to be cultivated. Therefore, we suggest that the important determinants should be considered when identifying the most suitable land reclamation areas.

  19. Assessment of Relationships between Earthworms and Soil Abiotic and Biotic Factors as a Tool in Sustainable Agricultural

    Directory of Open Access Journals (Sweden)

    Radoslava Kanianska

    2016-09-01

    Full Text Available Earthworms are a major component of soil fauna communities. They influence soil chemical, biological, and physical processes and vice versa, their abundance and diversity are influenced by natural characteristics or land management practices. There is need to establish their characteristics and relations. In this study earthworm density (ED, body biomass (EB, and diversity in relation to land use (arable land—AL, permanent grasslands—PG, management, and selected abiotic (soil chemical, physical, climate related and biotic (arthropod density and biomass, ground beetle density, carabid density indicators were analysed at seven different study sites in Slovakia. On average, the density of earthworms was nearly twice as high in PG compared to AL. Among five soil types used as arable land, Fluvisols created the most suitable conditions for earthworm abundance and biomass. We recorded a significant correlation between ED, EB and soil moisture in arable land. In permanent grasslands, the main climate related factor was soil temperature. Relationships between earthworms and some chemical properties (pH, available nutrients were observed only in arable land. Our findings indicate trophic interaction between earthworms and carabids in organically managed arable land. Comprehensive assessment of observed relationships can help in earthworm management to achieve sustainable agricultural systems.

  20. Methane uptake by a selection of soils in Ghana with different land use

    DEFF Research Database (Denmark)

    Priemé, Anders; Christensen, Søren

    1999-01-01

    , the methane oxidation rates in the tropical forest and savanna soils were low (range from 9 to 26 µg CH4 m-2 h-1) compared to, for example temperate forest soils. In the savanna soil, annual fire had decreased soil methane oxidation rates to 5 µg CH4 m-2 h-1 compared to 9 µg CH4 m-2 h-1 at a site...... not subjected to fire for 6 years. In paired sites of moist forest and arable soils, methane oxidation rates were lower by >60% in the arable soils. Methane oxidation rates in three arable soils in the savanna zone soils ranged from 7 to 11 µg CH4 m-2 h-1 before the first rain but increased to 23-28 µg CH4 m-2......We measured the oxidation of atmospheric methane in tropical soils in Ghana covering a moisture gradient from the moist forest zone to the savanna zone at the onset of the rainy season. Land use at the sites covered undisturbed (forest and savanna) and cultivated soil, including burning. Generally...

  1. Possibilities for modelling the effect of compression on mechanical and physical properties of various Dutch soil types

    NARCIS (Netherlands)

    Perdok, U.D.; Kroesbergen, B.; Hoogmoed, W.B.

    2002-01-01

    The state of compactness of the arable soil layer changes during the growing season as a result of tillage and traction. The aim of this study was to assess and predict some soil mechanical and physical properties governing machine performance and crop response. The following mechanical properties

  2. Influence of conventional biochar and ageing biochar application to arable soil on soil fertility and plant yield

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    Biochar represents very controversial material which is product of pyrolysis. According to many studies biochar has positive effect on physical and chemical properties such as pH, conductivity, aggregates stability etc. Unfortunately biochar is product of combustion, so it can content toxic substance as are aromatic compound. These substances may have a negative effect on yield and microbial activities in soil. Our aim was eliminated concentration of toxic compound but preserved positive effect of biochar on soil properties. We was ageing/ activating of biochar in water environment and for soil inoculum we used native soil from landscape. Moreover two types of biochar was tested by pot experiment with seven variants, where conventional biochar from residual biomass and ageing biochar were applied in different doses: 10 t/ha, 20t/ha and 50 t/ha. Pots were placed in green house for 90 days and after the end of experiment the following parameters of soil fertility, health and quality were evaluated: content of soil organic matter, arbuscular mycorrhizal colonisation of Lactuca sativa L. roots, leaching of mineral nitrogen, changes in plant available nutrient content, EC and pH. Above all the total yield of indicator plant was observed. The significant (P plant yield and soil properties were found. The application of conventional biochar didn't have positive effect on plant yield in comparison with ageing biochar. The positive effect of ageing biochar addition on soil fertility was directly proportional to the dose which were applied - increasing in dose of ageing biochar resulted in increase of plant yield. Moreover the special experimental containers were used, where we was able to monitor the development of root in soil with and without addition of biochar (conventional or ageing). The positive influence of ageing biochar addition into soil on development of Lactuca sativa L. roots was observed.

  3. A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation

    Directory of Open Access Journals (Sweden)

    Vero Sara E.

    2016-12-01

    Full Text Available During laboratory assessment of the soil water characteristic curve (SWCC, determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via centrifugation. Three common temporal approaches to equilibrium – 24-, 48- and 72-h – are examined, for a grassland and arable soil. The framework highlights the differences in equilibrium duration between the two soils. For both soils, the 24-h treatment significantly overestimated saturation. For the arable site, no significant difference was observed between the 48- and 72-h treatments. Hence, a 48-h treatment was sufficient to determine ‘effective equilibrium’. For the grassland site, the 48- and 72-h treatments differed significantly. This highlights that a more prolonged duration is necessary for some soils to conclusively determine that effective equilibrium has been reached. This framework can be applied to other soils to determine the optimum centrifuge durations for SWCC construction.

  4. Assessing and analysing the impact of land take pressures on arable land

    Directory of Open Access Journals (Sweden)

    E. Aksoy

    2017-06-01

    Full Text Available Land, and in particular soil, is a finite and essentially non-renewable resource. Across the European Union, land take, i.e. the increase of settlement area over time, annually consumes more than 1000 km2 of which half is actually sealed and hence lost under impermeable surfaces. Land take, and in particular soil sealing, has already been identified as one of the major soil threats in the 2006 European Commission Communication Towards a Thematic Strategy on Soil Protection and the Soil Thematic Strategy and has been confirmed as such in the report on the implementation of this strategy. The aim of this study is to relate the potential of land for a particular use in a given region with the actual land use. This allows evaluating whether land (especially the soil dimension is used according to its (theoretical potential. To this aim, the impact of several land cover flows related to urban development on soils with good, average, and poor production potentials were assessed and mapped. Thus, the amount and quality (potential for agricultural production of arable land lost between the years 2000 and 2006 was identified. In addition, areas with high productivity potential around urban areas, indicating areas of potential future land use conflicts for Europe, were identified.

  5. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    Science.gov (United States)

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  6. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  7. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe

    Directory of Open Access Journals (Sweden)

    A. Leip

    2008-01-01

    Full Text Available A comprehensive assessment of policy impact on greenhouse gas (GHG emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment with the biogeochemistry model DNDC (DeNitrification DeComposition to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions, air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii designing environmental model scenarios and model runs; and finally (iv aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils.

  8. Land-cover effects on soil organic carbon stocks in a European city.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright

  9. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    Science.gov (United States)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  10. Comparison of infiltration capacity of permanent grassland and arable land during the 2011 growing season

    OpenAIRE

    Tomáš Mašíček; F. Toman; M. Vičanová

    2012-01-01

    The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG) and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v) on time (t) was de...

  11. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small cultivated catchment presented in this paper an attempt was made to evaluate average annual erosion rates on arable slopes with and without soil conservation measures for two time intervals. It has been found that application of conservation measures on cultivated slopes within the experimental part of the case study catchment has led to a decrease of average soil loss rates by at least 2. 5 2. 8 times. The figures obtained are in good agreement with previously published results of direct monitoring of snowmelt erosion rates, reporting approximately a 3 -fold decrease of average snowmelt erosion rates in the experimental sub-catchment compared to a traditionally cultivated control sub-catchment. A substantial decrease of soil

  12. Factors affecting the species composition of arable field boundary vegetation

    NARCIS (Netherlands)

    Kleijn, D.; Verbeek, M.

    2000-01-01

    1. In recent decades the botanical diversity of arable field boundaries has declined drastically. To determine the most important factors related to the species composition of arable field boundaries, the vegetation composition of 105 herbaceous boundaries, 1-m wide, in the central and eastern

  13. Mechanisms of adaptation of small grains to soil acidity

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2010-01-01

    Full Text Available Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+ in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g. P and Mo or low reserves and impaired uptake (e.g. Mg2+ at high H+ concentrations. Aluminum (Al toxicity is primary factor limiting crop production on acid soils. This review examines our current understanding of mechanisms of Al-toxicity, as well as the physiological and genetic basis for Al-toxicity and tolerance. Inhibition of root growth by Al leads to more shallow root systems, which may affect the capacity for mineral nutrient acquisition and increase the risk of drought stress. Of the two principal strategies (tolerance and avoidance of plants for adaptation to adverse soil conditions, the strategy of avoidance is more common for adaptation to acid mineral soils. At the same, the short view of the most important genetics tolerance mechanisms, developed and determined in some small grains genotypes, is showed as well.

  14. Dynamics of 14C-labeled glucose and ammonium in saline arable soils

    International Nuclear Information System (INIS)

    Vuelvas-Solorzano, Alma; Hernandez-Matehuala, Rosalina; Conde-Barajas, Eloy; Cardenas-Manriquez, Marcela; Luna-Guido, Marco L.; Dendooven, Luc

    2009-01-01

    Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14 C labeled glucose with or without 200 mg kg - 1 of NH 4 + -N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m - 1 (low EC; LEC) and 6.72 dS m - 1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO 2 and 14 CO 2 were monitored. Approximately 60 % of the glucose- 14 C added to LEC soil evolved as 14 CO 2 , but only 20 % in HEC soil after the incubation period of 21 days. After one day, 14 C was extractable from LEC soil, but > 500 mg 14 C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH 4 + -N. The NO 2 - and NO 3 - concentrations were on average higher in LEC than in HEC soil, with exception of NO 2 - in HEC amended with NH 4 + -N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil. (author)

  15. Investigation of soil erosion in arable land in Hungary using radiotracer technique

    International Nuclear Information System (INIS)

    Dezsoe, Z.; Szabo, Sz.

    2004-01-01

    Quantitative data on long-term soil erosion rates on agricultural land are an essential requirement for the development of effective soil management and conservation strategies. Although several methods to estimate soil erosion exist, the use of 137 Cs and/or 210 Pb as fallout radionuclides for tracing soil movement overcomes many of the limitations of the traditional methods. Recently, the 137 Cs-technique has been widely accepted and is now commonly used for estimating the magnitude of soil loss. Long-term migration of 137 Cs in the Buekkzserc-Cserepfalu-Bogacs triangle area, at the foot of Buekk mountain (NE Hungary) was studied. The samples were analysed for 137 Cs by gamma spectrometry, using a calibrated high-resolution, low background HPGe coaxial detector. Migration of fallout nuclides in an undisturbed stable soil reflects the influence of a range of physico-chemical and biological processes operating in the soil system. (N.T.)

  16. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    Science.gov (United States)

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Thallium contamination in arable soils and vegetables around a steel plant-A newly-found significant source of Tl pollution in South China.

    Science.gov (United States)

    Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng

    2017-05-01

    Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  19. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during...... runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy...... loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2...

  20. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  1. Soil carbon varies between different organic and conventional management schemes in arable agriculture

    DEFF Research Database (Denmark)

    Hu, Teng; Sørensen, Peter; Olesen, Jørgen Eivind

    2018-01-01

    The effects of organic versus conventional farming systems on changes in soil organic carbon (SOC) has long been debated. The effects of such comparisons may depend considerably on the design of the respective systems and climate and soil conditions under which they are performed. Here, we compar...

  2. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  3. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  4. Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio

    Directory of Open Access Journals (Sweden)

    Miao Zhang

    2014-06-01

    Full Text Available Crop condition assessment in the early growing stage is essential for crop monitoring and crop yield prediction. A normalized difference vegetation index (NDVI-based method is employed to evaluate crop condition by inter-annual comparisons of both spatial variability (using NDVI images and seasonal dynamics (based on crop condition profiles. Since this type of method will generate false information if there are changes in crop rotation, cropping area or crop phenology, information on cropped/uncropped arable land is integrated to improve the accuracy of crop condition monitoring. The study proposes a new method to retrieve adjusted NDVI for cropped arable land during the growing season of winter crops by integrating 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS reflectance data at 250-m resolution with a cropped and uncropped arable land map derived from the multi-temporal China Environmental Satellite (Huan Jing Satellite charge-coupled device (HJ-1 CCD images at 30-m resolution. Using the land map’s data on cropped and uncropped arable land, a pixel-based uncropped arable land ratio (UALR at 250-m resolution was generated. Next, the UALR-adjusted NDVI was produced by assuming that the MODIS reflectance value for each pixel is a linear mixed signal composed of the proportional reflectance of cropped and uncropped arable land. When UALR-adjusted NDVI data are used for crop condition assessment, results are expected to be more accurate, because: (i pixels with only uncropped arable land are not included in the assessment; and (ii the adjusted NDVI corrects for interannual variation in cropping area. On the provincial level, crop growing profiles based on the two kinds of NDVI data illustrate the difference between the regular and the adjusted NDVI, with the difference depending on the total area of uncropped arable land in the region. The results suggested that the proposed method can be used to improve the assessment of

  5. Fate of airborne metal pollution in soils as related to agricultural management. 1. Zn and Pb distributions in soil profiles

    NARCIS (Netherlands)

    Fernandez, C.; Labanowski, J.; Cambier, P.; Jongmans, A.G.; Oort, van F.

    2007-01-01

    The fate of airborne metal pollutants in soils is still relatively unknown. We studied the incorporation of such airborne metal pollution in two soils under long-term permanent pasture (PP) and conventional arable land (CA). Both soils were located at an almost equal distance from a former zinc

  6. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe

    Directory of Open Access Journals (Sweden)

    Bhim Bahadur Ghaley

    2018-03-01

    Full Text Available Conventional farming (CONV is the norm in European farming, causing adverse effects on some of the five major soil functions, viz. primary productivity, carbon sequestration and regulation, nutrient cycling and provision, water regulation and purification, and habitat for functional and intrinsic biodiversity. Conservation agriculture (CA is an alternative to enhance soil functions. However, there is no analysis of CA benefits on the five soil functions as most studies addressed individual soil functions. The objective was to compare effects of CA and CONV practices on the five soil functions in four major environmental zones (Atlantic North, Pannonian, Continental and Mediterranean North in Europe by applying expert scoring based on synthesis of existing literature. In each environmental zone, a team of experts scored the five soil functions due to CA and CONV treatments and median scores indicated the overall effects on five soil functions. Across the environmental zones, CONV had overall negative effects on soil functions with a median score of 0.50 whereas CA had overall positive effects with median score ranging from 0.80 to 0.83. The study proposes the need for field-based investigations, policies and subsidy support to benefit from CA adoption to enhance the five soil functions.

  7. Experimental Study of Factors Affecting Soil Erodibility

    Science.gov (United States)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  8. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  9. Nutrient surpluses on integrated arable farms

    NARCIS (Netherlands)

    Schröder, J.J.; Asperen, van P.; Dongen, van G.J.M.; Wijnands, F.G.

    1996-01-01

    From 1990 to 1993 nutrient fluxes were monitored on 38 private arable farms that had adopted farming strategies aiming at reduced nutrient inputs and substitution of mineral fertilizers by organic fertilizers. The nutrient surplus was defined as the difference between inputs (including inputs

  10. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    Science.gov (United States)

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  11. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  12. Assessing soil carbon lability by near infrared spectroscopy and NaOCL oxidation

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Bruun, Sander; Jensen, Lars Stoumann

    2009-01-01

    The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long......-term field experiments with different OM inputs, 2) individual sites with inherent with-in field gradients in soil texture and/or C content, and 3) from a range of different sites covering variations in management and geological origin. The labile OM fraction was defined by the CO2 evolved from the soils...... incubated for 34 weeks while refractory OM was obtained by NaOCl oxidation. The labile fraction of the soil C accounted for 2-12% of the total soil C content. No systematic relationship between labile C content and total soil C or clay was found, but NIR spectra could be correlated well with the labile C...

  13. Balance and forms of zinc in soil and its uptake by plants

    Directory of Open Access Journals (Sweden)

    Šárka Poláková

    2006-01-01

    Full Text Available In this paper, zinc flows in arable soils of the Czech Republic and zinc fractions in arable soils are studied. Furthermore, a zinc uptake by agricultural plants is focused. Based on a database of the programme The basal soil monitoring system (BSMS a static zinc balance for arable soils on the national level was assessed. This programme is carried out by The Central Institute for Supervising and Testing in Agriculture (CISTA in Brno. As a representative for the zinc balance calculation, 121 monitoring plots were chosen. The Czech Republic net zinc fluxes ranged from –1250 g.ha– 1.y– 1 to +5595 g.ha– 1.y– 1, median +453 g.ha– 1.y– 1. The maximum zinc fluxes are typical of plots with manure applications. An atmospheric deposition is the most important input of zinc into arable soils. It makes 96,6% of the whole inputs. Leaching and run-off are neglected in this zinc balance by reason of missing credible data. The project Examination of zinc availability in dependence on its form in soil was established to provide more information about behavior of zinc in soil. The first step was starting a greenhouse pot experiment, which was focused on comparison of several extraction agents (AR, 2M HNO3, 0.43M HNO3, Mehlich III, DTPA, CAT, 1M NH4NO3, 0.01M CaCl2. Four soils with increasing zinc content were picked out for this experiment (Domanínek, Chrlice, Kutná Hora, Hlízov. Total zinc contents in these selected soils ranged from 156.8 to 583.7 ppm in dry matter (Aqua regia extraction. Contents in plants were in wide range from 20.7 to 273 ppm in dry matter according to the plant variety and used soil. Strong correlations between 0.43M HNO3, Mehlich III, DTPA and CAT were proved. Using of weaker extraction agents enabled to distinguish geogenic and anthropogenic origin of the contamination.

  14. PRELIMINARY RESULTS ON THE DISTRIBUTION AND SOLUBILITY OF HEAVY METALS IN URBAN AND SUBURBAN SOILS OF RAVENNA

    Directory of Open Access Journals (Sweden)

    Marina Gatti

    2009-12-01

    Full Text Available Three location types with of different environmental impacts were considered in the district of Ravenna, a city park, a suburban pinewood and arable fields. In this paper we report the preliminary results about the relationship between land use and soil management with chemical fractionation of heavy metals. The distribution and solubility of Cr, Ni, Cu, Zn, Cd and Pb was determined by water and LMWOAs extraction procedures in horizons A1 and A2 of 13 soils. In general the maximum potentially toxic element concentrations were associated with soil collected from the pinewood, and they tended to decrease with depth. The upper layer enrichment of the pinewood soils clearly revealed an anthropogenic origin of pollution. Under the pinewood, the extraction power by the single extraction procedures showed a pattern quite similar in terms of ranking of metals extracted, except that Zn and Ni were more dissolved than Cu by the use of LMWOAs. Under the pinewood, the metal levels presented a rather similar distribution pattern in terms of ranking of extractive power by the single extraction procedures, with Zn and Ni being more dissolved than Cu by the use of LMWOAs extractant. However, both readily available pools were demonstrated to be more enriched in Ni, Zn, Cd and Pb compared those of city park and arable soils. City park and arable soils had high contents of  Cu. The highest concentrations were particularly shown by the arable soil under orchard, due to frequent fungicide applications. Single extractions were compared to metals dissoved in aqua regia by bivariate correlations. By comparison, pinewood soils showed higher positive relationships between pseudo-total contents determined by aqua regia and metal concentrations from single extraction procedures than city park and arable soils. The highest correlation coefficients were found for Zn and Cd by water extraction, and for Cu and Pb by LMWOAs extraction. Both water and LMWOAs pools exhibited

  15. An interdisciplinary approach towards improved understanding of soil deformation during compaction

    DEFF Research Database (Denmark)

    Keller, T.; Lamandé, Mathieu; Peth, S.

    2013-01-01

    and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth.......Soil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission...... and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often...

  16. Effects of Soil Compaction on Carbon and Nitrogen Sequestration in Soil and Wheat, Soil Physical Properties and Aggregates Stability (Case study: Northern of Aq Qala

    Directory of Open Access Journals (Sweden)

    Z. Saieedifar

    2016-09-01

    Full Text Available Introduction: Soil compaction has become a widespread problem in the world and it is considered as one of the main factors affecting land degradation in arid and semi-arid agricultural land. Compaction in arable soils is a gradual phenomenon that appearing over time and most important factors that influence it include: soil properties, high clay content, low organic matter, and frequency of wet-dry in the soil, impervious layer of soil, load heavy agricultural implements and soil and water mismanagement. Compaction induced soil degradation affects about 68 million hectares of land globally. The vast majority of compaction in modern agriculture is caused by vehicular traffic. Carbon sequestration by long-term management operation of the plant and soil, not only increase the soil carbon storage but also lead to reduce the carbon exchange and greenhouse gases emissions like CO2 from the soil profile. The aim of this study was evaluating the effect of soil compaction on carbon and nitrogen sequestration of wheat and soil and some soil physical properties such as: aggregate stability, saturated soil moisture content, bulk density and soil porosity. Materials and Methods: This experiment was accomplished in which is located near Aq Qala in a randomized completely block design (with 4 treatments and 3 replications. Soil compaction was artificially created by using a 5/7 ton heavy tractor. The treatments arrangements were: 1 T1: control, 2 T2: twice passing of tractor, 3 T3: four time of passing tractor, and 4 T4: six time of passing heavy tractor. Utilize of all agricultural inputs (fertilizers, herbicides, etc. has been identical for all treatments. Since rain-fed farming is the common method to cultivation of cereals in the study area, so no complementary irrigation was carried out in this period. In this study, after the measurement of the parameters, the data were analyzed by using SPSS 16.0 Software. LSD test was used for comparison of means

  17. Dynamics of {sup 14}C-labeled glucose and ammonium in saline arable soils

    Energy Technology Data Exchange (ETDEWEB)

    Vuelvas-Solorzano, Alma; Hernandez-Matehuala, Rosalina [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Bioquimica. Lab. de Bioingenieria; Conde-Barajas, Eloy; Cardenas-Manriquez, Marcela [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Ambiental. Lab. de Bioingenieria], e-mail: marcela@itc.mx; Luna-Guido, Marco L.; Dendooven, Luc [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav), D.F. (Mexico). Dept. de Biotecnologia y Bioingenieria. Lab. de Ecologia de Suelos], e-mail: dendoove@cinvestav.mx

    2009-07-15

    Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. {sup 14}C labeled glucose with or without 200 mg kg{sup -}1 of NH{sub 4} {sup +}-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m{sup -}1 (low EC; LEC) and 6.72 dS m{sup -}1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO{sub 2} and {sup 14}CO{sub 2} were monitored. Approximately 60 % of the glucose-{sup 14}C added to LEC soil evolved as {sup 14}CO{sub 2}, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg {sup 14}C was extractable from LEC soil, but > 500 mg {sup 14}C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH{sub 4}{sup +}-N. The NO{sub 2}{sup -} and NO{sub 3}{sup -} concentrations were on average higher in LEC than in HEC soil, with exception of NO{sub 2}{sup -} in HEC amended with NH{sub 4}{sup +}-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil. (author)

  18. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    the effect of band-steaming on N and C dynamics in a sandy loam soil that was steamed in situ to maximal temperatures of 70-90°C using a prototype band-steamer. Soil samples (0-5 cm depth) were collected during 90 days from band-steamed soil, undisturbed control soil, and control soil treated just...

  19. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities

    DEFF Research Database (Denmark)

    Griffiths, B.S.; Ritz, Karl; Wheatley, R.

    2001-01-01

    , nitrate accumulation, respiratory growth response, community level physiological profile and decomposition). Neither was there a direct effect of biodiversity on the variability of the processes, nor on the stability of decomposition when the soils were perturbed by heat or copper. The biodiversity of......Microbial communities differing in biodiversity were established by inoculating sterile agricultural soil with serially diluted soil suspensions prepared from the parent soil. Three replicate communities of each dilution were allowed to establish an equivalent microbial biomass by incubation for 9...... months at 15°C, after which the biodiversity-ecosystem function relationship was examined for a range of soil processes. Biodiversity was determined by monitoring cultivable bacterial and fungal morphotypes, directly extracted eubacterial DNA and protozoan taxa. In the context of this study biodiversity...

  20. Networks of soil biota in a secondary succession gradient: Is it biodiversity or network structure that determines soil function?

    Science.gov (United States)

    Morriën, Elly; Hannula, Emilia; Snoek, Basten; Hol, Gera; van Veen, Hans; van der Putten, Wim

    2017-04-01

    Land abandonment is considered an effective tool for restoring biodiversity and ecosystem functions. However, thus far little attention is given to the role of soil biodiversity. Here, we present results of a soil biodiversity development and ecosystem functioning from a chonosequence of ex-arable fields in The Netherlands. These fields are typically managed by low-intensive grazing while undergoing a transition from an arable system into a species-rich grassland. We manipulated soil biodiversity to be able to couple biodiversity loss to loss of soil functions. We hypothesized that biodiversity loss would lead to less N uptake by plants and slower C transfer to microbes. A greenhouse mesocosm experiment was performed in which sterilized soils from the chronosequence were re-inoculated with a dilution series of soil suspensions (filtered to include only bacteria, fungi and protozoa) to manipulate soil diversity. These mesocosms were planted with a community of plants that naturally occur in all of the grasslands along the chronosequence. We measured microbial community development with TRFLP and sequencing, plant C, N and biomass and using dual labelled 15N ammonium nitrate (15NH415NO3) and 13C in the form of 13CO2 fed to the plants to assess the short term fate, turnover and retention of recent plant assimilated carbon and nitrogen in soil. The faith of the C and N were followed by sequential sampling of aboveground and belowground plant tissues and soil bacterial and fungal PLFA and NLFA biomarkers. With the first method the role of microbial diversity and soil on plant carbon assimilation and nitrogen uptake was evaluated. This was further related to the amount of recently photosynthesized carbon plants allocated to different microbial groups in soils. Microbial end-communities were pyrosequenced to evaluate the end diversity. In this study we showed the effects of the loss of soil biodiversity to C and N cycling in plants and microbes. Next to this manipulative

  1. Physical and chemical factors influencing radionuclide behaviour in arable soils

    International Nuclear Information System (INIS)

    Rauret, G.; Vidal, M.; Alexakhin, R.M.; Kruglov, S.V.; Cremers, A.; Wauters, J.; Valcke, E.; Ivanov, Y.

    1996-01-01

    Soil-to-plant transfer of radionuclides integrates plant physiological and soil chemical aspects. Therefore, it is necessary to study the factors affecting the equilibrium of the radionuclides between solid and soil solution phases. Desorption and adsorption studies were applied to the podsolic and peat soils considered in the ECP-2 project. In the desorption approach, both sequential extraction and 'infinite bath' techniques were used. In the adsorption approach, efforts were directed at predicting Cs and Sr-K D on the basis of soil properties and soil solution composition. Desorption approach predicts time-dynamics of transfer with time but it is un sufficient for comparatively predicting transfer. Adsorption studies informs about which are the key factors affecting radionuclide transfer. For Sr, availability depends on the CEC and on the concentration of the Ca + Mg in the soil solution. For Cs, availability is mainly dependent on the partitioning between FES -frayed edge sites-, which are highly specific and REC -regular exchange complex-, with low selectivity for Cs. Moreover, availability depends on the K and NH 4 , levels in the soil solution and fixation properties of the soil. Considering these factors, the calculation of the in situ K D values helps to predict the relative transfer of radionuclides. The calculation of the K D of the materials that could be used as countermeasures could permit the prediction of its suitability to decrease transfer and therefore to help in producing cleaner agricultural products

  2. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  3. Hydrochemistry of rivers in an acid sulphate soil hotspot area in western Finland

    Directory of Open Access Journals (Sweden)

    M. ROOS

    2008-12-01

    Full Text Available During heavy rains and snow melting, acid sulphate (AS soils on the coastal plains of Finland are flushed resulting in discharge of acidic and metal-rich waters that strongly affect small streams. In this study, the impact of AS soils occurrence and hydrological changes on water quality were determined for 21 rivers (catchment sizes between 96–4122 km2 running through an AS soil hotspot area in western central Finland. Water samples, collected at the outlet, during eight selected events, were analysed for pH, dissolved organic carbon, electrical conductivity (EC and 32 chemical elements. Based on the correlation with percentage arable land in the catchments (a rough estimate of AS soil occurrences, as up to 50% of the arable land is underlain with these soils, it was possible to categorize variables into those that are enriched in runoff from such land, depleted in runoff from such land (only one element, and not affected by land-use type in the catchments. Of the variables enriched in runoff from arable land, some were leached from AS soils during high-water flows, in particular (aluminium, boron, beryllium, cadmium, cobalt, copper, lithium, manganese, nickel, sulphur, silicon, thorium, thallium, uranium, and zinc and others occurred in highest concentrations during lower flows (calcium, EC, potassium, magnesium, sodium, rubidium and strontium. Molybdenum and phosphorus were not leached from AS soils in larger amounts than from other soils and thus related to other factors connected to the arable land. Based on the concentrations of potentially toxic metals derived from AS soils, the 21 rivers were ranked from the least (Lestijoki River, Lapväärtinjoki River and Perhonjoki River to the most (Sulvanjoki River, Vöyrinjoki River and Maalahdenjoki River heavily AS soil impacted. It has been decided that Vöyrinjoki is to be dredged along a ca. 20 km distance. This is quite alarming considering the high metal concentrations in the river.;

  4. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degrades soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.; Isitekhale, H.H.E.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1:1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  5. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degraded soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1: 1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  6. Evaluation of the Fertility Status and Suitability of some Soils for ...

    African Journals Online (AJOL)

    Evaluation of the Fertility Status and Suitability of some Soils for Arable Cropping In the ... Nigerian Journal of Soil Science ... cropping in the newly established Teaching and Research Farm of the Federal University of Technology, Minna.

  7. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  8. Mineralization of nitrogen by protozoan activity in soil

    NARCIS (Netherlands)

    Kuikman, P.

    1990-01-01

    In general, more than 95% of the nitrogen in soils is present in organic forms. This nitrogen is not directly available to plants unless microbial decomposition takes place with the release of mineral nitrogen. In modern agriculture, nitrogen is often applied to arable soils as a fertilizer

  9. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  10. 137Cs concentration distribution in among feeds and various soil types

    International Nuclear Information System (INIS)

    Csupka, S.

    1980-01-01

    The distribution of 137 Cs in four types of arable land and soil with grass cover (chernozem, serozem, gely soddy soil and meadow calcareous soil) is different. In arable land the penetration of 137 Cs into greater depths is higher than under the grasscover, where the main proportion of 137 Cs is retained by the upper layers in the depth of 0 to 5 cm. The only exception is gley soddy soil, where the upper layers allow the passage of radionuclides into greater depths. In the soil horizon to a depth of 50 cm out or the total content of 137 Cs from 16 to 47% is bound in exchangeable form and from 53 to 84% in a form available to plants according to the soil type. The relationship between exchangeable 137 Cs and that available to plants in soils is given by the coefficient of desorption and the relation between the 137 Cs content in the plant and in the soil is given by the coefficient of concentration. Their value varies within the range of 0.1 to 2.6. (author)

  11. RESOURCES AND STRUCTURE OF USE THE EARTH’S SURFACE AND SOILS IN THE PODKARPACKIE PROVINCE

    Directory of Open Access Journals (Sweden)

    Janina Kaniuczak

    2014-10-01

    Full Text Available Use the resources and structure of the soil has been studied in Podkarpackie province in the years 1946-2005, divided into three periods of time due to administrative changes in the country and the region (I: 1946-1970, II: 1975-1995, III: 2000-2005. The three time periods studied decreased share of agricultural land and arable land in the general area of the province. In the years 2000-2005 has increased significantly the share of forests and other lands, at the expense of the exclusion of the arable lands and grasslands in agricultural production, which turned into fallow and uncultivated land. The farms 32.7% of arable lands was excluded from the cultivation and has evolved into a fallow and uncultivated land. The holdings of the public sector, this situation was even more unfavorable as it was, and took 86.1% of arable lands for fallow and outfield. During the study period, the structure of individual crops sown undergone substantial changes in the direction of simplification cereal monoculture. The soils of Podkarpackie province are acidic and urgently require liming treatment. Unfavorably was presented a richness soils of available forms macronutrients (P and K in Podkarpackie province, especially in available phosphorus, which was the result of limitations of organic fertilization and low consumption of mineral fertilizers. Over 90% of agricultural soils of Podkarpackie province exhibits natural content of metals (Cd, Cu, Pb and Zn. The aim of the study was to analyze the structure of the Earth's land use and soils, taking into account the structure of crops and some elements of soil fertility and degradation in the context of a slowdown adverse changes.

  12. Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Roncossek, Svenja Doreen; Heckrath, Goswin Johann

    2014-01-01

    Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat at shoulder...

  13. Yield gaps in Dutch arable farming systems

    NARCIS (Netherlands)

    Nunes Vieira da Silva, Joao; Reidsma, Pytrik; Ittersum, van Martin K.

    2017-01-01

    Arable farming systems in the Netherlands are characterized by crop rotations in which potato, sugar beet, spring onion, winter wheat and spring barley are the most important crops. The objectives of this study were to decompose crop yield gaps within such rotations into efficiency, resource and

  14. TOTAL AND HOT-WATER EXTRACTABLE CARBON RELATIONSHIP IN CHERNOZEM SOIL UNDER DIFFERENT CROPPING SYSTEMS AND LAND USE

    Directory of Open Access Journals (Sweden)

    Srdjan Šeremešić

    2013-12-01

    Full Text Available A study was conducted to determine the hot water extractable organic carbon (HWOC in 9 arable and 3 non arable soil samples on Haplic Chernozem. The hot water extractable carbon represents assimilative component of the total organic matter (OM that could contain readily available nutrients for plant growth. The obtained fraction of organic carbon (C makes up only a small percentage of the soil OM and directly reflects the changes in the rhizosphere. This labile fraction of the organic matter was separated by hot water extraction at 80°C. In our study the HWOC content in different samples ranged from 125 mg g-1 to 226 mg g-1. On the plots that are under native vegetation, higher values were determined (316 mg g-1 to 388 mg g-1. Whereas samples from arable soils were lower in HWOC. It was found that this extraction method can be successfully used to explain the dynamics of the soil OM. Soil samples with lower content of the total OM had lower HWOC content, indicating that the preservation of the OM depends on the renewal of its labile fractions.

  15. Soil-to-plant halogens transfer studies

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Lundin, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine)

    2005-07-01

    Long-term controlled experiments under natural conditions in the field have been carried out in the Chernobyl Exclusion zone in order to determine the parameters governing radioiodine transfer to plants from four types of soils (podzoluvisol, greyzem and typical and meadow chernozem) homogeneously contaminated in the 20-cm upper layer with an addition of {sup 125}I. An absence of {sup 125}I depletion in arable soil layers due to volatilization was noted up to one year after contamination. During one year, depletion due to the vertical migration of radioiodine from the arable layer of each of the soils did not exceed 4% of the total {sup 125}I content. Radioiodine concentration ratios (CR) were obtained in radish roots, lettuce leaves, bean pods, and wheat grain and straw. The highest CR values were observed in podzoluvisol: 0.01-0.03 for radish roots and lettuce leaves, 0.003-0.004 for bean pods and 0.001 for wheat grains. In the other three soils, these values were one order of magnitude lower. The parameters relating to changes in radioiodine bioavailability were determined, based on the contamination dynamics of plants in field conditions.

  16. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  17. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  18. Survival and transport of faecal bacteria in agricultural soils

    DEFF Research Database (Denmark)

    Bech, Tina Bundgaard

    Today, there is yearly applied 34 million tonnes of animal waste to arable land in Denmark. This waste may contain pathogenic zoonotic bacteria and/or antibiotic resistant bacteria, and when applied to arable land there is a risk of contaminating groundwater, surface water, feeding animals or fresh...... produce. Prediction of faecal bacterial survival and transport in the soil environment will help minimize the risk of contamination, as best management practices can be adapted to this knowledge. The aim of this Ph.D. is to study factors influencing faecal bacteria survival and transport in soil...... – it is based on both field scale and lab scale experiments. The influence of application method and slurry properties has been tested on both survival and transport....

  19. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  20. Modelling soil borne fungal pathogens of arable crops under climate change.

    Science.gov (United States)

    Manici, L M; Bregaglio, S; Fumagalli, D; Donatelli, M

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  1. CORRELATIONS BETWEEN PESTICIDE TRANSFORMATION RATE AND MICROBIAL RESPIRATION ACTIVITY IN SOIL OF DIFFERENT ECOSYSTEMS

    Science.gov (United States)

    Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, GA, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and s...

  2. Effect of two fungicides, benlate and phenyl mercury acetate, on a population of cellulolytic fungi in soil and in pure culture

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.N.; Long, P.A.

    1980-01-01

    Cellulolytic fungi were successfully isolated from an arable loam type soil using the polythene rod technique and the screened substrate technique. Phenyl mercury acetate (PMA) applied to the soil at 100 ppm severely reduced the incidence of many cellulolytic fungi normally present, with a concomitant increase in the incidence of Penicillium spp and Trichoderma lignorum. The application of benlate at 100 ppm had little effect other than to increase the incidence of Doratomyces mircosporus, Dreschlera sp. and Papulospora sp. Both benlate and PMA were much more toxic when examined in-vitro in cellulose agar than when added to soil. Nevertheless, the incidence of cellulolytic isolates from soil reflected the relative sensitivity of the isolates to the respective fungicides in-vitro. The activity of benlate in-vitro decreased with an increase in glucose concentration in the media, but the activity of PMA was independent of glucose concentration.

  3. Impact of manure-related DOM on sulfonamide transport in arable soils

    Science.gov (United States)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  4. Earthworms, soil-aggregates and organic matter decomposition in agro-ecosystems in the Netherlands

    NARCIS (Netherlands)

    Marinissen, J.C.

    1995-01-01

    The relationships between earthworm populations, soil aggregate stability and soil organic matter dynamics were studied at an experimental farm in The Netherlands.

    Arable land in general is not favourable for earthworm growth. In the Lovinkhoeve fields under conventional management

  5. Combined analysis of climate, technological and price changes on future arable farming systems in Europe

    NARCIS (Netherlands)

    Wolf, J.; Kanellopoulos, Argyris; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; Vries, de W.

    2015-01-01

    In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable

  6. Land-use change and management effects on carbon sequestration in soils of Russia's South Taiga zone

    International Nuclear Information System (INIS)

    Larionova, A.A.; Rozanova, L.N.; Yevdokimov, I.V.; Yermolayev, A.M.; Kurganova, I.N.; Blagodatsky, S.A.

    2003-01-01

    The impact of land use change and management on soil C sequestration was investigated during the 1980s-1990s on gray forest soils in Pushchino, and on the soddy-podzolic soil in Prioksko-Terrasny Biosphere Reserve, Moscow Region, Russia (54 deg 50 min N, 37 deg 35 min E). Mean annual rates of C sequestration after establishment of perennials (layer 0-60 cm) were 63-182 g C/m 2 and 22-43 g C/m 2 for gray forest and soddy-podzolic soils, respectively. Grassing resulted in higher soil C accumulation than afforestation. Cutting and application of NPK fertilisers increased soil C accumulation, but newly formed soil organic matter was less resistant to decomposition than in unfertilised soil. Preliminary calculations of C sequestration due to abandonment of arable land in Russia since the early 1990s suggest that total C accumulation in soil and the plant biomass could represent about one tenth of industrial CO 2 emissions

  7. Patterns of bryophyte diversity in arable fields of Lithuania

    Directory of Open Access Journals (Sweden)

    Danguolė Andriušaitytė

    2013-03-01

    Full Text Available The paper presents research data on bryophyte diversity in arable land throughout the territory of Lithuania. The bryoflora was analyzed regarding systematic structure and morphological forms, life-history strategies, mode of reproduction and frequency of species. Bryophyte diversity in arable fields of Lithuania was compared with that of Slovakia and the British Isles, which are positioned in different geographical regions of Europe. A total of 97 species of bryophytes of 25 families and 48 genera were ascertained. Dominance of acrocarpous mosses and thalloid liverworts, high representation of Pottiaceae, Bryaceae, Mielichhoferiaceae and Ricciaceae families as well as Bryum, Dicranella, Pohlia and Riccia genera, wide distribution of annual shuttles and ephemeral colonists, high reproduction effort of the species (frequent sporophytes and asexual propagules were specific features of the bryophytes of the studied habitats as a result of adaptations to regular disturbances. The distribution of species into six frequency groups seemed to be uneven. The most abundant group of species with the lowest frequency (1–3 records covered 53.6% of all species. The group contained about 90% of all many-year potential life span species recorded in the habitat. Species with short life span were distributed quite evenly throughout frequency groups. No regionally-specific species were ascertained in the studied habitat. Most of arable-land-specific species recorded in Lithuania is distributed throughout different regions of Europe.

  8. Potential denitrification in arable soil samples at winter temperatures - measurements by 15N gas analysis

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.; Matzel, W.

    1989-01-01

    In samples from the plough horizon of five soils taken after cereal harvest, denitrification was measured as volatilization of N 2 and N 2 O from 15 N nitrate in the absence of O 2 . Nitrate contents lower than 50 ppm N (related to soil dry matter) had only a small effect on denitrification velocity in four of the five soils. In a clay soil dependence on nitrate concentration corresponded to a first-order reaction. Available C was no limiting factor. Even at zero temperatures remarkable N amounts (on average 0.2 ppm N per day) were still denitrified. The addition of daily turnover rates in relation to soil temperatures prevailing from December to March revealed potential turnovers in the 0-to-30-cm layer of the soils to average 28 ± 5 ppm N. (author)

  9. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Science.gov (United States)

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  10. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  11. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  12. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices

    Science.gov (United States)

    2010-01-01

    Background Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops. Results We used data derived from an extensive national monitoring network of approximately 700 arable fields scattered across France to quantify the degree of specialisation of 152 weed species using six different ecological methods. We then explored the impact of the level of disturbance occurring in arable fields by comparing the degree of specialisation of weed communities in contrasting field situations. The classification of species as specialist or generalist was consistent between different ecological indices. When applied on a large-scale data set across France, this classification highlighted that monoculture harbour significantly more specialists than crop rotations, suggesting that crop rotation increases abundance of generalist species rather than sets of species that are each specialised to the individual crop types grown in the rotation. Applied to a diachronic dataset, the classification also shows that the proportion of specialist weed species has significantly decreased in cultivated fields over the last 30 years which suggests a biotic homogenization of agricultural landscapes. Conclusions This study shows that the concept of generalist/specialist species is particularly relevant to understand the effect of anthropogenic disturbances on the evolution of plant community composition and that ecological theories

  13. Relative abundance and activity of melanized hyphae in different soil ecosystems

    NARCIS (Netherlands)

    Van der Wal, A.; Bloem, J.; Mulder, C.H.; De Boer, W.

    2009-01-01

    Here we report on the frequency of melanized fungal hyphae in 323 soils, covering different land use types. The proportion of total hyphae that was melanized averaged 61%. Arable fields with loamy sand, heathlands and city parks on sandy soils had the highest percentage of melanized hyphae. In

  14. Reduced soil cultivation and organic fertilization on organic farms: effects on crop yield and soil physical traits

    Science.gov (United States)

    Surböck, Andreas; Gollner, Gabriele; Klik, Andreas; Freyer, Bernhard; Friedel, Jürgen K.

    2017-04-01

    A continuous investment in soil fertility is necessary to achieve sustainable yields in organic arable farming. Crucial factors here besides the crop rotation are organic fertilization and the soil tillage system. On this topic, an operational group (Project BIOBO*) was established in the frame of an European Innovation Partnership in 2016 consisting of organic farmers, consultants and scientists in the farming region of eastern Austria. The aim of this group is the development and testing of innovative, reduced soil cultivation, green manure and organic fertilization systems under on-farm and on-station conditions to facilitate the sharing and transfer of experience and knowledge within and outside the group. Possibilities for optimization of the farm-specific reduced soil tillage system in combination with green manuring are being studied in field trials on six organic farms. The aim is to determine, how these measures contribute to an increase in soil organic matter contents, yields and income, to an improved nitrogen and nutrient supply to the crops, as well as support soil fertility in general. Within a long-term monitoring project (MUBIL), the effects of different organic fertilization systems on plant and soil traits have been investigated since 2003, when the farm was converted to organic management. The examined organic fertilization systems, i.e. four treatments representing stockless and livestock keeping systems, differ in lucerne management and the supply of organic manure (communal compost, farmyard manure, digestate from a biogas plant). Previous results of this on-station experiment have shown an improvement of some soil properties, especially soil physical properties, since 2003 in all fertilization systems and without differences between them. The infiltration rate of rainwater has increased because of higher hydraulic conductivity. The aggregate stability has shown also positive trends, which reduces the susceptibility to soil erosion by wind and

  15. The C-simulator as a tool to investigate the potential of household waste compost to increase soil organic matter in Flanders

    Science.gov (United States)

    Tits, Mia; Hermans, Inge; Elsen, Annemie; Vandendriessche, Hilde

    2010-05-01

    Soil organic matter (SOM) is an important parameter of the quality of arable land. At the global scale, agricultural soils are considered to be a major sink of carbon dioxide. Results of thousands of soil analyses carried out annually by the Soil Service of Belgium have shown that carbon stocks in Flemish agricultural land have dwindled in the past decades, and this in spite of the increased use of animal manure from intensive livestock holdings. In the framework of the improvement of the SOM content and at the same time the idea of organic waste recycling ("cradle to cradle"-principle), a long-term field experiment with household waste compost (HWC) was set up in 1997 by the Soil Service of Belgium. In this trial different HWC application rates and timings were realized yearly, in order to investigate its nutritive value for arable crops, its effect on crop yield and its long-term effect on soil fertility, pH and soil organic matter content. Yearly data on crop rotation, crop development and yield as well as soil and HWC analyses were obtained for each trial treatment. Climatic data were obtained from nearby weather stations. Also in the context of the SOM-problem, the Soil Service of Belgium and the University of Ghent have developed, at the request of the Flemish government, the C-simulator, a simple but efficient interactive tool to assist farmers with the carbon stock management on their arable land. By providing input on the current carbon status of a particular field, the crop rotation and the (organic) fertiliser plan, the program calculates the expected evolution of the soil organic carbon over a thirty year period. By consulting comparative lists of characteristics of different crops and organic manures the farmer can adjust his strategy for a more efficient organic matter management. The calculations of the C-simulator are based on the RothC model, which was calibrated for Flemish conditions through an extensive literature study. Specific data on the

  16. Back to acid soil fields

    NARCIS (Netherlands)

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti Zunin, Marcos; Eeuwijk, van Fred

    2016-01-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma

  17. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    policy (CAP) during last decade have reduced the rate of soil loss in the EU by an average of 9.5% overall, and by 20% for arable lands (NATURE, 526, 195). Latest developments in RUSLE2015 allow to incorporate the forthcoming intensification of rainfall (climate changes) and land use changes such as afforestation, land abandonment and arable land expansion. Recently, a module of CENTURY model was coupled with the RUSLE2015 for estimating the effect of erosion in current carbon balance in European agricultural lands.

  18. Utilization of Agro-meteorological Services among Arable Crop ...

    African Journals Online (AJOL)

    Thomas Kehinde Adesina

    The study assessed arable crop farmers' utilization of agro-meteorological services in ... The Intergovernmental Panel on Climate Change, IPCC's Fourth ... the patterns of impact of climate change on agriculture can be classified into ... temperature rise causing fish to inhabit in different ranges. ..... Journal of Human Ecology.

  19. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.

  20. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  1. Uses of glyphosate in German arable farming – operational aspects

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clusters allows deep insights into arable farm structures. The farm types can be distinguished regarding their tillage system and similar to this differentiation also concerning their intensity of glyphosate application. Furthermore, it becomes obvious that farm clusters with a higher level of glyphosate usage are characterized by a lower number of labourers per hectare, more arable land and/or enhanced cover cropping. Moreover, groups of farmers who rely more on glyphosate are more likely to state that they need glyphosate for herbicide resistance management. Farmers’ assessments of the economic importance of glyphosate usage vary depending on the type of farm. By means of the farm clusters, the most important situations of glyphosate usage can be further analyzed economically and scenarios for impact assessments can be made.

  2. Effects of green manure storage and incorporation methods on nitrogen release and N2O emissions after soil application

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Sørensen, Peter; Petersen, Søren O.

    2014-01-01

    More efficient use of green manure-derived nitrogen (N) may improve crop yields and reduce environmental impacts in stockless organic arable farming. In this 3-month incubation study, we tested a new strategy where green manure leys are harvested and preserved until the following spring either...... as compost mixed with straw or as silage of harvested ley biomass. Grass-clover compost or silage was soil-incorporated by either simulated ploughing (green manure placed at 15 cm depth) or harrowing (green manure mixed into the upper 5-cm soil horizon) in order to assess treatment effects on net release...... total N. Possibly N2O production via denitrification was stimulated by oxygen-limited conditions near the decomposing silage. In contrast, compost incorporated by harrowing caused net N2O uptake, presumably an effect of reduced mineral N availability in this treatment. Overall, our study revealed...

  3. Earthworms (Aporrectodea spp.; Lumbricidae) cause soil structure problems in young Dutch polders

    NARCIS (Netherlands)

    Ester, A.; Rozen, van K.

    2002-01-01

    The presence of earthworms in relation to clay soil structure problems in arable fields in the Flevopolders (the Netherlands) was studied. Recently, farmers in this area have had difficulty in harvesting potatoes in predominantly wet years. After a dry period, soil particles in the top layer of the

  4. Coffee farming and soil management in Rwanda

    NARCIS (Netherlands)

    Nzeyimana, I.; Hartemink, A.E.; Graaff, de J.

    2013-01-01

    Agriculture is the cornerstone of Rwanda's economy. The authors review how the sector has changed and specifically what soil management practices are now being implemented to enhance coffee production. Coffee covers around 2.3% of total cultivated arable land, and is grown mainly by smallholder

  5. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  6. The sustainable arable land use pattern under the tradeoff of agricultural production, economic development, and ecological protection-an analysis of Dongting Lake basin, China.

    Science.gov (United States)

    Yin, Guanyi; Liu, Liming; Jiang, Xilong

    2017-11-01

    To find a solution regarding sustainable arable land use pattern in the important grain-producing area during the rapid urbanization process, this study combined agricultural production, locational condition, and ecological protection to determine optimal arable land use. Dongting Lake basin, one of the major grain producing areas in China, was chosen as the study area. The analysis of land use transition, the calculation of arable land barycenter, the landscape indices of arable land patches, and the comprehensive evaluation of arable land quality(productivity, economic location, and ecological condition) were adopted in this study. The results showed that (1) in 1990-2000, the arable land increased by 11.77%, and the transformation between arable land and other land use types actively occurred; in 2000-2010, the arable land decreased by 0.71%, and more ecological area (forestland, grassland, and water area) were disturbed and transferred into arable land; (2) urban expansion of the Changsha-Zhuzhou-Xiangtan city cluster (the major economy center of this area) induced the northward movement of the arable land barycenter; (3) the landscape fragmentation and decentralization degree of arable land patches increased during 1990-2010; (4) potential high-quality arable land is located in the zonal area around Dongting Lake, which contains the Li County, Linli County, Jinshi County, Taoyuan County, Taojiang County, Ningxiang County, Xiangxiang County, Shaoshan County, Miluo County, and Zhuzhou County. The inferior low-quality arable land is located in the northwestern Wuling mountainous area, the southeastern hilly area, and the densely populated big cities and their surrounding area. In the optimized arable land use pattern, the high-quality land should be intensively used, and the low-quality arable land should be reduced used or prohibitively used. What is more, it is necessary to quit the arable land away from the surrounding area of cities appropriately, in order to

  7. Farm size - productivity relationships among arable crops farmers ...

    African Journals Online (AJOL)

    The study was designed to analyze the relationship between farm size and resource productivity among arable crop farmers in Imo state, and isolate the major determinants of agricultural productivity. Data used for the study were collected from a sample of 120 farmers randomly selected from Okigwe and Orlu agricultural ...

  8. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, M.-N. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Gabrielle, B., E-mail: Benoit.Gabrielle@agroparistech.f [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Laville, P.; Cellier, P. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Beekmann, M. [Laboratoire Inter-universitaire des Systemes Atmospheriques - CNRS, Universites Paris-Est and Paris 7, F-94 010 Creteil (France); Gilliot, J.-M.; Michelin, J.; Hadjar, D. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Curci, G. [Dipartimento di Fisica - CETEMPS, Universita' degli Studi dell' Aquila, 67010 Coppito, L' Aquila (Italy)

    2010-03-15

    Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km{sup 2} administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha{sup -1} yr{sup -1} to 11.1 kg N-NO ha{sup -1} yr{sup -1}. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. - The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.

  9. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils

    International Nuclear Information System (INIS)

    Spurgeon, David J.; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I.J.

    2008-01-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated. - Metal distributions and risks explained by balance of sources and soil property effects on fate

  10. Mycostimulation in a glyphosate treated arable soil: implications on ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The use of pesticide, although increases agricultural yield and improves public health is also fraught ... mycostimulation of one of the in-situ soil fungi on some agronomic .... and Struwe, 2002) that are vital for degradation of.

  11. Soil seed-bank composition reveals the land-use history of calcareous grasslands

    Science.gov (United States)

    Karlík, Petr; Poschlod, Peter

    2014-07-01

    We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz). Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively). Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland. The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use - in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.

  12. Understanding Farmers: Explaining Soil and Water Conservation in Konso, Wolaita and Wello, Ethiopia

    NARCIS (Netherlands)

    Beshah, T.

    2003-01-01

    Soil erosion by water is an old problem in Ethiopia. The prevalence of mountainous and undulating landscapes, coupled with the expansion of arable farming on steep areas due to population pressure have aggravated the soil erosion problem in the country. Prompted by one of the great famines in the

  13. Effect of Conversion from Natural Grassland to Arable Land on Soil Carbon Reserve in the Argentinean Rolling Pampas

    Science.gov (United States)

    Andriulo, A. E.; Irizar, A. B.; Mary, B.; Wilson, M. G.

    2012-04-01

    The evaluation of the effect of land use change on accumulation of soil organic carbon (SOC) requires reliable data obtained from georeferenced sites with land use history records. The purpose of this study was to evaluate long term changes in the reserves of SOC in a typical Argiudol of the Pergamino series after the introduction of agriculture. Measures of soil organic carbon concentration and bulk density of Ap and A12 horizons were carried out in three sites of the Pergamino County (N of Buenos Aires province): a reference field with untilled pristine soil (33° 57' S; 60° 34' W), a field with 31 years (1980-2011) of agriculture (31Y) located next to the former, and a third field (33° 46' S; 60° 37' W) with 80 years (1910/1990) of agriculture (80Y). 31Y has been under continuous soybean cultivation with conventional tillage (CT) that consists of moldboard plow or double disk harrowing. At 80K the cultivation sequence was: 44 years of corn + 9 years of flax + 2 years of wheat + 17 years of wheat/soybean double cropping + 1 year of lentil; mostly under CT, some years under chisel plow during the 70's and a few years under zero tillage in soybean after wheat sown with conventional tillage during the 80's. Before the introduction of mechanical harvesting (1947) crop residues were burnt as well as the wheat stubble during the conventional double cropping period (1970-1980). Soil texture (23±1% clay, with predominance of illite) and field slopes (<0.5%) were similar in the three sites. Nitrogen and phosphorus fertilization rates were minimal due to the low crop response. The results are expressed in Mg ha-1 for an A soil horizon mass of 2500 Mg ha-1. The introduction of agriculture decreased SOC stock: 31Y varied from 68.3 to 40.1 Mg ha-1 (41.3% loss) and 80Y from 68.3 to 47.2 Mg ha-1 (30% loss). The SOC loss was the result of the mineralization of a large amount labile SOC present in the pristine soil and low annual additions of carbon issued from crop residue

  14. Studies on mycoflora colonizing raw keratin wastes in arable soil

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz

    2014-08-01

    Full Text Available The present studies showed that feathers placed in soil demonstrated the succesion of physiologically differentiated communities of micromycetes. The first colonizers were sugar fungi. The second phase of feather colonization showed the prevalence of nutritively undeveloped polyphages and "root" celulolytic fungi. The final phase of colonization was dominated by keratinophilic fungi together with microflora that involved the forms known mainly for their strong proteolytic abilities. It was found that both the Chemical structure of substrate and soil properties with its pH determined the qualitative composition of fungal flora.

  15. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    Science.gov (United States)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  16. To be or not to be - common and endangered arable weed species in the face of Global Climate Change

    Directory of Open Access Journals (Sweden)

    Rühl, Anna Theresa

    2014-02-01

    Full Text Available Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land use management with the application of herbicides and fertilisers, enhanced seed cleaning, simplified crop rotations and abandonment of marginal arable sites are the main causes for the continuous decline of arable weeds. However, besides these changes in land use also global climate change may challenge the adaptability of arable weeds. Most scientists agree that the frequency of extreme meteorological conditions will increase in the future. As a consequence, plants of Central Europe will be subject to higher temperatures and reduced water supply due to longer intervals without precipitation during the growing season. We exposed seeds of five common and five endangered arable weed species to different temperatures and water potentials to study i how this plant group responds to higher temperatures and lower moisture during germination in general and ii whether there is a significant difference between common and endangered species in this respect.

  17. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171

  18. Comparative investigations of cesium and potassium in soils

    International Nuclear Information System (INIS)

    Schaller, G.; Leising, C.; Krestel, R.; Wirth, E.

    1993-01-01

    The aim of the investigation was the reliable estimation of the Cs-137 root uptake by agricultural crops using the ''observed ratio model'' (OR model) for the determination of transfer factors: Cs (plant)/K (plant)=OR x Cs (soil)/K (soil). For model validation representative soil (arable land, grass land, organic substrates from forest and peat) and plant samples from Bavaria were taken These 4 parameters varied within a sufficiently wide range. In addition some samples from forest sites were taken. Soil and plant samples were taken at the same locations within 1 m2. (orig.) [de

  19. Cesium and potassium uptake by plants from soils

    International Nuclear Information System (INIS)

    Schaller, G.; Leising, C.; Krestel, R.; Wirth, E.

    1990-11-01

    The aim of the investigation was the reliable estimation of the Cs-137 root uptake by agricultural crops using the 'observed ratio model' (OR model) for the determination of transfer factors: Cs (plant)/K (plant) = OR x Cs (soil)/K (soil). For model validation representative soil (arable land, grass land, organic substrates from forests and peat) and plant samples from Bavaria were taken. These 4 parameters varied within a sufficiently wide range. In addition some samples from forest sites were taken. Soil and plant samples were taken at the same locations within 1 m 2 . (orig./HP) [de

  20. Mycostimulation in a glyphosate treated arable soil: implications on ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The use of pesticide, although increases agricultural yield and improves public health is also fraught with a number of ecologic, agronomic and health concerns. This research investigated the impact of an ex-situ mycostimulation of one of the in-situ soil fungi on some agronomic characters and yield of Talinum ...

  1. Field Scale Studies on the Spatial Variability of Soil Quality Indicators in Washington State, USA

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Smith

    2011-01-01

    Full Text Available Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.

  2. Purchase of Catastrophe Insurance by Dutch Dairy and Arable Farmers

    NARCIS (Netherlands)

    Ogurtsov, V.; Asseldonk, van M.A.P.M.; Huirne, R.B.M.

    2009-01-01

    This article analyzed the impact of risk perception, risk attitude, and other farmer personal and farm characteristics on the actual purchase of catastrophe insurance by Dutch dairy and arable farmers. The specific catastrophe insurance types considered were hail–fire–storm insurance for buildings,

  3. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  4. Potential ecological risk assessment and predicting zinc accumulation in soils.

    Science.gov (United States)

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2018-02-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg -1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg -1 d.m. (0.01 mol dm -3 CaCl 2 ), and between 0.03 and 71.54 mg kg -1 d.m. (1 mol dm -3 NH 4 NO 3 ). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90

  5. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01

    Macroorganic matter of arable soils which had received different inputs of organic residues for 25 y and grassland soils that had been under grass for at least 8 y was fractionated into light, intermediate and heavy fractions using a stable silica suspension as heavy liquid. For all residue

  6. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  7. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge

    Directory of Open Access Journals (Sweden)

    Tiziano Gomiero

    2016-03-01

    Full Text Available Soil health, along with water supply, is the most valuable resource for humans, as human life depends on the soil’s generosity. Soil degradation, therefore, poses a threat to food security, as it reduces yield, forces farmers to use more inputs, and may eventually lead to soil abandonment. Unfortunately, the importance of preserving soil health appears to be overlooked by policy makers. In this paper, I first briefly introduce the present situation concerning agricultural production, natural resources, soil degradation, land use and the challenge ahead, to show how these issues are strictly interwoven. Then, I define soil degradation and present a review of its typologies and estimates at a global level. I discuss the importance of preserving soil capital, and its relationship to human civilization and food security. Trends concerning the availability of arable agricultural land, different scenarios, and their limitations, are analyzed and discussed. The possible relation between an increase in a country’s GNP, population and future availability of arable land is also analyzed, using the World Bank’s database. I argue that because of the many sources of uncertainty in the data, and the high risks at stake, a precautionary approach should be adopted when drawing scenarios. The paper ends with a discussion on the key role of preserving soil organic matter, and the need to adopt more sustainable agricultural practices. I also argue that both our relation with nature and natural resources and our lifestyle need to be reconsidered.

  8. Physical and water properties of selected Polish heavy soils of various origins

    Directory of Open Access Journals (Sweden)

    Kaczmarek Zbigniew

    2015-12-01

    Full Text Available The paper presents the characteristics of selected physical, chemical, and water properties of four mineral arable soils characterized with heavy and very heavy texture. Soil samples from genetic horizons of black earths from areas near Kętrzyn, Gniew and Kujawy, and alluvial soils from Żuławy were used. The following properties were determined in the samples of undisturbed and disturbed structure: texture, particle density, bulk density, porosity, natural and hygroscopic moistures, maximal hygroscopic capacity, saturated hydraulic conductivity, potential of water bonding in soil, total and readily available water, total retention in the horizon of 0–50 cm, drainage porosity, content of organic carbon and total nitrogen Parent rocks of these soils were clays, silts and loams of various origin. High content of clay fraction strongly influenced the values of all the analyzed properties. All the examined soils had high content of organic carbon and total nitrogen and reaction close to neutral or alkaline. High content of mineral and organic colloids and, what follows, beneficial state of top horizons’ structure, determined – apart from heavy texture – low soil bulk density and high porosity. The investigated soils were characterized by high field water capacity and wide scopes of total and readily available water. The saturated hydraulic conductivity was low and characteristic to heavy mineral arable soils. The parameter which influenced the variability of analyzed parameters most was texture.

  9. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine

    OpenAIRE

    Ding, Guo-Chun; Radl, Viviane; Schloter-Hai, Brigitte; Jechalke, Sven; Heuer, Holger; Smalla, Kornelia; Schloter, Michael

    2014-01-01

    Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied ...

  10. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    Many current organic arable agriculture systems are challenged by a dependency on imported livestock manure from conventional agriculture. At the same time organic agriculture aims at being climate friendly. A life cycle assessment is used in this paper to compare the carbon footprints of different....... The results showed significantly lower carbon footprint of the crops from the ‘Biogas’ rotation (assuming that biogas replaces fossil gas) whereas the remaining crop rotations had comparable carbon footprints per kg cash crop. The study showed considerable contributions caused by the green manure crop (grass......-clover) and highlights the importance of analysing the whole crop rotation and including soil carbon changes when estimating carbon footprints of organic crops especially where green manure crops are included....

  11. Potential conflict between the coal and arable land resources in australia: A case for corporate responsiveness

    Science.gov (United States)

    Langkamp, Peter J.

    1985-01-01

    Background information on possible surface-coal-mining operations in arable agricultural areas in Australia is provided. The major co-occurrence of the coal and arable land resources was in the Darling Downs region of Queensland and the Liverpool Plains region of New South Wales; however, coal development will probably only occur in the former region over the next decade. Analysis of the situation in the Darling Downs region, which consists of 11 Shires, found five companies conducting prefeasibility projects for surface-coal development and the size of exploration areas concerned far exceeding final mined-land disturbance estimates. Most of the land included in the prefeasibility studies was classified as “arable with moderate crop restrictions requiring intensive management” (classes II IV). The total area of land that may be disturbed at some time in the future was less than 2% of the arable land in the Shires concerned. Project mutual exclusivity and ongoing rehabilitation of disturbed areas further reduce arable land out of production at any one time. It is suggested that, if self-regulation by the coal industry in Australia on rehabilitation issues is to remain a viable option in these areas, an understanding between the corporate and public sectors on the extent and limitations of its responsibilities must be obtained. The current development of a National Conservation Strategy for Australia should assist this to proceed. Research on various rehabilitation issues may be required prior to project commitment to ensure the responsibilities identified are realizable. Integrative problem-solving, incorporating audit procedures, was suggested as a suitable method to achieve these aims and corporate responsiveness was seen as a necessary first step.

  12. Organizing data in arable farming : towards an ontology of processing potato

    NARCIS (Netherlands)

    Haverkort, A.J.; Top, J.L.; Verdenius, F.

    2006-01-01

    Arable farmers and their suppliers, consultants and procurers are increasingly dealing with gathering and processing of large amounts of data. Data sources are related to mandatory and voluntary registration (certification, tracing and tracking, quality control). Besides data collected for

  13. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-05-01

    Full Text Available The level of arable land-use intensity has important impacts on food security and rural sustainable development. Using the emergy method, we investigate the spatial disparities and driving forces of arable land-use intensity in China from 1999 to 2008 at the national, regional and provincial levels. The empirical results show that chemical fertilizer was the largest component of agricultural inputs and that agricultural diesel oil recorded the highest growth rate. The degree of heterogeneities in arable land-use intensity in China showed a decreasing trend, which resulted mainly from the differences among the eastern, northeastern, central and western regions. The regional disparities in labor, pesticides and plastic sheeting decreased from 1999 to 2008. The per capita annual net incomes of household operations and the agricultural policies had a significant positive correlation with total inputs, fertilizer inputs, pesticide inputs and agricultural plastic sheeting. In addition, the nonagricultural population had a greater impact on agricultural plastic sheeting. Finally, we suggest that there is an urgent need to focus on the effects of chemical fertilizer and pesticide inputs on the ecological environment. Agricultural support policies should be introduced for the poor agricultural production provinces.

  14. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development

    DEFF Research Database (Denmark)

    Schrijver, An de; Frenne, Pieter de; Staelens, Jeroen

    2012-01-01

    -depth understanding of tree species-specific effects on soil acidification is therefore crucial, particularly in view of the predicted global increases in acidifying nitrogen (N) deposition. Here, we report soil acidification rates in a chronosequence of broadleaved deciduous forests planted on former arable land...... and unequivocally drives postagricultural forests towards more acidic conditions, but the rate of soil acidification is also determined by the tree species-specific leaf litter quality and litter decomposition rates. We propose that the intrinsic differences in leaf litter quality among tree species create...... fundamentally different nutrient cycles within the ecosystem, both directly through the chemical composition of the litter and indirectly through its effects on the size and composition of earthworm communities. Poor leaf litter quality contributes to the absence of a burrowing earthworm community, which...

  15. Productivity of organic and conventional arable cropping systems in long-term experiments in Denmark

    DEFF Research Database (Denmark)

    Shah, Ambreen; Askegaard, Margrethe; Rasmussen, Ilse Ankjær

    2017-01-01

    manure there was a tendency for increased DM yield over time at all sites, whereas little response was seen in N yield. In the O4 rotation DM and N yields tended to increase at Foulum over time, but there was little change at Flakkebjerg. The DM yield gap between organic and conventional systems in the 3......A field experiment comparing different arable crop rotations was conducted in Denmark during 1997–2008 on three sites varying in climatic conditions and soil types, i.e. coarse sand (Jyndevand), loamy sand (Foulum), and sandy loam (Flakkebjerg). The crop rotations followed organic farm management......, and from 2005 also conventional management was included for comparison. Three experimental factors were included in the experiment in a factorial design: 1) crop rotation (organic crop rotations varying in use of whole-year green manure (O1 and O2 with a whole-year green manure, and O4 without...

  16. Solubility and Potential Mobility of Heavy Metals in Two Contaminated Urban Soils from Stockholm, Sweden

    International Nuclear Information System (INIS)

    Oborn, Ingrid; Linde, Mats

    2001-01-01

    The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential and leaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highly contaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported from Stockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fraction were between two- and eightfold those in arable soils, indicating that the sequential extraction scheme did not reflect the solid phases affected by anthropogenic inputs. Cadmium and Zn conc. in the rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, which suggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminated with Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibility of other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions

  17. Breeding birds on organic and conventional arable farms

    OpenAIRE

    Kragten, Steven

    2009-01-01

    As a result of agricultural intensification, farmland bird populations have been declining dramatically over the past decades. Organic farming is often mentioned to be a possible solution to stop these declines. In order to see whether farmland birds really benefit from organic farming a study was carried out comparing breeding bird densities, breeding success and bird food abundance between organic and conventional arable farms in Flevoland, the Netherlands. skylark (Alauda arvensis) and lap...

  18. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  19. Assessment Of Heavy Metal Contamination Of Arable Soils In Central Bekaa Plain, Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Khawlie, M.; Mýýuller, H. W.; Moller, A.

    2004-01-01

    The study area is located in the Bekaa plain of Lebanon totaling about 12753 ha. It lies between the eastern foothills of Mount Lebanon chain and expands across the Litani River towards the foothills of the eastern Anti-Lebanon Mountains. Its characteristics, i.e. natural terrain, climate and socio-economy, make it vulnerable especially due to soil pollution. This paper tries to identify the nature and level of soil pollution by heavy metals. Valley slopes represent a complex landform and lithology that contributed to the formation of different soil. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. Throughout the central part of the plain, groundwater table is abundant and relatively high (<1.0 m. locally) that multiplies the vulnerability of the soil-groundwater system. There are different sources of pollution, such as industrial (tanneries, batteries, leather manufacturing), solid and liquid wastes, and agricultural due to uncontrolled application of fertilizers, pesticides and insecticides. Meanwhile, no local criteria for land contamination with heavy metals are adapted yet. A total of 131 soil samples from 41 soil profiles were collected from sites representing different soil types and cropping systems. Additionally, five water samples were collected to get tentative idea about the extent of water contamination from surface and groundwater bodies. Soil samples were analyzed for physical and chemical properties and wet digested in aqua regia for the determination of the heavy metal content on the atomic absorption. Results of the total heavy metal content in the soils of the Central Bekaa showed normal values for main metals except Cr and Ni, which showed a relatively high level reaching, according to Eckamn Kloke, 1993-2000 criteria the tolerance level II. This is hazardous in an area of intensive vegetable production designed for fresh consumption. Point sources of pollution are equally found for Pb and Cd. The level

  20. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  1. Transformation towards more sustainable soil management on Dutch arable farms

    NARCIS (Netherlands)

    Claus, Sebastien; Egdom, van Ilona; Suter, Bruno; Sarpong, Clara; Pappa, Aikaterini; Miah, Imtiaz; Luppa, Caterina; Potters, J.I.

    2017-01-01

    Currently a debate is ongoing in the Netherlands on how to increase soil sustainable management in general and specifically in short term lease. Sustainable practices may not be adopted by farmers because of an interplay between EU, national and provincial legislation, short-term land lease system,

  2. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, M., E-mail: marco.carozzi@unimi.it [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy); Ferrara, R.M.; Rana, G. [Consiglio per la Ricerca e sperimentazione in Agricoltura, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani, 5 – 70125 Bari (Italy); Acutis, M. [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy)

    2013-04-01

    To evaluate the best practices in reducing ammonia (NH{sub 3}) losses from fertilised arable lands, six field trials were carried out in three different locations in northern Italy. NH{sub 3} emissions from cattle slurry were estimated considering the spreading techniques and the field incorporation procedures. The measurements were performed using long term exposure samplers associated to the determination of the atmospheric turbulence and the use of the backward Lagrangian stochastic (bLS) model WindTrax. The results obtained indicate that the NH{sub 3} emission process was exhausted in the first 24–48 h after slurry spreading. The slurry incorporation technique was able to reduce the NH{sub 3} losses with respect to the surface spreading, where a contextual incorporation led to reductions up to 87%. However, the best abatement strategy for NH{sub 3} losses from slurry applications has proved to be the direct injection into the soil, with a reduction of about 95% with respect to the surface spreading. The results obtained highlight the strong dependence of the volatilisation phenomenon by soil and weather conditions. - Highlights: ► Ammonia emissions from land-application of slurry were quantified. ► We examined and compared six different agronomic treatments in three locations. ► The faster was the soil-incorporation of slurry, the lower was the ammonia loss. ► The direct injection of slurry was found to be the best abatement strategy. ► The environmental factors were able to strongly influence the ammonia emission.

  3. Degradation of 14C-ETU in a soil profile investigated by means of incubation in two different incubation systems

    International Nuclear Information System (INIS)

    Bech, A.; Johannesen, H.

    1994-07-01

    The purpose of the paper is to elucidate the mechanism of biodegradation of ethylenethiourea (ETU) in arable soils, both on the surface and in the deeper layers. The effect of incubation system upon the ETU biodegradation was studied by incubation of undisturbed and mixed soil cores in tubes or flasks respectively. The total mineralization of ETU to CO2 in the ploughed layer and in the deeper layers is investigated by means of biodegradation tests with 14 C-ETU in soil samples collected from 15, 60 and 100 cm depth. ETU microbial biodegradation was studied in a series of tests covering conversion and isolation of ETU degrading microorganisms. (EG) 86 refs

  4. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  5. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    Science.gov (United States)

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  6. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    Science.gov (United States)

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  7. Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda T K K; Arthur, Emmanuel; Møldrup, Per

    2013-01-01

    measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential......Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... in soil and is controlled by soil physical characteristics representing soil texture and structure. Models predicting ka as a function of air-filled porosity (ɛ) often use a reference-point measurement, for example, ka,1000 at ɛ1000 (where the measurement is done at a suction of –1000 cm H2O). Using ka...

  8. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  9. Long-Term Effect of Different Carbon Management Strategies on Water Flow and Related Processes for Three Loamy Soils

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; de Jonge, Lis Wollesen

    2013-01-01

    on preferential flow and loss of colloids during heavy irrigation events. The field sites were all under long-term management and therefore represent up to 30 years of pairwise different management strategies. One field in each field pair was managed with a more C-repleting strategy (HighC) than the other (Low......The decline in organic matter of arable land, induced and accelerated by modern agriculture, has been identified as a threat to sustained soil quality. In this article, we studied strategies to counter this decrease by building up soil organic carbon (SOC) levels in the soils using several......C). Only small differences in SOC contents were identified, and none of the management strategies had succeeded in building up SOC pools large enough to saturate the soil with C. Only at one field site was the content of water-dispersible colloids lower in the HighC than the LowC treatment. Preferential...

  10. Reducing pesticide use while preserving crop productivity and profitability on arable farms.

    Science.gov (United States)

    Lechenet, Martin; Dessaint, Fabrice; Py, Guillaume; Makowski, David; Munier-Jolain, Nicolas

    2017-03-01

    Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century 1 . Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities 2 . The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies 3-5 ; however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable 6-17 . Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.

  11. Radio biogeochemical assessment of the soil near the Issyk-Kul region

    International Nuclear Information System (INIS)

    Kaldybaev, B.; Djenbaev, B.

    2014-01-01

    Full text : Soil is one of the main natural resources, providing for the sustainable development of the country. For environmentally well founded and balanced use and protection of land resources it is necessary to create the optimal structure of arable farming, minimizing negative impacts on the land of diverse of agricultural activities. Determination of chemical elements in the soil was conducted by the methods of X-ray fluorescence analysis and radionuclide by the methods of instrumental gamma spectrometry

  12. Redox-controlled release dynamics of thallium in periodically flooded arable soil.

    Science.gov (United States)

    Antić-Mladenović, Svetlana; Frohne, Tina; Kresović, Mirjana; Stärk, Hans-Joachim; Savić, Dubravka; Ličina, Vlado; Rinklebe, Jörg

    2017-07-01

    To our knowledge, this is the first work to mechanistically study the impact of the redox potential (E H ) and principal factors, such as pH, iron (Fe), manganese (Mn), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), chlorides (Cl - ) and sulfates (SO 4 2- ), on the release dynamics of thallium (Tl) in periodically flooded soil. We simulated flooding using an automated biogeochemical microcosm system that allows for systematical control of pre-defined redox windows. The E H value was increased mechanistically at intervals of approximately 100 mV from reducing (-211 mV) to oxidizing (475 mV) conditions. Soluble Tl levels (0.02-0.28 μg L -1 ) increased significantly with increases in E H (r = 0.80, p Thallium mobilization was found to be related to several simultaneous processes involving the gradual oxidation of Tl-bearing sulfides, reductive dissolution of Fe-Mn oxides and desorption from mineral sorbents. Manganese oxides did not appear to have a considerable effect on Tl retention under oxidizing conditions. Before conducting the microcosm experiment, Tl geochemical fractionation was assessed using the modified BCR sequential extraction procedure. The BCR revealed a majority of Tl in the residual fraction (77.7%), followed by reducible (13.3%) and oxidizable fractions (5.9%). By generating high levels of Tl toxicity at low doses, Tl released under oxidizing conditions may pose an environmental threat. In the future, similar studies should be conducted on various soils along with a determination of the Tl species and monitoring of the Tl content in plants to achieve more detailed insight into soluble Tl behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Daily dynamics of cellulase activity in arable soils depending on management practices

    Science.gov (United States)

    Lavrent'eva, E. V.; Semenov, A. M.; Zelenev, V. V.; Chzhun, Yu.; Semenova, E. V.; Semenov, V. M.; Namsaraev, B. B.; van Bruggen, A. H. C.

    2009-08-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic fertilizers alone) in a microfield experiment. The regular oscillatory dynamics of the cellulase activity were revealed and confirmed by the harmonic (Fourier) analysis. The oscillatory dynamics of the cellulase activity had a self-oscillatory nature and was not directly caused by the disturbing impacts of both the uncontrolled (natural) changes in the temperature and moisture (rainfall) and the controlled ones (the application of different fertilizers). The disturbing impacts affected the oscillation amplitude of the cellulase activity but not the frequency (periods) of the oscillations. The periodic oscillations of the cellulase activity were more significant in the soil under the high-input management compared to the soil under the biological farming system.

  14. Effects of traffic-induced soil compaction on crop growth and soil properties

    Science.gov (United States)

    Baibay, Amélia; Ren, Lidong; D'Hose, Tommy; De Pue, Jan; Ruysschaert, Greet; Cornelis, Wim

    2017-04-01

    Traffic-induced soil compaction on arable soils constitutes a major threat for agricultural productivity and the environmental quality of the soil, water and atmosphere. The objective of this work is to evaluate a set of prevention strategies for agricultural traffic under real farming conditions. To that end, a one-pass traffic experiment was conducted near Ghent, Belgium in winter 2015 on a sandy loam (haplic Luvisol; 43% sand, 47% silt, 10% clay). Winter rye (Secale cereale L.), which promotes the removal of residual soil nitrogen and thus reduces the potential for nitrogen leaching, was sown as cover crop using different tractor and weather settings on different field lanes: dry (D, 0.16 m3 m-3) or wet (W, 0.20-0.23 m3 m-3) conditions, normal (N, 65 cm width, axle load 8520 kg) or wide (W, 90 cm width, axle load 8520 kg) tires and high (HP, 1.4 bars for N, 1.0 bar for W) or low (LP, 1.0 bar for N, 0.5 bar for W) inflation pressure. Subsequently, crop biomass, root density and a set of hydrophysical properties (penetration resistance, saturated hydraulic conductivity and water retention at 15, 35 and 55 cm depth) were measured. Bulk density, soil quality indicators (such as air capacity) and the pore size distribution were also calculated. Results showed significant biomass reduction (p crop growth, worse under wet conditions, but the choice of tires did not prove to have an effect. Observations on the hydrophysical properties were more mitigated, as expected: distinct differences are primarily found under controlled lab conditions or after several passes. Moreover, high moisture conditions could not be obtained for the wet experiment, which never exceeded field capacity, conceived as threshold. Nevertheless, penetration resistance profiles indicated a plough pan about 40 cm depth, witness of previous agricultural operations on the field, and high values (3.5 to 4 MPa) were found in the subsoil too. Moreover, bulk densities were higher for all treatments (up to

  15. Differential effects of aluminium on the seedling parameters of wheat ...

    African Journals Online (AJOL)

    ALADDIN

    2011-04-25

    Apr 25, 2011 ... 4Department of Agronomy and Plant breeding, Urmia University, Urmia, Iran. Accepted 23 ... productivity in acidic soils that cover almost 40% of world's arable land ..... Plant adaptation to acid, aluminum-toxic soils. Commun.

  16. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium

    Science.gov (United States)

    Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.

    2013-06-01

    This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense

  17. Total carbon content and humic substances quality in selected subtypes of Cambisols

    Directory of Open Access Journals (Sweden)

    Veronika Petrášová

    2009-01-01

    Full Text Available Cambisols cover an estimated 45% of agricultural soils in the Czech Republic. We aimed our work at stabile forms of organic carbon and humic substances quality in Cambisols under different types of soil management (grassland and arable soil. Object of our study were the following subtypes of Cambisols: Eutric Cambisol (locality Vatín – arable soil, Eutric Cambisol (locality Vatín – grassland, Haplic Cambisol (locality Náměšť n/Oslavou – arable soil, Leptic Cambisol (locality Ocmanice – grassland, Haplic Cambisol (locality Nové Město na Moravě – arable soil, Haplic Cambisol (locality Přemyslov – Tři Kameny – grassland, Arenic Cambisol (locality Pocoucov – arable soil, Dystric Cambisol (locality Sněžné – arable soil, Dystric Cambisol (locality Velká Skrovnice – arable soil, Dystric Cambisol (locality Vojnův Městec – arable soil. Non-destructive spectroscopic methods such as UV-VIS spectroscopy, synchronous fluorescence spectroscopy (SFS and 13C NMR spectroscopy for humic substances (HS quality assessment were used. Total organic carbon (TOC content was determined by oxidimetric titration. Fractionation of HS was made by short fractionation method. Isolation of pure humic ­acids (HA preparation was made according to the standard IHSS method.Results showed that TOC and humus content varied from 2.70 % (grassland to 1.3 % (arable soil. Ave­ra­ge HS sum was 8.4 mg / kg in grassland and 6.4 mg / kg in arable soil. Average HA sum was 3.6 mg / kg in grassland and 3 mg / kg in arable soil. Fulvic acids (FA content was 4.7 mg / kg in grassland and 3.7 mg / kg in arable soil. HS quality was low and very similar for all studied samples. HA/FA ratio low (< 1. HS absorbance in UV-VIS spectral range was low and similar in all studied samples. Higher absorption in this spectral range was closely connected with higher HS content. Also in 2D-synchronous fluorescence scan spectra

  18. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    Science.gov (United States)

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  19. Projekt OK-NET-ARABLE : mahetootmiseks vajalik teave tuleb tuua praktikuteni / Airi Vetemaa

    Index Scriptorium Estoniae

    Vetemaa, Airi

    2015-01-01

    OK-NET-ARABLE, mida võiks tõlkida kui põllukultuuride kasvatuse alast maheteabe võrgustikku, on ELi teadusrahastu Horisont 2020 projekt, mille eesmärk on vahendada innovaatilist ja traditsioonilist teavet mahetootjate, nõustajate ja teadlaste vahel, suurendamaks mahepõllukultuuride produktiivsust ja kvaliteeti üle Euroopa

  20. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Science.gov (United States)

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  1. Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature.

    Science.gov (United States)

    El Sebaï, Talaat; Devers, Marion; Lagacherie, Bernard; Rouard, Nadine; Soulas, Guy; Martin-Laurent, Fabrice

    2010-09-01

    The diuron-mineralising ability of the microbiota of a Mediterranean vineyard soil exposed each year to this herbicide was measured. The impact of soil moisture and temperature on this microbial activity was assessed. The soil microbiota was shown to mineralise diuron. This mineralising activity was positively correlated with soil moisture content, being negligible at 5% and more than 30% at 20% soil moisture content. According to a double Gaussian model applied to fit the dataset, the optimum temperature/soil moisture conditions were 27.9 degrees C/19.3% for maximum mineralisation rate and 21.9 degrees C/18.3% for maximum percentage mineralisation. The impact of temperature and soil moisture content variations on diuron mineralisation was estimated. A simulated drought period had a suppressive effect on subsequent diuron mineralisation. This drought effect was more marked when higher temperatures were used to dry (40 degrees C versus 28 degrees C) or incubate (28 degrees C versus 20 degrees C) the soil. The diuron kinetic parameters measured after drought conditions were no longer in accordance with those estimated by the Gaussian model. Although soil microbiota can adapt to diuron mineralisation, its activity is strongly dependent on climatic conditions. It suggests that diuron is not rapidly degraded under Mediterranean climate, and that arable Mediterranean soils are likely to accumulate diuron residues. (c) 2010 Society of Chemical Industry.

  2. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    Science.gov (United States)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at

  3. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    Science.gov (United States)

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  4. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    International Nuclear Information System (INIS)

    Skinner, Colin; Gattinger, Andreas; Muller, Adrian; Mäder, Paul; Fließbach, Andreas; Stolze, Matthias; Ruser, Reiner; Niggli, Urs

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO 2 eq. ha −1 a −1 lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO 2 eq. ha −1 a −1 . However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO 2 eq. t −1 DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO 2 eq. ha −1 a −1 for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous oxide emissions from soils managed organically compared

  5. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  6. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  7. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...... N2 fixation and 15N labeling technique to determine the fate of pea and oat residue N recovery in the subsequent crop. The subsequent spring wheat and winter triticale crop yields were not significantly affected by the previous main crop, but a significant effect of catch crop undersowing...

  8. Soil sampling strategies: Evaluation of different approaches

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, Paolo [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy)], E-mail: paolo.dezorzi@apat.it; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy); Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia [Agenzia Regionale per la Prevenzione e Protezione dell' Ambiente del Veneto, ARPA Veneto, U.O. Centro Qualita Dati, Via Spalato, 14-36045 Vicenza (Italy)

    2008-11-15

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2{sigma}, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  9. Soil sampling strategies: Evaluation of different approaches

    International Nuclear Information System (INIS)

    De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-01-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2σ, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies

  10. Soil sampling strategies: evaluation of different approaches.

    Science.gov (United States)

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  11. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?

    Science.gov (United States)

    Lang, Marion; Prestele, Julia; Fischer, Christina; Kollmann, Johannes; Albrecht, Harald

    2016-08-01

    During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment

  12. Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain

    Science.gov (United States)

    Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel

    2016-04-01

    The Russian Plain is one of the largest plains with an area of 460 × 106 ha. Soil erosion during snow-melting and rainstorms occurs mostly on arable lands at the Russian Plain. The relative contribution of different types of soil erosion changes from the central part of the Russian Plain to the south. Sheet and rill soil erosion during snow-melting and rainfall are practically equal in the forest zone, while rainfall erosion prevails in the forest-steppe zone and the northern part of the steppe zone. Mostly rainfall erosion is observed in the southern part of the steppe zone. Mean annual soil losses from cultivated lands change in the range from 1 to 3 t ha-1 within lowlands to 6 to 8 t ha-1 at uplands with the maximum (10 t ha-1) observed near the Caucasus Mountains in the Stavropolskiy Krai. The intensity of gully erosion is relatively low during the last two decades. The collapse of the Soviet Union in 1991 caused a serious crisis in the agriculture because of financial problems and structural reorganization. As a result, the area of arable lands decreased in the southern half of the Russian Plain in 1991 - 2003. To a greater extent it was observed in the south of the forest zone because of the low productivity of its soils compared with chernozem. More than one third of the arable lands were abandoned in the dry steppe - semi-desert zones because these lands were irrigated during the Soviet period. The reduction of the arable land occurred in the forest-steppe and steppe zones mostly because of funding limitations during the 1990s. Recently the area of arable lands in the steppe zone was practically restored to its pre-1991 size. Simultaneously the last 25 years are characterized by unusual warm winters - in particular, in the southern half of the Russian Plain because of the global warming. As a result, the coefficient of surface snow-melting runoff considerably decreased for both cultivated fields and compacted fields after harvesting. Accordingly, spring

  13. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A 13C study

    International Nuclear Information System (INIS)

    Kerré, Bart; Hernandez-Soriano, Maria C.; Smolders, Erik

    2016-01-01

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using 13 C isotope signatures. An arable soil (S) (7.9 g organic C, OC kg −1 ) was amended (single dose of 10 g kg −1 soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or 13 C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450 °C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO 2 (180 days), dissolved organic-C (115 days) and OC in soil aggregate fractions (90 days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90 days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18 mg L −1 . However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. - Highlights: • Biochar can reduce native soil organic carbon mineralization. • Biochar can promote storage

  14. Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines

    Directory of Open Access Journals (Sweden)

    Novák Petr

    2018-04-01

    Full Text Available A high percentage of arable land and erosion risk on agricultural land are typical of current agriculture. While tillage erosion is a less frequently studied issue, it impacts vast areas of agricultural land. Not all relationships between cultivation equipment, the gradient of the plot and other factors have been known until now. Intensive soil tillage can be a crucial erosive factor mainly when the cultivation equipment moves in a fall line direction. Nevertheless, even when the equipment moves along contour lines, soil particles can be translocated perpendicular to the direction of the equipment movement (in a fall line direction. This phenomenon has not yet been adequately studied. For measurements, a field trial with secondary tillage of soil was laid out (a seedbed preparation implement was used. The objective of the trial was to evaluate the effect of the working tools of the cultivation equipment on the crosswise and lengthwise translocation of soil particles during soil tillage. Aluminium cubes, with a side length of 16 mm, were used as tracers. Before the operation, the tracers were inserted in a row perpendicular (at a right angle to a direction of the equipment passes. After the equipment passes, position of tracers was evaluated within a two-axis grid. The trial was performed at three gradients of the plot (2°, 6° and 11°. For each gradient, the 1-pass, 2-pass and 3-pass treatments were tested. The equipment always moved along the plot contour line. After the equipment passes in all treatments, all tracers were localized on an orthogonal grid. The results of the trial demonstrate the effect of the slope gradient on the crosswise translocation of particles during secondary tillage of soil in the slope direction. The tillage equipment translocated particles in the fall line direction even if it passed along the contour line. With the increasing intensity of passes, the effect of the equipment on crosswise translocation increases

  15. Reassessment of soil erosion on the Chinese loess plateau: were rates overestimated?

    Science.gov (United States)

    Zhao, Jianlin; Govers, Gerard

    2014-05-01

    Several studies have estimated regional soil erosion rates (rill and interrill erosion) on the Chinese loess plateau using an erosion model such as the RUSLE (e.g. Fu et al., 2011; Sun et al., 2013). However, the question may be asked whether such estimates are realistic: studies have shown that the use of models for large areas may lead to significant overestimations (Quinton et al., 2010). In this study, soil erosion rates on the Chinese loess plateau were reevaluated by using field measured soil erosion data from erosion plots (216 plots and 1380 plot years) in combination with a careful extrapolation procedure. Data analysis showed that the relationship between slope and erosion rate on arable land could be well described by erosion-slope relationships reported in the literature (Nearing, 1997). The increase of average erosion rate with slope length was clearly degressive, as could be expected from earlier research. However, for plots with permanent vegetation (grassland, shrub, forest) no relationship was found between erosion rates and slope gradient and/or slope length. This is important, as it implies that spatial variations of erosion on permanently vegetated areas cannot be modeled using topographical functions derived from observations on arable land. Application of relationships developed for arable land will lead to a significant overestimation of soil erosion rates. Based on our analysis we estimate the total soil erosion rate in the Chinese Loess plateau averages ca. 6.78 t ha-1 yr-1 for the whole loess plateau, resulting in a total sediment mobilisation of ca. 0.38 Gt yr-1. Erosion rates on arable land average ca. 15.10 t ha-1 yr-1. These estimates are 2 to 3 times lower than previously published estimates. The main reason why previous estimates are likely to be too high is that the values of (R)USLE parameters such as K, P and LS factor were overestimated. Overestimations of the K factor are due to the reliance of nomograph calculations, resulting

  16. Earthworms and priming of soil organic matter - The impact of food sources, food preferences and fauna - microbiota interactions

    Science.gov (United States)

    Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg

    2016-04-01

    Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.

  17. Earthworm-induced N2O emissions in a sandy soil with surface-applied crop residues

    NARCIS (Netherlands)

    Giannopoulos, G.; Groenigen, van J.W.; Pulleman, M.M.

    2011-01-01

    Earlier research with endogeic and epigeic earthworm species in loamy arable soil has shown that both earthworm groups can increase nitrous oxide (N2O) emissions, provided that crop residue placement matches the feeding strategy of the earthworm ecological group(s). However, it is not yet clear

  18. Identification of long-term carbon sequestration in soils with historical inputs of biochar using novel stable isotope and spectroscopic techniques

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Hardy, Brieuc; Dufey, Joseph; Smolders, Erik

    2013-04-01

    Biochar is the collective term for organic matter (OM) that has been produced by pyrolysis of biomass, e.g. during production of charcoal or during natural processes such as bush fires. Biochar production and application is now suggested as one of the economically feasible options for global C-sequestration strategies. The C-sequestration in soil through application of biochar is not only related to its persistence (estimated lifetime exceeds 1000 year in soil), but also due to indirect effects such as its potential to adsorb and increase OM stability in soil. Historical charcoal production sites that had been in use >200 years ago in beech/oak forests have been localized in the south of Belgium. Aerial photography identified black spots in arable land on former forest sites. Soil sampling was conducted in an arable field used for maize production near Mettet (Belgium) where charcoal production was intensive until late 18th century. Soils were sampled in a horizontal gradient across the 'black soils' that extend of few decametres, collecting soil from the spots (Biochar Amended, BA) as well as from the non-biochar amended (NBA). Stable C isotope composition was used to estimate the long-term C-sequestration derived from crops in these soils where maize had been produced since about 15 years. Because C in the biochar originates in forest wood (C3 plants), its isotopic signature (δ13C) differs from the maize (a C4 plant). The C and N content and the δ13C were determined for bulk soil samples and for microaggregate size fractions separated by wet sieving. Fourier Transform Infrared Spectroscopy (FTIR) coupled to optical microscopy was used to obtaining fingerprints of biochar and OM composition for soil microaggregates. The total C content in the BA soil (5.5%) and the C/N ratio (16.9) were higher than for NBA (C content 2.7%; C/N ratio 12.6), which confirms the persistence of OM in the BA. The average isotopic signature of bulk soil from BA (-26.08) was slightly

  19. Investigation of the dynamics of ephemeral gully erosion on arable land of the forest-steppe and steppe zone of the East of the Russian Plain from remote sensing data

    Science.gov (United States)

    Platoncheva, E. V.

    2018-01-01

    Spatio-temporal estimation of the erosion of arable soils is still an urgent task, in spite of the numerous methods of such assessments. Development of information technologies, the emergence of high and ultra-high resolution images allows reliable identification of linear forms of erosion to determine its dynamics on arable land. The study drew attention to the dynamics of the most active erosion unit - an ephemeral gully. The estimation of the dynamics was carried out on the basis of different space images for the maximum possible period (from 1986 to 2016). The cartographic method was used as the main research method. Identification of a belt of ephemeral gully erosion based on materials of multi-zone space surveys and GIS-technology of their processing was carried out. In the course of work with satellite imagery and subsequent verification of the received data on the ground, the main signs of deciphering the ephemeral gully network were determined. A methodology for geoinformation mapping of the dynamics of ephemeral gully erosion belt was developed and a system of indicators quantitatively characterizing its development on arable slopes was proposed. The evaluation of the current ephemeral gully network based on the interpretation of space images includes the definition of such indicators of ephemeral gully erosion as the density of the ephemeral gully net, the density of the ephemeral gullies, the area and linear dynamics of the ephemeral gully network. Preliminary results of the assessment of the dynamics of the belt erosion showed an increase in all quantitative indicators of ephemeral gully erosion for the observed period.

  20. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  1. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    International Nuclear Information System (INIS)

    Reid, Brian J.; Papanikolaou, Niki D.; Wilcox, Ronah K.

    2005-01-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14 C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg -1 ) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  2. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)]. E-mail: b.reid@uea.ac.uk; Papanikolaou, Niki D. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Wilcox, Ronah K. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by {sup 14}C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 {mu}g kg{sup -1}) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk.

  3. Migration of radionuclides in the soil-crop-food product system and assessment of agricultural countermeasures

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Ageyets, V.

    1996-01-01

    Studies on dynamics of redistribution of radionuclides through of profile of the different soils on uncultivated agricultural lands of Belarus during the 1986-1995 period show that vertical migration occurs with low rate. In arable soils the radionuclides are distributed in comparatively uniform way through the whole depth of the 25-30 cm cultivated layer. Investigations on migration of radionuclides with wind erosion on the drained series of wet sandy and peat soils and water erosion on sloping lands show that one should take into consideration the secondary contamination of soils while forecasting a possible accumulation of radionuclides in farm products

  4. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  5. Statistical analysis and modelling of surface runoff from arable fields

    OpenAIRE

    P. Fiener; K. Auerswald; F. Winter; M. Disse

    2013-01-01

    Surface runoff generation on arable fields is an important driver of (local) flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow). Despite the developments in our understanding of these processes it remains difficult to predict, which processes govern runoff generation during the course of an event or through...

  6. Empirical model for mineralisation of manure nitrogen in soil

    DEFF Research Database (Denmark)

    Sørensen, Peter; Thomsen, Ingrid Kaag; Schröder, Jaap

    2017-01-01

    A simple empirical model was developed for estimation of net mineralisation of pig and cattle slurry nitrogen (N) in arable soils under cool and moist climate conditions during the initial 5 years after spring application. The model is based on a Danish 3-year field experiment with measurements...... of N uptake in spring barley and ryegrass catch crops, supplemented with data from the literature on the temporal release of organic residues in soil. The model estimates a faster mineralisation rate for organic N in pig slurry compared with cattle slurry, and the description includes an initial N...

  7. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  8. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A {sup 13}C study

    Energy Technology Data Exchange (ETDEWEB)

    Kerré, Bart [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Hernandez-Soriano, Maria C., E-mail: m.hernandezsoriano@uq.edu.au [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072 (Australia); Smolders, Erik [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium)

    2016-03-15

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using {sup 13}C isotope signatures. An arable soil (S) (7.9 g organic C, OC kg{sup −1}) was amended (single dose of 10 g kg{sup −1} soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or {sup 13}C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450 °C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO{sub 2} (180 days), dissolved organic-C (115 days) and OC in soil aggregate fractions (90 days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90 days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18 mg L{sup −1}. However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. - Highlights: • Biochar can reduce native soil organic carbon mineralization.

  9. Carbon dynamics with prolonged arable cropping soils in the Dano district (Southwest Burkina-Faso)

    Science.gov (United States)

    Hounkpatin, Ozias; Welp, Gerhard; Amelung, Wulf

    2016-04-01

    The conversion of natural ecosystems into agricultural land affects the atmospheric CO2 concentration whose increase contributes to global warming. In the low activity clay soils (LAC) of the tropics, farming is largely dependent on the level of soil organic carbon (SOC) for sustainable crop production. In this study, we investigated the changes in SOC in Plinthosols along a cultivation chronosequence in the Dano district (Southwest Burkina-Faso). The chronosequence consisted of undisturbed savannah (Y0) and 11 agricultural fields with short and long histories of cultivation ranging from 1-year-old cropland to 29-year-old cropland (Y29). About 14 soil profiles were described and soil composite samples were taken per horizon. Particulate organic matter (POM) was fractionated according to particle size: fraction 2000 - 250 μm (POM1), 250 μm - 53 μm (POM2), 53 μm - 20 μm (POM3), and POM1 > POM3 > POM2 carbon no matter the duration of land use. However, SOC losses occurred not only in the labile C pools but also in the stabile nonPOM fraction with increasing duration of agricultural land use. Compared to the initial carbon content in the Y0 field, about 59% of carbon content loss occurred in the POM1 (> 250 μm), 53% in the POM2 (250 - 53 μm), 52 % in the POM3 (53 - 20 μm) and 47% in the nonPOM fraction (stabilization, its depletion with increasing cultivation intensity suggests that the destruction of aggregates in these fields increased the vulnerability of this pool to microbial degradation. Keywords: Soil organic carbon, Plinthosols, low activity clay soil, POM

  10. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  11. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October. All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005 and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  12. Outdoor Terrestrial Model Ecosystems are suitable to detect pesticide effects on soil fauna: design and method development.

    Science.gov (United States)

    Scholz-Starke, B; Nikolakis, A; Leicher, T; Lechelt-Kunze, C; Heimbach, F; Theissen, B; Toschki, A; Ratte, H T; Schäffer, A; Ross-Nickoll, M

    2011-11-01

    Terrestrial Model Ecosystems (TME) were developed as one higher-tier option to detect and assess effects of pesticides on soil communities in a 1 year study using lindane (gamma-HCH) as a persistent and toxic reference pesticide. TME contained intact soil cores (diameter 300 mm, height 400 mm) including indigenous soil communities of undisturbed grassland. Forty units were placed outdoors between spring 2005 and 2006. The TME experiment was designed to provide data that fulfill the requirements of the revised European regulation on plant protection products (regulation 1107/2009/EEC replacing guideline 91/414/EC) with a focus on structural endpoints such as soil organisms and their community structure in case higher-tier evaluation is triggered. The key objective was to evaluate the dynamics and stability of species-diverse microarthropod communities of undisturbed grassland over at least 1 year after application. In grassland soils, less selection pressure towards insensitive species compared to arable land was presumed. Sufficient numbers of organisms and numerous TME replicates ensured that a statistical evaluation could be performed to estimate the sensitivity of the organisms upon application of lindane applied at high rates of 7.5 and 75 kg ai/ha. The application rates resulted in nominal concentrations of 10 and 100 mg ai/kg dry soil referred to the top 5 cm soil layer of 10 TME each; 20 untreated TME served as controls and were used to study the natural dynamics and the variability of populations under field conditions. Results showed that the grassland from which the soil cores were sampled contained communities of soil organisms marked by typical diversity of improved grassland. Lindane applied at excessive rates caused clear dose-related and long-lasting effects on the communities of microarthropods. On the contrary, lumbricids, the total feeding activity (bait lamina) and the growth of plant biomass were not affected up to 1 year after application

  13. Water flow in soil from organic dairy rotations

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

    2017-01-01

    rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also......Managed grasslands are characterized by rotations of leys and arable crops. The regime of water flow evolves during the leys because of earthworm and root activity, climate and agricultural practices (fertilizer, cutting and cattle trampling). The effects of duration of the leys, cattle trampling...... and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...

  14. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The cul......Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial......) and an endocellulase activity of 44.2 +/- 1.1 nmol g(-1) h(-1). (C) 1999 Elsevier Science B.V. All rights reserved....

  15. Soil-water contact angle of some soils of the Russian Plane

    Science.gov (United States)

    Bykova, Galina; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2016-04-01

    INTRODUCTION Soil wettability affects the aggregate water resistance, the movement of moisture and dissolved substances, preferential flows, etc. There are many factors affecting the soil's wettability (the content of organic matter (OM), soil's mineralogical composition, particle size distribution), so it can reflect changes in the soil, including results of human impact. The quantitative characteristic of soil wettability is a contact angle (CA), its measurement is a new and difficult problem because of the complexity, heterogeneity and polydispersity of the object of investigation. The aim of this work is to study soil-water CA of some soils of the Russian Plane. MATERIALS AND METHODS The objects of study were sod-podzolic (Umbric Albeluvisols Abruptic, Eutric Podzoluvisols), grey forest non-podzolised (Greyic Phaeozems Albic, Haplic Greyzems), typical Chernozems (Voronic Chernozems pachic, Haplic Chernozems) - profiles under the forest and the arable land, and the chestnut (Haplic Kastanozems Chromic, Haplic Kastanozems) soils. The CA's determination was performed by a Drop Shape Analyzer DSA100 by the static sessile drop method. For all samples was determined the content of total and organic carbon (OC and TC) by dry combustion in oxygen flow. RESULTS AND DISCUSSION There is CA increasing from 85,1° (5 cm) to 40-45° (deeper, than 45 cm) in the sod-podzolic soil; OC content is changed at the same depths from 1,44 to 0.22%. We can see the similar picture in profiles of chernozems. In the forest profile the highest OC content and CA value are achieved on the surface of profile (6,41% and 78,1°), and by 90 cm these values are 1.9% and 50.2°. In the chernozem under the arable land the OC content is almost two times less and the profile is more wettable (from 50° to 19° at 5 and 100 cm). Corresponding with the OC content, the curve describing changes of CA in the profile of grey forest soil is S-shaped with peaks at 20 and 150 cm (81,3° and 70° respectively

  16. Daily dynamics of cellulase activity in arable soils depending on management practices

    NARCIS (Netherlands)

    Semenov, A.M.; Zelenev, V.V.; Chzhun, Yu; Semenova, E.V.; Semenov, V.M.; Namsaraev, B.B.; Bruggen, van A.H.C.

    2009-01-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic

  17. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

    DEFF Research Database (Denmark)

    Johansen, Anders; Carter, Mette Sustmann; Jensen, Erik S.

    2013-01-01

    ) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O......, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed...... with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any...

  18. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  19. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.

    Science.gov (United States)

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-07-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of 'moral' (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  20. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Colin, E-mail: colin.skinner@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Gattinger, Andreas, E-mail: andreas.gattinger@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Muller, Adrian, E-mail: adrian.mueller@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Mäder, Paul, E-mail: paul.maeder@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Fließbach, Andreas, E-mail: andreas.fliessbach@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Stolze, Matthias, E-mail: matthias.stolze@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Ruser, Reiner, E-mail: reiner.ruser@uni-hohenheim.de [Fertilisation and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, Fruwirthstraße 20, 70599 Stuttgart (Germany); Niggli, Urs, E-mail: urs.niggli@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland)

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO{sub 2} eq. ha{sup −1} a{sup −1} lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO{sub 2} eq. ha{sup −1} a{sup −1}. However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO{sub 2} eq. t{sup −1} DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO{sub 2} eq. ha{sup −1} a{sup −1} for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous

  1. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  2. The contribution of microbial biomass to the adsorption of radioiodide in soils

    International Nuclear Information System (INIS)

    Bors, J.; Martens, R.

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ( 125 I - ) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K d ) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author)

  3. The contribution of microbial biomass to the adsorption of radioiodide in soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany)); Martens, R. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Biochemie des Bodens)

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ({sup 125}I{sup -}) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K{sub d}) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author).

  4. utilization of bio fertilizers and organic sources in arable soils under saline conditions using tracer technique

    International Nuclear Information System (INIS)

    Salama, O.A.E.

    2011-01-01

    Recently, more attention has been paid to conserve and save surrounding environment via minimizing the excessive use of chemical fertilizers and, in general, the agrochemicals applied in heavy quantities in agricultural agroecosystems. Therefore, the attention of most of agronomists was turned towards the use of so called clean agriculture or organic farming. Many of organic systems was pointed out such as the recycling of farm wastes i.e. crop residues, animal manure, organic conditioners for reclamation of soil and in the same time enhancement of plant growth and improving yield quality. The application of organic wastes combined with or without microbial inoculants to plant media are considered as a good management practice in any agricultural production system because it improves, plant quality and soil fertility. Therefore, we have the opportunity to conduct some experiments for achieving the clean agriculture approach, combating the adverse effects of salinity and avoiding the environmental pollution. Series of laboratory and greenhouse experiments were carried out to evaluate the impact of (1) potent isolated fungi (Aspergillus oryzae and Aspergillus terreus) on degrading plant residues (Leucaena and Acacia green parts), and (2) biofertilizers (Sinorhizobium meliloti, Azospirillum brasilense, and Pseudomonas aeruginosa) in assessing barley and spinach plants to combat salinity of soil and irrigation water. 15 N-tracer technique that considered unique and more reliable technique may benefits in clarifying the responsible mechanisms related to plant growth and gave us the opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to spinach and barley plants grown on sandy saline soil and irrigated with saline water.

  5. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    Science.gov (United States)

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  6. Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils

    Science.gov (United States)

    Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf

    2010-05-01

    Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.

  7. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  8. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    Science.gov (United States)

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  9. Variation in soil physical, chemical and microbial parameters under different land uses in bagrot valley, gilgit, pakistan

    International Nuclear Information System (INIS)

    Ali, S.

    2017-01-01

    Soil degradation due to unsustainable land use is a global problem and the biggest challenge for sustainability in mountain areas due to their ecological and socio-economic impacts. The study aims to evaluate the variation in the physical, chemical and microbial parameters of soil across various land uses in the Bagrot valley, Central Karakoram National Park (CKNP), Gilgit-Baltistan. Soil samples from 0-20 cm were collected from three land uses such as arable land, pasture, and adjacently located forest. The variables investigated were soil bulk density, total porosity, saturation percentage, sand, silt, clay, pH, electric conductivity, CaCO/sub 3/, organic matter, TN, available P, K, Fe, Mn, Cu and Zn and microbial parameters (16SrRNA and ITS copies number and fungi-to-bacterial ratio). A sigificant varriation in all parameters were found accross the land uses (ANOVA, p < 0.01). Similarly, the highest bulk density, sand, pH, EC, CaCO/sub 3/ were found in arable land, with the lowest values in forest. In contrast, soil under forest showed a higher total porosity, percent saturation, clay, OM, macro and micronutrients, microbial abundance and fungi-to-bacterial ratio than for other land uses. The differences in soil parameters across the land uses indicated detrimental impacts of agricultural activities on soil health. Soil pH and organic matter are the main controlling factors for microbial indicators as well as physical and chemical parameters. The results suggest that restoration of natural vegetation in degraded land and decrease in intensity of land use could improve soil properties in the study area, as well as other similar mountainous regions. (author)

  10. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown.

  11. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  12. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.

    1980-01-01

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15 N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N 2 and N 2 O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  13. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

    Science.gov (United States)

    Fiedler, Sebastian Rainer; Augustin, Jürgen; Wrage-Mönnig, Nicole; Jurasinski, Gerald; Gusovius, Bertram; Glatzel, Stephan

    2017-09-01

    Biogas digestate (BD) is increasingly used as organic fertilizer, but has a high potential for NH3 losses. Its proposed injection into soils as a countermeasure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect of high nutrient concentrations on N2 losses as they may appear after injection of BD into soil has not yet been evaluated. Hence, we performed an incubation experiment with soil cores in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %) and application rate (0, 17.6 and 35.2 mL BD per soil core, 250 cm3) on the emission of N2O, N2 and CO2 after the usage of high loads of BD. To determine the potential capacity for gaseous losses, we applied anaerobic conditions by purging with helium for the last 24 h of incubation. Immediate N2O and N2 emissions as well as the N2 / (N2O+N2) product ratio depended on soil type and increased with WFPS, indicating a crucial role of soil gas diffusivity for the formation and emission of nitrogenous gases in agricultural soils. However, emissions did not increase with the application rate of BD. This is probably due to an inhibitory effect of the high NH4+ content of BD on nitrification. Our results suggest a larger potential for N2O formation immediately following BD injection in the fine-textured clayey silt compared to the coarse loamy sand. By contrast, the loamy sand showed a higher potential for N2 production under anaerobic conditions. Our results suggest that short-term N losses of N2O and N2 after injection may be higher than probable losses of NH3 following surface application of BD.

  14. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost

    2010-01-01

    Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year...

  15. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe

    NARCIS (Netherlands)

    Zingore, S.; Manyame, C.; Nyamugafata, P.; Giller, K.E.

    2005-01-01

    Subsistence farmers in Africa depend largely on the soil organic matter to sustain crop productivity. Long-term changes in soil organic carbon and nitrogen were measured after woodland clearance for smallholder subsistence farming or for commercial farming. The contents of organic carbon and

  16. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  17. The Balanced Scorecard as a Management Tool for Arable Farming

    Directory of Open Access Journals (Sweden)

    Margit Paustian

    2015-07-01

    Full Text Available Management requirements for crop farming are high and will rise in the future. Arable farms are challenged by volatile markets, growing administrative burdens, increasing operating costs and growing competition for land. Management skills have become much more important for farmers in recent years and this trend will continue in the future. There are numerous instruments like accounting software or crop field cards integrated in daily management practice, but there is a deficiency of a fully integrated management system to give an overview of all areas of the farming business. This gap can be closed by the management tool Balanced Scorecard (BSC that provides an overview of all production and management activities on a farm. Therefore, with the aim to transfer the BSC concept to crop farming, German farmers and agricultural advisors were surveyed to get insights into the success factors and key performance indicators in the four BSC perspectives they consider most relevant for the operational success of arable farms. By the use of a cluster analysis, three different farm types were identified according to their visions and strategies. For the three farm types the key performance indicators that the respondents considered most relevant for farm performance were figured out. Implementation of the BSC to crop farming can result in a big benefit for management practice. The BSC focuses vision and long-term strategy with the main goal to ensure consistency of the farm and increase farm performance.

  18. Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming using Panel Data

    NARCIS (Netherlands)

    Gardebroek, C.; Chavez Clemente, M.D.; Oude Lansink, A.G.J.M.

    2010-01-01

    Abstract This paper compares the production technology and production risk of organic and conventional arable farms in the Netherlands. Just–Pope production functions that explicitly account for output variability are estimated using panel data of Dutch organic and conventional farms. Prior

  19. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    , and pedo-ecological conditions. LUC from natural to arable is accompanied by different regulations: (1) regular restoration of plant available nutrition elements' stocks in soil, (2) regulation (if needed) of water regime of gleyed and gley soils, (3) optimizing of soil actual acidity by liming, and (4) forming a suitable for crops seed bed instead of natural epipedon. Principal changes are occurred in fabric and agrochemical properties of topsoil and in soil functioning. The connected with LUC changes in soil functioning are: (1) increase of openness level of chemical elements cycling and nutrition elements concentration in phytomass, and (2) decrease of total phytomass, species diversity, amount of annual falling litter and content of mortmass in soil cover. These changes lead to decreasing of biological control on soil resources, flux of energy and substances to soil processes, and volume of cycling. At the same time the intensity of organic matter decomposition and outflow of nutrition elements are increased. All these changes are resulted by alteration of food chains and exhausting of nutrition elements' stocks. The changes in soil functioning (decrease or increase of productivity) depend much on soil type. The aspects of functioning, which do not changed with LUC are chemical-textural potential of soil cover and functioning character of subsoil. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.

  20. Hot regions of labile and stable soil organic carbon in Germany - Spatial variability and driving factors

    Science.gov (United States)

    Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel

    2018-06-01

    Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non-black sand agricultural soils. Overall, it was estimated that, in large areas all over Germany, over 30 % of SOC is stored in easily mineralisable forms. Thus, SOC-conserving management of arable soils in these regions is of great importance.

  1. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  2. Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK).

    Science.gov (United States)

    De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C

    2008-01-01

    Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was

  3. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ''The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils''. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs

  4. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ``The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils``. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs.

  5. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  6. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. AGROPHYSICAL ASPECTS OF TECHNOLOGICAL LOAD REGULATION ON SOIL COVER IN THE MODERN AGROLANDSCAPES

    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.

    2016-05-01

    Full Text Available Modern agricultural landuseof researched Tetiivskyi-Boguslavskyi nature-agricultural district of Kyiv region is characterized by high technological loading on the soil covering, associated with the transformation of lands structure and sowing areas of crops under the influence of market situations. The high level of technological loading on land resources causes the development of degradation processes, and as a result – reduced lands productivity. The main reasons are: unbalanced development of the productive forces and exhausting exploitation of land resources, producers ignoring of environmental imperatives, technical, technological and organizational backwardness of agricultural production; embryonic nature of ecological and economical mechanism of land use and realization of land protection measures, the lack of perfect legal framework of regulating and management of resource- ecological security at national, regional and local levels. Increasing of anthropogeneous pressure on soil (excessive soil tillage in agricultural landscapes, ecologically unsustainable use of agricultural chemicals, high intensity of heavy agricultural machinery, etc. leads to increase of degradation processes almost on the all area of arable land (Medvedev, 1994. So important is the continuous monitoring of agrophysical condition of soils and development of scientific and practical foundations of optimizing the physical parameters of fertility. The environmentally unbalanced application of anthropogeneous factors results in agrophysical degradation of arable lands, what is displaied in top soil overcompaction.Experimentally found that depending on how the agricultural land use equilibrium bulk density of the gray forest soils varies between 1,35-1,58 g/cm3, dark-gray forest soils - 1,36-1,44, podzolized chernozem - 1,26-1,33, typical chernozem- 1,09-1,18 g/cm3, that indicating the imbalance of soil-physical factors, a significant deviation from the requirements of

  8. Heavy Metal Contamination in Urban Soils I Zinc Accumulation Phenomenon in Urban Environments as Clues of Study

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    As an introduction of the continuing study on the heavy metal contamination in urban soils, zinc accumulation phenomenon observed in urban areas in south Osaka was reported. The survey of zinc concentration in soybean leaves taken in urban and suburban arable lands indicated its accumulation in a wide area. And a correlation between easy soluble zinc level in soils and leaf zinc content were shown. Zinc concentrations in suspended particles in air, falling dust and some water samples were che...

  9. LARGE-SCALE INDICATIVE MAPPING OF SOIL RUNOFF

    Directory of Open Access Journals (Sweden)

    E. Panidi

    2017-11-01

    Full Text Available In our study we estimate relationships between quantitative parameters of relief, soil runoff regime, and spatial distribution of radioactive pollutants in the soil. The study is conducted on the test arable area located in basin of the upper Oka River (Orel region, Russia. Previously we collected rich amount of soil samples, which make it possible to investigate redistribution of the Chernobyl-origin cesium-137 in soil material and as a consequence the soil runoff magnitude at sampling points. Currently we are describing and discussing the technique applied to large-scale mapping of the soil runoff. The technique is based upon the cesium-137 radioactivity measurement in the different relief structures. Key stages are the allocation of the places for soil sampling points (we used very high resolution space imagery as a supporting data; soil samples collection and analysis; calibration of the mathematical model (using the estimated background value of the cesium-137 radioactivity; and automated compilation of the map (predictive map of the studied territory (digital elevation model is used for this purpose, and cesium-137 radioactivity can be predicted using quantitative parameters of the relief. The maps can be used as a support data for precision agriculture and for recultivation or melioration purposes.

  10. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    OpenAIRE

    Gina María Hernández-Ruiz; Natalia Andrea Álvarez-Orozco; Leonardo Alberto Ríos-Osorio

    2017-01-01

    Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of t...

  11. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    Science.gov (United States)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  12. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  13. Effectiveness of the GAEC cross compliance standards Rational management of set aside, Grass strips to control soil erosion and Vegetation buffers along watercourses on surface animal diversity and biological quality of soil

    Directory of Open Access Journals (Sweden)

    Marta Biaggini

    2011-08-01

    Full Text Available Landscape simplification and loss of natural and semi-natural habitats are the major causes of biodiversity decrease in agricultural landscapes. In order to mitigate the effects of intensive agricultural management the Ministry of Agricultural, Food and Forestry Policies in Italy has included the agronomic measures Rational management of set aside, Grass strips to control soil erosion and Vegetation buffers along watercourses in the decree on cross compliance. In this paper we review the results of a field research performed in Central Italy. The aim of the study was to evaluate the efficacy of the above mentioned GAEC standards for animal diversity enhancement. Using different animal groups as indicators, superficial Arthropod fauna and Herpetofauna, we found striking differences in the biodiversity levels of areas characterized by the application or by the lack of GAEC standards, with the latter being characterized by a significatively impoverished fauna. In particular, the set aside area and the buffer of riparian vegetation resulted of primary importance to allow higher biodiversity levels. Also the analysis of the biological quality of the soil, as assessed through the QBS-ar index based on edaphic micro-Arthropod fauna, indicated a higher quality of semi-natural habitats with respect to arable lands.

  14. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  15. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant–soil feedback

    NARCIS (Netherlands)

    Jing, Y.; Bezemer, T.M.; Putten, van der W.H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  16. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    NARCIS (Netherlands)

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  17. [Soil organic carbon sequestration rate and its influencing factors in farmland of Guanzhong Plain: a case study in Wugong County, Shannxi Province].

    Science.gov (United States)

    Zhang, Xiao-Wei; Xu, Ming-Xiang

    2013-07-01

    Take Wugong County as an example, soil carbon storage and soil carbon sequestration rate were calculated, the change law of farmland soil organic carbon was explored, and the relationship of farmland soil organic carbon and natural factors, human factors was further revealed. The results of the study showed that: (1) The soil organic carbon contents in 80% of the sampling sites were in the range of 8.0-12.0 g x kg(-1), and the organic carbon contents in 0-20 cm soils showed a normal distribution. (2) In 2011, the organic carbon density of the 0-20 cm farmland soil was 26.3 t x hm(-2), below the national average soil organic carbon density (33.45 t x hm(-2)) of the arable layer. In the last 30 years, the soil carbon sequestration rate in the 0-20 cm layer was 71.3 kg x (hm2 x a)(-1), and in the past five years, the carbon sequestration rate was 480 kg x (hm x a)(-1). The recent carbon sequestration rate was higher than the national average soil carbon sequestration rate of the arable layer [380.78 kg x (hm2 x a)(-1)]. (3) In the semi-humid plain region, soil organic carbon was mainly affected by soil types, landform types, organic fertilizer. Soil types accounted for 30.2% of the organic carbon variability; the landform types and the organic fertilizer could explain 37.7% and 32.1%, respectively. The results of the comprehensive analysis showed that the farmland soil organic carbon density of Wugong County in the past 30 years is increasing, and this probably relies on the utilization of chemical fertilizer and the returning straw. Further study should be conducted on the impact of the chemical fertilizer and returning straw.

  18. Variability in the Water Footprint of Arable Crop Production across European Regions

    Czech Academy of Sciences Publication Activity Database

    Gobin, A.; Kersebaum, K. C.; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; Lalic, B.; Nejedlík, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Saylan, L.; Stricevic, R.; Vucetic, V.; Zoumides, C.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 93. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:86652079 Keywords : simulate yield response * climate - change * virtual water * impact * green * model * blue * agriculture * irrigation * reduction * water footprint * arable crops * cereals * Europe * crop water use * yield Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Water resources Impact factor: 1.832, year: 2016

  19. Uranium in agricultural soils and drinking water wells on the Swiss Plateau.

    Science.gov (United States)

    Bigalke, Moritz; Schwab, Lorenz; Rehmus, Agnes; Tondo, Patrick; Flisch, Markus

    2018-02-01

    Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7-28 μg L -1 ) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO 3 -extractable U concentrations, and 234/238 U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L -1 ), but normally contributes only a small amount (approx. 0-3 μg L -1 ). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO 3 -extractable U (R = 0.7, p water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  1. Assessing biodiversity in arable farmland by means of indicators: an overview

    Directory of Open Access Journals (Sweden)

    Bockstaller Christian

    2011-05-01

    Full Text Available Maintaining biodiversity is one of the key issues of sustainable agriculture. It is now stated that innovation to enhance biodiversity in arable land requires operational assessment tools like indicators. The goal of the article is to provide an overview of available indicators. Besides measured indicators and simple indicators based on management data, we focus on predictive indicators derived from operational models and adapted to ex ante assessment in innovative cropping design. The possibility of use for each indicator type is discussed.

  2. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson , G.P. (UAF Pakistan); (UC); (Hubei); (MSU)

    2017-06-05

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  3. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  4. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  5. Influence of physical and chemical properties of different soil types on optimal soil moisture for tillage

    Directory of Open Access Journals (Sweden)

    Vladimir Zebec

    2017-01-01

    Full Text Available Soil plasticity is the area of soil consistency, i.e. it represents a change in soil condition due to different soil moisture influenced by external forces activity. Consistency determines soil resistance in tillage, therefore, the aim of the research was to determine the optimum soil moisture condition for tillage and the influence of the chemical and physical properties of the arable land horizons on the soil plasticity on three different types of soil (fluvisol, luvisol and humic glaysol. Statistically significant differences were found between all examined soil types, such as the content of clay particles, the density of packaging and the actual and substitution acidity, the cation exchange capacity and the content of calcium. There were also statistically significant differences between the examined types of soil for the plasticity limit, liquid limit and the plasticity index. The average established value of plasticity limit as an important element for determining the optimal moment of soil tillage was 18.9% mass on fluvisol, 24.0% mass on luvisol and 28.6% mass on humic glaysol. Very significant positive direction correlation with plasticity limits was shown by organic matter, clay, fine silt, magnesium, sodium and calcium, while very significant negative direction correlation was shown by hydrolytic acidity, coarse sand, fine sand and coarse silt. Created regression models can estimate the optimal soil moisture condition for soil cultivation based on the basic soil properties. The model precision is significantly increased by introducing a greater number of agrochemical and agrophysical soil properties, and the additional precision of the model can be increased by soil type data.

  6. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing

    International Nuclear Information System (INIS)

    Li, Changsheng Li; Frolking, S.; Butterbach-Bahl, K.

    2005-01-01

    Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75-310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection

  7. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  8. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran; a study based on multivariate data analysis

    International Nuclear Information System (INIS)

    Qishlaqi, Afshin; Moore, Farid; Forghani, Giti

    2009-01-01

    The study presents the application of selected multivariate statistical methods (multivariate analysis of variance, discriminant analysis, principal component analysis) and geostatistical techniques to evaluate soil pollution status in arable lands of the Angouran region, NW Iran. Two representative landuse patterns, cropland and grassland, were selected for the purpose of this study. Seventy soil samples (35 topsoils and 35 subsoils) were collected from the two landuse types and 21 soil parameters including total element content and physicochemical properties were also determined. Results from application of the multivariate analysis of variance showed that the two landuse patterns were not statistically differentiated by subsoil variables, whereas significant differences existed between the two landuse patterns with respect to topsoil variables. Discriminant analysis rendered seven variables (Cu, As, Cd, OM, P, K and total N) as indicator parameters responsible for the discrimination between the two landuse types. Using the principal component analysis (PCA), two main components (PCs) explaining 71.71% of total variance were extracted. PC1, with a high contribution of Ni, Cr, Fe, Mn and clay content was hypothesized as lithogenic component and PC2, with high loadings for the seven discerning variables (Cu, As, Cd, OM, P, K and total N), was considered as an agrogenic component. Geostatistical analyses, including the calculation of semivariogram parameters and model fitting, further supported the PCA results. PC1 was generally characterized by moderate spatial dependence and long-range spatial variation (8000 m) influenced by soil parent martial composition, while PC2 was modelled by pure nugget effect probably reflecting the influences of agrogenic activities. The findings of this study could not only expand our knowledge regarding the soil pollution status in the study area, but would also provide decision makers with the information to manage the agrochemical

  9. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Eronen, Liisa; Rämö, Sari; Welling, Leena; Oinonen, Seija; Mattsoff, Leona; Ruohonen-Lehto, Marja

    2006-06-01

    The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright (c) 2006 Society of Chemical Industry

  11. Manual for prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms

    NARCIS (Netherlands)

    Vereijken, P.

    1999-01-01

    A manual for prototyping Integrated and Ecological Arable Farming Systems (I/EAFS) in interaction with pilot farms is presented. It concerns a comprehensive and consistent approach of 5 steps. Step 1 is establishing a hierarchy of objectives considering the shortcomings of current farming systems in

  12. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  13. Impacts of the Conversion of Forest to Arable Land and Long Term Agriculture Practices on the Water Pathways in Southern Brazil

    Science.gov (United States)

    Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.

    2017-12-01

    Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment

  14. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  15. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, Karin; Kollmann, Johannes

    2010-01-01

    be differences in recruitment. The present study addresses post-dispersal seed predation, mainly of woody plants, as the factor limiting the recolonization of young oak plantations in southern Sweden. Our objectives were to investigate differences in dispersal and post-dispersal seed predation between first......, the colonization of forest plantations by native shrubs and trees appears to be habitat-limited; the only exception being Rhamnus catharticus, for which poor dispersal ability may be more important. Post-dispersal seed predation of forest shrubs and trees was marked, especially in relatively small and isolated...... plantations on ex-arable land. There was a high seed predation of Crataegus monogyna, Sorbus aucuparia and Viburnum opulus on ex-arable land, while that of Frangula alnus and Sambucus racemosa was not associated with site placement and land-use history. Seed predation is probably a more important factor...

  16. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    vary strongly. One arable soil from organic farming even showed a trend directly opposed to the other arable soils examined. We interpret the heterogeneity in reaction of soils to different soil humidity and CO2 mixing ratios as related to activity of different microbiological communities within the soils. Preliminary experiments with sterilization agents that preferably act again bacteria (streptomycin) or fungi (nystatin) indicate that fungi might have played the dominant biotic role in the soils examined. These complex interactions will affect the exchange of OCS between forest ecosystems and the atmosphere and may hinder the use of this compound to catch GPP in a more CO2 independent way.

  17. Assessment of the radiocaesium levels in irish soils and its transfer to crops

    International Nuclear Information System (INIS)

    MacNeill, Geraldine; Duffy, J.T.; Cunningham, J.D.; Coulter, B.; Diamond, S.; McAulay, I.R.; Moran, D.

    1991-02-01

    The behaviour of radiocaesium deposited by the Chernobyl fall-out was investigated in eleven different permanent pastures and arable lands. Samples of grass and subjacent soil at various depths were collected and analysed for their caesium content during a period extending from the Spring of 1987 (one year after the accident) to the Autumn of 1988. Soil from tillage land along with vegetable and grain crops from this land were also sampled and subjected to gamma spectrometric analysis. The results for the pasture soils show that there has been limited downward migration of Chernobyl caesium. In October 1988 more than 88% of caesium of Chernobyl origin was still retained in the 0-10 cm layer of undisturbed pasture soil. It would also appear that at most sites more than 70% of weapons deposited caesiym is still contained in the 0-15 cm soil layer

  18. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Zvarich, S.; Yoschenko, V.; Levchuk, S.; Lundin, S.

    2005-01-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ( 36 Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 ± 10), lettuce leaves (30 ± 15), bean pods (15 ± 11) and wheat seed (23 ± 11) and straw (210 ± 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, 36 Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of 36 Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period

  19. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Lundin, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine)

    2005-07-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 {+-} 10), lettuce leaves (30 {+-} 15), bean pods (15 {+-} 11) and wheat seed (23 {+-} 11) and straw (210 {+-} 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, {sup 36}Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of {sup 36}Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period.

  20. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3--N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  1. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduc...

  2. Moor Journal of Agricultural Research - Vol 7, No 1 (2006)

    African Journals Online (AJOL)

    Green manuring and nitrogen fertilization effects on soil chemical properties, ... Effects of soil moisture stress on floral and pods abortion, reproductive efficiency and grain yield in soybean genotypes (Glycine max (L) Merrill) ... Determinants of farm mechanization among arable crop farmers in Ibarapa ... B Osundare, 63-68.

  3. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  4. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  5. Growth rate of Heterobasidion annosum in Picea abies established on forest land and arable land

    Energy Technology Data Exchange (ETDEWEB)

    Bendz-Hellgren, M.; Johansson, Martin; Swedjemark, G.; Stenlid, J. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Brandtberg, P.O. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research

    1999-07-01

    The growth rates of Heterobasidion annosum in Norway spruce were investigated in southern Sweden. In one study, stump and tree roots in stands established on previous forest or arable land were inoculated with H. annosum-infested sawdust. After 1-3 yrs, the linear extent of colonization by the fungus was measured, based on detection of its conidiophores on incubated samples. The average growth rate was 25 cm yr{sup -1} in stump roots and 9 cm yr{sup -1} in tree roots, neither of which differed significantly between forest and arable land. The feeling of a decayed tree could enhance the spread of H. annosum within root systems. In the second study, the height of discoloration and extent of colonization by H. annosum, measured as above, were assessed in naturally infected trees. On average, discoloration moved through the roots and stem at a rate of 36 cm yr{sup -1}. Heterobasidion annosum was found 60 cm in advance of the discoloration, corresponding to a growth rate of 52 cm yr{sup -1}.

  6. Earthworm assemblages as affected by field margin strips and tillage intensity: An on-farm approach

    NARCIS (Netherlands)

    Crittenden, S.; Huerta, E.; Goede, de R.G.M.; Pulleman, M.M.

    2015-01-01

    Earthworm species contribute to soil ecosystem functions in varying ways. Important soil functions like structural maintenance and nutrient cycling are affected by earthworms, thus it is essential to understand how arable farm management influences earthworm species. One aim of arable field margin

  7. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  8. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine.

    Science.gov (United States)

    Heuer, Holger; Solehati, Qodiah; Zimmerling, Ute; Kleineidam, Kristina; Schloter, Michael; Müller, Tanja; Focks, Andreas; Thiele-Bruhn, Sören; Smalla, Kornelia

    2011-04-01

    Two soils were amended three times with pig manure. The abundance of sulfonamide resistance genes was determined by quantitative PCR 2 months after each application. In both soils treated with sulfadiazine-containing manure, the numbers of copies of sul1 and sul2 significantly increased compared to numbers after treatments with antibiotic-free manure or a control and accumulated with repeated applications.

  9. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    Science.gov (United States)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary

  10. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  11. Impact of agricultural practices on selected soil decomposers fauna

    International Nuclear Information System (INIS)

    Abdalatif, M. A.; Alrayah, A.; Azar, W. Z.

    2009-01-01

    Soil decomposers fauna i.e. collembolan, mites and nematodes were studied and compared between and within sites in relation to site, treatment and time of collection in Shambat arable and El Rwakeeb dry land. Comparison of results between sites showed that population density/volume of decomposers fauna sampled from Shambat site exceeded their assemblages sampled from El Rawakeeb site. Treatment application in form of cattle manure and neem leaves powder were observed to induce insignificant changes in the three faunal groups between the two sites. Temporal variations showed significant annual variations and insignificant seasonal variations between the two sites. Within each site, population density/volume of each of collembolan, mites and nematodes increased in response to cattle manure application in both sites. Whereas, neem leaves powder application induced a significant decrease in population density/volume of collembola in both sites. These results are generally attributed to variability of soil properties which may add to the suitability of Shambat soil to El Rawakeeb one for the survival of decomposers fauna. Within each site, increase in population density/volume of these fauna upon cattle manure application was attributed to ability of cattle manure to improve soil properties and to provide food. The negative effect of neem leaves powder on mites and nematodes was attributed to neem toxicity, whereas, its positive effects on collembolan was attributed to the ability of collembolan to withstand neem toxicity, collembolan probably physiologically resistant and the neem powder provided food, thus increasing its numbers compared to the central treatment.(Author)

  12. Specificity of Cs-137 redistribution in toposequence of arable soils cultivated after the Chernobyl accident

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey

    2017-04-01

    Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial

  13. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  14. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  15. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Directory of Open Access Journals (Sweden)

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  16. Lead in soils, plants and animals

    Energy Technology Data Exchange (ETDEWEB)

    Scheltinga, H

    1955-01-01

    The toxicity of lead for plants is small, except in the case of water cultures. Animals can absorb more lead without toxic effect than was previously expected. This applies to acute poisoning as well as chronic poisoning. As a result of experiments over many years (Allcroft and Blaxter, 1950) the possibility of chronic lead poisoning has been found to be minute. Rations containing 240 mg lead/kg dried fodder, given daily over a period of three years, did not cause any poisoning at all in cattle thus fed. Where lead poisoning did take place, it was observed that the ratio of lead in the dried fodder was > 1000 mg/kg; the proportion was generally much higher. In normal cases grass contains only 5 to 15 mg lead/kg. The total lead content of samples from arable land was 10 to 25 mg/kg soil. For grassland on peat or clay the amount was slightly higher. The influence on the lead status of soils and plants of fertilizing with compost or copper slag flour, both containing a small percentage of lead, proved to be negligible. It is definite that in normal use, these fertilizers cannot cause any danger for either plant or animal. 24 references, 3 tables.

  17. Nuclear techniques for measuring moisture content in soil profiles

    International Nuclear Information System (INIS)

    Barrada, Y.

    1983-01-01

    The prevailing severe shortage of animal feed in most of the developing countries could, to a considerable extent, be overcome through improved range management, which includes introduction of high yielding drought-resistant forage crops, development of adequate water conservation measures, and as far as possible growing annual forage crops on part of the vast areas of arable land currently left fallow each year. Year round measurements are essential for a good understanding of soil water and nutrients dynamics, which allow for adequate evaluation of pasture management alternatives. The methods most commonly used for moisture measurements in soil profiles are discussed because such measurements are likely to form an essential part of any investigation aimed at increasing animal feed production through the development of adequate pasture management practices. (author)

  18. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  19. The Use of Organic vs. Chemical Fertilizer with a Mineral Losses Tax: The Case of Dutch Arable Farmers

    NARCIS (Netherlands)

    Feinerman, E.; Komen, M.H.C.

    2005-01-01

    The paper focuses on farm-level nitrogen fertilization strategies of Dutch arable farmers for analyzing the substitution of organic fertilizers (manure) with chemical fertilizers. The model developed investigates the impact of the major parameters affecting the inferiority of manure compared with

  20. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.

    2003-01-01

    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  1. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    Science.gov (United States)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in native SOM is significantly mineralized in fallow systems to meet microbial C mineralization demands. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the size fractions and management treatments; it also showed that the loss of SOM generally involved dehydrogenation. The temperature at which half of the C was pyrolyzed showed strong correlation with mineralizable C and thus provides solid evidence for a link between the biological and

  2. Soil erosion risk as a measure of the effects of land pattern changes on runoff processes in the landscape – case studies from Lower Austria and Central Bohemia

    Science.gov (United States)

    Devátý, Jan; Strauss, Peter; Hoesl, Rosemarie; Dostal, Tomas; Krása, Josef

    2015-04-01

    Changes in land use, landscape structure and agricultural technologies affect number of soil characteristics as well as rainfall-runoff processes in the landscape. Soil erosion and sediment transport can be easily used for documentation and quantification of the impacts of land use development in time. Extent and structure of arable land within a landscape is driven by technological, social and political, factors and differs between countries. However land structure development is more or less natural process and is driven under normal conditions mainly by climatic and economic forces, the effects of political development is very well documented on different sides of the former iron curtain. There is unique chance to compare the trends in historical development during different historical periods given by both of economic and political forces and to search for optimum land structure, using rainfall-runoff processes as a measure. Land structure analysis and soil erosion risk assessment was carried out for two areas of interest and series of historical periods: • Lower Austrian municipality of Kleinweikersdorf (580 ha) - 1822, 1945, 1966, 1990, 2008 • part of Botic river watershed in Central Bohemia (810 ha) - 1841, 1953, 1971, 1989, 2003, 2013 Land use delimitation and field plots spatial definition was digitized from available data sources (Historical Cadastral maps and aerial photographs). Changes in crop properties and management practices were also taken into account based on historical information. Comparison between time periods shows that political actions can cause substantial impact on field plot sizes. At the Austrian area of interest the number of arable field plot continually decreases from 1203 (in 1822) to 371 (in 2008) whereas at the Czech area of interest the initial number of 469 parcels (in 1841) decreases to 32 (in 1989) and then rises again in the last two time periods. While the trend of rising average parcel size in Austria is continuous

  3. Nutrient production from dairy cattle manure and loading on arable land

    Directory of Open Access Journals (Sweden)

    Seunggun Won

    2017-01-01

    Full Text Available Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS, total nitrogen (TN, and total phosphorus (TP changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i experiment, ii reference, and iii theoretical changes in phosphorus content (ΔP = 0. Results The data revealed the nutrient loading coefficients (NLCs of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

  4. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    Science.gov (United States)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  5. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  6. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  7. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.

    2003-01-01

    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  8. Spatial and temporal diversification of crops dynamics in soil erosion modelling. A case study in the arable land of the upper Enziwigger River, Switzerland.

    Science.gov (United States)

    Borrelli, Pasquale; Meusburger, Katrin; Panagos, Panos; Ballabio, Cristiano; Alewell, Christine

    2017-04-01

    Accelerated soil erosion by water is a widespread phenomenon that affects several Mediterranean and Alpine landscapes causing on-site and off-site environmental impacts. Recognized in the EU Thematic Strategy for Soil Protection as one of the major threats to European soils (COM(2006)231), accelerated soil erosion is a major concern in landscape management and conservation planning (UN SDG 2.4). Agriculture and associated land-use change is the primary cause of accelerated soil erosion. This, because the soil displacement by water erosion mainly occurs when bare-sloped soil surfaces are exposed to the effect of rainfall and overland flow. The Revised Universal Soil Loss Equation (RUSLE) and other RUSLE-based models (which account for more than 90% of current worldwide modelling applications) describe the effect of the vegetation in the so called cover and management factor (C). The C-factor is generally the most challenging modelling component to compute over large study sites. To run a GIS-based RUSLE modelling for a study site greater than few hectares, the use of a simplified approach to assess the C-factor is inevitably necessary. In most of the cases, the C-factor values are assigned to the different land-use classes according to i) the C-values proposed in the literature, and ii) through land-use classifications based on vegetation indices (VI). In previous national (Land Use Policy, 50, 408-421, 2016) and pan-European (Environmental Science & Policy, 54, 438-447, 2015) studies, we computed regional C-values through weighted average operations combining crop statistics with remote sensing and GIS modelling techniques. Here, we present the preliminary results of an object-oriented change detection approach that we are testing to acquire spatial as well temporal crops dynamics at field-scale level in complex agricultural systems.

  9. Biochar application for the remediation of salt-affected soils: Challenges and opportunities.

    Science.gov (United States)

    Saifullah; Dahlawi, Saad; Naeem, Asif; Rengel, Zed; Naidu, Ravi

    2018-06-01

    Soil salinization and sodification are two commonly occurring major threats to soil productivity in arable croplands. Salt-affected soils are found in >100 countries, and their distribution is extensive and widespread in arid and semi-arid regions of the world. In order to meet the challenges of global food security, it is imperative to bring barren salt-affected soils under cultivation. Various inorganic and organic amendments are used to reclaim the salt-affected lands. The selection of a sustainable ameliorant is largely determined by the site-specific geographical and soil physicochemical parameters. Recently, biochar (solid carbonaceous residue, produced under oxygen-free or oxygen-limited conditions at temperatures ranging from 300 to 1000°C) has attracted considerable attention as a soil amendment. An emerging pool of knowledge shows that biochar addition is effective in improving physical, chemical and biological properties of salt-affected soils. However, some studies have also found an increase in soil salinity and sodicity with biochar application at high rates. Further, the high cost associated with production of biochar and high application rates remains a significant challenge to its widespread use in areas affected by salinity and sodicity. Moreover, there is relatively limited information on the long-term behavior of salt-affected soils subjected to biochar applications. The main objective of the present paper was to review, analyze and discuss the recent studies investigating a role of biochar in improving soil properties and plant growth in salt-affected soils. This review emphasizes that using biochar as an organic amendment for sustainable and profitable use of salt-affected soils would not be practicable as long as low-cost methods for the production of biochar are not devised. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  11. A long-term soil structure observatory for post-compaction soil structure evolution: design and initial soil structure recovery observations

    Science.gov (United States)

    Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani

    2016-04-01

    Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density

  12. Total and Available Heavy Metal Concentrations and Assessment of Soil Pollution Indices in Selected Soils of Zanjan

    Directory of Open Access Journals (Sweden)

    M. Taheri

    2017-01-01

    Full Text Available Introduction: Soil is a hardly renewable natural resource. Although soil degradation, caused by either human activities and natural processes is a relatively slow procedure, but its effects are long lasting and most often, irreversible in the time scale of man's life. Among the most significant soil contaminants resulting from both natural and human sources, heavy metals are more important due to their long- term toxicity effects. For evaluating soil's enrichment rate by heavy metals, a wide and full study of soils background values, including total and available fractions of heavy metal contents should be done. Zanjan province has some great mines and concentrating industries of lead and zinc especially in Angoran, Mahneshan. Unfortunately produced waste materials of these industries spread over the adjacent areas. Investigations showed that accumulation of some heavy metals in vegetables and crops planted in this region had occurred. Therefore, performing some investigations in these polluted areas and assessing pollution rate and heavy metals distribution in arable lands had prime importance. Our goals were: 1 determining the total and available amounts of Cu, Pb, Zn and Cd in the soils of arable lands in polluted areas of Zanjan city, 2 producing the distribution map for the metals mentioned above and 3 calculating pollution indices in the soils. Materials and Methods: The study area was in south west of Zanjan city. For soil sampling, a 1 Km by 1 Km grid defined in ArcGIS software on landuse layer and totally 144 points that placed on agricultural lands, due to our goals, were sampled. For sampling, in a 5m radius around the point we collected some subsamples from depth of 0 - 15 cm, and after mixing the subsamples, finally a 1Kg soil sample prepared and sent to the laboratory. Sampled soils were air dried and were passed through a 2mm sieve. Soils organic matter (OM content and texture were determined by Walkely-Black and Bouyoucos

  13. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    Science.gov (United States)

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  15. Anthropogenic effects on soil micromycetes

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2007-01-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  16. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.

    Science.gov (United States)

    Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo

    2009-02-01

    The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.

  17. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  18. Accumulation of Sulfonamide Resistance Genes in Arable Soils Due to Repeated Application of Manure Containing Sulfadiazine ▿

    OpenAIRE

    Heuer, Holger; Solehati, Qodiah; Zimmerling, Ute; Kleineidam, Kristina; Schloter, Michael; Müller, Tanja; Focks, Andreas; Thiele-Bruhn, Sören; Smalla, Kornelia

    2011-01-01

    Two soils were amended three times with pig manure. The abundance of sulfonamide resistance genes was determined by quantitative PCR 2 months after each application. In both soils treated with sulfadiazine-containing manure, the numbers of copies of sul1 and sul2 significantly increased compared to numbers after treatments with antibiotic-free manure or a control and accumulated with repeated applications.

  19. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition

    NARCIS (Netherlands)

    Ho, Adrian; Ijaz, Umer Z.; Janssens, Thierry K.S.; Ruijs, Rienke; Kim, Sang Yoon; de Boer, Wietse; Termorshuizen, Aad; van der Putten, Wim H.; Bodelier, Paul L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the increased

  20. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition.

    NARCIS (Netherlands)

    Ho, A.; Ijaz, Umer Zeeshan; Janssens, Thierry; Ruijs, Rienke; Kim, Sang Yoon; De Boer, W.; Termorshuizen, Aad J; van der Putten, W.H.; Bodelier, P.L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the increased

  1. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition

    NARCIS (Netherlands)

    Ho, Adrian; Ijaz, Umer Z.; Janssens, Thierry K.S.; Ruijs, Rienke; Kim, Sang Yoon; Boer, de Wietse; Termorshuizen, Aad; Putten, van der Wim H.; Bodelier, Paul L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the

  2. Study of soil erosion dynamics on the arable lands of Lublin Upland using isotope techniques (137Cs)

    International Nuclear Information System (INIS)

    Zglobicki, W.; Reszka, M.

    2002-01-01

    One of the consequences of agricultural activity are changes of significant element of the environment, that is terrain relief. Since sixties the radioactive isotope of cesium, 137 Cs, is applied in the examination of the dynamics of the erosion processes. This method is based on the idea that the circulation of this isotope in the environment accompanies to physical transport of soil. Studies proved that cesium is firmly bond by adsorption complex of the soil. Chemical and biochemical processes have limited influence on the transportation of the cesium. By the examination of the horizontal changes of the total cesium activity one can determine a type and intensity of the processes responsible for its migration and thus the migration of the soil particles

  3. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties.

    Science.gov (United States)

    Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H

    2013-12-01

    Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.

  4. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  5. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  6. Effects of Bio-char on Soil Microbes in Herbicide Residual Soils

    Directory of Open Access Journals (Sweden)

    WANG Gen-lin

    2015-10-01

    Full Text Available Effects of biological carbon (bio-char on soil microbial community were studied by pot experiments simulating long residual herbicide residues in soil environment, which clarifed the improvement of biochar and its structural properties on soil microenvironment. The results showed that fungi and actinomycetes had the same effect tendency within 0~0.72 mg·kg-1 in clomazone residue which increased the role of stimulation with crop growth process prolonged, especially in high residue treatment, but strong inhibitory effect on bacteria community was occured early which returned to normal until sugar beet growth to fiftieth day. Soil fungi community decreased with bio-char adding, but had no significant difference with the control. When clomazone residue in soil was below 0.24 mg·kg-1, soil actinomycetes community was higher than control without bio-char, bacteria increased first and then reduced after adding carbon as below 0.12 mg·kg-1. Biochar was ‘deep hole’ structure containing C, O, S and other elements. The results showed that a certain concentration clomazone residue in soil would stimulate soil fungi and actinomycetes to grow. After adding the biochar, the inhibition effect of high herbicides residual on bacterial would be alleviated.

  7. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Šimek, Miloslav, E-mail: misim@upb.cas.cz [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); University of South Bohemia, Faculty of Science, 370 05 České Budějovice (Czech Republic); Virtanen, Seija; Simojoki, Asko [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland); Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); Yli-Halla, Markku [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland)

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg C g{sup − 1} h{sup − 1}, as compared to 2.71 μg C g{sup − 1} h{sup − 1} in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng N g{sup − 1}d{sup − 1}). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. - Highlights: •Boreal acid sulphate soils contain large amounts of organic C and N in subsoils. •Microbial communities throughout the acid

  8. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  9. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  10. Engineering soil organic matter quality: Biodiesel Co-Product (BCP) stimulates exudation of nitrogenous microbial biopolymers

    Science.gov (United States)

    Redmile-Gordon, Marc A.; Evershed, Richard P.; Kuhl, Alison; Armenise, Elena; White, Rodger P.; Hirsch, Penny R.; Goulding, Keith W.T.; Brookes, Philip C.

    2015-01-01

    Biodiesel Co-Product (BCP) is a complex organic material formed during the transesterification of lipids. We investigated the effect of BCP on the extracellular microbial matrix or ‘extracellular polymeric substance’ (EPS) in soil which is suspected to be a highly influential fraction of soil organic matter (SOM). It was hypothesised that more N would be transferred to EPS in soil given BCP compared to soil given glycerol. An arable soil was amended with BCP produced from either 1) waste vegetable oils or 2) pure oilseed rape oil, and compared with soil amended with 99% pure glycerol; all were provided with 15N labelled KNO3. We compared transfer of microbially assimilated 15N into the extracellular amino acid pool, and measured concomitant production of exopolysaccharide. Following incubation, the 15N enrichment of total hydrolysable amino acids (THAAs) indicated that intracellular anabolic products had incorporated the labelled N primarily as glutamine and glutamate. A greater proportion of the amino acids in EPS were found to contain 15N than those in the THAA pool, indicating that the increase in EPS was comprised of bioproducts synthesised de novo. Moreover, BCP had increased the EPS production efficiency of the soil microbial community (μg EPS per unit ATP) up to approximately double that of glycerol, and caused transfer of 21% more 15N from soil solution into EPS-amino acids. Given the suspected value of EPS in agricultural soils, the use of BCP to stimulate exudation is an interesting tool to consider in the theme of delivering sustainable intensification. PMID:26635420

  11. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    Science.gov (United States)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable

  12. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland.

    Directory of Open Access Journals (Sweden)

    John Cussans

    2010-07-01

    Full Text Available Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1 pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2 pollination success could be enhanced because of increased pollinator abundance in the vicinity.We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L. or next to a cereal crop (wheat, Triticum spp.. Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season. We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.

  13. Soil fertility and the role of soils for food security in developing countries

    Science.gov (United States)

    Tittonell, Pablo

    2015-04-01

    Addressing current and future food security is not just a matter of producing more food globally. Agricultural productivity must increase where food is most needed, and where both rural and urban populations are expected to increase the fastest in the near future. This is the situation in most of sub-Saharan Africa and in several other regions of Latin America, Asia and the Pacific. There are some common denominators to these regions. In the first place, the inability of the majority of farmers to access and/or to afford agricultural inputs. Second, the severity with which climate change impacts on some of these regions. Third, the extent of soil degradation, which is estimated at 25% of the arable land in the world. And finally, the fact that some of these regions are hosting valuable biodiversity and/or delivering ecosystem services of global or regional importance, which often leads to competing claims between the local and international communities. It has been repeatedly shown that the technologies of industrial agriculture as practiced in developed regions are ineffective at sustaining soil productivity in the context of smallholder family agriculture. Restoring soil productivity and ecosystem functions in these contexts requires new ways of managing soil fertility. These include: (i) innovative forms of 'precision' agriculture that consider the diversity, heterogeneity and dynamics of smallholder farming systems; (ii) a systems approach to nutrient acquisition and management; (iii) agroecological strategies for the restoration of degraded soils and the maintenance of soil physical properties; and (iv) to capitalize on the recent and growing understanding on soil trophic networks to increase nutrient and water use efficiency. I will provide examples on advances in these fronts, and discuss the challenges ahead their broad implementation by farmers in developing regions.

  14. Weed vegetation ecology of arable land in Salalah, Southern Oman.

    Science.gov (United States)

    El-Sheikh, Mohamed A

    2013-07-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA and CCA programs on data relating to 102 species recorded in 28 plots and farms distributed in the study area, six plant communities were identified: I- Dichanthium micranthum, II- Cynodon dactylon-D. micranthum, III- Convolvulus arvensis, IV- C. dactylon-Sonchus oleraceus, V- Amaranthus viridis and VI- Suaeda aegyptiaca-Achyranthes aspera. The ordination process (CCA) provided a sequence of plant communities and species diversity that correlated with some anthropogenic factors, physiographic variables and crop types. Therefore, length of time since farm construction, disturbance levels and altitude are the most important factors related to the occurrence of the species. The perennial species correlated with the more degraded mountain areas of new farm stands, whereas most of the annuals correlated with old lowland and less disturbed farms.

  15. PROCESSES AND FACTORS OF POROSITY EVOLUTION

    Directory of Open Access Journals (Sweden)

    Gheorghe Jigau

    2010-10-01

    Full Text Available It is widely recognized that agriculture, and mostly the intensive type of agriculture, has an important impact on soil. In this case, even the simplest tillage operation leads to the greatest dysfunction ever met in the trophic chain and to the negative anthropogenic impact on soil. The result is defined by a number of new features (arable horizon, sub-arable horizon, layered and reversed profiles and intensification of some processes like dehumification, compaction, de-structuring etc. Specified processes are distributed and have a common characteristic regarding the accumulation of residual effects from one year to another, from one stage to another, leading to the establishment in agricultural soils of a specific dynamic of pedogenetic processes, different from the natural one.The integrated index of the mentioned processes is the soil pore space and its dynamics in an anthropogenic regime.

  16. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    Science.gov (United States)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were

  17. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  18. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  19. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  20. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  1. Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2014-01-01

    The effects of projected changes in climate and atmospheric CO2 concentration on productivity and nitrogen (N) leaching of characteristic arable and pig farming rotations in Denmark were investigated with the FASSET simulation model. The LARS weather generator was used to provide climatic data...... for the baseline period (1961–90) and in combination with two regional circulation models (RCM) to generate climatic data under the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario for four different 20-year time slices (denoted by midpoints 2020, 2040, 2060 and 2080) for two locations...

  2. Integrated crop protection and environment exposure to pesticides: methods to reduce use and impact of pesticides in arable farming

    NARCIS (Netherlands)

    Wijnands, F.G.

    1997-01-01

    Prototypes of Integrated Farming Systems for arable farming are being developed in the Netherlands based on a coherent methodology elaborated in an European Union concerted action. The role of crop protection in Integrated systems is, additional to all other methods, to efficiently control the

  3. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens

    NARCIS (Netherlands)

    Shin, Keumchul; Diepen, van G.; Blok, W.; Bruggen, van A.H.C.

    2017-01-01

    The microbial inoculant ‘Effective Microorganisms’ (EM) has been used to promote soil fertility and plant growth in agriculture. We tested effects of commercial EM products on suppression of soil-borne diseases, microbial activity and bacterial composition in organically managed sandy soils. EM was

  4. Heavy metals in soil and sediments of the planned ecological network of central Banat, Serbia

    Directory of Open Access Journals (Sweden)

    Ninkov Jordana

    2012-01-01

    Full Text Available In order to establish the current status and assess the impact of agriculture in the area planned to be included into the envisaged environmental network, we analyzed the arable soil, pasture soil and sediments for the content of heavy metals. Out of a total 38 analyzed soil and sediment samples, only 2 were found to contain heavy metals in concentrations higher than the MAC for agriculture soil. An increased concentration of copper (189.1 mg/kg was recorded in a sample of vineyard soil and increased nickel concentrations were recorded in one sample of pasture soil (60.9 mg/kg. Further research showed that the high Ni concentrations were of the geochemical origin, while the high Cu was of anthropogenic origin. Out of a total 10 sediment samples analyzed according to Dutch criteria for threshold values, increased concentrations of Cu and Zn were found in one sample, and high concentrations of Ni were found in 4 samples. At the same time, the heavy metal contents in the analyzed sediments were much below the anticipated remediation values.

  5. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  6. Effect of NPK fertilization and elemental sulphur on growth and yield of lowbush blueberry

    Directory of Open Access Journals (Sweden)

    M. STARAST

    2008-12-01

    Full Text Available The aim of the research was to determine the effect of fertilizers on the pH of former arable soils and on the growth and the yield of the lowbush blueberry (Vaccinium angustifolium Ait.. Lowbush blueberry fertilization experiments were established in 1999 at two locations – at Kärla, Saaremaa, West Estonia and at Vasula, Tartu County, South Estonia. Experimental sites were situated on different soils: soil pHKCl at Kärla was 5.5 and at Vasula 6.2. Elemental sulphur and acidifying fertilizers (ammonium sulfate, potassium sulfate and superphosphate were used in both plantations. Fertilizers were applied based on nutrient in the soil and sulphur was applied at 100 g m–2. Plant growth was recorded in 2001, 2002 and 2003. A positive influence of NPK fertilization on yield was found in both Kärla and Vasula, and yield were 336 g and 41 g higher compared to the control, respectively. The vegetative growth and yield of blueberry depended significantly on soil pH. Elemental sulphur increased soil acidity and on loamy sand soil did not increase plant productivity. The sulphur effect on soil pH began to decrease three years after application. Sulphur can be recommended to increase soil acidity in nutrient-rich soil but, not nutrient poor soil with light texture, where only NPK fertilizers were effective.;

  7. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  8. Effects of plutonium on soil microorganisms

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1982-01-01

    As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO 2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239 Pu(NO 3 ) 4 (solubility, 2 evolution rate and total accumulated CO 2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu-solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed from [ 238 Pu 2 (diethylenetriaminepentaacetate) 3 ], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways

  9. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  10. Frequency distribution of Radium-226, Thorium-228 and Potassium-40 concentration in ploughed soils

    International Nuclear Information System (INIS)

    Drichko, V.F.; Krisyuk, B.E.; Travnikova, I.G.; Lisachenko, E.P.; Dubenskaya, M.A.

    1977-01-01

    The results of studying Ra-226, Th-228 and K-40 concentration distribution laws in podsol, chernozem and saline soils are considered. Radionuclide concentrations were determined by gamma-spectrometric method in the samples chosen from arable soil layer according to the generally accepted agrotechnical procedure. Measuring procedure is described. The results show that frequency distributions of radionuclide concentrations transform from asymmetric form in normal coordinates into symmetric form in logarithmic coordinates. The usage of the lognormal law to describe frequency concentration distributions is substantiated. The values of concentration distribution parameters are given. The analysis of the data obtained permits to establish that Ra-226 and Th-228 concentrations in soils distribute lognormally and K-40 concentrations - normally and lognormally. According to the degree of decreasing mean concentrations of Ra-226 and Th-228, soils lie in line: chernozems=chernozem salterns > podsols; and according to the degree of decreasing mean quadratic deviation - in line: podsols>chernozems=salterns. It is necessary to determine the value of mean quadratic deviation and distribution type for full characteristics of the studied soil radioactivity

  11. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  12. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Science.gov (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  13. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    Directory of Open Access Journals (Sweden)

    Martina Köberl

    Full Text Available BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt. Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90, and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37% than in the desert (11%. Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%; disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural

  14. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  15. An incubation system to trace carbon fluxes in soil - First experimental

    Science.gov (United States)

    Thiessen*, Stefany; Gleixner, Gerd; Reichstein, Markus

    2010-05-01

    Soils contain the largest carbon pool in terrestrial ecosystems and it is widely assumed that a considerable fraction of this pool might be mobilized by global warming. Numerous investigations have proven that soil respiration is a mixture of several source, like root rhizosphere and soil organic matter (SOM) degradation. However, little is still known about soil carbon dynamics and the influence of microbes on this process. We developed an incubation system to perform multitracer experiments to quantify the contribution of microorganisms to carbon turnover from different carbon sources. A natural 13C label was used to mark carbon sources. The old carbon in the SOM held a depleted 13C3 signal and newly added C was enriched in 13C4. Accordingly, in the experiment we quantified the relative respiration of carbon from added sugars and soil organic matter by microbial groups, with additional application of fungicide (cycloheximide). A root free arable soil was divided into three sets, all with depleted C3 soil, but varied in terms of the added material: one with C4 glucose, a second with C4 glucose combined with fungicide and the last one with water application only, as control. To characterize microbial communities and estimate microbial biomass we extract phospholipid fatty acids (PLFA). Furthermore, by measuring the isotopic ratio of the PLFA it was also possible to identify microorganisms that metabolised the traced material. Preliminary results showed that the glucose application stimulated microbial growth in the beginning, but afterwards the microbial biomass decreased again over time. However, a change in the microbial community composition could not be observed, regardless to the kind of added material. Nevertheless, the respiration response slowed down after the fungicide application, and a second respiration pulse was induced by this application. This was probably due to reactivation of the fungi, after the effect of the fungicide expired.

  16. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  17. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    Science.gov (United States)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  18. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine.

    Science.gov (United States)

    Ding, Guo-Chun; Radl, Viviane; Schloter-Hai, Brigitte; Jechalke, Sven; Heuer, Holger; Smalla, Kornelia; Schloter, Michael

    2014-01-01

    Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ.

  19. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ.

  20. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine

    Science.gov (United States)

    Ding, Guo-Chun; Radl, Viviane; Schloter-Hai, Brigitte; Jechalke, Sven; Heuer, Holger; Smalla, Kornelia; Schloter, Michael

    2014-01-01

    Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ. PMID:24671113

  1. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  2. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    Science.gov (United States)

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  3. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  4. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  5. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  6. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  7. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  8. Biochar has no effect on soil respiration across Chinese agricultural soils.

    Science.gov (United States)

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  9. Effects of climate change on yield potential of wheat and maize crops in the European Union

    NARCIS (Netherlands)

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  10. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean-Pierre; Kiss, Jozsef; Köhl, Jürgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Effect of pesticides on soil microbial community.

    Science.gov (United States)

    Lo, Chi-Chu

    2010-07-01

    According to guidelines for the approval of pesticides, information about effects of pesticides on soil microorganisms and soil fertility are required, but the relationships of different structures of pesticides on the growth of various groups of soil microorganisms are not easily predicted. Some pesticides stimulate the growth of microorganisms, but other pesticides have depressive effects or no effects on microorganisms. For examples, carbofuran stimulated the population of Azospirillum and other anaerobic nitrogen fixers in flooded and non-flooded soil, but butachlor reduced the population of Azospirillum and aerobic nitrogen fixers in non-flooded soil. Diuron and chlorotoluron showed no difference between treated and nontreated soil, and linuron showed a strong difference. Phosphorus(P)-contains herbicides glyphosate and insecticide methamidophos stimulated soil microbial growth, but other P-containing insecticide fenamiphos was detrimental to nitrification bacteria. Therefore, the following review presents some data of research carried out during the last 20 years. The effects of twenty-one pesticides on the soil microorganisms associated with nutrient and cycling processes are presented in section 1, and the applications of denaturing gradient gel electrophoresis (DGGE) for studying microbial diversity are discussed in section 2.

  12. [Effect of biochar addition on soil evaporation.

    Science.gov (United States)

    Xu, Jian; Niu, Wen Quan; Zhang, Ming Zhi; Li, Yuan; Lyu, Wang; Li, Kang-Yong; Zou, Xiao-Yang; Liang, Bo-Hui

    2016-11-18

    In order to determine the rational amount of biochar application and its effect on soil hydrological processes in arid area, soil column experiments were conducted in the laboratory using three biochar additions (5%, 10% and 15%) and four different biochar types (devaporation. The results showed that the addition of biochar could change the phreatic water recharge, soil water-holding capacity, capillary water upward movement and soil evaporation obviously. But the effects were different depending on the type of biochar raw material and the size of particle. The phreatic water recharge increased with the increasing amount of biochar addition. The addition of biochar could obviously enlarge the soil water-holding capacity and promote the capillary water upward movement rate. This effect was greater when using the material of bamboo charcoal compared with using wood charcoal, while biochar with small particle size had greater impact than that with big particle size. The biochar could effectively restrain the soil evaporation at a low addition amount (5%). But it definitely promoted the soil evaporation if the addition amount was very high. In arid area, biochar addition in appropriate amount could improve soil water retention capacity.

  13. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes.

    Science.gov (United States)

    Mulder, Christian; Maas, Rob

    2017-11-28

    Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

  14. International bioenergymarkets - the effects of biofuelpolicies on agriculture and arable area; Kansainvaelinen bioenergiakauppa. Biopolttoainetavoitteiden vaikutukset maatalouteen ja viljelyalan kaeyttoeoen

    Energy Technology Data Exchange (ETDEWEB)

    Rintamaeki, H.; Aro-Heinilae, E.

    2012-11-01

    is based on corn and the oil seed affects the prices of foods and weakens access of especially the world's poorest to the food market. Biofuels production has increased so direct as indirect changes into the use of the land. Direct changes refer to the introduction of the new land to the biofuels production. The indirect changes in the use of the land can be the result from biofuels production displacing services or commodities (food, feed, fiber products) on land currently in production. It is supposed the growth of the arable land in the different biofuel scenarios being 1-4 per cent at a global level compared with a situation without the production of biofuels. Growth pressure of arable land remain moderate, however effects to food prices with firs generation biofuels are high, which dilutes food security. This comes crucial when taken into account pressure that comes from population growth, as well as the fact that effects allocates the most towards the most poor which use prominent share of their income for staple foodstuff purchase. Development of second generation biofuels, which production is based on byproduct and wastes or biomass that is cultivated in marginal lands, is essential to meet political biofuel targets in sustainable manner. (orig.)

  15. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán

    2011-01-01

    efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity......Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...

  16. Fire effects on soils: the human dimension.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H

    2016-06-05

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  17. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  18. Capability and quality assessment of rice growing hydric soils in majuli river island, assam, India

    Directory of Open Access Journals (Sweden)

    Bhaskara Phaneendra Bhaskar

    2013-06-01

    Full Text Available The  wetland soils in  majuli island is a unique in maintaining rice ecology and geoenvironment in Brahmaputra valley of Assam  due to increasing  rate of  bankline erosion in southern bank  and expansion of channel bars on northern banks. These hydric soils in the subgroups of aquents and aquepts are  saturated throughout year as assessed from depleted matrix with hue 10YR, 2.5Y and 5Y, chroma less than 2, stratified textures, neutral to slightly alkaline reaction, low cation exchange capacity  and poor exchangeable base status. The  assessment of land capability and soil quality  for rice production in   hydric soils  was conducted on twenty four soil mapping units derived from reconnaissance soil survey done on 1:50000 scale.  As per  land capability  assessment, these soils are  good(classII to fairly good(IV for arable use with limitations of low fertility status, moderate to severe wetness and moderate to rapid permeability. The soil quality rating with  multiple variable indicator transform(MVIT technique  of  twenty hydric soil units in active and old floodplains was  medium (35 to 65per cent with six indicators(pH, organic carbon, base saturation, effective rooting depth , structure and texture meeting the thresh hold value  above 65 per cent.  Thirty five  per cent of total area is suitable for rice cultivation as against the current cropped area of 7.2 per cent with potassium and zinc deficiency. The determination of soil quality in relation to land capability was found useful to design best management practices for wetlands in the region that ensure sustainable land use.

  19. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  20. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  1. Rimsulfuron in Soil: Effects on Microbiological Properties under Varying Soil Conditions

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2011-01-01

    Full Text Available The effects of rimsulfuron a sulfonylurea herbicide on the growth and activity of soil microorganisms under laboratory conditions was investigated in two soils. The application rates were: 0.2, 2.0 and 20.0 mg a.i kg-1 soil. The lowest concentration tested was the label rate (0.2 mg a.i kg-1, and the other two were ten and hundred timeshigher. No adverse effects on microbiological processes were observed for the label rate. Decrease in microbial biomass carbon, dehydrogenase activity, fungi and bacteria in comparison with untreated control, were found at higher rates. The magnitude of these effects were generally slight and transitory.

  2. Solid/liquid partition coefficients (Kd) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    International Nuclear Information System (INIS)

    Sheppard, Steve; Sohlenius, Gustav; Omberg, Lars-Gunnar; Borgiel, Mikael; Grolander, Sara; Norden, Sara

    2011-11-01

    Solid/liquid partition coefficients (K d ) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K d data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K d values were generally lower for peat compared to clay soils. There were also clear differences in K d resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K d values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K d values were generally consistent with the corresponding regolith K d values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  3. Ground beetle (Coleoptera, Carabidae diversity in Finnish arable land

    Directory of Open Access Journals (Sweden)

    J.K. HELENIUS

    2008-12-01

    Full Text Available Carabid data compiled from six independent studies, consisting of 97 799 individuals trapped by pitfalls from Finnish agricultural fields and identified to 111 species were analyzed. Shannon-Wiener H' diversity index was typically around 2.5 and expected species number rarefied to 600 trapped individuals was typically around 30 species. The five most abundant species accounted for 42% of the total catch, and the thirty most abundant species made up 98% of the total catch. Percentage similarities among the assemblages by PS-index were from 16% to 48%. In comparison to published data about carabid diversity in boreal forests, which form the dominating habitat matrix in which Finnish farmland is embedded as relatively small patches, arable fields harbor more species rich assemblages, with more even rank-abundance distributions but variable species composition. Importance of landscape (regional level, instead of spatial level of crop fields, in understanding carabid diversity in farmland is discussed. Inclusion of carabids into monitoring schemes of agro-biodiversity at landscape level is suggested.

  4. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria

    International Nuclear Information System (INIS)

    Martinez-Carballo, Elena; Gonzalez-Barreiro, Carmen; Scharf, Sigrid; Gans, Oliver

    2007-01-01

    LC-MS/MS was used for determination of selected tetracyclines, sulfonamides, trimethoprim, and fluoroquinolones in manure samples of pig, chicken and turkey, as well as arable soils fertilized with manure. Recoveries from spiked samples ranged from 61 to 105%. Method quantification limits were set to 100 μg/kg for all substances. Analysis of 30 pig manure, 20 chicken and turkey dung, and 30 lyophilized soil samples taken in Austria revealed that in pig manure up to 46 mg/kg chlortetracycline, 29 mg/kg oxytetracycline and 23 mg/kg tetracycline could be detected. As representatives of the group of sulfonamides, sulfadimidine in pig manure and sulfadiazine in chicken and turkey dung were detected in significant amounts (maximum concentration, 20 and 91 mg/kg, respectively). Enrofloxacin was particularly observed in chicken and turkey samples. Positive detection of chlortetracycline, enrofloxacin, and ciprofloxacin, in soil samples should be outlined as most important results of this study. - Specific exposure data of selected veterinarian antibiotics in manure and samples of agriculturally used soils are reported for the first time in Austria

  5. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Carballo, Elena [Department of Hazardous Substances and Metabolites, Umweltbundesamt GmbH - Austrian Federal Environment Agency, Spittelauer Laende 5, A-1090 Vienna (Austria); Gonzalez-Barreiro, Carmen [Department of Hazardous Substances and Metabolites, Umweltbundesamt GmbH - Austrian Federal Environment Agency, Spittelauer Laende 5, A-1090 Vienna (Austria); Scharf, Sigrid [Department of Hazardous Substances and Metabolites, Umweltbundesamt GmbH - Austrian Federal Environment Agency, Spittelauer Laende 5, A-1090 Vienna (Austria); Gans, Oliver [Department of Hazardous Substances and Metabolites, Umweltbundesamt GmbH - Austrian Federal Environment Agency, Spittelauer Laende 5, A-1090 Vienna (Austria)

    2007-07-15

    LC-MS/MS was used for determination of selected tetracyclines, sulfonamides, trimethoprim, and fluoroquinolones in manure samples of pig, chicken and turkey, as well as arable soils fertilized with manure. Recoveries from spiked samples ranged from 61 to 105%. Method quantification limits were set to 100 {mu}g/kg for all substances. Analysis of 30 pig manure, 20 chicken and turkey dung, and 30 lyophilized soil samples taken in Austria revealed that in pig manure up to 46 mg/kg chlortetracycline, 29 mg/kg oxytetracycline and 23 mg/kg tetracycline could be detected. As representatives of the group of sulfonamides, sulfadimidine in pig manure and sulfadiazine in chicken and turkey dung were detected in significant amounts (maximum concentration, 20 and 91 mg/kg, respectively). Enrofloxacin was particularly observed in chicken and turkey samples. Positive detection of chlortetracycline, enrofloxacin, and ciprofloxacin, in soil samples should be outlined as most important results of this study. - Specific exposure data of selected veterinarian antibiotics in manure and samples of agriculturally used soils are reported for the first time in Austria.

  6. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Rojas, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech; Sevilla Univ. (Spain). MED Soil Research Group; Jordan, A.; Zavala, L.M. [Sevilla Univ. (Spain). MED Soil Research Group; Rosa, D. de la [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); Abd-Elmabod, S.K. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); National Research Centre, Cairo (Egypt). Dept. of Soil and Water Use; Anaya-Romero, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech

    2012-07-01

    Soil C sequestration through changes in land use and management is one of the sustainable and long-term strategies to mitigate climate change. This research explores and quantifies the role of soil and land use as determinants of the ability of soils to store C along Mediterranean systems. Detailed studies of soil organic C (SOC) dynamics are necessary in order to identify factors determining fluctuations and intensity of changes. In this study, SOC contents from different soil and land use types have been investigated in Andalusia (Southern Spain). We have used soil information from different databases, as well as land use digital maps, climate databases and digital elevation models. The average SOC content for each soil control section (0-25, 25-50 and 50-75 cm) was determined and SOC stocks were calculated for each combination of soil and land use type, using soil and land cover maps. The total organic C stocks in soils of Andalusia is 415 Tg for the upper 75 cm, with average values ranging from 15.9 MgC ha{sup -1} (Solonchaks under ''arable land'') to 107.6 MgC ha{sup -1} (Fluvisols from ''wetlands''). Up to 55% of SOC accumulates in the top 25 cm of soil (229.7 Tg). This research constitutes a preliminary assessment for modelling SOC stock under scenarios of land use and climate change. (orig.)

  7. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  8. The effects of land use types and soil depth on soil properties of ...

    African Journals Online (AJOL)

    The effects of land use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia. ... immediate intervention to protect the remnant forests and to replenish the degraded soil properties for sustainable agricultural productivity. Keywords: cultivation, deforestation, grazing, land management, soil fertility ...

  9. Effects of season and urea treatment on infection of stumps of Picea abies by Heterobasidion annosum in stands on former arable land

    Energy Technology Data Exchange (ETDEWEB)

    Brandtberg, P.O. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research; Johansson, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Seeger, P. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Statistics

    1996-09-01

    Between 1986 and 1990, a series of thinnings were made in previously unthinned first rotation stands on former arable land located in the southern half of Sweden. The aim was to evaluate the effects of season and urea treatment on the frequency of infection of stumps of Norway spruce (Picea abies (L.) Karst.) by the root-rot fungus Heterobasidion annosum (Fr.) Bref. Untreated stumps, resulting from 60 thinnings (22-100 stumps each, altogether ca 3000 stumps) made at different times of year, were investigated 3-24 months after cutting to determine whether they were infected with H. annosum. On average only 2% of the stumps from thinnings made in November-February were infected, whereas the incidence of infection among stumps thinned in June-July was 34%. Two methods of treating stumps with urea to prevent stump infection by H. annosum after thinning were evaluated in terms of effectiveness. The freshly cut stumps were treated with a 20% urea solution, transformed to a gel by adding 0.2% carboxymethyl cellulose, or with a 30% urea solution. On average, the reduction in infection rate obtained was 62% with the first method and 85% with the latter. In a separate study involving a concentration series of urea, there was a considerable drop in protection efficiency, from 89% to 58%, when the concentration was decreased from 30% to 15%. 38 refs, 3 figs, 1 tab

  10. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Threatened southern African soils: A need for appropriate ecotoxicological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Eijsackers, Herman [Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Reinecke, Adriaan; Reinecke, Sophie [Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland 7602 (South Africa); Maboeta, Mark, E-mail: mark.maboeta@nwu.ac.za [Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2017-03-15

    In southern Africa arable soils are limited due to low rainfall and are threatened by anthropogenic activities like agriculture and mining making it susceptible to degradation. The aim of this study is to review the existing information available with regards to soil contamination and its possible threats towards biodiversity and quality of southern African soils. Some of the issues being addressed in this paper include the focus areas of ecotoxicological research in southern African countries, levels of contaminants in soils, the impacts of climate on soil animals and the representativity of standardised test species. In order to address this, we report on a literature search, which was done to determine the main focus areas of soil ecotoxicological research, highlighting strengths and research needs in comparison to approaches elsewhere in the world. Further, to address if the risk assessment approaches of Europe and the USA are valid for southern African environmental conditions; this in the light of differences in temperature, rainfall and fauna. It is concluded that risk assessment procedures for Europe and the USA were based on non-southern African conditions making it necessary to rethink risk assessment studies; although limited, in southern Africa. We recommend future research that has to be undertaken to address these issues. This research should include investigating species sensitivities in responses to contamination and including insects likes ants and termites in ecological risk assessment studies.

  12. Threatened southern African soils: A need for appropriate ecotoxicological risk assessment

    International Nuclear Information System (INIS)

    Eijsackers, Herman; Reinecke, Adriaan; Reinecke, Sophie; Maboeta, Mark

    2017-01-01

    In southern Africa arable soils are limited due to low rainfall and are threatened by anthropogenic activities like agriculture and mining making it susceptible to degradation. The aim of this study is to review the existing information available with regards to soil contamination and its possible threats towards biodiversity and quality of southern African soils. Some of the issues being addressed in this paper include the focus areas of ecotoxicological research in southern African countries, levels of contaminants in soils, the impacts of climate on soil animals and the representativity of standardised test species. In order to address this, we report on a literature search, which was done to determine the main focus areas of soil ecotoxicological research, highlighting strengths and research needs in comparison to approaches elsewhere in the world. Further, to address if the risk assessment approaches of Europe and the USA are valid for southern African environmental conditions; this in the light of differences in temperature, rainfall and fauna. It is concluded that risk assessment procedures for Europe and the USA were based on non-southern African conditions making it necessary to rethink risk assessment studies; although limited, in southern Africa. We recommend future research that has to be undertaken to address these issues. This research should include investigating species sensitivities in responses to contamination and including insects likes ants and termites in ecological risk assessment studies.

  13. Effects of fire ash on soil water retention

    NARCIS (Netherlands)

    Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J.

    2010-01-01

    Despite the pronounced effect of fire on soil hydrological systems, information on the direct effect of fire on soil water retention characteristics is limited and contradictory. To increase understanding in this area, the effect of fire on soil water retention was evaluated using laboratory burning

  14. Author Details

    African Journals Online (AJOL)

    ) on serum lipids levels of normoglycaemic rats. Abstract · Vol 7, No 3 (2011) - Articles Effects of spent engine oil pollution on arable soil of Nekede Mechanic Village Owerri, Nigeria Abstract. ISSN: 0794-4713. AJOL African Journals Online.

  15. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  16. Study and monitoring of the contamination of cultivated soils; Etude et controle de la contamination des sols cultives

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, P.; Grauby, A.

    1960-07-15

    Arable lands are directly concerned by radioactive fallouts as a large part of radio-elements is fixed in the soil first centimetres in which roots of many plants are growing. The authors report the study of fixations at the level of roots, of the movements of radio-elements in the soil solution at their neighbourhood, and of the influence of leaching (by rainfalls or irrigation). Variations of soil content in calcium and strontium have been achieved to highlight dispersion and inhibition factors. The authors present the implemented experimental method, i.e. how soils have been contaminated, how crop pots have been prepared, and how the experiment is performed. Experiments are performed by using ray grass as a crop. The authors assessed radioactive uptake by aerial parts of the plant, studied the rhizosphere, and discussed radiographies obtained on different pots (contaminated, seeded or not, watered or not, with addition of different quantities of strontium or calcium compound)

  17. Soil ecological impacts of the short rotation industry with poplar trees and pastures in Mecklenburg-Western Pomerania; Bodenoekologische Auswirkungen der Kurzumtriebswirtschaft mit Pappeln und Weiden in Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Kahle, Petra; Moeller, Josefine; Seelig, Andreas; Baum, Christel [Rostock Univ. (Germany). Professur Bodenphysik und Ressourcenschutz

    2013-10-01

    The impact of short rotation coppice (SRC), a former soil rotation coppice (FRC) and a continuously annually tilled arable soil (TS) on different soil properties was investigated. Parameters were chemical soil properties, like the concentration of soil organic matter (SOC) and total nitrogen (Nt), physical soil properties, like the bulk density, porosity and aggregate stability and biological soil properties, like abundance and biomass of earth worms. The return to annual crops involved an intense tillage and aeration of the soil. The study indicated, that the lack of tillage under SRC and the quantity of leaf and root litter can lead to an increased carbon accumulation in the upper soil. Tillage of former SRC leads to a fast redistribution of SOC in the topsoil combined with a loss of porosity, aggregate stability and abundance of earth worms. Subsequent investigations should contribute to select tillage strategies for FRC, which contribute to conserve the accumulated SOC and decrease the impact on the porosity and aggregate stability. (orig.)

  18. Invasive soil organisms and their effects on belowground processes

    Science.gov (United States)

    Erik Lilleskov; Jr. Mac A. Callaham; Richard Pouyat; Jane E. Smith; Michael Castellano; Grizelle Gonzalez; D. Jean Lodge; Rachel Arango; Frederick. Green

    2010-01-01

    Invasive species have a wide range of effects on soils and their inhabitants. By altering soils, through their direct effects on native soil organisms (including plants), and by their interaction with the aboveground environment, invasive soil organisms can have dramatic effects on the environment, the economy and human health. The most widely recognized effects...

  19. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China.

    Science.gov (United States)

    Liu, Chen; Wang, Honglan; Tang, Xiangyu; Guan, Zhuo; Reid, Brian J; Rajapaksha, Anushka Upamali; Ok, Yong Sik; Sun, Hui

    2016-01-01

    A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N2 adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1-10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha(-1) on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.

  20. Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)

    Science.gov (United States)

    Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna

    2014-05-01

    The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize

  1. Proposal for Reference Soil Concentrations of Radiocesium Applicable to Accidentally Contaminated Rice and Soybean Fields

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon

    2014-01-01

    Radionuclides in arable soil can be transferred to food plants via root uptake. If radionuclide concentrations in food plants to be grown in contaminated soil are estimated to be higher than the authorized food standards, their culture needs to be cancelled or ameliorating practices need to be taken. Therefore, it is necessary to establish soil concentration limits or reference soil concentrations of radiocesium standing with the food standards in preparation for potential severe NPP accidents in this and adjacent countries. In the present study, reference soil concentrations of radiocesium for rice and soybean, two of the most important food plants in Korea, were provisionally established using all relevant domestic data of soil-to-plant transfer factor (TF). The reference soil concentrations of radiocesium for rice and soybean were calculated using available domestic TF data, and were proposed for provisional use at the time of a severe NPP accident. The present RSCs are based on limited numbers of 137 Cs TF values. More amounts of relevant TF data should be produced to have more reliable RSCs. For other staple-food plants such as Chinese cabbage and radish, RSCs of radiocesium should also be established. However, only a couple of relevant domestic TF values are available for these vegetables

  2. Proposal for Reference Soil Concentrations of Radiocesium Applicable to Accidentally Contaminated Rice and Soybean Fields

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radionuclides in arable soil can be transferred to food plants via root uptake. If radionuclide concentrations in food plants to be grown in contaminated soil are estimated to be higher than the authorized food standards, their culture needs to be cancelled or ameliorating practices need to be taken. Therefore, it is necessary to establish soil concentration limits or reference soil concentrations of radiocesium standing with the food standards in preparation for potential severe NPP accidents in this and adjacent countries. In the present study, reference soil concentrations of radiocesium for rice and soybean, two of the most important food plants in Korea, were provisionally established using all relevant domestic data of soil-to-plant transfer factor (TF). The reference soil concentrations of radiocesium for rice and soybean were calculated using available domestic TF data, and were proposed for provisional use at the time of a severe NPP accident. The present RSCs are based on limited numbers of {sup 137}Cs TF values. More amounts of relevant TF data should be produced to have more reliable RSCs. For other staple-food plants such as Chinese cabbage and radish, RSCs of radiocesium should also be established. However, only a couple of relevant domestic TF values are available for these vegetables.

  3. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    Science.gov (United States)

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  4. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  5. Modeling of the cesium 137 air transfer taking account of dust-making distinction on arable and long-fallow lands

    International Nuclear Information System (INIS)

    Bogdanov, A.P.; Zhmura, G.M.

    1997-01-01

    The mathematical model for air transfer of cesium 137 out from the contaminated regions which takes into account of dust-making distinction on arable and long-fallow lands is suggested. The calculation results of near-ground concentrations of cesium 137 for several towns of Belarus are presented. The sources of the contamination of the atmosphere in each calculated point have been analysed

  6. Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

    Directory of Open Access Journals (Sweden)

    Z Nemati

    2018-03-01

    Full Text Available Introduction The compaction of soil by agricultural equipment has become a matter of increasing concern because compaction of arable lands may reduce crop growth and yield, and it also has environmental impacts. In nature, soils could be compacted due to its own weights, external loads and internal forces as a result of wetting and drying processes. Soil compaction in sugarcane fields usually occurs due to mechanized harvesting operations by using heavy machinery in wet soils. Adding plant residues to the soil can improve soil structure. To improve soil physical quality of sugarcane fields, it might be suggested to add the bagasse and filter cake, which are the by-products of the sugar industry, to the soils. When a soil has been compacted by field traffic or has settled owing to natural forces, a threshold stress is believed to exist such that loadings inducing lower than the threshold cause little additional compaction, whilst loadings inducing greater stresses than the threshold cause much additional compaction. This threshold is called pre-compaction stress (σpc. The σpc is considered as an index of soil compactibility, the maximum pressure a soil has experienced in the past (i.e. soil management history, and the maximum major principal stress a soil can resist without major plastic deformation and compaction. Therefore, the main objective of this study was to investigate the effects of wetting and drying cycles, soil water content, residues type and percent on stress at compaction threshold (σpc. Materials and Methods In this research, the effect of adding sugarcane residues (i.e., bagasse and filter cake with two different rates (1 and 2% on pre-compaction stress (σpc in a silty clay loam soil which was prepared at two relative water contents of 0.9PL (PL= plastic limit, moist and 1.1PL (wet with or without wetting and drying cycles. This study was conducted using a factorial experiment in a completely randomized design with three

  7. Effect of slash on forwarder soil compaction

    Science.gov (United States)

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  8. Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems

    Science.gov (United States)

    Khodzhaeva, A. K.; Semenov, V. M.

    2015-12-01

    The amount of active (potentially mineralizable) organic carbon (C0) in the 1-m-deep layer of typical chernozem, dark-gray forest soil, and gray forest soil was estimated for virgin plots and arable land. It was shown that C0 is mainly found in the topsoil (0-20 cm), where its pool reaches 32-60% of the total amount of C0 in the layer of 0-100 cm. The C0 content and its portion in the total organic carbon decrease down the soil profiles. The disturbance of the structure of the pool of active organic carbon—the loss of the moderately mineralizable (0.1 > k 2 > 0.1 day-1) fraction—takes place in the upper horizon of plowed soils. The total pool of C0 in the upper meter of typical chernozem under cropland and under meadow-steppe cenosis comprises 2.8 and 5.2 t/ha, respectively; for the dark gray forest soil under cropland and forest, it reaches 5.5 and 9.8 t/ha, respectively; and for the gray forest soil under cropland and forest, 2.4 and 3.4 t/ha, respectively. The pools of C0 in the typical chernozem. dark gray forest, and gray forest soils are comparable with the values of the annual C-CO2 emission from the soils of these zones.

  9. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  10. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  11. Barriers and drivers towards the incorporation of crop residue in the soil. Analysis of Italian farmers’ opinion with the theory of planned behaviour

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2015-12-01

    Full Text Available Despite the benefits arising from incorporating crop residue in the soil, some farmers decide to burn or sell it. The objective of the work described in this paper was to quantify the adoption of crop residue incorporation by Italian farmers, and to identify the barriers and drivers that they perceive towards this agricultural management practice. We applied a behavioural approach, based on the theory of planned behaviour. In agriculture, this theory can be used to study individual farmer beliefs to understand the intention to adopt agricultural management practices. Based on preliminary semi-structured interviews with 24 farmers, we have prepared and disseminated a structured questionnaire in dairy farms in the plain of northern Italy, in arable farms in the plain of northern, central, and southern Italy, and in arable farms in the hill of central and southern Italy. The questionnaire contained questions to reveal subjective beliefs of the farmers on the outcomes of incorporating crop residue, and on the referents and control factors that might influence adoption. We have received 315 filled questionnaires from 16 regions and 54 provinces. The survey has identified major drivers and barriers towards the incorporation of crop residue in the soil. The main drivers were the expected improvement of soil quality (higher soil organic matter, improved structure and fertility, the expected increase of grain protein concentration in the following wheat crop, the availability of adequate machinery, the prohibition of burning crop residue, and the knowledge that incorporation is important (which emphasizes the importance of an effective advisory service. The main barriers were the costs of incorporation, the need to increase the use of nitrogen fertiliser when straw is incorporated, and the problems to sow the following crop in the presence of residue. While on the basis of the preliminary interviews we expected that the possibility to sell the straw and

  12. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  13. Nitrogen turnover of three different agricultural soils determined by 15N triple labelling

    Science.gov (United States)

    Fiedler, Sebastian R.; Kleineidam, Kristina; Strasilla, Nicol; Schlüter, Steffen; Reent Köster, Jan; Well, Reinhard; Müller, Christoph; Wrage-Mönnig, Nicole

    2017-04-01

    To meet the demand for data to improve existing N turnover models and to evaluate the effect of different soil physical properties on gross nitrogen (N) transformation rates, we investigated two arable soils and a grassland soil after addition of ammonium nitrate (NH4NO3), where either ammonium (NH4+), or nitrate (NO3-), or both pools have been labelled with 15N at 60 atom% excess (triple 15N tracing method). Besides NH4+, NO3- and nitrite (NO2-) contents with their respective 15N enrichment, nitrous oxide (N2O) and dinitrogen (N2) fluxes have been determined. Each soil was adjusted to 60 % of maximum water holding capacity and pre-incubated at 20˚ C for two weeks. After application of the differently labelled N fertilizer, the soils were further incubated at 20˚ C under aerobic conditions in a He-N2-O2 atmosphere (21 % O2, 76 He, 2% N2) to increase the sensitivity of N2 rates via the 15N gas flux method. Over a 2 week period soil N pools were quantified by 2 M KCl extraction (adjusted to pH 7 to prevent nitrite losses) (Stevens and Laughlin, 1995) and N gas fluxes were measured by gas chromatography in combination with IRMS. Here, we present the pool sizes and fluxes as well as the 15N enrichments during the study. Results are discussed in light of the soil differences that were responsible for the difference in gross N dynamics quantified by the 15N tracing model Ntrace (Müller et al., 2007). References Müller, C., T. Rütting, J. Kattge, R.J. Laughlin, and R.J. Stevens, (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry. 39(3): p. 715-726. Stevens, R.J. and R.J. Laughlin, (1995) Nitrite transformations during soil extraction with potassium chloride. Soil Science Society of America Journal. 59(3): p. 933-938.

  14. International Journal of Natural and Applied Sciences - Vol 7, No 3 ...

    African Journals Online (AJOL)

    Effects of spent engine oil pollution on arable soil of Nekede Mechanic Village Owerri, Nigeria · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. AC Udebuani, CI Okoli, H Nwigwe, PTE Ozoh, 257 – 260 ...

  15. [Effect of trampling disturbance on soil infiltration of biological soil crusts].

    Science.gov (United States)

    Shi, Ya Fang; Zhao, Yun Ge; Li, Chen Hui; Wang, Shan Shan; Yang, Qiao Yun; Xie, Shen Qi

    2017-10-01

    The effect of trampling disturbance on soil infiltration of biological soil crusts was investigated by using simulated rainfall. The results showed that the trampling disturbance significantly increased soil surface roughness. The increasing extent depended on the disturbance intensity. Soil surface roughness values at 50% disturbance increased by 91% compared with the undisturbed treatment. The runoff was delayed by trampling disturbance. A linear increase in the time of runoff yield was observed along with the increasing disturbance intensity within 20%-50%. The time of runoff yield at 50% disturbance increased by 169.7% compared with the undisturbed treatment. Trampling disturbance increased soil infiltration and consequently decreased the runoff coefficient. The cumulative infiltration amount at 50% disturbance increased by 12.6% compared with the undisturbed treatment. Soil infiltration significant decreased when biocrusts were removed. The cumulative infiltration of the treatment of biocrusts removal decreased by 30.2% compared with the undisturbed treatment. Trampling disturbance did not significantly increase the soil loss when the distur bance intensity was lower than 50%, while the biocrusts removal resulted in 10 times higher in soil erosion modulus. The trampling disturbance of lower than 50% on biocrusts might improve soil infiltration and reduce the risk of runoff, thus might improve the soil moisture without obviously increa sing the soil loss.

  16. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area.

    Science.gov (United States)

    Cesaro, Patrizia; van Tuinen, Diederik; Copetta, Andrea; Chatagnier, Odile; Berta, Graziella; Gianinazzi, Silvio; Lingua, Guido

    2008-09-01

    The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.

  17. Elimination of radionuclides and heavy metals from soils

    International Nuclear Information System (INIS)

    Navarcik, I.; Cipakova, A.; Palagyi, S.

    1994-01-01

    At present increased attention is devoted to occurrence of radionuclides and heavy metals in soils, that enter them, owing to a development of power supply, industry, agriculture, traffic etc. These pollutants can cumulate in soils and therefore it is necessary to know to what extent and under which conditions they are held by soil material, so their transfer into plants and so enter into foodchains and their penetration into underground waters could be stopped. Sorption and desorption processes are the basic ones that can determine migration range of radionuclides and heavy metals. Distribution coefficients (K D ) characterize division of pollutants between soil and soil solution. There is connection between K D and soil characteristics and therefore it is possible to use this quantity for observation of factors influencing sorption of pollutants in soils. In the first period of our work sorption and desorption of radionuclides (RN) and heavy metals (HM) in soils, their vertical migration and gradual extraction from soils were verified. In experiments samples of arable and forest soils of the Slovak Republic (black earth, brown soil and sandy soil) were used. Tessier sequential extraction method was used for determination of RN and HM physico-chemical forms. On the base of obtained experimental results we can claim: From the point of view of RN and HM receipt by root system of plants and their appropriate leaching into ground waters, fixed forms (unavailable) are prevailing in soils. Ratio of their unavailable forms are increasing with content of organic matter and clay minerals in soils. As to artificial RN ( 90 Sr, 137 Cs) ratio of firmly bound forms with soil compartments is higher for 137 Cs (black earth - about 95 % , sandy soil - 62 %). Higher measure of 90 Sr depth migration and higher ratio of its availability for plants follow from it. From studied HM, Cd is more mobile, because of its not firm linkage with soil compartments. Ratio of Cd easily available

  18. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  19. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    Science.gov (United States)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  20. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.