WorldWideScience

Sample records for arabidopsis separase functions

  1. Increased separase activity and occurrence of centrosome aberrations concur with transformation of MDS.

    Science.gov (United States)

    Ruppenthal, Sabrina; Kleiner, Helga; Nolte, Florian; Fabarius, Alice; Hofmann, Wolf-Karsten; Nowak, Daniel; Seifarth, Wolfgang

    2018-01-01

    ESPL1/separase, a cysteine endopeptidase, is a key player in centrosome duplication and mitotic sister chromatid separation. Aberrant expression and/or altered separase proteolytic activity are associated with centrosome amplification, aneuploidy, tumorigenesis and disease progression. Since centrosome alterations are a common and early detectable feature in patients with myelodysplastic syndrome (MDS) and cytogenetic aberrations play an important role in disease risk stratification, we examined separase activity on single cell level in 67 bone marrow samples obtained from patients with MDS, secondary acute myeloid leukemia (sAML), de novo acute myeloid leukemia (AML) and healthy controls by a flow cytometric separase activity assay. The separase activity distribution (SAD) value, a calculated measure for the occurrence of cells with prominent separase activity within the analyzed sample, was tested for correlation with the centrosome, karyotype and gene mutation status. We found higher SAD values in bone marrow cells of sAML patients than in corresponding cells of MDS patients. This concurred with an increased incidence of aberrant centrosome phenotypes in sAML vs. MDS samples. No correlation was found between SAD values and the karyotype/gene mutation status. During follow-up of four MDS patients we observed increasing SAD values after transformation to sAML, in two patients SAD values decreased during azacitidine therapy. Cell culture experiments employing MDS-L cells as an in vitro model of MDS revealed that treatment with rigosertib, a PLK1 inhibitor and therapeutic drug known to induce G2/M arrest, results in decreased SAD values. In conclusion, the appearance of cells with unusual high separase activity levels, as indicated by increased SAD values, concurs with the transformation of MDS to sAML and may reflect separase dysregulation potentially contributing to clonal evolution during MDS progression. Separase activity measurement may therefore be useful as a

  2. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay.

    Directory of Open Access Journals (Sweden)

    Wiltrud Haaß

    Full Text Available ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML. Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110 as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90-180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic

  3. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila.

    Science.gov (United States)

    Guo, Zhihao; Batiha, Osamah; Bourouh, Mohammed; Fifield, Eric; Swan, Andrew

    2016-02-01

    Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex. © 2016. Published by The Company of Biologists Ltd.

  4. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Science.gov (United States)

    Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F

    2016-04-01

    Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  5. The Metabolism of Separase Inhibitor Sepin-1 in Human, Mouse, and Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-05-01

    Full Text Available Separase, a known oncogene, is widely overexpressed in numerous human tumors of breast, bone, brain, blood, and prostate. Separase is an emerging target for cancer therapy, and separase enzymatic inhibitors such as sepin-1 are currently being developed to treat separase-overexpressed tumors. Drug metabolism plays a critical role in the efficacy and safety of drug development, as well as possible drug–drug interactions. In this study, we investigated the in vitro metabolism of sepin-1 in human, mouse, and rat liver microsomes (RLM using metabolomic approaches. In human liver microsomes (HLM, we identified seven metabolites including one cysteine–sepin-1 adduct and one glutathione–sepin-1 adduct. All the sepin-1 metabolites in HLM were also found in both mouse and RLM. Using recombinant CYP450 isoenzymes, we demonstrated that multiple enzymes contributed to the metabolism of sepin-1, including CYP2D6 and CYP3A4 as the major metabolizing enzymes. Inhibitory effects of sepin-1 on seven major CYP450s were also evaluated using the corresponding substrates recommended by the US Food and Drug Administration. Our studies indicated that sepin-1 moderately inhibits CYP1A2, CYP2C19, and CYP3A4 with IC50 < 10 μM but weakly inhibits CYP2B6, CYP2C8/9, and CYP2D6 with IC50 > 10 μM. This information can be used to optimize the structures of sepin-1 for more suitable pharmacological properties and to predict the possible sepin-1 interactions with other chemotherapeutic drugs.

  6. A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition.

    Directory of Open Access Journals (Sweden)

    Krystina L Ho

    2015-03-01

    Full Text Available Separase/Esp1 is a protease required at the onset of anaphase to cleave cohesin and thereby enable sister chromatid separation. Esp1 also promotes release of the Cdc14 phosphatase from the nucleolus to enable mitotic exit. To uncover other potential roles for separase, we performed two complementary genome-wide genetic interaction screens with a strain carrying the budding yeast esp1-1 separase mutation. We identified 161 genes that when mutated aggravate esp1-1 growth and 44 genes that upon increased dosage are detrimental to esp1-1 viability. In addition to the expected cell cycle and sister chromatid segregation genes that were identified, 24% of the genes identified in the esp1-1 genetic screens have a role in Ty1 element retrotransposition. Retrotransposons, like retroviruses, replicate through reverse transcription of an mRNA intermediate and the resultant cDNA product is integrated into the genome by a conserved transposon or retrovirus encoded integrase protein. We purified Esp1 from yeast and identified an interaction between Esp1 and Ty1 integrase using mass spectrometry that was subsequently confirmed by co-immunoprecipitation analysis. Ty1 transposon mobility and insertion upstream of the SUF16 tRNA gene are both reduced in an esp1-1 strain but increased in cohesin mutant strains. Securin/Pds1, which is required for efficient localization of Esp1 to the nucleus, is also required for efficient Ty1 transposition. We propose that Esp1 serves two roles to mediate Ty1 transposition - one to remove cohesin and the second to target Ty1-IN to chromatin.

  7. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  8. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  9. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  10. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discus...

  11. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  12. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Science.gov (United States)

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  13. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  14. Composition and function of P bodies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  15. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    Science.gov (United States)

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  17. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  18. Functional characterization of Arabidopsis thaliana transthyretin-like protein

    Directory of Open Access Journals (Sweden)

    Almeida Maria R

    2010-02-01

    Full Text Available Abstract Background Arabidopsis thaliana transthyretin-like (TTL protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU decarboxylase (N-terminal domain and 5-hydroxyisourate (5-HIU hydrolase (C-terminal domain. TTL is a member of the transthyretin-related protein family (TRP, which comprises a number of proteins with sequence homology to transthyretin (TTR and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. Results The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. Conclusions The Arabidopsis thaliana transthyretin-like (TTL protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  19. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  20. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that pre......A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...... for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect...

  1. Functional interactome of Aquaporin 1 sub-family reveals new physiological functions in Arabidopsis Thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-09-01

    Full Text Available Aquaporins are channel proteins found in plasma membranes and intercellular membranes of different cellular compartments, facilitate the water flux, solutes and gases across the cellular plasma membranes. The present study highlights the sub-family plasma membrane intrinsic protein (PIP predicting the 3-D structure and analyzing the functional interactome of it homologs. PIP1 homologs integrate with many proteins with different plant physiological roles in Arabidopsis thaliana including; PIP1A and PIP1B: facilitate the transport of water, diffusion of amino acids and/or peptides from the vacuolar compartment to the cytoplasm, play a role in the control of cell turgor and cell expansion and involved in root water uptake respectively. In addition we found that PIP1B plays a defensive role against Pseudomonas syringae infection through the interaction with the plasma membrane Rps2 protein. Another substantial function of PIP1C via the interaction with PIP2E is the response to nematode infection. Generally, PIP1 sub-family interactome controlling many physiological processes in plant cell like; osmoregulation in plants under high osmotic stress such as under a high salt, response to nematode, facilitate the transport of water across cell membrane and regulation of floral initiation in Arabidopsis thaliana.

  2. DOG1-like genes in cereals: investigation of their function by means of ectopic expression in Arabidopsis.

    Science.gov (United States)

    Ashikawa, Ikuo; Abe, Fumitaka; Nakamura, Shingo

    2013-07-01

    The Arabidopsis gene DOG1 (AtDOG1) functions in seed dormancy and in sugar signaling. Little is known about the structural and functional features of plant genes homologous to AtDOG1, except for one type (clade 1) of Triticeae AtDOG1-like genes, which was previously demonstrated to be functionally orthologous to AtDOG1. Here, through phylogenetic, structural, and functional analyses of cereal AtDOG1-like genes, we characterized their features: these genes exist as a gene family that can be classified into five distinct clades (1-5). Of these, AtDOG1-like genes in clades 1-4 have a similar architecture to AtDOG1: they encode proteins with three conserved regions. In contrast, the clade 5 genes are distinct; their encoded proteins lack these conserved regions, but harbor domains that interact with DNA. Ectopic expression of the cereal AtDOG1-like genes of clades 2-4 in Arabidopsis demonstrated that like the clade 1 genes, they performed the same function as AtDOG1. The correlation between the depth of seed dormancy and the efficiency of sugar signaling in transgenic Arabidopsis conferred by genes in clades 1-4 suggests a close link in the underlying mechanisms between the seed dormancy and sugar signaling functions of AtDOG1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1.

    Science.gov (United States)

    Petersen, Jan; Inoue, Shin-Ichiro; Kelly, Sharon M; Sullivan, Stuart; Kinoshita, Toshinori; Christie, John M

    2017-08-18

    Phototropins (phots) are plasma membrane-associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light-absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A'α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A'α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco1

    Science.gov (United States)

    Fujita, Satoshi; Uchimura, Seiichi; Noguchi, Masahiro; Demura, Taku

    2016-01-01

    Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures. PMID:26747285

  6. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Structure and biochemical function of a prototypical Arabidopsis U-box domain

    DEFF Research Database (Denmark)

    Andersen, Pernille; Kragelund, Birthe B; Olsen, Addie N

    2004-01-01

    U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization t...

  8. Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development.

    Directory of Open Access Journals (Sweden)

    Xiaolong Ke

    2017-09-01

    Full Text Available Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood. In this study, we found that loss-of-function of CPNA2 (AtCpn60α2, a gene encoding the minor Cpn60α subunit in Arabidopsis thaliana, resulted in arrested embryo development at the globular stage, whereas the other AtCpn60α gene encoding the dominant Cpn60α subunit, CPNA1 (AtCpn60α1, mainly affected embryonic cotyledon development at the torpedo stage and thereafter. Further studies demonstrated that CPNA2 can form a functional chaperonin with CPNB2 (AtCpn60β2 and CPNB3 (AtCpn60β3, while the functional partners of CPNA1 are CPNB1 (AtCpn60β1 and CPNB2. We also revealed that the functional chaperonin containing CPNA2 could assist the folding of a specific substrate, KASI (β-ketoacyl-[acyl carrier protein] synthase I, and that the KASI protein level was remarkably reduced due to loss-of-function of CPNA2. Furthermore, the reduction in the KASI protein level was shown to be the possible cause for the arrest of cpna2 embryos. Our findings indicate that the two Cpn60α subunits in Arabidopsis play different roles during embryo development through forming distinct chaperonins with specific AtCpn60β to assist the folding of particular substrates, thus providing novel insights into functional divergence of Cpn60α subunits in plants.

  9. Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Fernández, Aurora Piñas; Gil, Patricia; Valkai, Ildiko; Nagy, Ferenc; Schäfer, Eberhard

    2005-05-01

    To investigate the mechanism of phytochrome action in vivo, NtPHYB, AtPHYB and phyD:green fluorescent protein (GFP) were overexpressed in Nicotiana plumbaginifolia and Arabidopsis thaliana. The expression of 35S:NtPHYB:GFP and 35S:AtPHYB:GFP complemented the tobacco hgl2 and Arabidopsis phyB-9 mutations, whereas the 35S:AtPHYD:GFP only rescued the hgl2 mutant. All three fusion proteins are transported into the nucleus in all genetic backgrounds. These data indicate that AtPHYD:GFP is biologically active and functions as the main red light receptor in transgenic tobacco, and establish an experimental system for the functional analysis of this elusive photoreceptor in vivo.

  10. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhaorong Hu

    Full Text Available Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.

  11. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    Science.gov (United States)

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  12. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  13. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast

    DEFF Research Database (Denmark)

    Kleinow, T.; Bhalerao, R.; Breuer, F.

    2000-01-01

    Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast....... By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc......-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain...

  14. The Function of the Early Trichomes Gene in Arabidopsis and Maize.

    Energy Technology Data Exchange (ETDEWEB)

    Scott Poethig

    2011-12-05

    Lateral organ polarity in Arabidopsis is regulated by antagonistic interactions between genes that promote either adaxial or abaxial identity, but the molecular basis of this interaction is largely unknown. We show that the adaxial regulator ASYMMETRIC LEAVES2 (AS2) is a direct target of the abaxial regulator KANADI1 (KAN1), and that KAN1 represses the transcription of AS2 in abaxial cells. Mutation of a single nucleotide in a KAN1 binding site in the AS2 promoter causes AS2 to be ectopically expressed in abaxial cells, resulting in a dominant, adaxialized phenotype. We also show that the abaxial expression of KAN1 is mediated directly or indirectly by AS2. These results demonstrate that KAN1 acts as a transcriptional repressor and that mutually repressive interactions between KAN1 and AS2 contribute to the establishment of adaxial-abaxial polarity in plants. A screen for mutations that affect the expression of a GFP reporter for KANADI2 produced mutations in two genes, CENTER CITY (CCT) and GRAND CENTRAL (GCT). Mutations in GCT and CCT delay the specification of central and peripheral identity and the globular-to-heart transition, but have little or no effect on the initial growth rate of the embryo. Mutant embryos eventually recover and undergo relatively normal patterning, albeit at an inappropriate size. GCT and CCT were identified as the Arabidopsis orthologs of MED12 and MED13--evolutionarily conserved proteins that act in association with the Mediator complex to negatively regulate transcription. The predicted function of these proteins combined with the effect of gct and cct on embryo development suggests that MED12 and MED13 regulate pattern formation during Arabidopsis embryogenesis by transiently repressing a transcriptional program that interferes with this process. Their mutant phenotype reveals the existence of a previously unknown temporal regulatory mechanism in plant embryogenesis.

  15. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  16. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Science.gov (United States)

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  17. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  18. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    Science.gov (United States)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  19. Arabidopsis: an adequate model for dicot root systems?

    Directory of Open Access Journals (Sweden)

    Richard W Zobel

    2016-02-01

    Full Text Available The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5 of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for eudicot plant root systems.

  20. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    Science.gov (United States)

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  1. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis.

    Science.gov (United States)

    Dong, Pan; Xiong, Fangjie; Que, Yumei; Wang, Kai; Yu, Lihua; Li, Zhengguo; Ren, Maozhi

    2015-01-01

    Target of rapamycin (TOR) acts as a master regulator to control cell growth by integrating nutrient, energy, and growth factors in all eukaryotic species. TOR plays an evolutionarily conserved role in regulating the transcription of genes associated with anabolic and catabolic processes in Arabidopsis, but little is known about the functions of TOR in photosynthesis and phytohormone signaling, which are unique features of plants. In this study, AZD8055 (AZD) was screened as the strongest active-site TOR inhibitor (asTORi) in Arabidopsis compared with TORIN1 and KU63794 (KU). Gene expression profiles were evaluated using RNA-seq after treating Arabidopsis seedlings with AZD. More than three-fold differentially expressed genes (DEGs) were identified in AZD-treated plants relative to rapamycin-treated plants in previous studies. Most of the DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in cell wall elongation, ribosome biogenesis, and cell autophagy were common to both AZD- and rapamycin-treated samples, but AZD displayed much broader and more efficient inhibition of TOR compared with rapamycin. Importantly, the suppression of TOR by AZD resulted in remodeling of the expression profile of the genes associated with photosynthesis and various phytohormones, indicating that TOR plays a crucial role in modulating photosynthesis and phytohormone signaling in Arabidopsis. These newly identified DEGs expand the understanding of TOR signaling in plants. This study elucidates the novel functions of TOR in photosynthesis and phytohormone signaling and provides a platform to study the downstream targets of TOR in Arabidopsis.

  2. Multi-element bioimaging of Arabidopsis thaliana roots

    DEFF Research Database (Denmark)

    Persson, Daniel Olof; Chen, Anle; Aarts, Mark G.M.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventio......Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using...... omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images...... looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion...

  3. Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme.

    Science.gov (United States)

    Huang, Shaobai; Taylor, Nicolas L; Narsai, Reena; Eubel, Holger; Whelan, James; Millar, A Harvey

    2010-02-01

    Complex II plays a central role in mitochondrial metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. However, the composition and function of the plant enzyme has been elusive and differs from the well-characterised enzymes in mammals and bacteria. Herewith, we demonstrate that mitochondrial Complex II from Arabidopsis and rice differ significantly in several aspects: (1) Stability-Rice complex II in contrast to Arabidopsis is not stable when resolved by native electrophoresis and activity staining. (2) Composition-Arabidopsis complex II contains 8 subunits, only 7 of which have homologs in the rice genome. SDH 1 and 2 subunits display high levels of amino acid identity between two species, while the remainder of the subunits are not well conserved at a sequence level, indicating significant divergence. (3) Gene expression-the pairs of orthologous SDH1 and SDH2 subunits were universally expressed in both Arabidopsis and rice. The very divergent genes for SDH3 and SDH4 were co-expressed in both species, consistent with their functional co-ordination to form the membrane anchor. The plant-specific SDH5, 6 and 7 subunits with unknown functions appeared to be differentially expressed in both species. (4) Biochemical regulation -succinate-dependent O(2) consumption and SDH activity of isolated Arabidopsis mitochondria were substantially stimulated by ATP, but a much more minor effect of ATP was observed for the rice enzyme. The ATP activation of succinate-dependent reduction of DCPIP in frozen-thawed and digitonin-solubilised mitochondrial samples, and with or without the uncoupler CCCP, indicate that the differential ATP effect on SDH is not via the protonmotive force but likely due to an allosteric effect on the plant SDH enzyme itself, in contrast to the enzyme in other organisms.

  4. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  5. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  6. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  7. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung; Kim, SoonKap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-01-01

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  8. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  9. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis.

    Science.gov (United States)

    Maruta, Natsumi; Trusov, Yuri; Brenya, Eric; Parekh, Urvi; Botella, José Ramón

    2015-03-01

    In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.

  10. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays.

    Science.gov (United States)

    Liu, Yisen; Yang, Shaohui; Song, Yingjin; Men, Shuzhen; Wang, Jiehua

    2016-04-01

    Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol; Choi, Wonkyun; Park, Heejin; Cheong, Misun; Koo, Yoonduck; Shin, Gilok; Chung, Woosik; Kim, Woeyeon; Kim, Mingab; Bressan, Ray Anthony; Bohnert, Hans Jü rgen; Lee, Sangyeol; Yun, Daejin

    2011-01-01

    in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern

  12. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: akys@mail.ecc.u-tokyo.ac.jp [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  13. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoltán Kevei

    Full Text Available The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes.

  14. The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis

    Science.gov (United States)

    The FRAGILE FIBER8 gene was previously shown to be required for the biosynthesis of the reducing end tetrasaccharide sequence of glucuronoxylan (GX) in Arabidopsis thaliana. Here, we demonstrate that F8H, a close homolog of FRA8, is a functional ortholog of FRA8 involved in GX bi...

  15. The functional state of cellular antioxidant defence system of shoots of Arabidopsis thaliana exposed to the chronic ionizing radiation in the Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Morozova, V.S.; Kashparov, V.A.; Levchuk, S.Ye.; Umanska, A.O.; Bishchuk, Ye.V.; Otreshko, L.M

    2016-01-01

    The functional state of the cellular antioxidant defence system of shoots of Arabidopsis thaliana plants that grow in natural conditions in the areas of the Chornobyl Exclusion Zone with the values of the external dose rate of 0.45, 0.61, 1.05, 4.81 and 6.80 .Gy/h was evaluated. The decrease of the content of thiobarbituric acid reactive compounds in the shoots of Arabidopsis thaliana was revealed under the external dose rate of 4.81 and 6.80 .Gy/h by 38 and 48 %, respectively, compared to this parameter value under the external dose rate of 0.45 .Gy/h. In the investigated samples the capacity of guaiacol peroxidase increases, catalase and ascorbate peroxidase decreases significantly with the increase of the external dose rate from 0.45 to 6.80 .Gy/h. Probably, revealed changes in the functional state of the cellular antioxidant defence system of the shoots of Arabidopsis thaliana in the conditions of radioactive contamination are adaptive in nature.

  16. Sulfinylated Azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils

    Science.gov (United States)

    Qin, Yuan; Wysocki, Ronald J; Somogyi, Arpad; Feinstein, Yelena; Franco, Jessica Y; Tsukamoto, Tatsuya; Dunatunga, Damayanthi; Levy, Clara; Smith, Steven; Simpson, Robert; Gang, David; Johnson, Mark A; Palanivelu, Ravishankar

    2011-01-01

    SUMMARY Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultrahigh resolution ESI FT-ICR and MS/MS techniques to accurately determine the mass (202.126 daltons) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-Methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µM stimulated ~50% germination) and elicit accession-specific response. Although N-Methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen. PMID:21801250

  17. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species

  18. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  19. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  20. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes

    Science.gov (United States)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.

  1. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...... in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1...

  2. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  3. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J. G.; Hille, Jacques; Dijkwel, Paul P.

    2007-01-01

    Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence Hai-Chun Jing1,2, Lisa Anderson3, Marcel J.G. Sturre1, Jacques Hille1 and Paul P. Dijkwel1,* 1Molecular Biology of Plants, Groningen Biomolecular Sciences and

  4. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  5. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  6. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available th a function in purine turnover in Arabidopsis. To our knowledge this is the fir...ock in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent wi

  7. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  8. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  9. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development.

    Science.gov (United States)

    Ouyang, Xinhao; Li, Jigang; Li, Gang; Li, Bosheng; Chen, Beibei; Shen, Huaishun; Huang, Xi; Mo, Xiaorong; Wan, Xiangyuan; Lin, Rongcheng; Li, Shigui; Wang, Haiyang; Deng, Xing Wang

    2011-07-01

    FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, are key components in phytochrome A signaling and the circadian clock. Here, we use chromatin immunoprecipitation-based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in the Arabidopsis thaliana genome. FHY3 preferentially binds to promoters through the FHY3/FAR1 binding motif (CACGCGC). Interestingly, FHY3 also binds to two motifs in the 178-bp Arabidopsis centromeric repeats. Comparison between the ChIP-seq and microarray data indicates that FHY3 quickly regulates the expression of 197 and 86 genes in D and FR, respectively. FHY3 also coregulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE5 and ELONGATED HYPOCOTYL5. Moreover, we uncover a role for FHY3 in controlling chloroplast development by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5, whose product is a structural component of the latter stages of chloroplast division in Arabidopsis. Taken together, our data suggest that FHY3 regulates multiple facets of plant development, thus providing insights into its functions beyond light and circadian pathways.

  10. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  11. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis

    NARCIS (Netherlands)

    Dekkers, B.J.W.; Schuurmans, J.A.M.J.; Smeekens, J.C.M.

    2008-01-01

    Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between

  12. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  13. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  14. Photosystem II function and dynamics in three widely used Arabidopsis thaliana accessions.

    Directory of Open Access Journals (Sweden)

    Lan Yin

    Full Text Available Columbia-0 (Col-0, Wassilewskija-4 (Ws-4, and Landsberg erecta-0 (Ler-0 are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL. The photosystem II (PSII complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis

  15. Divergent regulation of Arabidopsis SAUR genes

    NARCIS (Netherlands)

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  16. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana

    OpenAIRE

    Wolf, Jason B.; Mutic, Joshua J.; Kover, Paula X.

    2011-01-01

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with ‘direct...

  17. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  18. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  19. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  20. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network

    Directory of Open Access Journals (Sweden)

    Chamovitz Daniel A

    2009-09-01

    Full Text Available Abstract Background Analyses of gene expression data from microarray experiments has become a central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis is the integration of data from different experiments and different laboratories. How to weigh the contribution of different experiments is an important point influencing the final outcomes. We have developed a novel method for this integration, and applied it to genome-wide data from multiple Arabidopsis microarray experiments performed under a variety of experimental conditions. The goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis genome. Results Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene pairs, we identified a globally co-expressed gene network. We found clusters of globally co-expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types of modules were identified in the regulatory network that differed in their sensitivity to the node-scoring parameter; we further showed these two pertain to general and specialized modules. Some of these modules were further investigated using the Genevestigator compendium of microarray experiments. Analyses of smaller subsets of data lead to the identification of condition-specific modules. Conclusion Our method for identification of gene clusters allows the integration of diverse microarray experiments from many sources. The analysis reveals that part of the Arabidopsis transcriptome is globally co-expressed, and can be further divided into known as well as novel functional gene modules. Our methodology is general enough to apply to any set of microarray experiments, using any scoring function.

  1. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  2. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  3. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  4. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  5. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  6. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Arabidopsis thaliana mTERF proteins: evolution and functional classification

    Directory of Open Access Journals (Sweden)

    Tatjana eKleine

    2012-10-01

    Full Text Available Organellar gene expression (OGE is crucial for plant development, photosynthesis and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes - especially the duplicated genes - display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the chloroplast and chloroplast-associated clusters are principally involved in chloroplast gene expression, embryogenesis and protein catabolism, while representatives of the mitochondrial cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the mitochondrion-associated cluster and the low expression group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression, mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear

  8. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At5g46200.1 68418.m05684 expressed protein contains similarity to carboxyl-term...inal proteinase contains Pfam profile PF03080: Arabidopsis proteins of unknown function; expression supported by MPSS 2e-33 ...

  9. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof

    Science.gov (United States)

    Costa, Michael A.; Collins, R. Eric; Anterola, Aldwin M.; Cochrane, Fiona C.; Davin, Laurence B.; Lewis, Norman G.

    2003-01-01

    The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member

  10. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  11. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    Directory of Open Access Journals (Sweden)

    Stephan B Jekat

    2013-07-01

    Full Text Available Structural phloem proteins (P-proteins are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently evidenced to be encoded by the widespread SEO gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. 

  12. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W].

    NARCIS (Netherlands)

    Bemer, M.; Heijmans, K.; Airoldi, C.A.; Davies, B.; Angenent, G.C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally

  13. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis.

    Science.gov (United States)

    Park, Joonghyuk; Kim, Hae Koo; Ryu, Jeongeun; Ahn, Sungsook; Lee, Sang Joon; Hwang, Ildoo

    2015-03-01

    In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  16. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  17. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    Science.gov (United States)

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Reference: 239 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  19. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  20. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  1. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    Science.gov (United States)

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  2. Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

    Science.gov (United States)

    Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E

    2012-03-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.

  3. The Arabidopsis Family GT43 Glycosyltransferases Form Two Functionally Nonredundant Groups Essential for the Elongation of Glucuronoxylan Backbone

    Science.gov (United States)

    There exist four members of family GT43 glycosyltransferases in the Arabidopsis (Arabidopsis thaliana) genome, and mutations of two of them, IRX9 and IRX14, have previously been shown to cause a defect in glucuronoxylan (GX) biosynthesis. However, it is currently unknown whether ...

  4. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana.

    Science.gov (United States)

    Wolf, Jason B; Mutic, Joshua J; Kover, Paula X

    2011-05-12

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with 'direct' effects on traits of individuals also have pleiotropic 'indirect' effects on traits expressed in neighbouring plants. Here, we further explore these connections by examining functional relationships between traits affected directly and indirectly by the same QTL. We develop a novel approach using structural equation models (SEMs) to determine whether observed pleiotropic effects result from traits directly affected by the QTL in focal individuals causing the changes in the neighbours' phenotypes. This hypothesis was assessed using SEMs to test whether focal plant phenotypes appear to mediate the connection between the focal plants' genotypes and the phenotypes of their neighbours, or alternatively, whether the connection between the focal plants' genotypes and the neighbours' phenotypes is mediated by unmeasured traits. We implement this analysis using a QTL of major effect that maps to the well-characterized flowering locus, FRIGIDA. The SEMs support the hypothesis that the pleiotropic indirect effects of this locus arise from size and developmental timing-related traits in focal plants affecting the expression of developmental traits in their neighbours. Our findings provide empirical insights into the genetics and nature of intraspecific ecological interactions. Our technique holds promise in directing future work into the genetic basis and functional relationship of traits mediating and responding to ecological interactions.

  5. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein

    OpenAIRE

    Urbanowicz, Breeanna R.; Peña, Maria J.; Ratnaparkhe, Supriya; Avci, Utku; Backe, Jason; Steet, Heather F.; Foston, Marcus; Li, Hongjia; O’Neill, Malcolm A.; Ragauskas, Arthur J.; Darvill, Alan G.; Wyman, Charles; Gilbert, Harry J.; York, William S.

    2012-01-01

    The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid ...

  6. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    Science.gov (United States)

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  7. The Arabidopsis P4-ATPase ALA3 requires a ß-subunit to function in phospholipid translocation and secretory vesicle formation

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The Arabidopsis P4-ATPase ALA3 requires a ß-subunit to function in phospholipid translocation and secretory vesicle formation   Lisbeth R. Poulsen1, Rosa L. López-Marqués1, Stephen C. McDowell2, Juha Okkeri3, Dirk Licht3, Alexander Schulz1, Thomas Pomorski3,  Jeffrey F. Harper2, and Michael G....... Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark 2Biochemistry Department MS200, University of Nevada Reno, NV 89557, USA 3Humboldt-University Berlin, Faculty...... and in inducing membrane curvature, which is a requirement for vesicle formation. We show that Aminophospholipid ATPase3 (ALA3), a member of the P4-ATPase subfamily in the plant Arabidopsis thaliana, localizes to the Golgi apparatus and that genetic lesions of ALA3 result in impaired growth of roots and shoots...

  8. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson

    2013-04-01

    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  9. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light

    Directory of Open Access Journals (Sweden)

    Abu Imran Baba

    2018-04-01

    Full Text Available The Calcium-Dependent Protein Kinase (CDPK-Related Kinase family (CRKs consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT. However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.

  10. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  11. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  12. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit.

    Science.gov (United States)

    Kim, Jaeyoun; Lee, Kwanwoo; Rhee, Kunsoo

    2015-12-09

    Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.

  13. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  14. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea.

    Science.gov (United States)

    Zhang, Bin; Qiu, Han-Lin; Qu, Dong-Hai; Ruan, Ying; Chen, Dong-Hong

    2018-04-05

    Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.

  15. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR caused chlorophyll degradation and accelerated senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ke Teng

    2016-12-01

    Full Text Available Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homologue of AtNYE1 from Arabidopsis thaliana. Overexpression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.

  16. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions.

    Science.gov (United States)

    Joshi, Hiren J; Christiansen, Katy M; Fitz, Joffrey; Cao, Jun; Lipzen, Anna; Martin, Joel; Smith-Moritz, A Michelle; Pennacchio, Len A; Schackwitz, Wendy S; Weigel, Detlef; Heazlewood, Joshua L

    2012-05-15

    The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/

  17. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination.

    Science.gov (United States)

    Hirsche, Jörg; García Fernández, José M; Stabentheiner, Edith; Großkinsky, Dominik K; Roitsch, Thomas

    2017-04-01

    Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Efficient Plastid Transformation in Arabidopsis.

    Science.gov (United States)

    Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal

    2017-09-01

    Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis

    Science.gov (United States)

    Xu, Chunxiao; Yin, Xiao; Lv, Yan; Wu, Changzhe; Zhang, Yuxia; Song, Tao

    2012-03-01

    The blue light receptor, cryptochrome, has been suggested to act as a magnetoreceptor based on the proposition that photochemical reactions are involved in sensing the geomagnetic field. But the effects of the geomagnetic field on cryptochrome remain unclear. Although the functions of cryptochrome have been well demonstrated for Arabidopsis, the effect of the geomagnetic field on the growth of Arabidopsis and its mechanism of action are poorly understood. We eliminated the local geomagnetic field to grow Arabidopsis in a near-null magnetic field and found that the inhibition of Arabidopsis hypocotyl growth by white light was weakened, and flowering time was delayed. The expressions of three cryptochrome-signaling-related genes, PHYB, CO and FT also changed; the transcript level of PHYB was elevated ca. 40%, and that of CO and FT was reduced ca. 40% and 50%, respectively. These data suggest that the effects of a near-null magnetic field on Arabidopsis are cryptochrome-related, which may be revealed by a modification of the active state of cryptochrome and the subsequent signaling cascade.

  1. Differential effects of carbohydrates on arabidopsis pollen germination

    Czech Academy of Sciences Publication Activity Database

    Hirsche, J.; Fernández, J. M. G.; Stabentheiner, E.; Großkinsky, D.K.; Roitsch, Thomas

    2017-01-01

    Roč. 58, č. 4 (2017), s. 691-701 ISSN 0032-0781 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Arabidopsis thaliana * Carbohydrates * Metabolic regulation * Pollen germination * Signaling * Structure-function relationship Subject RIV: EF - Botanics OBOR OECD: Cell biology Impact factor: 4.760, year: 2016

  2. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  3. Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants.

    Science.gov (United States)

    Paul, Anna-Lisa; Liu, Li; McClung, Scott; Laughner, Beth; Chen, Sixue; Ferl, Robert J

    2009-04-01

    As a first step in the broad characterization of plant 14-3-3 multiprotein complexes in vivo, stringent and specific antibody affinity purification was used to capture 14-3-3s together with their interacting proteins from extracts of Arabidopsis cell suspension cultures. Approximately 120 proteins were identified as potential in vivo 14-3-3 interacting proteins by mass spectrometry of the recovered complexes. Comparison of the proteins in this data set with the 14-3-3 interacting proteins from a similar study in human embryonic kidney cell cultures revealed eight interacting proteins that likely represent reasonably abundant, fundamental 14-3-3 interaction complexes that are highly conserved across all eukaryotes. The Arabidopsis 14-3-3 interaction data set was also compared to a yeast in vivo 14-3-3 interaction data set. Four 14-3-3 interacting proteins are conserved in yeast, humans, and Arabidopsis. Comparisons of the data sets based on biochemical function revealed many additional similarities in the human and Arabidopsis data sets that represent conserved functional interactions, while also leaving many proteins uniquely identified in either Arabidopsis or human cells. In particular, the Arabidopsis interaction data set is enriched for proteins involved in metabolism.

  4. Reference: 495 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available . Emission of methanethiol from Arabidopsis plants supplied with 10 mM L-methionine was undetectable (cation in an alternat...>homocysteine-->cystathionine-->cysteine) in which methanethiol is an intermediate. Functional characterizat...wth on L-methionine as sole nitrogen source and conferred a high rate of methanethiol emission. The purified...mol min(-1) g(-1) FW), suggesting that AtMGL is not an important source of volatile methanethiol. Knocking o

  5. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  6. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  8. Computational analyses and annotations of the Arabidopsis peroxidasegene family

    DEFF Research Database (Denmark)

    Østergaard, Lars; Pedersen, Anders Gorm; Jespersen, Hans M.

    1998-01-01

    Classical heme-containing plant peroxidases have been ascribed a wide variety of functional roles related to development, defense, lignification and hormonal signaling. More than 40 peroxidase genes are now known in Arabidopsis thaliana for which functional association is complicated by a general...... containing 40-71% adenine, a rare feature observed also in cDNAs which predominantly encode stress-induced proteins, and which may indicate translational regulation....

  9. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  10. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  11. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  12. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  13. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available xpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 en...phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine. Overe

  14. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im; Murphy, Angus S.; Baek, Dongwon; Lee, Shin-Woo; Yun, Dae-Jin; Bressan, Ray A.; Narasimhan, Meena L.

    2011-01-01

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical

  15. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    He, Huan [Nanjing Agricultural Univ. (China); Yan, Jingwei [Nanjing Agricultural Univ. (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Xiaoyun [Nanjing Agricultural Univ. (China); Liang, Yan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fang, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheller, Henrik Vibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Aying [Nanjing Agricultural Univ. (China)

    2017-05-27

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.

  16. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses.

    Science.gov (United States)

    Li, Weiqiang; Nguyen, Kien Huu; Watanabe, Yasuko; Yamaguchi, Shinjiro; Tran, Lam-Son Phan

    2016-09-16

    Previous studies in Arabidopsis reported that the MAX2 (more axillary growth 2) gene is a component of the strigolactone (SL) signaling pathway, which regulates a wide range of biological processes, from plant growth and development to environmental stress responses. Orobanche aegyptiaca is a harmful parasitic plant for many economically important crops. Seed germination of O. aegyptiaca is very sensitive to SLs, suggesting that O. aegyptiaca may contain components of the SL signaling pathway. To investigate this hypothesis, we identified and cloned a MAX2 ortholog from O. aegyptiaca for complementation analyses using the Arabidopsis Atmax2 mutant. The so-called OaMAX2 gene could rescue phenotypes of the Atmax2 mutant in various tested developmental aspects, including seed germination, shoot branching, leaf senescence and growth and development of hypocotyl, root hair, primary root and lateral root. More importantly, OaMAX2 could enhance the drought tolerance of Atmax2 mutant, suggesting its ability to restore the drought-tolerant phenotype of mutant plants defected in AtMAX2 function. Thus, this study provides genetic evidence that the functions of the MAX2 orthologs, and perhaps the MAX2 signaling pathways, are conserved in parasitic and non-parasitic plants. Furthermore, the results of our study enable us to develop a strategy to fight against parasitic plants by suppressing the MAX signaling, which ultimately leads to enhanced productivity of crop plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus1[OPEN

    Science.gov (United States)

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-01-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1–ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus. PMID:26747284

  18. Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis.

    Science.gov (United States)

    An, Chuanjing; Gao, Yuefang; Li, Jinyu; Liu, Xiaomin; Gao, Fuli; Gao, Hongbo

    2017-07-01

    A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in Arabidopsis. Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of Arabidopsis, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5' and 3' region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.

  19. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  20. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  1. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  2. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  4. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  5. A role for seed storage proteins in Arabidopsis seed longevity

    NARCIS (Netherlands)

    Nguyen, Thu-Phuong|info:eu-repo/dai/nl/328228818; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie|info:eu-repo/dai/nl/241338735

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  6. Light responses in Photoperiodism in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Cashmore

    2006-08-01

    ADO1: An Arabidopsis blue light photoreceptor We have reported the characterization of an Arabidopsis gene encoding the ADAGIO 1 (ADO1) protein (Jarillo et al., 2001a). ADO1 contains a LOV domain, similar to WHITE COLLAR 1 (WC1), a photoreceptor for entrainment of Neurospora circadian rhythms (Froehlich et al., 2002), as well as PHOT1 and PHOT2, the blue light photoreceptors for phototropism (Briggs et al., 2001; Christie et al., 1998; Jarillo et al., 2001b; Kinoshita et al., 2001). Loss of function ado1 mutants show an unusually long periodicity for their free running circadian rhythm (Jarillo et al., 2001a). This observation holds for plants grown under white light as well as blue light and surprisingly, plants grown under red light also show altered circadian properties. The similarity of the LOV domain of ADO1 to those of PHOT1, PHOT2 and WC1 (known flavoprotein photoreceptors) as well as the genetic and molecular properties of ADO1, indicate that ADO1 is likely a new class of blue light photoreceptor. Indeed, the LOV domain of the related FKF1/ADO3 has been shown to bind FMN, and exhibit the in vitro photochemistry characteristic of PHOT1 (Imaizumi et al., 2003). Furthermore, ZTL/ADO1 has been shown to participate in the circadian and proteasome mediated degradation of the Arabidopsis clock protein, TOC1 (Mas et al., 2003). We also showed that the ado1 mutation selectively confers hypersensitivity to red light — when grown under red light (but not blue light) the ado1 mutant possesses an unusually short hypocotyl. This red light hypersensivity is even more severe in a triple ado1 ado2 ado3 mutant — ADO2 and ADO3 being the two other members of this ADAGIO gene family. This finding of a mutant phenotype under red light is somewhat unexpected for a protein thought to function as a photoreceptor for blue light. We have pursued our studies of ADO1 by preparing a mutant gene for which we have altered the codon for the cysteine residue conserved in all LOV

  7. Reference: 255 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption...olyphosphate kinases in phosphate signaling biology. Generation of phytate-free seeds in Arabidopsis through disruption

  8. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid.

    Directory of Open Access Journals (Sweden)

    Sujit Roy

    Full Text Available Abscisic acid (ABA acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ pathway genes, and mutants related to homologous recombination (HR pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0 during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0 and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.

  9. Functional loss of GABA transaminase (GABA-T expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Syed Uzma Jalil

    2017-06-01

    Full Text Available GABA-transaminase (GABA-T involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants displayed precocious leaf senescence, which was accompanied by the assays of physiological parameters of leaf senescence during various stress conditions. Furthermore, our physiological evidence indicates that pop2-1 and pop2-3 mutations rapidly decreased the efficiency of leaf photosynthesis, chlorophyll content, GABA content, GABA-T, and glutamate decarboxylase (GAD activity and on the other hand increases membrane ion leakage, malondialdehyde (MDA level in stress induced leaves. However, cell viability assay by trypan blue and insitu Hydrogen peroxidation assay by 3,3-diaminobenzidine (DAB in stress induced leaves also display that pop2-1 and pop2-3 mutant leaves show oversensitivity in response to different stress conditions as compared to wild type. These results strongly indicate that the loss-of-function of GABA transaminase gene induces early leaf senescence in Arabidopsis thaliana during various stress conditions.

  10. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control

    Czech Academy of Sciences Publication Activity Database

    Horvath, B.M.; Kourová, Hana; Nagy, S.; Nemeth, E.; Magyar, Z.; Papdi, C.; Ahmad, Z.; Sanchez-Perez, G.F.; Perilli, S.; Blilou, I.; Pettko-Szandtner, A.; Darula, Z.; Meszaros, T.; Binarová, Pavla; Bogre, L.; Scheres, B.

    2017-01-01

    Roč. 36, č. 9 (2017), s. 1261-1278 ISSN 0261-4189 R&D Projects: GA ČR GA15-11657S Institutional support: RVO:61388971 Keywords : Arabidopsis * BRCA1 * DNA damage response Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 9.792, year: 2016

  11. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis.

    Science.gov (United States)

    An, Chuanfu; Ding, Yezhang; Zhang, Xudong; Wang, Chenggang; Mou, Zhonglin

    2016-05-01

    Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.

  12. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  13. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  14. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  15. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    NARCIS (Netherlands)

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  16. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  18. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis

    DEFF Research Database (Denmark)

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae...... was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins...... from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both...

  19. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  20. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  1. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  2. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana.

    Science.gov (United States)

    He, Huan; Yan, Jingwei; Yu, Xiaoyun; Liang, Yan; Fang, Lin; Scheller, Henrik Vibe; Zhang, Aying

    2017-09-23

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H 2 O 2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana. Copyright © 2017. Published by Elsevier Inc.

  3. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis

    Science.gov (United States)

    Robles, Linda M.; Deslauriers, Stephen D.; Alvarez, Ashley A.; Larsen, Paul B.

    2012-01-01

    As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena. PMID:22238449

  4. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  5. Reference: 462 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available . ATAF1 was one of the first identified NAC proteins in Arabidopsis. In present study, we characterized the ATAF1 express...ion and biological function in response to water deficit stress. ATAF1 mRNA express...ater treatment, suggesting a general role in drought stress responses. Transient expression analysis in onio...otein. Yeast transactivation analysis showed that ATAF1 had ability to activate reporter gene expression. Fu...ught response test. This ataf1 phenotype was coincident with the enhanced expression of stress responsive ma

  6. Reference: 663 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available opsis thaliana) is dominated by alkanes, secondary alcohols, and ketones, all tho...nt alleles was found to be devoid of secondary alcohols and ketones (mah1-1) or to contain much lower levels...topic accumulation of secondary alcohols and ketones in Arabidopsis leaf wax, where only traces of these com...pounds are found in the wild type. The newly formed leaf alcohols and ketones had midchain functional groups... catalyze the hydroxylation reaction leading from alkanes to secondary alcohols and possibly also a second h

  7. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  8. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  9. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  10. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis.

    Science.gov (United States)

    An, Lijun; Zhou, Zhongjing; Su, Sha; Yan, An; Gan, Yinbo

    2012-02-01

    Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).

  11. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  12. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  13. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Valeria R Turowski

    Full Text Available Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR and ferredoxin (Fd, two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  14. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qian; Zheng, Yan; Luo, Landi; Yang, Yongping; Hu, Xiangyang; Kong, Xiangxiang

    2018-01-01

    Flowering at the right time is important for the reproductive success of plants and their response to environmental stress. In Arabidopsis, a major determinant of natural variation in flowering time is FRIGIDA (FRI). In the present study, we show that overexpression of the functional FRIGIDA gene in wild-type Col background (ColFRI) positively enhances the drought tolerance by activating P5CS1 expression and promoting proline accumulation during water stress. Furthermore, no significant changes in FRI gene and protein expression levels were observed with drought treatment, whereas P5CS1 protein expression significantly increased. In contrast, vernalization treatment efficiently reduced P5CS1 expression levels and resulted in a decrease in drought tolerance in the ColFRI plants. The flc mutants with a functional FRI background also relieved FRI-mediated activation of P5CS1 during drought tolerance. Taken together, our findings reveal the novel function of FRI in enhancing drought resistance through its downstream P5CS1 pathway during water-deficit stress, which is dependent on its target, the FLC gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  16. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis......The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...... analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s...

  17. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.

    Science.gov (United States)

    Huang, Kui; Peng, Lu; Liu, Yingying; Yao, Rundong; Liu, Zhibin; Li, Xufeng; Yang, Yi; Wang, Jianmei

    2018-03-25

    The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H 2 O 2 . Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pranav R. Prabhu

    2010-01-01

    Full Text Available The aminotransferase gene family in the model plant Arabidopsis thaliana consists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized using in vitro and in vivo experiments. In vitro analysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate. In vivo analysis by functional complementation showed that the gene was able to complement an E. coli with a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.

  19. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  20. Reference: 453 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ctor. We demonstrate that this protein functions as a transcriptional repressor in vivo. The express...ion of all members of the CYCLINA2 (CYCA2) family was reduced in an ILP1 overexpressing l...ine, and the mouse (Mus musculus) homolog of ILP1 repressed cyclin A2 expression in mouse NIH3T3 cells. T-DN...A insertion mutants of ILP1 showed reduced polyploidy and upregulated all CYCA2 express...ion. Furthermore, loss of CYCA2;1 expression induces an increase in polyploidy in Arabidopsis. We demo

  1. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.

    Science.gov (United States)

    El Zawily, Amr M; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S; Logan, David C

    2014-10-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  2. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  3. Molecular and physiological characterization of AtHIGD1 in Arabidopsis.

    Science.gov (United States)

    Hwang, Soong-Taek; Li, Huiling; Alavilli, Hemasundar; Lee, Byeong-Ha; Choi, Dongsu

    2017-06-10

    Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  5. The Genetic Basis of Constitutive and Herbivore-Induced ESP-Independent Nitrile Formation in Arabidopsis1[W][OA

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J.; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system. PMID:18987211

  6. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  7. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  8. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    Science.gov (United States)

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  9. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  10. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis

    International Nuclear Information System (INIS)

    Fares, Abasse; Rossignol, Michel; Peltier, Jean-Benoît

    2011-01-01

    Highlights: ► Identification and quantification of nitrosothiols. ► A first dataset of endogenously nitrosylated cysteines in Arabidopsis cells. ► Nitrosothiols display apolar motifs not located in close vicinity of cysteines. ► Salt stress alters the endogenous nitrosylation of specific cysteines in Arabidopsis. -- Abstract: S-Nitrosylation emerges as an important protein modification in many processes. However, most data were obtained at the protein level after addition of a NO donor, particularly in plants where information about the cysteines nitrosylated in these proteins is scarce. An adapted work-flow, combining the classical biotin switch method and labeling with isotope-coded affinity tags (ICAT), is proposed. Without addition of NO donor, a total of 53 endogenous nitrosocysteines was identified in Arabidopsis cells, in proteins belonging to all cell territories, including membranes, and covering a large panel of functions. This first repertoire of nitrosothiols in plants enabled also preliminary structural description. Three apolar motifs, not located in close vicinity of cysteines and accounting for half the dataset, were detected and are proposed to complement nitrosylation prediction algorithms, poorly trained with plant data to date. Analysis of changes induced by a brief salt stress showed that NaCl modified the nitrosylation level of a small proportion of endogenously nitrosylated proteins and did not concern all nitrosothiols in these proteins. The possible role of some NO targets in the response to salt stress was discussed.

  11. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  12. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  13. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  14. Three pectin methylesterase inhibitors protect cell wall integrity for arabidopsis immunity to Botrytis

    DEFF Research Database (Denmark)

    Lionetti, Vincenzo; Fabri, Eleonora; Caroli, Monica De

    2017-01-01

    to the control plants. A higher stimulation of the fungal oxalic acid biosynthetic pathway also can contribute to the higher susceptibility of pmei mutants. The lack of PMEI expression does not affect hemicellulose strengthening, callose deposition, and the synthesis of structural defense proteins, proposed...... is posttranscriptionally regulated by endogenous protein inhibitors (PMEIs). Here, AtPMEI10, AtPMEI11, and AtPMEI12 are identified as functional PMEIs induced in Arabidopsis (Arabidopsis thaliana) during B. cinerea infection. AtPMEI expression is strictly regulated by jasmonic acid and ethylene signaling, while only At...

  15. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  16. Structure-function analysis of STRUBBELIG, an Arabidopsis atypical receptor-like kinase involved in tissue morphogenesis.

    Directory of Open Access Journals (Sweden)

    Prasad Vaddepalli

    Full Text Available Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis.

  17. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  18. Analyse fonctionnelle de la protéine WSCP chez Arabidopsis thaliana

    OpenAIRE

    Boex-Fontvieille , Edouard

    2010-01-01

    Class II WSCP proteins (Watersoluble Chlorophyll binding Proteins) are soluble proteins that interact with chlorophyll and its derivatives in Brassicaceae. These proteins belong to the protease inhibitor family and they are induced by abiotic stress under light conditions. To date, their functions in plants are not well documented. The aim of this study is to characterize the physiological function of a WSCP protein in model plants Arabidopsis thaliana. We demonstrated initially that theWSCP ...

  19. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling

    DEFF Research Database (Denmark)

    Jensen, Michael K; Kjaersgaard, Trine; Nielsen, Michael M.

    2010-01-01

    -termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show......TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators...... of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C...

  20. Database Description - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Database Description General information of database Database n... BioResource Center Hiroshi Masuya Database classification Plant databases - Arabidopsis thaliana Organism T...axonomy Name: Arabidopsis thaliana Taxonomy ID: 3702 Database description The Arabidopsis thaliana phenome i...heir effective application. We developed the new Arabidopsis Phenome Database integrating two novel database...seful materials for their experimental research. The other, the “Database of Curated Plant Phenome” focusing

  1. FYVE zinc-finger proteins in the plant model Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, R B; La Cour, T; Albrethsen, J

    2001-01-01

    Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins......) of the basic motif. Dot-blot and liposome-binding assays were used in vitro to examine the phospholipid-binding ability of isolated PRAF domains. Whereas the PH domain preferentially bound PtdIns(4,5)P(2), the variant FYVE domain showed a weaker charge-dependent binding of phosphoinositides. In contrast....... A biochemical function for PRAF was indicated by its ability to catalyse guanine nucleotide exchange on some of the small GTPases of the Rab family, permitting a discussion of the biological roles of plant FYVE proteins and their regulation by phosphoinositides....

  2. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  3. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Chen, Fan [Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080 (China); Lu, Congming, E-mail: lucm@ibcas.ac.cn [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  4. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    International Nuclear Information System (INIS)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Chen, Fan; Lu, Congming

    2012-01-01

    Highlights: ► Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. ► Region conferring tissue specific and light inducible expression of Rca was identified. ► −58 to +43 bp region mediates tissue-specific expression of rice Rca. ► Light inducible expression of rice Rca is mediated by −297 to −58 bp region. ► Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene β-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from −297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (−1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from −58 to +43 bp, while light-inducible expression of Rca is mediated by the region from −297 to −58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  5. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense.

    Science.gov (United States)

    O'Brien, Jose A; Daudi, Arsalan; Finch, Paul; Butt, Vernon S; Whitelegge, Julian P; Souda, Puneet; Ausubel, Frederick M; Bolwell, G Paul

    2012-04-01

    Perception by plants of so-called microbe-associated molecular patterns (MAMPs) such as bacterial flagellin, referred to as pattern-triggered immunity, triggers a rapid transient accumulation of reactive oxygen species (ROS). We previously identified two cell wall peroxidases, PRX33 and PRX34, involved in apoplastic hydrogen peroxide (H2O2) production in Arabidopsis (Arabidopsis thaliana). Here, we describe the generation of Arabidopsis tissue culture lines in which the expression of PRX33 and PRX34 is knocked down by antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase cDNA construct. Using these tissue culture lines and two inhibitors of ROS generation, azide and diphenylene iodonium, we found that perxoxidases generate about half of the H2O2 that accumulated in response to MAMP treatment and that NADPH oxidases and other sources such as mitochondria account for the remainder of the ROS. Knockdown of PRX33/PRX34 resulted in decreased expression of several MAMP-elicited genes, including MYB51, CYP79B2, and CYP81F2. Similarly, proteomic analysis showed that knockdown of PRX33/PRX34 led to the depletion of various MAMP-elicited defense-related proteins, including the two cysteine-rich peptides PDF2.2 and PDF2.3. Knockdown of PRX33/PRX34 also led to changes in the cell wall proteome, including increases in enzymes involved in cell wall remodeling, which may reflect enhanced cell wall expansion as a consequence of reduced H2O2-mediated cell wall cross-linking. Comparative metabolite profiling of a CaCl2 extract of the PRX33/PRX34 knockdown lines showed significant changes in amino acids, aldehydes, and keto acids but not fatty acids and sugars. Overall, these data suggest that PRX33/PRX34-generated ROS production is involved in the orchestration of pattern-triggered immunity in tissue culture cells.

  6. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  7. Reference: 170 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rice A et al. 2005 Mar. Plant Cell 17(3):791-803. Environmental time cues, such as photocycles (light/dark) and thermocycles...h is known about entrainment of the Arabidopsis thaliana clock to photocycles, th...e determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RES... an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus

  8. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  9. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Bonhomme, Ludovic; Hirt, Heribert; Pflieger, Delphine

    2014-01-01

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  10. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    Science.gov (United States)

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  11. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  12. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.

    Science.gov (United States)

    Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut

    2012-08-01

    The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  13. Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil.

    Science.gov (United States)

    Gujas, Bojan; Alonso-Blanco, Carlos; Hardtke, Christian S

    2012-10-23

    Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides.

    Science.gov (United States)

    Danna, Cristian H; Millet, Yves A; Koller, Teresa; Han, Sang-Wook; Bent, Andrew F; Ronald, Pamela C; Ausubel, Frederick M

    2011-05-31

    Detection of microbes by plants relies in part on an array of pattern-recognition receptors that recognize conserved microbial signatures, so-called "microbe-associated molecular patterns." The Arabidopsis thaliana receptor-like kinase FLS2 is the pattern-recognition receptor for bacterial flagellin. Similarly to FLS2, the rice transmembrane protein XA21 is the receptor for the sulfated form of the Xanthomonas oryzae pv. oryzae secreted protein Ax21. Here we show that Ax21-derived peptides activate Arabidopsis immunity, triggering responses similar to those elicited by flagellin, including an oxidative burst, induction of defense-response genes, and enhanced resistance to bacterial pathogens. To identify Arabidopsis Xa21 functional homologs, we used a reverse genetics approach to screen T-DNA insertion mutants corresponding to all 47 of the Arabidopsis genes encoding non-RD kinases belonging to the interleukin-1 receptor-associated kinase (IRAK) family. Surprisingly, among all of these mutant lines, only fls2 mutants exhibited a significant loss of response to Ax21-derived peptides. Ax21 peptides also failed to activate defense-related responses in an fls2-24 mutant that does not bind Flg22. Moreover, a Flg22Δ2 variant of Flg22 that binds to FLS2 but does not activate FLS2-mediated signaling suppressed Ax21-derived peptide signaling, indicating mutually exclusive perception of Flg22 or Ax21 peptides by FLS2. The data indicate that FLS2 functions beyond flagellin perception to detect other microbe-associated molecular patterns.

  15. Arabidopsis CDS blastp result: AK108458 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  16. Arabidopsis CDS blastp result: AK070842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  17. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  18. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol

    2011-05-20

    Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes. ©2011 KSMCB.

  19. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement... is beginning to define the molecular machinery that controls these movement...s. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabi...dopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensitie...s while maintaining a normal movement response under low light intensities. In wi

  20. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  1. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  2. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis

    DEFF Research Database (Denmark)

    Elhiti, Mohamed; Hebelstrup, Kim; Wang, Aiming

    2013-01-01

    Suppression of the Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2 -/-) polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the ...

  3. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Marco Todesco

    2010-07-01

    Full Text Available Many targets of plant microRNAs (miRNAs are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for approximately 20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA-resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants.

  4. Arabidopsis Lectin Receptor Kinases LecRK-IX.1 and LecRK-IX.2 Are Functional Analogs in Regulating Phytophthora Resistance and Plant Cell Death.

    Science.gov (United States)

    Wang, Yan; Cordewener, Jan H G; America, Antoine H P; Shan, Weixing; Bouwmeester, Klaas; Govers, Francine

    2015-09-01

    L-type lectin receptor kinases (LecRK) are potential immune receptors. Here, we characterized two closely-related Arabidopsis LecRK, LecRK-IX.1 and LecRK-IX.2, of which T-DNA insertion mutants showed compromised resistance to Phytophthora brassicae and Phytophthora capsici, with double mutants showing additive susceptibility. Overexpression of LecRK-IX.1 or LecRK-IX.2 in Arabidopsis and transient expression in Nicotiana benthamiana increased Phytophthora resistance but also induced cell death. Phytophthora resistance required both the lectin domain and kinase activity, but for cell death, the lectin domain was not needed. Silencing of the two closely related mitogen-activated protein kinase genes NbSIPK and NbNTF4 in N. benthamiana completely abolished LecRK-IX.1-induced cell death but not Phytophthora resistance. Liquid chromatography-mass spectrometry analysis of protein complexes coimmunoprecipitated in planta with LecRK-IX.1 or LecRK-IX.2 as bait, resulted in the identification of the N. benthamiana ABC transporter NbPDR1 as a potential interactor of both LecRK. The closest homolog of NbPDR1 in Arabidopsis is ABCG40, and coimmunoprecipitation experiments showed that ABCG40 associates with LecRK-IX.1 and LecRK-IX.2 in planta. Similar to the LecRK mutants, ABCG40 mutants showed compromised Phytophthora resistance. This study shows that LecRK-IX.1 and LecRK-IX.2 are Phytophthora resistance components that function independent of each other and independent of the cell-death phenotype. They both interact with the same ABC transporter, suggesting that they exploit similar signal transduction pathways.

  5. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  6. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein.

    Science.gov (United States)

    Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

  7. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  8. Evolutionary conserved cysteines function as cis-acting regulators of arabidopsis PIN-FORMED 2 distribution

    Czech Academy of Sciences Publication Activity Database

    Retzer, Katarzyna; Lacek, Jozef; Skokan, Roman; Del Genio, C. H.; Vosolsobě, S.; Laňková, Martina; Malínská, Kateřina; Konstantinova, N.; Zažímalová, Eva; Napier, R. M.; Petrášek, Jan; Luschnig, C.

    2017-01-01

    Roč. 18, č. 11 (2017), č. článku 2274. E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GAP305/11/0797 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : Arabidopsis * Auxin * Intracellular distribution * PIN proteins * Plasma membrane protein sorting * Protein mobility * Protein modeling * Root phenotype * srrf Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.226, year: 2016

  9. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    Science.gov (United States)

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.

  12. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vaughan Martha M

    2011-03-01

    Full Text Available Abstract Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat. Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.

  13. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

    Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function

  14. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Puyan Zhao

    Full Text Available Matrix metalloproteinases (MMPs are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.

  15. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Zhang, Nianshu; Xiong, Liming

    2015-01-01

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  16. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  17. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Furuichi, Takuya; Yamamoto, Yoko

    2014-12-01

    Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    Science.gov (United States)

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and

  19. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae.

    Science.gov (United States)

    Havaux, Michel; Dall'osto, Luca; Bassi, Roberto

    2007-12-01

    The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, alpha-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves.

  20. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    Science.gov (United States)

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A Novel Superfamily of Transporters for Allantoin and Other Oxo Derivatives of Nitrogen Heterocyclic Compounds in Arabidopsis

    Science.gov (United States)

    Desimone, Marcelo; Catoni, Elisabetta; Ludewig, Uwe; Hilpert, Melanie; Schneider, Anja; Kunze, Reinhard; Tegeder, Mechthild; Frommer, Wolf Bernd; Schumacher, Karin

    2002-01-01

    A wide spectrum of soil heterocyclic nitrogen compounds are potential nutrients for plants. Here, it is shown that Arabidopsis plants are able to use allantoin as sole nitrogen source. By functional complementation of a yeast mutant defective in allantoin uptake, an Arabidopsis transporter, AtUPS1 (Arabidopsis thaliana ureide permease 1), was identified. AtUPS1 belongs to a novel superfamily of plant membrane proteins with five open reading frames in Arabidopsis (identity, 64 to 82%). UPS proteins have 10 putative transmembrane domains with a large cytosolic central domain containing a “Walker A” motif. Transport of 14C-labeled allantoin by AtUPS1 in yeast exhibited saturation kinetics (Km ∼ 52 μM), was dependent on Glc and a proton gradient, and was stimulated by acidic pH. AtUPS1 transports uric acid and xanthine, besides allantoin, but not adenine. Protons are cosubstrates in allantoin transport by AtUPS1, as demonstrated by expression in Xenopus laevis oocytes. In plants, AtUPS1 gene expression was dependent on the nitrogen source. Therefore, AtUPS1 presumably is involved in the uptake of allantoin and other purine degradation products when primary sources are limiting. PMID:11971139

  2. The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.

    Science.gov (United States)

    van Roermund, Carlo W T; Schroers, Martin G; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J A; Waterham, Hans R; Weber, Andreas P M; Link, Nicole

    2016-07-01

    Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana.

    Science.gov (United States)

    Jun, Ji Hyung; Ha, Chan Man; Nam, Hong Gil

    2002-03-01

    A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.

  4. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis.

    Science.gov (United States)

    Xiao, Chaowen; Somerville, Chris; Anderson, Charles T

    2014-03-01

    Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.

  5. Identification of the AQP members involved in abiotic stress responses from Arabidopsis.

    Science.gov (United States)

    Feng, Zhi-Juan; Xu, Sheng-Chun; Liu, Na; Zhang, Gu-Wen; Hu, Qi-Zan; Xu, Zhao-Shi; Gong, Ya-Ming

    2018-03-10

    Aquaporins (AQPs) constitute a highly diverse family of water channel proteins that play crucial biological functions in plant growth and development and stress physiology. In Arabidopsis, 35 AQPs are classified into four subfamilies (PIPs, TIPs, NIPs and SIPs). However, knowledge about the roles of different subfamily AQPs remains limited. Here, we explored the chromosomal location, gene structure and expression patterns of all AQPs in different tissues or under different abiotic stresses based on available microarray data. Tissue expression analysis showed that different AQPs had various expression patterns in tissues (root, leaf, flower and seed). Expression profiles under stress conditions revealed that most AQPs were responsive to osmotic, salt and drought stresses. Phenotypic and physiological identification showed that Tip2;2 loss-of-function mutant exhibited less sensitive to abiotic stresses (mannitol, NaCl and PEG) compared with wild-type, as evident by analysis of germination rate, root growth, survival rate, ion leakage, malondialdehyde (MDA) and proline contents. Mutant of TIP2;2 modulated the transcript levels of SOS1, SOS2, SOS3, DREB1A, DREB2A and P5CS1, under abiotic stress conditions. This study provides a basis for further functional identification of stress-related candidate AQPs in Arabidopsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  7. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  8. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment.

    Science.gov (United States)

    Larkin, Robert M; Stefano, Giovanni; Ruckle, Michael E; Stavoe, Andrea K; Sinkler, Christopher A; Brandizzi, Federica; Malmstrom, Carolyn M; Osteryoung, Katherine W

    2016-02-23

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.

  9. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  10. More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis.

    Science.gov (United States)

    Gakière, Bertrand; Fernie, Alisdair R; Pétriacq, Pierre

    2018-01-05

    Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD + ) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD + metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis

    OpenAIRE

    Quintero, Francisco J.; Ohta, Masaru; Shi, Huazhong; Zhu, Jian-Kang; Pardo, José M.

    2002-01-01

    The Arabidopsis thaliana SOS1 protein is a putative Na H antiporter that functions in Na extrusion and is essential for the NaCl tolerance of plants. sos1 mutant plants share phenotypic similarities with mutants lacking the protein kinase SOS2 and the Ca2 sensor SOS3. To investigate whether the three SOS proteins function in the same response pathway, we have reconstituted the SOS system in yeast cells. Expression of SOS1 improved the Na tolerance of yeast mutants la...

  12. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  13. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  14. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-01-01

    transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time

  15. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain.

    Science.gov (United States)

    Xue, Hui; Veit, Christiane; Abas, Lindy; Tryfona, Theodora; Maresch, Daniel; Ricardi, Martiniano M; Estevez, José Manuel; Strasser, Richard; Seifert, Georg J

    2017-08-01

    Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  16. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  17. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae

    NARCIS (Netherlands)

    Onkokesung, N.; Reichelt, M.; Doorn, van A.; Schuurink, R.C.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin

  18. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  19. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    Science.gov (United States)

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  20. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  1. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  2. Two rubisco activase genes from ipomoea batatas have different roles in photosynthesis of arabidopsis

    International Nuclear Information System (INIS)

    Jiang, Y.

    2014-01-01

    Rubisco activase (RCA) that functions as a molecular chaperone regulates the activity of the Calvin-Benson cycle via regulation of the Rubisco activity. In plants such as Arabidopsis thaliana, Spinacia oleracea, and Oryza sativa, there are two RCA isoforms from two mRNAs that are produced from alternative splicing of the transcribed pre-mRNA of a single RCA gene. However, this research reported that the transcripts of the two IbRCA isoforms in sweet potato (Ipomoea batatas) were transcribed from two different genes. To study the roles of these two IbRCA isoforms in photosynthesis, we inserted these two IbRCA genes into the genome of Arabidopsis with deletion of RCA gene (RCA), resulting in IbRCAs- and IbRCAl-expressing plants, respectively. Analysis of these transgenic Arabidopsis indicated that the IbRCAs-expressing plants were similar to wild-type plants under ambient CO/sub 2/ concentration and 22 degree C conditions, suggesting that expression of IbRCAs gene was sufficient for functional complementation of RCA plants under normal conditions. However, IbRCAs-expressing plants were more susceptible to moderate heat stress (26 degree C) compared to wild-type plants. In contrast, although the IbRCAl-expressing plants had to grow normally in high CO/sub 2/ concentration conditions, there were almost no differences in growth and photosynthesis between normally grown and heat-treated plants, implying that IbRCAl-expressing plants had a better heat-resistance than IbRCAs-expressing plants. (author)

  3. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-01

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ( ∼ 61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H 2 O 2 scavenging activity in leaves were applied

  4. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    Science.gov (United States)

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  5. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  6. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis.

    Science.gov (United States)

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control.

  7. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  8. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  9. RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-05-02

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5' products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.

  10. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    International Nuclear Information System (INIS)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-01-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C(sub 3) plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C(sub 3) plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean[Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport

  11. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    Energy Technology Data Exchange (ETDEWEB)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  12. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  13. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    International Nuclear Information System (INIS)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-01-01

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  14. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule.

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2018-03-01

    Full Text Available In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM. The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK/Kip-related proteins are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule.

  15. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Science.gov (United States)

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  16. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  17. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Science.gov (United States)

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  18. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  19. The fate of retrotransposed processed genes in Arabidopsis thaliana.

    Science.gov (United States)

    Abdelkarim, Basma T M; Maranda, Vincent; Drouin, Guy

    2017-04-20

    Processed genes are functional genes that have arisen as a result of the retrotransposition of mRNA molecules. We found 6 genes that generated processed genes in the common ancestor of five Brassicaceae species (Arabidopsis thaliana, Arabidopsis lyrata, Capsella rubella, Brassica rapa and Thellungiella parvula). These processed genes have therefore been kept for at least 30millionyears. Analyses of the Ka/Ks ratio of these genes, and of those having given rise to them, show that they evolve relatively slowly and suggest that the processed genes maintained the same function as that of their parental gene. There is a significant negative correlation between the number of ESTs and transcripts produced and the Ka/Ks ratios of the parental genes but not of the processed genes. This suggests that selection has not yet adapted the selective pressure the processed genes experience to their expression level. However, the A. thaliana processed genes tend to be expressed in the same tissues as that of their parental genes. Furthermore, most have a CAATT-box, a TATA-box and are located about 1kb from another protein-coding gene. Altogether, our results suggest that the processed genes found in the A. thaliana genome have been kept to produce more of the same product, and in the same tissues, as that encoded by their parental gene. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis.

    Science.gov (United States)

    Levy, Amit; Erlanger, Michael; Rosenthal, Michal; Epel, Bernard L

    2007-02-01

    Plasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein. When fused to green fluorescent protein (GFP) and expressed in tobacco (Nicotiana tabacum) or Nicotiana benthamiana epidermal cells, this protein displays fluorescence patterns in the endoplasmic reticulum (ER) membrane system, along the cell periphery and in a punctate pattern that co-localizes with aniline blue-stained callose present around the Pd. Plasma membrane localization was verified by co-localization of AtBG_ppap:GFP together with a plasma membrane marker N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) in plasmolysed cells. In Arabidopsis T-DNA insertion mutants that do not transcribe AtBG_ppap, functional studies showed that GFP cell-to-cell movement between epidermal cells is reduced, and the conductivity coefficient of Pd is lower. Measurements of callose levels around Pd after wounding revealed that callose accumulation in the mutant plants was higher. Taken together, we suggest that AtBG_ppap is a Pd-associated membrane protein involved in plasmodesmal callose degradation, and functions in the gating of Pd.

  1. TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa.

    Science.gov (United States)

    Xu, W; Bobet, S; Le Gourrierec, J; Grain, D; De Vos, D; Berger, A; Salsac, F; Kelemen, Z; Boucherez, J; Rolland, A; Mouille, G; Routaboul, J M; Lepiniec, L; Dubos, C

    2017-05-17

    Flavonoids are secondary metabolites that fulfil a multitude of functions during the plant life cycle. In Arabidopsis proanthocyanidins (PAs) are flavonoids that specifically accumulate in the innermost integuments of the seed testa (i.e. endothelium), as well as in the chalaza and micropyle areas, and play a vital role in protecting the embryo against various biotic and abiotic stresses. PAs accumulation in the endothelium requires the activity of the MADS box transcription factor TRANSPARENT TESTA (TT) 16 (ARABIDOPSIS B-SISTER/AGAMOUS-LIKE 32) and the UDP-glycosyltransferase TT15 (UGT80B1). Interestingly tt16 and tt15 mutants display a very similar flavonoid profiles and patterns of PA accumulation. By using a combination of genetic, molecular, biochemical, and histochemical methods, we showed that both TT16 and TT15 act upstream the PA biosynthetic pathway, but through two distinct genetic routes. We also demonstrated that the activity of TT16 in regulating cell fate determination and PA accumulation in the endothelium is required in the chalaza prior to the globular stage of embryo development. Finally this study provides new insight showing that TT16 and TT15 functions extend beyond PA biosynthesis in the inner integuments of the Arabidopsis seed coat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  3. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  4. Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Juul, Trine Maxel; Auzina, Aija

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify...... an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase...... activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation...

  5. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  6. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M.

    1995-01-01

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  7. Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Morales Andrea

    2008-05-01

    Full Text Available Abstract Background The isolation of green fluorescent protein (GFP and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types. Results We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings. Conclusion We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell is available through Arabidopsis Biological Resource Center.

  8. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis

    NARCIS (Netherlands)

    Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rougé, P.; Pont-Lezica, R.; Canut, H.

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis

  9. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    Science.gov (United States)

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  10. Intracellular localization of Arabidopsis sulfurtransferases.

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  11. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Science.gov (United States)

    Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G

    2018-06-01

    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.

  12. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Science.gov (United States)

    Keim, Verónica; Manzano, David; Fernández, Francisco J; Closa, Marta; Andrade, Paola; Caudepón, Daniel; Bortolotti, Cristina; Vega, M Cristina; Arró, Montserrat; Ferrer, Albert

    2012-01-01

    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  13. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  15. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  16. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Science.gov (United States)

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  17. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  18. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  19. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

    Science.gov (United States)

    Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2013-12-06

    Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.

  20. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  1. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  2. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade.

    Science.gov (United States)

    van Mourik, Hilda; van Dijk, Aalt D J; Stortenbeker, Niek; Angenent, Gerco C; Bemer, Marian

    2017-12-19

    Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we focus on the regulatory regions of Arabidopsis SAUR genes, to predict the processes in which they play a role, and understand the dynamics of plant growth. In this study, we characterized in detail the entire SAUR10-clade: SAUR8, SAUR9, SAUR10, SAUR12, SAUR16, SAUR50, SAUR51 and SAUR54. Overexpression analysis revealed that the different proteins fulfil similar functions, while the SAUR expression patterns were highly diverse, showing expression throughout plant development in a variety of tissues. In addition, the response to application of different hormones largely varied between the different genes. These tissue-specific and hormone-specific responses could be linked to transcription factor binding sites using in silico analyses. These analyses also supported the existence of two groups of SAURs in Arabidopsis: Class I genes can be induced by combinatorial action of ARF-BZR-PIF transcription factors, while Class II genes are not regulated by auxin. SAUR10-clade genes generally induce cell-elongation, but exhibit diverse expression patterns and responses to hormones. Our experimental and in silico analyses suggest that transcription factors involved in plant development determine the tissue specific expression of the different SAUR genes, whereas the amplitude of this expression can often be controlled by hormone response transcription factors. This allows the plant to fine tune growth in a variety of tissues in response to internal and external signals.

  3. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    Science.gov (United States)

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  4. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    Science.gov (United States)

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  5. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  6. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  7. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  8. A preliminary study on a specifically expressed arabidopsis promotor in vascular bundle

    International Nuclear Information System (INIS)

    Gu Yunhong; Xie Chuanxiao; Wu Lifang; Yu Zengliang

    2003-01-01

    From a population of about 3500 single plants in Arabidopsis promoter trapping bank, one plant whose GUS-gene had been specifically expressed in vascular bundle, was screened by the method of gus tissue staining. The T-DNA flanking sequence was amplified using TAIL-PCR. This band will be purified and connected to TA cloning vector. After sequencing and searching in the genebank, its function will be demonstrated through transformation

  9. Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome

    Directory of Open Access Journals (Sweden)

    Chun Pong eLee

    2013-01-01

    Full Text Available Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, less than 30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past five years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.

  10. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  11. Update History of This Database - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Update History of This Database Date Update contents 2017/02/27 Arabidopsis Phenome Data...base English archive site is opened. - Arabidopsis Phenome Database (http://jphenom...e.info/?page_id=95) is opened. About This Database Database Description Download License Update History of This Database... Site Policy | Contact Us Update History of This Database - Arabidopsis Phenome Database | LSDB Archive ...

  12. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    Science.gov (United States)

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found

  13. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  14. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  15. Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.

    Science.gov (United States)

    Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio

    2013-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.

  16. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ana Rus

    2006-12-01

    Full Text Available Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na(+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively, accumulate higher shoot levels of Na(+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na(+ transporter, as being the causal locus driving elevated shoot Na(+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na(+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics. Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na

  18. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  19. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Laura Medina-Puche

    Full Text Available The plant hormone salicylic acid (SA is required for defense responses. NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1 and NON RECOGNITION OF BTH-4 (NRB4 are required for the response to SA in Arabidopsis (Arabidopsis thaliana. Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.

  20. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  1. Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells.

    Science.gov (United States)

    Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V

    2008-01-01

    Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.

  2. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Directory of Open Access Journals (Sweden)

    Pengkai Wang

    2016-09-01

    Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  3. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis

    DEFF Research Database (Denmark)

    Næsted, Henrik; Fennema, M.; Hao, L.

    1999-01-01

    , including Arabidopsis, tobacco, oil seed rape and rice, do not express detectable haloalkane dehalogenase activities, and that wild-type Arabidopsis grows in the presence of DCE. In contrast, DCE applied as a volatile can be used to select on plates or in soil transgenic Arabidopsis which express dhl...

  4. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    Directory of Open Access Journals (Sweden)

    Xu Fuyu

    2012-09-01

    Full Text Available Abstract Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa formed ten clusters of orthologous groups (COG with genes from the monocot sorghum (Sorghum bicolor and dicot Arabidopsis (Arabidopsis thaliana. The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in

  5. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  6. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  7. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  8. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    Science.gov (United States)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus.

    Directory of Open Access Journals (Sweden)

    Nemanja Vukašinović

    Full Text Available Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370 locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.

  10. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  11. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis

    DEFF Research Database (Denmark)

    Geldner, Niko; Richter, Sandra; Vieten, Anne

    2004-01-01

    The Arabidopsis GNOM gene encodes an ARF GDP/GTP exchange factor involved in embryonic axis formation and polar localisation of the auxin efflux regulator PIN1. To examine whether GNOM also plays a role in post-embryonic development and to clarify its involvement in auxin transport, we have...

  12. Characterization of WRKY co-regulatory networks in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kikuchi Shoshi

    2009-09-01

    Full Text Available Abstract Background The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa. This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. Results The presented results suggested that 24 members of the rice WRKY gene family (22% of the total were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B and two smaller ones (COR-C and COR-D, all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. Conclusion In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co

  13. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Dzianott, Aleksandra; Bujarski, Jozef J.

    2004-01-01

    Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle

  14. Continuous-time modeling of cell fate determination in Arabidopsis flowers

    Directory of Open Access Journals (Sweden)

    Angenent Gerco C

    2010-07-01

    Full Text Available Abstract Background The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored. Results We propose an ordinary differential equation (ODE model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known experimental expression data. The model is validated by simulation studies of known mutant plants. Conclusions The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.

  15. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    Science.gov (United States)

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  16. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae1[C][W

    Science.gov (United States)

    Havaux, Michel; Dall'Osto, Luca; Bassi, Roberto

    2007-01-01

    The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, α-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves. PMID:17932304

  17. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development.

    Science.gov (United States)

    Xu, Jing; Zhang, Lin; Yang, Dong-Lei; Li, Qun; He, Zuhua

    2015-12-01

    Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development. © 2015 Institute of Plant Physiology and Ecology, SIBS, CAS New Phytologist © 2015 New Phytologist Trust.

  18. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  19. AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

    KAUST Repository

    Li, Bo

    2017-01-05

    The accumulation of high concentrations of chloride (Cl) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl sensitive plant species those that exclude relatively more Cl from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl into the root xylem, which affects the accumulation of Cl in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl efflux from roots, and a greater Cl accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO- content in 3 the shoot remained unaffected. Accumulation of Cl in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl efflux from the root, contributing to exclusion of Cl from the shoot of Arabidopsis.

  20. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  1. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    Science.gov (United States)

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  2. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress.

    Science.gov (United States)

    Komaki, Shinichiro; Schnittger, Arp

    2017-10-23

    The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reassessing the role of phospholipase D in the Arabidopsis wounding response

    NARCIS (Netherlands)

    Bargmann, Bastiaan O.R.; Laxalt, Ana M.; Riet, Bas ter; Testerink, Christa; Merquiol, Emmanuelle; Mosblech, Alina; Leon Reyes, H.A.; Pieterse, C.M.J.; Haring, Michel A.; Heilmann, Ingo; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDa1 has been proposed to be activated in intact cells, and the

  4. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...

  5. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36 /C38 acyl precursors for leaf trichome and pavement surface wax.

    Science.gov (United States)

    Hegebarth, Daniela; Buschhaus, Christopher; Joubès, Jérôme; Thoraval, Didier; Bird, David; Jetter, Reinhard

    2017-09-01

    The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β-ketoacyl-CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C 35 and C 37 alkanes derived from C 36 and C 38 acyl-CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss-of-function mutants were depleted of C 35 and C 37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C 36 and C 38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C 34 to C 38 acyl-CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra-long compounds in adjacent pavement cells. © 2017 John Wiley & Sons Ltd.

  6. Intracellular Localization of Arabidopsis Sulfurtransferases1

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta

    2004-01-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206

  7. Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Marisa Isaacs

    2016-05-01

    Full Text Available AtDIR1 (Defective in Induced Resistance1 is an acidic lipid transfer protein essential for systemic acquired resistance (SAR in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1’s central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis–cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus, and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA, glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis–cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber.

  8. The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Monica Fornari

    Full Text Available Nuclear factor Y (NF-Y is a trimeric transcription factor composed of three distinct subunits called NF-YA, NF-YB and NF-YC. In Arabidopsis thaliana, NF-Y subunits are known to play roles in many processes, such as gametogenesis, embryogenesis, seed development, drought resistance, ABA signaling, flowering time, primary root elongation, Endoplasmic Reticulum (ER stress response and blue light responses. Here, we report that the closely related NF-YA3 and NF-YA8 genes control early embryogenesis. Detailed GUS and in situ analyses showed that NF-YA3 and NF-YA8 are expressed in vegetative and reproductive tissues with the highest expression being during embryo development from the globular to the torpedo embryo stage. Plants from the nf-ya3 and nf-ya8 single mutants do not display any obvious phenotypic alteration, whereas nf-ya3 nf-ya8 double mutants are embryo lethal. Morphological analyses showed that the nf-ya3 nf-ya8 embryos fail to undergo to the heart stage and develop into abnormal globular embryos with both proembryo and suspensor characterized by a disordered cell cluster with an irregular shape, suggesting defects in embryo development. The suppression of both NF-YA3 and NF-YA8 gene expression by RNAi experiments resulted in defective embryos that phenocopied the nf-ya3 nf-ya8 double mutants, whereas complementation experiments partially rescued the abnormal globular nf-ya3 nf-ya8 embryos, confirming that NF-YA3 and NF-YA8 are required in early embryogenesis. Finally, the lack of GFP expression of the auxin responsive DR5rev::GFP marker line in double mutant embryos suggested that mutations in both NF-YA3 and NF-YA8 affect auxin response in early developing embryos. Our findings indicate that NF-YA3 and NF-YA8 are functionally redundant genes required in early embryogenesis of Arabidopsis thaliana.

  9. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    Science.gov (United States)

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  13. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.; Sanchez-Serrano, J.J.; Salinas, J.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  14. Molecular and Functional Characterization of a Polygalacturonase-Inhibiting Protein from Cynanchum komarovii That Confers Fungal Resistance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Nana Liu

    Full Text Available Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.

  15. Reference: 150 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ridization, Pht1;4 was found mainly expressed in inorgan...physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hyb

  16. Reference: 306 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the endoreduplication cycle in Arabidopsis requires a plant homologue of archaeal DNA topoisomerase (topo) VI. To further understa...nd how DNA is endoreduplicated and how this process is r

  17. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    Science.gov (United States)

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  18. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    Science.gov (United States)

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  19. Nucleotide variation in ATHK1 region of Arabidopsis thaliana and its ...

    African Journals Online (AJOL)

    The ATHK1 gene in Arabidopsis encodes a putative histidine kinase that is transcriptionally upregulated in response to changes in external osmolarity. In this work, we investigated the nucleotide variability of the ATHK1 gene in a sample of 32 core Arabidopsis accessions originating from different ecoclimatic regions and ...

  20. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    Science.gov (United States)

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  2. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    Directory of Open Access Journals (Sweden)

    Louise F Thatcher

    Full Text Available Glutathione S-transferases (GSTs play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1 mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060. Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  3. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Sardar, Atish; Nandi, Ashis Kumar; Chattopadhyay, Debasis

    2017-06-15

    Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  5. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  6. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.

    Science.gov (United States)

    Bhargava, Apurva; Clabaugh, Ivory; To, Jenn P; Maxwell, Bridey B; Chiang, Yi-Hsuan; Schaller, G Eric; Loraine, Ann; Kieber, Joseph J

    2013-05-01

    Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.

  7. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  8. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    Science.gov (United States)

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  9. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  10. Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi. In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs, are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180-base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four-nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.

  11. NDR proteins: Lessons learned from Arabidopsis and animal cells prompt a testable hypothesis

    OpenAIRE

    Mudgil, Yashwanti; Jones, Alan M

    2010-01-01

    N-myc downregulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDR proteins (deisgnated NDR-like, NDL) show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector f...

  12. Reference: 510 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover... its degradation. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem

  13. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  14. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; Stam, Remco; John-Arputharaj, Ajay; Dresselhaus, Thomas

    2017-12-15

    Genes encoding proteins underlying host-pathogen co-evolution and which are selected for new resistance specificities frequently are under positive selection, a process that maintains diversity. Here, we tested the contribution of natural selection, recombination and transcriptional divergence to the evolutionary diversification of the plant defensins superfamily in three Arabidopsis species. The intracellular NOD-like receptor (NLR) family was used for comparison because positive selection has been well documented in its members. Similar to defensins, NLRs are encoded by a large and polymorphic gene family and many of their members are involved in the immune response. Gene trees of Arabidopsis defensins (DEFLs) show a high prevalence of clades containing orthologs. This indicates that their diversity dates back to a common ancestor and species-specific duplications did not significantly contribute to gene family expansion. DEFLs are characterized by a pervasive pattern of neutral evolution with infrequent positive and negative selection as well as recombination. In comparison, most NLR alignment groups are characterized by frequent occurrence of positive selection and recombination in their leucine-rich repeat (LRR) domain as well negative selection in their nucleotide-binding (NB-ARC) domain. While major NLR subgroups are expressed in pistils and leaves both in presence or absence of pathogen infection, the members of DEFL alignment groups are predominantly transcribed in pistils. Furthermore, conserved groups of NLRs and DEFLs are differentially expressed in response to Fusarium graminearum regardless of whether these genes are under positive selection or not. The present analyses of NLRs expands previous studies in Arabidopsis thaliana and highlights contrasting patterns of purifying and diversifying selection affecting different gene regions. DEFL genes show a different evolutionary trend, with fewer recombination events and significantly fewer instances of

  15. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Institute of Scientific and Technical Information of China (English)

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  16. A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jang Young

    2011-06-01

    Full Text Available Abstract Background Efficient high throughput screening systems of useful mutants are prerequisite for study of plant functional genomics and lots of application fields. Advance in such screening tools, thanks to the development of analytic instruments. Direct analysis in real-time (DART-mass spectrometry (MS by ionization of complex materials at atmospheric pressure is a rapid, simple, high-resolution analytical technique. Here we describe a rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by DART-MS. Results To determine whether this DART-MS combined by multivariate analysis can perform genetic discrimination based on global metabolic profiling, intact Arabidopsis thaliana mutant seeds were subjected to DART-MS without any sample preparation. Partial least squares-discriminant analysis (PLS-DA of DART-MS spectral data from intact seeds classified 14 different lines of seeds into two distinct groups: Columbia (Col-0 and Landsberg erecta (Ler ecotype backgrounds. A hierarchical dendrogram based on partial least squares-discriminant analysis (PLS-DA subdivided the Col-0 ecotype into two groups: mutant lines harboring defects in the phenylpropanoid biosynthetic pathway and mutants without these defects. These results indicated that metabolic profiling with DART-MS could discriminate intact Arabidopsis seeds at least ecotype level and metabolic pathway level within same ecotype. Conclusion The described DART-MS combined by multivariate analysis allows for rapid screening and metabolic characterization of lots of Arabidopsis mutant seeds without complex metabolic preparation steps. Moreover, potential novel metabolic markers can be detected and used to clarify the genetic relationship between Arabidopsis cultivars. Furthermore this technique can be applied to predict the novel gene function of metabolic mutants regardless of morphological phenotypes.

  17. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    Science.gov (United States)

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  18. Genetic analysis of seed development in Arabidopsis thaliana = [Genetische analyse van de zaadontwikkeling in Arabidopsis thaliana

    NARCIS (Netherlands)

    Leon - Kloosterziel, K.

    1997-01-01


    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection

  19. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana

    NARCIS (Netherlands)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H.A.J.; Wang, Guodong

    2016-01-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of

  20. Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines.

    Science.gov (United States)

    Saibi, Walid; Zouari, Nabil; Masmoudi, Khaled; Brini, Faiçal

    2016-04-01

    Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Science.gov (United States)

    Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531

  2. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  3. Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity

    NARCIS (Netherlands)

    Wang, Y.; Bouwmeester, K.; Beseh, P.; Shan, W.; Govers, F.

    2014-01-01

    L-type lectin receptor kinases (LecRKs) are membrane-spanning receptor-like kinases with putative roles in biotic and abiotic stress responses and in plant development. In Arabidopsis, 45 LecRKs were identified but their functions are largely unknown. Here, a systematic functional analysis was

  4. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  5. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    Science.gov (United States)

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  6. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  7. Reference: 627 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column ...ptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelo

  8. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  9. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  10. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    Science.gov (United States)

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  11. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    Directory of Open Access Journals (Sweden)

    José Luis Carrasco

    Full Text Available Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6, a previously reported DBP1 interactor, and MAP kinase (MAPK MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV, and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  12. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  13. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night

    Science.gov (United States)

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S.; Armstrong, Daniel W.; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface. PMID:27446113

  14. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.

    Science.gov (United States)

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S; Armstrong, Daniel W; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface.

  15. From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research[OA

    Science.gov (United States)

    Lavagi, Irene; Estelle, Mark; Weckwerth, Wolfram; Beynon, Jim; Bastow, Ruth M.

    2012-01-01

    In the face of an increasing world population and climate instability, the demands for food and fuel will continue to rise. Plant science will be crucial to help meet these exponentially increasing requirements for food and fuel supplies. Fundamental plant research will play a major role in providing key advances in our understanding of basic plant processes that can then flow into practical advances through knowledge sharing and collaborations. The model plant Arabidopsis thaliana has played a major role in our understanding of plant biology, and the Arabidopsis community has developed many tools and resources to continue building on this knowledge. Drawing from previous experience of internationally coordinated projects, The international Arabidopsis community, represented by the Multinational Arabidopsis Steering Committee (MASC), has drawn up a road map for the next decade of Arabidopsis research to inform scientists and decision makers on the future foci of Arabidopsis research within the wider plant science landscape. This article provides a summary of the MASC road map. PMID:22751212

  16. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  17. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?

    Science.gov (United States)

    Kim, Sung-Jin; Kim, Kye-Won; Cho, Man-Ho; Franceschi, Vincent R; Davin, Laurence B; Lewis, Norman G

    2007-07-01

    A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of nine (so-called AtCAD1-9) of 17 genes originally annotated by The Arabidopsis Information Resource (TAIR) as cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) homologues [see Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis N.G., 2003. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64, 1097-1112.]. In agreement with our biochemical studies in vitro [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C.-H., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455-1460.], and analysis of a double mutant [Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., Séguin A., 2005. Cinnamyl Alcohol Dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059-2076.], both AtCAD5 (At4g34230) and AtCAD4 (At3g19450) were found to have expression patterns consistent with development/formation of different forms of the lignified vascular apparatus, e.g. lignifying stem tissues, bases of trichomes, hydathodes, abscission zones of siliques, etc. Expression was also observed in various non-lignifying zones (e.g. root caps) indicative of, perhaps, a role in plant defense. In addition, expression patterns of the four CAD-like homologues were investigated, i.e. AtCAD2 (At2g21730), AtCAD3 (At2g21890), AtCAD7 (At4g37980) and AtCAD8 (At4g37990), each of which previously had been demonstrated to have low CAD

  18. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  19. Reference: 689 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the high affinity of MOT1 allows plants to obtain scarce Mo from soil. An Arabidopsis thaliana high-affinity... molybdate transporter required for efficient uptake of molybdate from soil. 47 18807-12 18003916 2007 Nov P

  20. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Garcia, V.

    2001-12-01

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  1. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  2. Identification and Characterization of Novel Plant Adenylate Cyclases – The Arabidopsis Thaliana Potassium Uptake Permeases

    KAUST Repository

    Al-Younis, Inas M.

    2018-05-01

    Adenylyl Cyclases (ACs) catalyze the formation of the key universal second messenger adenosine 3’, 5’-cyclic monophosphate (cAMP) from adenosine 5’- triphosphate. Cyclic AMP participates in several signal transduction pathways and is present in bacteria and higher and lower eukaryotes including higher plants. Previous studies in plants have shown a role for cAMP in signal transduction during e.g. the cell cycle, elongation of the pollen tube and stimulation of protein kinase activity. More recently cAMP has been shown to play a role in stress responses. Interestingly, cAMP has also been shown to regulate ion transport in plant cells. Here we used a similar strategy that led to the discovery of the first guanylyl cyclase in plants that was based on the alignment of conserved and functionally assigned amino acids in the catalytic centre of annotated nucleotide cyclases from lower and higher eukaryotes, to identify a novel candidate ACs in Arabidopsis (Arabidopsis thaliana K+ Uptake 5 and 7). ATKUP5 and 7 are homologous to K+ uptake permeases (KUPs) from bacteria and high-affinity K+ transporters (HAKs) from fungi. The AC activity was investigated by recombinantly expressing the ATKUP5 and 7 AC domain in vitro and by complementation of an E. coli AC mutant (cyaA). Furthermore, ATKUP5 was tested for its ability to functionally complement a yeast mutant deficient in Trk1 and Trk2 high affinity potassium uptake transporters. Site-mutagenesis in the AC domain was used to test the effect of both functions in each other. Furthermore, ATKUP5 was characterized electrophysiologically in HEK-293 cells to characterize the nature of this transporter. The localization of the ATKUP5 in Arabidopsis was examined using a Green Fluorescent Protein (GFP) fusion with the ATKUP5 to determine whether ATKUP5 is expressed at the plasma or tonoplast membrane. Arabiodpsis thaliana of the wild type, overexpressing ATKUP5 and atkup5 mutant lines were used to examine phenotypic differences.

  3. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases.

    Science.gov (United States)

    Yeh, Yu-Hung; Chang, Yu-Hsien; Huang, Pin-Yao; Huang, Jing-Bo; Zimmerli, Laurent

    2015-01-01

    Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs) possess two copies of the C-X8-C-X2-C (DUF26) motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here, we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6, and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1) was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6, and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  4. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  5. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  6. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  7. Reference: 438 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  8. Reference: 439 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available or IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis impro...is TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional fact

  9. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    mitochondrion-targeted proteins are over-represented in the Arabidopsis cis-NATs and that 19% of sense and antisense partner genes of cis-NATs share at least one common Gene Ontology term, which suggests that they encode proteins with possible functional connection. Conclusion The negatively correlated expression patterns of sense and antisense genes as well as the presence of siRNAs in many of the cis-NATs suggest that siRNA regulation of cis-NATs via the RNAi pathway is an important gene regulatory mechanism for at least a subgroup of cis-NATs in Arabidopsis.

  10. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  11. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    KAUST Repository

    Lu, Shiyou; Zhao, Huayan; Des Marais, David L.; Parsons, Eugene P.; Wen, Xiaoxue; Xu, Xiaojing; Bangarusamy, Dhinoth Kumar; Wang, Guangchao; Rowland, Owen; Juenger, Thomas E.; Bressan, Ray Anthony; Jenks, Matthew A.

    2012-01-01

    Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty

  12. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy

    Directory of Open Access Journals (Sweden)

    James D Higgins

    2014-01-01

    Full Text Available Arabidopsis arenosa is a close relative of the model plant Arabidopsis thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.

  13. Moss Pathogenesis-Related-10 protein enhances resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Alexandra eCastro

    2016-04-01

    Full Text Available Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  14. The "Arabidopsis cax3" mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H(+)-ATPase activity

    Science.gov (United States)

    Perturbing CAX1, an "Arabidopsis" vacuolar H(+)/Ca(2+) antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among "cax1" and "ca...

  15. Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C MutantW⃞

    Science.gov (United States)

    Leonhardt, Nathalie; Kwak, June M.; Robert, Nadia; Waner, David; Leonhardt, Guillaume; Schroeder, Julian I.

    2004-01-01

    Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function. PMID:14973164

  16. Recombinant ACHT1 from Arabidopsis thaliana: crystallization and X-ray crystallographic analysis.

    Science.gov (United States)

    Pan, Weimin; Wang, Junchao; Yang, Ye; Liu, Lin; Zhang, Min

    2017-07-01

    Thioredoxins (Trxs) play important roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. They execute their function by regulating the oxidation and reduction of disulfide bonds. ACHT1 (atypical cysteine/histidine-rich Trx1) is a thylakoid-associated thioredoxin-type protein found in the Arabidopsis thaliana chloroplast. Recombinant ACHT1 protein was overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion method. The crystal diffracted to 1.7 Å resolution and a complete X-ray data set was collected. Preliminary crystallographic analysis suggested that the crystals belonged to space group C222 1 , with unit-cell parameters a = 102.7, b = 100.6, c = 92.8 Å.

  17. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Přemysl ePejchar

    2015-02-01

    Full Text Available Aluminum ions (Al have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity and function of the non-specific phospholipase C4 (NPC4, a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana.We observed a lower expression of NPC4 using GUS assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h. Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions.Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.

  18. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  19. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    genes between O. sativa and B. napus may have consistent function and control similar traits, which may be ..... acea chromosomes reveals islands of conserved organization. ... 1998 Conserved structure and function of the Arabidopsis flow-.

  20. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  1. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids.

    Science.gov (United States)

    Schöckel, Laura; Möckel, Martin; Mayer, Bernd; Boos, Dominik; Stemmann, Olaf

    2011-07-10

    Cohesin pairs sister chromatids by forming a tripartite Scc1-Smc1-Smc3 ring around them. In mitosis, cohesin is removed from chromosome arms by the phosphorylation-dependent prophase pathway. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1-PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4-6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.

  2. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network.

    Science.gov (United States)

    Wei, Shu; Gruber, Margaret Y; Yu, Bianyun; Gao, Ming-Jun; Khachatourians, George G; Hegedus, Dwayne D; Parkin, Isobel A P; Hannoufa, Abdelali

    2012-09-18

    The Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known. In this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT) ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated) SPL15 (SPL15m) largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n) and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro interaction between DNA-binding SBP domain of SPL15

  3. ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery.

    Science.gov (United States)

    Krishnakumar, Vivek; Contrino, Sergio; Cheng, Chia-Yi; Belyaeva, Irina; Ferlanti, Erik S; Miller, Jason R; Vaughn, Matthew W; Micklem, Gos; Town, Christopher D; Chan, Agnes P

    2017-01-01

    ThaleMine (https://apps.araport.org/thalemine/) is a comprehensive data warehouse that integrates a wide array of genomic information of the model plant Arabidopsis thaliana. The data collection currently includes the latest structural and functional annotation from the Araport11 update, the Col-0 genome sequence, RNA-seq and array expression, co-expression, protein interactions, homologs, pathways, publications, alleles, germplasm and phenotypes. The data are collected from a wide variety of public resources. Users can browse gene-specific data through Gene Report pages, identify and create gene lists based on experiments or indexed keywords, and run GO enrichment analysis to investigate the biological significance of selected gene sets. Developed by the Arabidopsis Information Portal project (Araport, https://www.araport.org/), ThaleMine uses the InterMine software framework, which builds well-structured data, and provides powerful data query and analysis functionality. The warehoused data can be accessed by users via graphical interfaces, as well as programmatically via web-services. Here we describe recent developments in ThaleMine including new features and extensions, and discuss future improvements. InterMine has been broadly adopted by the model organism research community including nematode, rat, mouse, zebrafish, budding yeast, the modENCODE project, as well as being used for human data. ThaleMine is the first InterMine developed for a plant model. As additional new plant InterMines are developed by the legume and other plant research communities, the potential of cross-organism integrative data analysis will be further enabled. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  5. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  6. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.

    Science.gov (United States)

    Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin

    2014-01-01

    Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.

  7. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo.

    Science.gov (United States)

    Chen, Mingjia; Herde, Marco; Witte, Claus-Peter

    2016-06-01

    CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    KAUST Repository

    Witz, Sandra

    2014-03-12

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz et al.

  9. Functional Characterization of the Maize Phytochrome-Interacting Factors PIF4 and PIF5

    Directory of Open Access Journals (Sweden)

    Qingbiao Shi

    2018-01-01

    Full Text Available Phytochrome-interacting factors (PIFs play important roles in photomorphogenesis, the shade avoidance response, and other aspects of plant growth and development. PIF family proteins have been well-studied in Arabidopsis thaliana, but little is known about their physiological functions and molecular mechanisms in maize (Zea mays. In this study, we investigated the physiological functions of ZmPIF4 and ZmPIF5, two highly conserved members of the PIF gene family. RT-qPCR and western blot analyses revealed that ZmPIF4 and ZmPIF5 expression and ZmPIF4 and ZmPIF5 levels peak at night and remain low during the day. Overexpression of ZmPIF4 and ZmPIF5 in Arabidopsis partially rescued the reduced hypocotyl elongation and defective response to gravity in pif1 pif3 pif4 pif5 quadruple mutants (pifq. In addition, under high red: far-red light conditions, Arabidopsis lines overexpressing ZmPIF4 exhibited a constitutive shade avoidance response, including early flowering, slender leaves and inflorescences, plant lodging and precocious leaf senescence. Furthermore, ZmPIF4 physically interacted with the Arabidopsis DELLA protein REPRESSOR OF GA1-3 (RGA, indicating a potential interaction between ZmPIF4 and gibberellin signaling pathway on plant growth. Taken together, our results revealed that ZmPIF4 and ZmPIF5 are functionally conserved proteins that may play conserved roles in the response to phytochrome signaling in plants.Highlights:In this study, the functions of ZmPIF4 and ZmPIF5 were characterized by expression in Arabidopsis, revealing conserved roles of PIF family proteins in photomorphogenesis and the shade avoidance response in land plants.

  10. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events1[OPEN

    Science.gov (United States)

    Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R.

    2016-01-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  11. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    Science.gov (United States)

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  12. Condensin II Alleviates DNA Damage and Is Essential for Tolerance of Boron Overload Stress in Arabidopsis[W

    Science.gov (United States)

    Sakamoto, Takuya; Inui, Yayoi Tsujimoto; Uraguchi, Shimpei; Yoshizumi, Takeshi; Matsunaga, Sachihiro; Mastui, Minami; Umeda, Masaaki; Fukui, Kiichi; Fujiwara, Toru

    2011-01-01

    Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B. PMID:21917552

  13. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  14. RISC-interacting clearing 3’- 5’ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana

    Science.gov (United States)

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-01-01

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI: http://dx.doi.org/10.7554/eLife.24466.001 PMID:28463111

  15. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  16. Reference: 359 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 359 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16531491i Cnops Gerda...leaf development in Arabidopsis thaliana. 4 852-66 16531491 2006 Apr The Plant cell Azmi Abdelkrim|Cnops Gerda

  17. Reference: 671 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available with distinct vegetative or constitutive and reproductive expression patterns. In Arabidopsis thaliana, ectopic...ractions among the major classes of actins and ABPs, we ectopically coexpressed reproductive profilin (PRF4)...coexpression of these reproductive, but not vegetative, ABP isovariants suppressed the ectopic

  18. To control and to be controlled – understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family.

    Directory of Open Access Journals (Sweden)

    Anna eWawrzyńska

    2014-10-01

    Full Text Available SSLIM1, a member of the EIN3-like (EIL family of transcription factors in Arabidopsis, is the regulator of many sulfur-deficiency responsive genes. Among the five other proteins of the family, three regulate ethylene responses and two have unassigned functions. Contrary to the well-defined ethylene signaling, the pathway leading from sensing sulfate status to the activation of its acquisition via SLIM1 is completely unknown. SLIM1 binds to the 20 nt-long specific UPE-box sequence; however, it also recognizes the shorter TEIL sequence, unique for the whole EIL family. SLIM1 takes part in the upregulation and downregulation of various sulfur metabolism genes, but also it controls the degradation of glucosinolates under sulfur deficient conditions. Besides facilitating the increased flux through the sulfate assimilation pathway, SLIM1 induces microRNA395, specifically targeting ATP sulfurylases and a low-affinity sulfate transporter, SULTR2;1, thus affecting sulfate translocation to the shoot. Here, we briefly review the identification, structural characteristics and molecular function of SLIM1 from the perspective of the whole EIL protein family.

  19. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Pelt, J.A. van; Rep, M.; Loon, L.C. van; Pieterse, C.M.J.

    2005-01-01

    Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of

  20. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Science.gov (United States)

    Wang, Liuqiang; Li, Zhen; Lu, Mengzhu; Wang, Yucheng

    2017-01-01

    NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC) binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD) and peroxidase (POD) activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS) and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential. PMID:28491072

  1. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection.

    Science.gov (United States)

    Ederli, Luisa; Madeo, Laura; Calderini, Ornella; Gehring, Chris; Moretti, Chiaraluce; Buonaurio, Roberto; Paolocci, Francesco; Pasqualini, Stefania

    2011-10-15

    In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection

    KAUST Repository

    Ederli, Luisa

    2011-10-01

    In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O3). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O3 and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O3 sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H2O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen. © 2011 Elsevier GmbH.

  3. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mengzhu Lu

    2017-04-01

    Full Text Available NAC (NAM, ATAF1/2, and CUC2 proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD and peroxidase (POD activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential.

  4. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses.

    Science.gov (United States)

    Dinh, Sy Nguyen; Kang, Hunseung

    2017-11-01

    The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.

  5. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, George Eric [Dartmouth College, Hanover, NH (United States)

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  6. Arabidopsis CDS blastp result: AK106306 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  7. Arabidopsis CDS blastp result: AK109848 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  8. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  9. System identification of the Arabidopsis plant circadian system

    Science.gov (United States)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  10. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  11. Comparative radioresistance of chronically irradiated populations of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    Dineva, S.B.; Abramov, V.I.; Shevchenko, V.A.

    1994-01-01

    The radioresistance of seeds of populations of Arabidopsis thaliana (L.) Heynh. growing for 5 years in the regions with different levels of radioactive contamination within 30 km zone of Chernobyl NPP was studied. The analysis of comparative radiosensitivity by root test was performed. It has been shown that plants from arabidopsis population growing under chronic irradiation did not gain an increased radioresistance. The data obtained shown that they are more radiosensitive

  12. The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers

    KAUST Repository

    Wong, Aloysius Tze

    2013-07-08

    Background: Second messengers link external cues to complex physiological responses. One such messenger, 3\\',5\\'-cyclic guanosine monophosphate (cGMP), has been shown to play a key role in many physiological responses in plants. However, in higher plants, guanylyl cyclases (GCs), enzymes that generate cGMP from guanosine-5\\'-triphosphate (GTP) have remained elusive until recently. GC search motifs constructed from the alignment of known GCs catalytic centers form vertebrates and lower eukaryotes have led to the identification of a number of plant GCs that have been characterized in vitro and in vivo.Presentation of the hypothesis.Recently characterized GCs in Arabidopsis thaliana contributed to the development of search parameters that can identify novel candidate GCs in plants. We hypothesize that there are still a substantial number (> 40) of multi-domain molecules with potentially functional GC catalytic centers in plants that remain to be discovered and characterized. Testing the hypothesis. The hypothesis can be tested, firstly, by computational methods constructing 3D models of selected GC candidates using available crystal structures as templates. Homology modeling must include substrate docking that can provide support for the structural feasibility of the GC catalytic centers in those candidates. Secondly, recombinant peptides containing the GC domain need to be tested in in vitro GC assays such as the enzyme-linked immune-sorbent assay (ELISA) and/or in mass spectrometry based cGMP assays. In addition, quantification of in vivo cGMP transients with fluorescent cGMP-reporter assays in wild-type or selected mutants will help to elucidate the biological role of novel GCs.Implications of the hypothesis.If it turns out that plants do harbor a large number of functional GC domains as part of multi-domain enzymes, then major new insights will be gained into the complex signal transduction pathways that link cGMP to fundamental processes such as ion transport

  13. Reference: 751 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 751 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18390806i Sitaraman ...unctions during Arabidopsis embryo and floral development. 2 672-81 18390806 2008 Jun Plant physiology Bui Minh|Liu Zhongchi|Sitaraman Jayashree

  14. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  15. Reference: 119 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the Arabidopsis homolog of MSH4 (AtMSH4). We demonstrate that AtMSH4 expression can only be detected in floral tissues, consisten...chromosomes. A T-DNA insertional mutant (Atmsh4) exhibited normal vegetative growth but a severe reduction in fertility, consistent

  16. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  17. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis.

    Science.gov (United States)

    Liu, Bo; Sun, Lirong; Ma, Liya; Hao, Fu-Shun

    2017-06-01

    Both AtrbohD and AtrbohF promote the increases in activities of ADH, PDC, LDH, and Ca 2+ levels, and induce the expression of multiple hypoxia response genes, thus improving Arabidopsis adaptation to oxygen deficiency. NADPH oxidase AtrbohD and AtrbohF cooperatively play key roles in regulation of growth and stress signaling in Arabidopsis. However, reports on AtrbohD and AtrbohF functioning together in hypoxia signaling are scarce, and the underlying mechanisms remain elusive. Here, we show that the double null mutant atrbohD/F is more sensitive to oxygen deprivation compared with wild type (WT) and the single mutant atrbohD and atrbohF. Under oxygen deficiency, enhancements of the transcripts of alcohol dehydrogenase 1 (ADH1) and pyruvate decarboxylase 1 (PDC1) and the activities of ADH, PDC and lactate dehydrogenase in WT are clearly reduced in the single mutants, and more strongly reduced in the double mutant. Moreover, increases in the production of ATP, H 2 O 2 and Ca 2+ in WT are significantly arrested in atrbohD, atrbohF, and especially in atrbohD/F. Hypoxia-promoted rise in the expression of some hypoxic responsive genes is also inhibited in atrbohD/F relative to WT, atrbohD and atrbohF. These genes include ethylene response factor 73, lactate dehydrogenase, MYB transcription factor 2, sucrose synthase 1 (SUS1), SUS4, heat stress transcription factor A2 and heat-shock protein 18.2. These results suggest that both AtrbohD and AtrbohF are essential for mediating hypoxia signaling. H 2 O 2 derived from AtrbohD and AtrbohF triggers the Ca 2+ increase and induces the expression of multiple hypoxia response genes, thus improving Arabidopsis tolerance to low-oxygen stress. These findings provide new insights into the mechanisms of AtrbohF in regulating the responses to oxygen deprivation in Arabidopsis.

  18. Arabidopsis CDS blastp result: AK104980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104980 001-125-D09 At1g70550.2 expressed protein similar to hypothetical protein ...GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabido

  19. Arabidopsis CDS blastp result: AK287673 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  20. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  1. Arabidopsis CDS blastp result: AK241712 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  2. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  3. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  4. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  5. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  6. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  7. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  8. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Shershunova, V.I.

    2000-01-01

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  9. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  10. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana.

    Science.gov (United States)

    Morikawa, Kazuya; Shiina, Takashi; Murakami, Shinya; Toyoshima, Yoshinori

    2002-03-13

    Sigma factor binding proteins are involved in modifying the promoter preferences of the RNA polymerase in bacteria. We found the nuclear encoded protein (SibI) that is transported into chloroplasts and interacts specifically with the region 4 of Sig1 in Arabidopsis. SibI and its homologue, T3K9.5 are novel proteins, which are not homologous to any protein of known function. The expression of sibI was tissue specific, light dependent, and developmentally timed. We suggest the transcriptional regulation by sigma factor binding proteins to function in the plastids of higher plant.

  11. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  12. Arabidopsis CDS blastp result: AK073288 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073288 J033028L24 At1g70550.2 expressed protein similar to hypothetical protein G...B:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabidop

  13. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  14. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  15. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  16. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  17. Arabidopsis CDS blastp result: AK110467 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110467 002-166-G08 At3g03050.1 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-7 (gi:962

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  19. Arabidopsis CDS blastp result: AK058440 [KOME

    Lifescience Database Archive (English)

    Full Text Available 20S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-92 ...

  20. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  1. Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene.

    Science.gov (United States)

    Dean, Gillian H; Jin, Zhaoqing; Shi, Lin; Esfandiari, Elahe; McGee, Robert; Nabata, Kylie; Lee, Tiffany; Kunst, Ljerka; Western, Tamara L; Haughn, George W

    2017-09-01

    The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

  2. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  3. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  4. Ectodomain of plasmodesmata-localized protein 5 in Arabidopsis: expression, purification, crystallization and crystallographic analysis.

    Science.gov (United States)

    Wang, Xiaocui; Zhu, Peiyan; Qu, Shanshan; Zhao, Jie; Singh, Prashant K; Wang, Wei

    2017-09-01

    Plasmodesmata-localized protein 5 (PDLP5) is a cysteine-rich receptor-like protein which is localized on the plasmodesmata of Arabidopsis thaliana. Overexpression of PDLP5 can reduce the permeability of the plasmodesmata and further affect the cell-to-cell movement of viruses and macromolecules in plants. The ectodomain of PDLP5 contains two DUF26 domains; however, the function of these domains is still unknown. Here, the ectodomain of PDLP5 from Arabidopsis was cloned and overexpressed using an insect expression system and was then purified and crystallized. X-ray diffraction data were collected to 1.90 Å resolution and were indexed in space group P1, with unit-cell parameters a = 41.9, b = 48.1, c = 62.2 Å, α = 97.3, β = 103.1, γ = 99.7°. Analysis of the crystal content indicated that there are two molecules in the asymmetric unit, with a Matthews coefficient of 2.51 Å 3  Da -1 and a solvent content of 50.97%.

  5. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  6. Reference: 486 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available time in many plant species through the photoperiod and vernalization pathways, re...cipates in both the photoperiod and vernalization pathways in Arabidopsis thaliana by regulating expression ... of VIN3 in a photoperiod-dependent manner. A PHD finger protein involved in both the vernalization and photoperiod pathways

  7. The involvement of ethylene in regulation of Arabidopsis gravitropism

    Science.gov (United States)

    Li, Ning; Zhu, Lin

    green 1, Chen et al 2005; Guo et al 2008). To address the molecular mechanism by which ethylene regulates gravitropism, a cutting-edge phosphopro-teomics approach has been adopted to discover new components involved in ethylene signaling pathways (Li et al 2009). Two putative ethylene response transcription factors: EIL1 and ERF110, have been identified to contain ethylene-regulated phosphorylation sites, the phos-phorylation status of which are ethylene treatment-dependent but EIN2-independent, strongly suggestive of the existence of novel signaling components mediating an alternative ethylene signal pathway. Combination of the time-dependent ethylene treatments with the systematic profiling of protein phosphorylation using functional phosphoproteomics among Arabidopsis ethylene response mutants is able to provide more valuable information about the molecular mechanisms underlying ethylene and gravity signaling pathways. (This work is supported by grants: RPC07/08.SC16, 661408, 661207, N HKUST627/06, DAG04/05.SC08, HKUST6105/01M, and HKUST6413/06M)

  8. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  9. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  10. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  11. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  12. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  13. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  15. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Haiyan Zhang

    Full Text Available BACKGROUND: Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYG(R can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYG(R in plant cells remain unknown. Synaptotagmins (SYTs are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYG(R caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYG(R, which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYG(R-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYG(R-GFP was truncated at carboxyl terminus of HYG(R shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYG(R-GFP,resulting in HYG(R-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYG(R-GFP trafficking and secretion. CONCLUSION/SIGNIFICANCE: These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYG(R-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in

  16. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  17. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions

    Directory of Open Access Journals (Sweden)

    Lysiane Brocard

    2017-05-01

    Full Text Available Lipid droplets (LDs are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1; both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence

  18. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases.

    Science.gov (United States)

    Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y

    2017-05-01

    The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    Science.gov (United States)

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  20. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-