Sample records for arabidopsis pop2-1 mutant

  1. Photorepair mutants of Arabidopsis

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  2. Induction and characterization of Arabidopsis mutants by Ion beam

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  3. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence

    Codrea, C. C.; Hakala-Yatkin, M.; Karlund-Marttila, A.; Nedbal, Ladislav; Aittokallio, T.; Nevalainen, O. S.; Tyystjärvi, E.


    Roč. 105, č. 3 (2010), s. 273-283. ISSN 0166-8595 Institutional research plan: CEZ:AV0Z60870520 Keywords : arabidopsis thaliana * chlorophyll fluorescence * fluorescence imaging * mutant detection * outlier detection Subject RIV: EH - Ecology, Behaviour Impact factor: 2.410, year: 2010

  4. Phenotypic analysis of Arabidopsis mutants: oomycete pathogens.

    Clarke, Joseph D


    Various fungal pathogens are used in Arabidopsis pathogen studies, including Fusarium oxysporum, Alternaria brassicicola, Botrytis cinerea, and others. The oomycete pathogen Peronospora parasitica has been used by several groups and is described in this protocol. Working with Peronospora is complicated by the fact that it is an obligate biotroph, and consequently cultures must be maintained on living plants. There is no central repository for Peronospora stocks, but most investigators who work with them are willing to provide samples of infected tissue. These can be used to initiate new stock cultures, or they can be maintained as live cultures on seedlings. One of the most important factors in maintaining Peronospora is the humidity of the growth chamber, which must be kept at a minimum of 80%. Various Peronospora isolates are available. These vary with respect to which Arabidopsis ecotypes they can infect, because some combinations trigger gene-for-gene resistance. Thus, it is important that the appropriate ecotype is inoculated with the appropriate strain of pathogen. The extent of infections can be rated or quantitatively measured as the number of spores produced per plant, and frozen tissue stocks can be prepared from heavily infected tissue. PMID:20147042

  5. Mutants of Arabidopsis thaliana hypersensitive to DNA-damaging treatments

    A simple screening method was developed for the isolation of Arabidopsis thaliana mutants hypersensitive to X-ray irradiation. The root meristem was used as the target for irradiation with sublethal doses of X rays, while protection of the shoot meristem by a lead cover allowed the rescue of hypersensitive individuals. We isolated nine independent X-ray-hypersensitive mutants from 7000 M2 seedlings. Analysis of three chosen mutants (xrs4, xrs9 and xrs11) showed that alterations in single recessive alleles are responsible for their phenotypes. The mutations are not allelic but linked and map to chromosome 4, suggesting mutations in novel genes as compared to previously mapped mutant alleles. Importantly, hypersensitivity to X rays was found to correlate with hypersensitivity to the DNA-alkylating agent mitomycin C, which provokes interstrand crosslinks, and/or to methyl methanesulfonate, which is known as a radiomimetic chemical. These novel phenotypes suggest that the mutants described here are altered in the repair of DNA damage, most probably by recombinational repair

  6. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Gibson, Susan I.


    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  7. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.


    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  8. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  9. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen;


    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 ...

  10. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ''dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi. (author)

  11. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Rodermel, Steven


    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  12. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)


    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  13. Classification and identification of arabidopsis cell wall mutants using fourier transfrom infrared (FT-IR) microspectroscopy

    Mouille, Grégory; Lecomte, Mannaïg; Pagant, Sylvère; Höfte, Hermanus


    We have developed a novel procedure for the rapid classification and identification of Arabidopsis mutants with altered cell wall architecture based on Fourier-Transform infrared (FT-IR) micro-spectroscopy. FT-IR transmission spectra were sampled from native 4 day-old dark-grown hypocotyls of 46 mutants and wild type treated with various drugs. The Mahalanobis distance between mutants, calculated from the spectral information after compression with the Discriminant Variables Selection procedu...

  14. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn;

    Laccases (P-diphenol:O2 oxidoreductase; EC, also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... quite different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  15. Characterization of Arabidopsis calreticulin mutants in response to calcium and salinity stresses

    Zhigang Li; Yangrong Cao; Jinsong Zhang; Shouyi Chen


    As an important calcium-binding protein,calreticulin plays an important role in regulating calcium homeostasis in endoplasmic reticulum (ER) of plants.Here,we identified three loss-of-function mutants ofcalreticulin genes in Arabidopsis to demonstrate the function of calreticulin in response to calcium and salinity stresses.There are three genes encoding calreticulin in Arabidopsis,and they are named AtCRT1,2,and 3,respectively.We found that both single mutant of crt3 and double mutant of crtl crt2 were more sensitive to low calcium environment than wild-type Arabidopsis.Moreover,crt3 mutant showed more sensitivity to salt treatment at germination stage,but tolerance to salt stress at later stage compared with wild-type plant.However,there was no obvious growth difference in the mutant crt1 and crt2 compared with wild-type Arabidopsis under calcium and salt stresses.These results suggest that calreticulin functions in plant responses to calcium and salt stresses.

  16. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity

    Somerville, C. R.; Ogren, W L


    Three mutants of the crucifer Arabidopsis thaliana (Linnaeus) Heynhold were isolated that are completely lacking in activity catalyzed by serine-glyoxylate aminotransferase (EC, a peroxisomal enzyme involved in photorespiratory carbon metabolism. These mutants were viable and exhibited normal photosynthesis under conditions that suppressed photorespiration, but they were inviable and photosynthesized at greatly reduced rates under conditions that promoted photorespiration. Serine an...

  17. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H. [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center


    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  18. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams


    as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In...

  19. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  20. A new Arabidopsis mutant induced by ion beams affects flavonoid synthesis with spotted pigmentation in testa

    A new stable mutant of Arabidopsis thaliana with a spotted pigment in the seed coat, named anthocyanin spotted testa (ast), was induced by carbon ion irradiation. The spotted pigmentation of ast mutant was observed in immature seeds from 1-2 days after flowering (DAF), at the integument of the ovule, and spread as the seed coat formed. Anthocyanin accumulation was about 6 times higher in ast mutant than in the wild-type at 6 DAF of the immature seeds, but was almost the same in mature dry seeds. A higher anthocyanin accumulation was not observed in the seedlings, leaves or floral buds of ast mutant compared with the wild-type, which suggests that a high accumulation of anthocyanins is specific to the seed coat of the immature ast seeds. Reciprocal crosses between ast mutant and the wild-type indicated that ast is a single recessive gene mutation and segregates as a delayed inheritance. The results of crossing with tt7 and ttg mutants also confirmed that the AST gene is probably a regulatory locus that controls flavonoid biosynthesis. A mapping analysis revealed that the gene is located on chromosome I and is closely linked to the SSLP DNA marker nga280 with a distance of 3.2 cM. AST has been registered as a new mutant of Arabidopsis

  1. An Arabidopsis embryonic lethal mutant with reduced expression of alanyl—t RNA synthetase gene



    In present paper,one of the T-DNA insertional embryonic lethal mutant of Arabidopsis is identified and designated as acd mutant.The embryo developmant of this mutant is arrested in globular stage,The cell division pattern is abnormal during early embryogenesis and results in distubed cellular differentiation.Most of mutant embryos are finally degenerated and aborted in globular stage,However,a few of them still can germinate in agar palte and produce seedlings with shoter hypoctyl and distorted shoot meristem.To understand the molecular basis of the phenotype of this mutant,the joint fragment of T-DNA/plant DNA is isolated by plasmid rescue and Dig-labeled as probe for cDNA library screening.According to the sequence analysis and similarity searching,a 936 bp cDNA sequence(EMBL accession #:Y12555)from selectoed positive clone shows a 99.8%(923/925bp) sequence homolgy with Alanyl-tRNA Synthetase(AlaRS) gene of Arabidopsis thaliana.Furthermore,the data of in situ hybridization experiment indicate that the expression of Ala RS gene is weak in early embryogenesis and declines along with globular embryodevelopment in this mutant Accordingly,the reduced expression of Ala RS gene may be closely related to the morphological changes in early embryogenesis of this lethal mutant.

  2. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    MacCleery, S. A.; Kiss, J. Z.


    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  3. A Direct Screening Procedure for Gravitropism Mutants in Arabidopsis thaliana (L.) Heynh. 1

    Bullen, Bertha L.; Best, Thérèse R.; Gregg, Mary M.; Barsel, Sara-Ellen; Poff, Kenneth L.


    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  4. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh.

    Bullen, B L; Best, T R; Gregg, M M; Barsel S-E; Poff, K L


    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  5. Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses

    SONG Yuwei; KANG Yanli; LIU Hao; ZHAO Xiaoliang; WANG Pengtao; AN Guoyong; ZHOU Yun; MIAO Chen; SONG Chunpeng


    In response to variable environmental conditions, guard cells located in the leaf epidermis can integrate and cope with a multitude of complicated stimuli, thereby making stomata in an appropriate state. However, many signaling components in guard cell signaling remain elusive. In our laboratory,a tool for non-invasive remote infrared thermal images was used to screen an ethyl methane sulfonate-mutagenized population for Arabidopsis stomatal response mutants under multiple stresses (ABA, H2O2, CO2, etc.). More than forty "hot" or "cold"mutants were isolated (above or below 0.5℃ in contrast to normal plantlets). Identification and primary genetic analysis of these mutants show that they are monogenic recessive mutations and there exist distinct difference in stomata apertures compared to wild type. These mutants in response to various environmental stresses and hormones were comprehensively investigated, which enables us to further understand the cross-talk in different signal transduction pathways.

  6. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Jingjing Liu; Li-Jia Qu


    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  7. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14CO2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  8. Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Byeong-ha Lee


    Full Text Available Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE and phosphatidylcholine (PC in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to L-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1. The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue.

  9. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    Hudik, Elodie


    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  10. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  11. An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment.

    Rubio, Silvia; Larson, Tony R; Gonzalez-Guzman, Miguel; Alejandro, Santiago; Graham, Ian A; Serrano, Ramón; Rodriguez, Pedro L


    Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth. PMID:16415216

  12. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)


    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  13. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity.

    Wang, Bo; Qin, Xinghua; Wu, Juan; Deng, Hongying; Li, Yuan; Yang, Hailian; Chen, Zhongzhou; Liu, Guoqin; Ren, Dongtao


    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6(F364L) and MPK6(F368L) mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6. PMID:27160427

  14. Phenotypical and structural characterization of the Arabidopsis mutant involved in shoot apical meristem

    Zhe HU; Ping LI; Jinfang MA; Yunlong WANG; Xinyu WANG; Chongying WANG


    An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype, micro-structure of shoot apical meristem (SAM) and histo-chemical localization of the GUS gene in comparison with the wild type. Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs (such as smaller leaves, shorter petioles), and slower development and flowering time compared to the wild type. Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM, with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type. In addi-tion, analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant, which suggests that the gene trapped by T-DNA may function in the SAM, and T-DNA insertion could influence the functional activity of the related gene in the mutant, lead-ing to alterations in the SAM and a series of phenotypes in the mutant.

  15. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A


    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  16. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs

  17. Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants.

    Lu, Yan; Savage, Linda J; Larson, Matthew D; Wilkerson, Curtis G; Last, Robert L


    Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (; The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase. PMID:21224340

  18. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    Ludwig-Müller, Jutta


    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  19. Photosynthetic Properties of Photosystem Ⅱ in Arabidopsis thaliana Ipa1 Mutant

    Lian-Wei Peng; Jin-Kui Guo; Jin-Fang Ma; Wei Chi; Li-Xin Zhang


    In a previous study, we characterized a high chlorophyll fluorescence Ipa1 mutant of Arabidopsis thaliana,in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSll remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSⅡ protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipa1 plants.Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.

  20. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura


    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Lt...

  1. The effect of UVB on flavonoid biosynthesis in wild type and mutant petunia and arabidopsis

    Full text: Flavonoids may protect plants against damage by UVB radiation. Flavonoid composition and mRNA expression were determined following growth of plants under natural light, and under natural light with low UVB and with enhanced UVB. In wild-type Arabidopsis and Petunia, UVB induced an increase in total levels of flavonols and this was due to an up-regulation of, several genes coding for key enzymes in the phenylpropanoid pathway. In addition, UVB induced a higher rate of production of the di-hydroxylated si flavonol, quercetin glycoside than of the mono-hydroxylated equivalent, of kaempferol glycoside. Thus the ratio of quercetin to kaempferol increased with UVB treatment in wild type plants, and this suggests that the flavonoid r 3'hydroxylase (F3'H) enzyme, which converts dihydrokaempferol to dihydroquercetin, may play a key role in plant protection from UVB. Mutant plants of both species lacking this F3'H gene were grown under similar UV conditions. Leaves of the mutant Arabidopsis plant (tt7) did not contain quercetin, even under the enhanced UVB treatment. Under the low UVB treatment the total amount of flavonol was similar to the wild-type (Ler), but with increasing UVB, total flavonol (i.e. kaempferol) levels were significantly higher than in similarly treated wild type plants. In the Petunia F3'H mutant, low levels of quercetin were found even in the low UVB treatment, which indicates this variety may be producing some quercetin via an alternative pathway. Under UVB radiation, total flavonoids increased to levels significantly higher than in similarly treated wild type plants, and most of this material was kaempferol. These observations suggest that quercetin is the preferred protective flavonol in wild type plants, due perhaps to enhanced antioxidant or free radical scavenging activity. In mutant plants lacking the F3'H enzyme, the response is to produce a larger amount of a less effective photoprotectant

  2. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi


    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  3. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter


    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571

  4. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter


    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'. PMID:27122571


    A promoter-trap screen allowed us to identify an Arabidopsis line expressing GUS in the root vascular tissues. T-DNA border sequencing showed that the line was mutated in the COMT 1 gene (AtOMT1) and therefore deficient in OMT1 activity. In this knockout mutant and relative to the wild type, lignins...

  6. Reporter-based screen for Arabidopsis mutants com-promised in nonhost resistance

    CHEN HuaMin; PAN JunSong; ZHAO XiuXiang; ZHOU JianMin; CAI Run


    Plants are exposed to many potentially pathogenic microbes in the environment, but each species is only susceptible to a limited number of pathogens. The broad resistance is referred to as nonhost re-sistance. To date, little is known about the underlying mechanism of nonhost resistance and the sig-naling transduction process. Here we describe a simple method for isolating Arabidopsis nonhost re-sistance mutants against a nonadapted bacterial pathogen. A RAP2.6 promoter-driven LUC reporter system was developed to replace the tedious bacterial growth assay during the primary screening. The RAP2.6-LUC reporter gone is normally induced by the virulent bacterium Pseudomonas syringae pv tomato but not the nonadapted bacterium P. syringae pv phaseolicola. By using this method we iso-lated 4 mutants displaying strong reporter activity in response to P. syringae pv phaseolicola, which were characterized in some details, ebsl, ebs2, ebs3, and ebs4 (enhanced bacterial susceptibility) were compromised in resistance against P. syringae pv phaseolicola and/or P. syringae pv tomato. In addi-tion, ebs4 showed enhanced hypersensitive response to the incompatible bacterium P. syringae pv tomato (avrB). These results demonstrated that the method is suited for large scale screening for nonhost resistance mutants.

  7. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis.

    Hayashi, Shimpei; Hirayama, Takashi


    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  8. Analysis of Vascular Development in the hydra Sterol Biosynthetic Mutants of Arabidopsis

    Pullen, Margaret; Clark, Nick; Zarinkamar, Fatemeh; Topping, Jennifer; Lindsey, Keith


    Background The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning. Methodology/Principal Findings Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2∶GUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development. Conclusions The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development. PMID:20808926

  9. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration ofa transgene.

    Tomoyuki eFurukawa


    Full Text Available The DNA double-strand break (DSB is a critical type of damage, and can be induced by both endogenous sources (e.g. errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork and exogenous sources (e.g. ionizing radiation or radiomimetic chemicals. Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ, much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1 displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2, both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  10. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Lu; Tian; Liang; Wu


    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  11. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2 by RNA-Seq

    Niederhuth Chad E


    Full Text Available Abstract Background Abscission is a mechanism by which plants shed entire organs in response to both developmental and environmental signals. Arabidopsis thaliana, in which only the floral organs abscise, has been used extensively to study the genetic, molecular and cellular processes controlling abscission. Abscission in Arabidopsis requires two genes that encode functionally redundant receptor-like protein kinases, HAESA (HAE and HAESA-LIKE 2 (HSL2. Double hae hsl2 mutant plants fail to abscise their floral organs at any stage of floral development and maturation. Results Using RNA-Seq, we compare the transcriptomes of wild-type and hae hsl2 stage 15 flowers, using the floral receptacle which is enriched for abscission zone cells. 2034 genes were differentially expressed with a False Discovery Rate adjusted p INFLORESCENCE DEFICIENT IN ABSCISSION (ida mutants shows that many of the same genes are co-regulated by IDA and HAE HSL2 and support the role of IDA in the HAE and HSL2 signaling pathway. Comparison to microarray data from stamen abscission zones show distinct patterns of expression of genes that are dependent on HAE HSL2 and reveal HAE HSL2- independent pathways. Conclusion HAE HSL2-dependent and HAE HSL2-independent changes in genes expression are required for abscission. HAE and HSL2 affect the expression of cell wall modifying and defense related genes necessary for abscission. The HAE HSL2-independent genes also appear to have roles in abscission and additionally are involved in processes such as hormonal signaling, senescence and callose deposition.

  12. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura


    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  13. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis


    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  14. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.


    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  15. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation

    A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage

  16. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Biddle Kelly D


    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  17. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery

    Baldwin Samantha


    Full Text Available Abstract Background Arabidopsis thaliana is a useful model organism for deciphering the genetic determinants of seed size; however the small size of its seeds makes measurements difficult. Bulk seed weights are often used as an indicator of average seed size, but details of individual seed is obscured. Analysis of seed images is possible but issues arise from variations in seed pigmentation and shadowing making analysis laborious. We therefore investigated the use of a consumer level scanner to facilitate seed size measurements in conjunction with open source image-processing software. Results By using the transmitted light from the slide scanning function of a flatbed scanner and particle analysis of the resulting images, we have developed a method for the rapid and high throughput analysis of seed size and seed size distribution. The technical variation due to the approach was negligible enabling us to identify aspects of maternal plant growth that contribute to biological variation in seed size. By controlling for these factors, differences in seed size caused by altered parental genome dosage and mutation were easily detected. The method has high reproducibility and sensitivity, such that a mutant with a 10% reduction in seed size was identified in a screen of endosperm-expressed genes. Our study also generated average seed size data for 91 Arabidopsis accessions and identified a number of quantitative trait loci from two recombinant inbred line populations, generated from Cape Verde Islands and Burren accessions crossed with Columbia. Conclusions This study describes a sensitive, high-throughput approach for measuring seed size and seed size distribution. The method provides a low cost and robust solution that can be easily implemented into the workflow of studies relating to various aspects of seed development.

  18. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.

    Bross, Crystal D; Corea, Oliver R A; Kaldis, Angelo; Menassa, Rima; Bernards, Mark A; Kohalmi, Susanne E


    The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity. PMID:21388819

  19. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant.

    Jing, Danlong; Xia, Yan; Chen, Faju; Wang, Zhi; Zhang, Shougong; Wang, Junhui


    PISTILLATA (PI) plays crucial roles in Arabidopsis flower development by specifying petal and stamen identities. To investigate the molecular mechanisms underlying organ development of woody angiosperm in Catalpa, we isolated and identified a PI homologue, referred to as CabuPI (C. bungei PISTILLATA), from two genetically cognate C. bungei (Bignoniaceae) bearing single and double flowers. Sequence and phylogenetic analyses revealed that the gene is closest related to the eudicot PI homologues. Moreover, a highly conserved PI-motif is found in the C-terminal regions of CabuPI. Semi-quantitative and quantitative real time PCR analyses showed that the expression of CabuPI was restricted to petals and stamens. However, CabuPI expression in the petals and stamens persisted throughout all floral development stages, but the expression levels were different. In 35S::CabuPI transgenic homozygous pi-1 mutant Arabidopsis, the second and the third whorl floral organs produced normal petals and a different number of stamens, respectively. Furthermore, ectopic expression of the CabuPI in transgenic wild-type or heterozygote pi-1 mutant Arabidopsis caused the first whorl sepal partially converted into a petal-like structure. These results clearly reveal the functional conservation of PI homologues between C. bungei and Arabidopsis. PMID:25575990

  20. Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet (UV-B) radiation stress

    The effects of ultraviolet irradiation (between 280 and 320 nm) on plant survival, ethylene evolution, and abscisic acid (ABA) content were studied in Arabidopsis thaliana (L.) Heunh. plants. Three genetic lines of Arabidopsis differing in their resistance to ultraviolet (UV-B) radiation stress were used. UV-B irradiation had detrimental effects on plant survival, enhanced ethylene evolution, and increased ABA content in the plants of all three lines. The higher ultraviolet dose was absorbed, the less was the number of surviving plants and the higher were the levels of both phytohormones. The maximum ethylene evolution occurred during the initial two to four hours after irradiation, but the ABA content peaked only after 24 h. The most resistant line showed the highest ABA content and the fastest ethylene evolution, whereas, in the susceptible line, both indices were the lowest. After UV-B treatment, the ABA-deficient Arabidopsis mutant evolved four to six times more ethylene than the plants with normal ABA content. Stress ethylene production evidently did not depend on the level of endogenous ABA as the kinetics of ethylene evolution was similar in the ABA-deficient mutant and in other studied Arabidopsis lines

  1. Effects of Light Intensity on Development and Chlorophyll Content in the Arabidopsis Mutant Plants with Defects in Photosynthesis

    E.Yu. Garnik; D.V. Deeva; V.I. Belkov; V.I. Tarasenko; Yu.M. Konstantinov


    The developmental stages and adaptability to different light intensity (150 µmol*m-2*s-1 and 100 µmol*m-2*s-1) in Arabidopsis mutant lines with defects of photosynthetic apparatus were analyzed. Plant development in the mutant lines depended on the light intensity to varying degrees. Lines ch1-1 (lack of the chlorophyllide a oxygenase) and rtn16 (decreased chlorophyll a and b amounts) were the most susceptible to the light decrease. No one of the investigated lines demonstrated chlorophyll a/...

  2. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    Singh Manoj


    Full Text Available Abstract Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procuste1 (prc1-1 cellulose synthase mutant was studied in order to investigate the role of the cell wall loosening during the early stages of hair formation. Results The prc1-1 mutant exhibits uncontrolled, preferential bulging of trichoblast cells coupled with mislocalised hair positioning. Combining the prc1-1 mutant with root hair defective6-1 (rhd6-1, which on its own is almost completely devoid of root hairs results in a significant restoration of root hair formation. The pEXPANSIN7::GFP (pEXP7::GFP marker which is specifically expressed in trichoblast cell files of wild-type roots, is absent in the rhd6-1 mutant. However, pEXP7::GFP expression in the rhd6-1/prc1-1 double mutant is restored in a subset of epidermal cells which have either formed a root hair or exhibit a bulged phenotype consistent with a function for EXP7 during the early stages of hair formation. Conclusion These results show that RHD6 acts upstream of the normal cell wall loosening event which involves EXP7 expression and that in the absence of a functional RHD6 the loosening and accompanying EXP7 expression is blocked. In the prc1-1 mutant background, the requirement for RHD6 during hair initiation is reduced which may result from a weaker cell wall structure mimicking the cell wall loosening events during hair formation.

  3. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    Fan, J.; Xu, C.


    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  4. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants

    Hiroshi eMaeda


    Full Text Available Tocopherols (vitamin E are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2 mutant of Arabidopsis thaliana is sensitive to low temperature (LT due to impaired transfer cell wall (TCW development and photoassimilate export, associated with massive callose deposition in transfer cells of the phloem. To further understand the role of tocopherols in LT induced TCW development we compared global transcript profiles of vte2 and wild type leaves during LT treatment. Tocopherol deficiency had no impact on global gene expression in permissive conditions, but affected expression of 77 genes after 48 hours of LT treatment. In vte2 relative to wild type, genes related with solute transport were repressed, while those involved in various pathogen responses and cell wall modifications, such as GLUCAN SYNTHASE LIKE genes (GSL4 and GSL11, were induced. However, introduction of gsl4 or gsl11 mutations into the vte2 background did not suppress callose deposition or the overall LT-induced phenotypes of vte2. Intriguingly, introduction of a mutation of GSL5, the major GSL responsible for pathogen-induced callose deposition, into vte2 substantially reduced vascular callose deposition at LT, but again had no effect on the photoassimilate export phenotype of LT-treated vte2. These results suggest that GSL5 plays a major role in TCW callose deposition in LT-treated vte2 but that this GSL5-dependent callose deposition is not the primary cause of the impaired photoassimilate export phenotype.

  5. Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana

    Stefanie Ranf; Julia Grimmer; Yvonne P(o)schl; Pascal Pecher; Delphine Chinchilla; Dierk Scheel; Justin Lee


    Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns),such as flg22 and elf18 that are derived from bacterial flagellin and elongation factor Tu,respectively.Here,Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized.Besides novel mutant alleles of the flg22 receptor,FLS2 (Flagellin-Sensitive 2),and the receptor-associated kinase,BAK1 (Brassinosteroid receptor 1-Associated Kinase 1),the new cce mutants can be categorized into two main groups—those with a reduced or an enhanced calcium elevation.Moreover,cce mutants from both groups show differential phenotypes to different sets of MAMPs.Thus,these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions.Last but not least,the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.

  6. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Qi Jia


    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  7. Classical Ethylene Insensitive Mutants of the Arabidopsis EIN2Orthologue Lack the Expected 'hypernodulation' Response in Lotus japonicus

    Pick Kuen Chan; Bandana Biswas; Peter M.Gresshoff


    Three independent ethylene insensitive mutants were selected from an EMS-mutagenized population of Lotus japonicus MG-20 (Miyakojima).The mutants,called 'Enigma',were mutated in the LjEIN2a gene from Lotus chromosome 1,sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2).All three alleles showed classical ethylene insensitivity phenotypes (e.g.,Triple Response),but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity.Indeed,all showed a marginal reduction in nodule number per plant,a phenotype that is enigmatic to sickle,an ethyleneinsensitive EIN2 mutant in Medicago truncatula.In contrast to wild type,but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L.japonicus,enigma mutants formed nodules in between the protoxylem poles,demonstrating the influence of ethylene on radial positioning.Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20.However,reflecting endogenous ethylene feedback,the enigma-1 mutant released more than twice the wild-type amount of ethylene.enigma-1 had a moderate reduction in growth,greater root mass (and lateral root formation),delayed flowering and ripening,smaller pods and seeds.Expression analysis of ethylene-regulated genes,such as ETR1,NRL1 (neverripe-like 1),and ElL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root.These mutants open the possibility that EIN2 in L.japonicus,a determinate nodulating legume,acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.

  8. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.


    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  9. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis

  10. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    Fujii, Hiroaki


    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  11. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe


    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants. PMID:26139825

  12. Auxin transport in an auxin-resistant mutant of arabidopsis thaliana

    Lincoln, C.; Benning, C.; Estelle, M.


    The authors are studying a group of allelic recessive mutations in Arabidopsis called axr-1. Homozygous axr-1 plants are resistant to exogenously applied auxin. In addition, axr-1 mutations all confer a number of development abnormalities including an apparent reduction in apical dominance, loss of normal geotropic response, and a failure to self-fertilize due to a decrease in stamen elongation. In order to determine whether this pleiotropic phenotype is due to an alteration in auxin transport they have adapted the agar block transport assay for use in Arabidopsis stem segments. Their results indicate that as in other plant species, auxin transport is strongly polar in Arabidopsis stem segments. In addition transport is inhibited by the well characterized auxin transport inhibitor N-1-naphthylphthalamic acid and the artificial auxin 2,4-D. These results as well as the characterization of transport in axr-1 plants will be presented.

  13. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    Van Oosten, Michael James


    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  14. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L.; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J. M.; Matzke, Marjori


    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  15. hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning

    Pineau, C.; Amandine, F.; Ranocha, P.; Jauneau, A.; Turner, S.; Lemonnier, G.; Renou, J.P.; Tarkowski, Petr; Sandberg, G.; Jouanin, L.; Sundberg, B.; Boudet, A.M.; Goffner, D.; Pichon, M.


    Roč. 44, č. 2 (2005), s. 271-289. ISSN 0960-7412 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * cambium * secondary xylem Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.969, year: 2005

  16. Effects of salt stress on wild type and vte4 mutant Arabidopsis thaliana: Model plant to engineer tolerance towards salinity

    Khalatbari Amir Ali


    Full Text Available One of the major environmental constraints impairing plant distribution and yield is believed to be salt stress. Additionally, engineered abiotic stress resistance or/and tolerance is considered as an indispensable target in order to enhance plant productivity. In this study, the effects of salinity on physiological and morphological of wild type (Columbia-0 and vte4 mutant Arabidopsis thaliana were investigated under different NaCl concentrations. These salt treatments, including control condition, 50mM and 100mM NaCl were imposed on the plants. Each salt treatment was replicated three times in a complete randomized design with factorial arrangement. Wild type and mutant A.thaliana plants were subjected to the abiotic stress (salinity for up to 11 days to evaluate the parameters of growth, development and water relations. As a result, the performance of wild type plants was stronger than vte4 mutant under different salt treatments. Under control condition, rosette dry weight, maximum quantum efficiency (PSII and specific leaf area obtained the highest values of 13.85 mg, considered, wild type A.thaliana recorded higher value of 0.82 gW/gFW for relative water content (RWC under 50mM NaCl whereas mutant plants gained the value of 0.78 gW/gFW under the same condition. However, root mass fraction indicated an increase for both wild type and vte4 mutant plants after 11 days of salt stress onset. The reduction of water potential was observed for wild type and mutant A.thaliana where it scored -1.3 MPa and -1.4, respectively. As a conclusion, these findings implied that under different salt treatments morphological and physiological responses of wild type and vte4 mutant were affected in which wild type plants showed more tolerance. Lack of γ-tocopherol methyltransferase (γ -TMT gene in vte4 seemed to impair defence mechanism of this mutant against salinity.

  17. Use of the "gl1" Mutant and the "CA-rop2" Transgenic Plants of "Arabidopsis thaliana" in the Biology Laboratory Course

    Zheng, Zhi-Liang


    This article describes the use of the "glabrous1 (g11)" mutant and constitutively active "(CA)-rop2" transgenic plants of "Arabidopsis thaliana" in teaching genetics laboratory for both high school and undergraduate students. The experiments provide students with F[subscript 1] and F[subscript 2] generations within a semester for genetic and…

  18. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis.

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Eisenhut, Marion; Kurz, Samantha; Morper, Anna; Hoecker, Natalie; Rühle, Thilo; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Weber, Andreas P M; Spetea, Cornelia; Leister, Dario


    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn(2+) and Ca(2+) homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn(2+) and Ca(2+) ions were differently sequestered in pam71, with Ca(2+) enriched in pam71 thylakoids relative to the wild type. The changes in Ca(2+) homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn(2+), but not Ca(2+) Furthermore, PAM71 suppressed the Mn(2+)-sensitive phenotype of the yeast mutant Δpmr1 Therefore, PAM71 presumably functions in Mn(2+) uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  19. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R


    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds. PMID:26428915

  20. Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa

    Kerry H. Caffall; Sivakumar Pattathil; Sarah E. Phillips; Michael G. Hahn; Debra Mohnen


    Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1(GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution com-parable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as dem-onstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mu-tant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.

  1. Systematic Phenotype Analysis of Arabidopsis Ds-tagged Mutants to Unravel Gene Functions in Abiotic Stress Response as well as Growth and Development

    By the availability of various mutant resources in Arabidopsis, it is now possible to investigate mutant lines for almost every gene. Arabidopsis is then, not only a model plant for plant research, but also a model species in which it is possible to carry out 'saturation mutagenesis' for all genes, and to totally analyze each gene and mutant of one organism. One of the future goals of the 'phenome' project is to collect information about the knockout-type mutant phenotypes for each Arabidopsis gene. We have generated thousands of Dissociation (Ds) transposon-tagged lines, which have a single insertion because of an advantage of the Activator/Dissociation (Ac/Ds) system, and deposited it to the RIKEN BioResource Center. In this resource, we selected 4,000 transposon-tagged lines with a transposon insertion in gene-coding regions, and systematically observed the visible phenotype of each line as a first step of phenome analysis. In total, about 200 clear visible phenotypes were classified into 43 categories of morphological phenotypes. Phenotypic images have been entered into a searchable database. Parallel to this, we have been selecting homozygous transposon-insertional plants, which would be useful resources to detect other phenotypes besides the visible ones. We are setting three categories of measurement to search various traits for total phenome analysis, such as physical, chemical or biological methods. Recently, we started to investigate biologically-measured phenotypes, which are stress-responsive or conditional phenotypes, using homozygous mutant resources. We are also collecting any mutant phenotype information from published reports in journal research activity to make a comprehensive phenotype database of Arabidopsis genes and mutants. (author)

  2. The mur4 mutant of arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose

    Burget, E.G.; Reiter, W.D.


    To obtain information on the synthesis and function of arabinosylated glycans, the mur4 mutant of arabidopsis was characterized. This mutation leads to a 50% reduction in the monosaccharide L-arabinose in most organs and affects arabinose-containing pectic cell wall polysaccharides and arabinogalactan proteins. Feeding L-arabinose to mur4 plants restores the cell wall composition to wild-type levels, suggesting a partial defect in the de novo synthesis of UDP-L-arabinose, the activated sugar used by arabinosyltransferases. The defect was traced to the conversion of UDP-D-xylose to UDP-L-arabinose in the microsome fraction of leaf material, indicating that mur4 plants are defective in a membrane-bound UDP-D-xylose 4-epimerase.

  3. Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.).

    Vermeulen, A; Vaucheret, H; Pautot, V; Chupeau, Y


    Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding. PMID:24203132

  4. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier


    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to...

  5. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics.

    Mourad, G; Williams, D; King, J


    A comparison is made of the kinetic characteristics of acetolactate synthase (EC in extracts from Columbia wild type and four near-isogenic, herbicide-resistant mutants of Arabidopsis thaliana (L.) Heynh. The mutants used were the chlorsulfuron-resistant GH50 (csr1-1), the imazapyr-resistant GH90 (csr1-2), the triazolopyrimidine-resistant Tzp5 (csr1-3) and the multiherbicide-resistant, double mutant GM4.8 (csr1-4), derived from csr1-1 and csr1-2 by intragenic recombination (G. Mourad et al. 1994, Mol. Gen. Genet. 243, 178-184). Kmapp and Vmax values for the substrate pyruvate were unaffected by any of the mutations giving rise to herbicide resistance. Feedback inhibition by L-valine (L-Val), L-leucine (L-Leu) and L-isoleucine (L-Ile) of acetolactate synthase extracted from wild type and mutants fitted a mixed competitive pattern most closely. Ki values for L-Val, L-Leu and L-Ile inhibition were not significantly different from wild type in extracts from csr1-1, csr1-2, and csr1-3. Ki values were significantly higher than wild type by two- and five-fold, respectively, for csr1-4 with L-Val and L-Leu but not L-Ile. GM4.8 (csr1-4) plants were also highly resistant in their growth to added L-Val and L-Leu.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7767237

  6. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  7. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing1[OPEN

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da


    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis. PMID:27208253

  8. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay; Keller, Beat


    The Arabidopsis thaliana (L.) Heynh. mutant delayed-dehiscence2-2 (dde2-2) was identified in an En1/Spm1 transposon-induced mutant population screened for plants showing defects in fertility. The dde2-2 mutant allele is defective in the anther dehiscence process and filament elongation and thus e...

  9. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    Belfield, E.J.


    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  10. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Henrik eZauber


    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  11. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana.

    Soto, Débora; Córdoba, Juan Pablo; Villarreal, Fernando; Bartoli, Carlos; Schmitz, Jessica; Maurino, Veronica G; Braun, Hans Peter; Pagnussat, Gabriela C; Zabaleta, Eduardo


    The NADH-ubiquinone oxidoreductase complex (complex I) (EC is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions. PMID:26148112

  12. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3.

    Järvi, Sari; Isojärvi, Janne; Kangasjärvi, Saijaliisa; Salojärvi, Jarkko; Mamedov, Fikret; Suorsa, Marjaana; Aro, Eva-Mari


    Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light. PMID:27064270

  13. Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes

    Zolman, Bethany K.; Martinez, Naxhiely; Millius, Arthur; Adham, A. Raquel; Bartel, Bonnie


    Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid β-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal ...

  14. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Schulz Burkhard


    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  15. Transcription profiling by array of Arabidopsis thaliana wild type (Col-0) and flowering time mutants to investigate synchronized induction of flowering

    Valentim, F.L.; Mourik, van, J.A.; Posé, D.; Kim, M.C.; M. Schmid; van der Ham; Busscher, M.; Sanchez-Perez, G.F.; Molenaar, J.; Immink, G.H.; Dijk, van, G.


    Synchronized induction of flowering in Arabidopsis thaliana wild type (Col-0) and flowering time mutants (soc1, agl24, fd) by shifting from short day (8 hr light, 16 hr dark; 23C; 65% rel humidity) to long day (16 hr light, 8 hr dark; 23C; 65% rel humidity) for 0, 3, 5, and 7 days. Biotinylated probes were synthesized from RNA isolated from manually disseted shoot meristems and hybridized to Affymetrix ATH1 arrays.

  16. Pale-Green Phenotype of atl31 atl6 Double Mutant Leaves Is Caused by Disruption of 5-Aminolevulinic Acid Biosynthesis in Arabidopsis thaliana

    Maekawa, Shugo; Takabayashi, Atsushi; Huarancca Reyes, Thais; Yamamoto, Hiroko; Tanaka, Ayumi; Sato, Takeo; Yamaguchi, Junji


    Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/...

  17. Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State

    Paolo Pesaresi; Michael Scharfenberg; Martin Weigel; Irene Granlund; Wolfgang P. Schr(o)der; Giovanni Finazzi; Fabrice Rappaport; Simona Masiero; Antonella Furini; Peter Jahns; Dario Leister


    Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plas-tocyanin contents. However, despite reducing plastocyanin levels by over~90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic elec-tron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome C6A (Cyt C6A) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt C6A in yeast interaction assays, but also Cyt C6A homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt C6A and one of the two plastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow.

  18. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier


    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differences between resistant and sensitive homozygous plants were detected, respectively. Dominance levels for the fitness cost ranged from recessivity (csr1-1, ixr1-2, and axr1-3) to dominance (axr2-1) to underdominance (aux1-7). Furthermore, the dominance level of the herbicide resistance trait did not predict the dominance level of the cost of resistance. The relationship of our results to theoretical predictions of dominance and the consequences of fitness cost and its dominance in resistance management are discussed. PMID:15020435

  19. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone


    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  20. Changes in DNA base sequences in the mutant of Arabidopsis thaliana induced by low-energy N+ implantation

    常凤启; 刘选明; 李银心; 贾庚祥; 马晶晶; 刘公社; 朱至清


    To reveal the mutation effect of low-energy ion implantation on Arabidopsis thaliana in vivo, T80II, a stable dwarf mutant, derived from the seeds irradiated by 30 keV N+ with the dose of 80×1015 ions/cm2 was used for Random Amplified Polymorphic DNA (RAPD) and base sequence analysis. The results indicated that among total 397 RAPD bands observed, 52 bands in T80II were different from those of wild type showing a variation frequency 13.1%. In comparison with the sequences of A. thaliana in GenBank, the RAPD fragments in T80II were changed greatly in base sequences with an average rate of one base change per 16.8 bases. The types of base changes included base transition, transversion, deletion and insertion. Among the 275 base changes detected, single base substitutions (97.09%) occurred more frequently than base deletions and insertions (2.91%). And the frequency of base transitions (66.55%) was higher than that of base transversions (30.55%). Adenine, thymine, guanine or cytosine could be replaced by any of other three bases in cloned DNA fragments in T80II. It seems that thymine was more sensitive to the irradiation than other bases. The flanking sequences of the base changes in RAPD fragments in T80II were analyzed and the mutational "hotspot" induced by low-energy ion implantation was discussed.

  1. ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plants tissues

    Adnan Ali Al.Asbahi


    Full Text Available The ability of plants to tolerate drought conditions is crucial for plant survival and crop production worldwide. The present data confirm previous findings reported existence of a strong relation between abscisic acid (ABA content and amino acid accumulation as response water stress which is one of the most important defense mechanism activated during water stress in many plant species. Therefore, free amino acids were measured to determine any changes in the metabolite pool in relation to ABA content. The ABA defective mutants of Arabidopsis plants were subjected to leaf dehydration for Arabidopsis on Whatman 3 mm filter paper at room temperature while, tomato mutant plants were subjected to drought stresses for tomato plants by withholding water. To understand the signal transduction mechanisms underlying osmotic stress-regulating gene induction and activation of osmoprotectant free amino acid synthesizing genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in ABA biosynthesis under drought stress conditions. The present results revealed an accumulation of specific free amino acid in water stressed tissues in which majority of free amino acids are increased especially those playing an osmoprotectant role such as proline and glycine. Drought stress related Amino acids contents are significantly reduced in the mutants under water stress condition while they are increased significantly in the wild types plants. The exhibited higher accumulation of other amino acids under stressed condition in the mutant plants suggest that, their expressions are regulated in an ABA independent pathways. In addition, free amino acids content changes during water stress condition suggest their contribution in drought toleration as common compatible osmolytes.

  2. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence

    Lee Travis A


    Full Text Available Abstract Background Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. Results In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase and one thylakoid protein (the major light harvesting complex protein of photosystem II were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7. Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. Conclusions These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.

  3. 拟南芥二氧化碳突变体生理特性的分析%Physiological Analysis of Two Arabidopsis thaliana Mutants in Response to CO2

    宋玉伟; 陈家宝; 刘宗才


    [Objective] The purpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mutants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdi1 was insensitive to ABA, mannitol and NaCl, but cds1 performed contrary to cdi1. [Conclusion] There are some different physiological characteristics between wild type and mutants.

  4. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.


    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  5. Reciprocal chromosome translocation associated with TDNA-insertion mutation in Arabidopsis: genetic and cytological analyses of consequences for gametophyte development and for construction of doubly mutant lines

    Curtis, Marc J.; Belcram, Katia; Stephanie R Bollmann; Tominey, Colin M.; Hoffman, Peter D.; Mercier, Raphael; Hays, John B.


    Chromosomal rearrangements may complicate construction of Arabidopsis with multiple TDNA-insertion mutations. Here, crossing two lines homozygous for insertions in AtREV3 and AtPOLH (chromosomes I and V, respectively) and selfing F1 plants yielded non-Mendelian F2 genotype distributions: frequencies of +/++/+ and 1/1 2/2 progeny were only 0.42 and 0.25%. However, the normal development and fertility of double mutants showed AtPOLH-1 and AtREV3-2 gametes and 1/1 2/2 embryos to be fully viable....

  6. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells.

    Vaultier, Marie-Noëlle; Cantrel, Catherine; Vergnolle, Chantal; Justin, Anne-Marie; Demandre, Chantal; Benhassaine-Kesri, Ghouziel; Ciçek, Dominique; Zachowski, Alain; Ruelland, Eric


    Membrane rigidification could be the first step of cold perception in poikilotherms. We have investigated its implication in diacylglycerol kinase (DAGK) activation by cold stress in suspension cells from Arabidopsis mutants altered in desaturase activities. By lateral diffusion assay, we showed that plasma membrane rigidification with temperature decrease was steeper in cells deficient in oleate desaturase than in wild type cells and in cells overexpressing linoleate desaturase. The threshold for the activation of the DAGK pathway in each type of cells correlated with this order of rigidification rate, suggesting that cold induced-membrane rigidification is upstream of DAGK pathway activation. PMID:16839551

  7. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants.

    Cervantes, Emilio; Javier Martín, José; Ardanuy, Ramón; de Diego, Juana G; Tocino, Angel


    A new model for the description of Arabidopsis seed shape based on the comparison of the outline of its longitudinal section with a transformed cardioid is presented. The transformation consists of scaling the horizontal axis by a factor equal to the Golden Ratio. The elongated cardioid approximates the shape of the Arabidopsis seed with more accuracy than other figures. The length to width ratio in wild-type Columbia Arabidopsis dry seeds is close to the Golden Ratio and decreases over the course of imbibition. Dry seeds of etr1-1 mutants presented a reduced length to width ratio. Application of the new model based on the cardioid allows for comparison of shape between wild-type and mutant genotypes, revealing other general alterations in the seeds in ethylene signaling pathway mutants (etr1-1). PMID:19880215

  8. Characterization of a new mutant allele of the Arabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressing FLC

    CHEN Ruiqiang; ZHANG Suzhi; SUN Shulan; CHANG Jianhong; ZUO Jianru


    Flowering in higher plants is controlled by both the internal and environmental cues. In Arabidopsis, several major genetic loci have been defined as the key switches to control flowering. The Flowering Locus C (FLC) gene has been shown in the autonomous pathway to inhibit the vegetative-to-reproductive transition. FLC appears to be repressed by Flowering Locus D (FLD), which encodes a component of the histone deacetylase complex. Here we report the identification and characterization of a new mutant allele fld-5. Genetic analysis indicates that fld-5 (in the Wassilewskija background) is allelic to the previously characterized fld-3 and fld-4 (in the Colombia-0 background). Genetic and molecular analyses reveal that fld-5 carries a frame-shift mutation, resulting in a premature termination of the FLD open reading frame. The FLC expression is remarkably increased in fld-5, which presumably attributes to the extremely delayed flowering phenotype of the mutant.

  9. La tolerancia a litio del mutante cat2 de arabidopsis revela una estrecha relación entre estrés oxidativo y etileno

    Bueso Ródenas, Eduardo


    Con el fin de investigar los efectos en la homeostasis de iones de un aumento en la concentración celular de peróxido de hidrógeno, se aisló un mutante de inserción de T-DNA en el gen CATALASA 2 de Arabidopsis. El mutante cat2-1 presenta una reducción del 80% de la catalasa de hoja en comparación con genotipos silvestres y acumula más peróxido de hidrógeno en condiciones sin estrés. Además de presentar un tamaño reducido, un color verde más pálido y gran reducción en el número de raíces secun...

  10. The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth

    Bouquin, Thomas; Mattsson, Ole; Naested, Henrik;


    The lue1 mutant was previously isolated in a bio-imaging screen for Arabidopsis mutants exhibiting inappropriate regulation of an AtGA20ox1 promoter-luciferase reporter fusion. Here we show that lue1 is allelic to fra2, bot1 and erh3, and encodes a truncated katanin-like microtubule-severing prot...... response to plant hormones.......-severing protein (AtKSS). Complementation of lue1 with the wild-type AtKSS gene restored both wild-type stature and luciferase reporter levels. Hormonal responses of lue1 to ethylene and gibberellins revealed inappropriate cortical microtubule reorientation during cell growth. Moreover, a fusion between the At...

  11. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Iwona Szarejko


    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  12. The eta7/csn3-3 auxin response mutant of Arabidopsis defines a novel function for the CSN3 subunit of the COP9 signalosome.

    He Huang

    Full Text Available The COP9 signalosome (CSN is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCF(TIR1/AFB ubiquitin-ligase (deneddylation. Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3, designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCF(TIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.

  13. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis

    Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly required for seed germination. Recent evidence suggests tha...

  14. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    Singh Manoj; Fischer Urs; Singh Sunil K; Grebe Markus; Marchant Alan


    Abstract Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procust...

  15. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  16. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang


    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  17. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization

    Belghazi Maya


    Full Text Available Abstract Background Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. Results In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. Conclusions This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds.

  18. The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane.

    Härtel, H; Essigmann, B; Lokstein, H; Hoffmann-Benning, S; Peters-Kottig, M; Benning, C


    The pho1 mutant of Arabidopsis has been shown to respond to the phosphate deficiency in the leaves by decreasing the amount of phosphatidylglycerol (PG). PG is thought to be of crucial importance for the organization and function of the thylakoid membrane. This prompted us to ask what the consequences of the PG deficiency may be in the pho1 mutant when grown under low or high light. While in the wild-type, the lipid pattern was almost insensitive to changes in the growth light, PG was reduced to 45% under low light in the mutant, and it decreased further to 35% under high light. Concomitantly, sulfoquinovosyl diacylglycerol (SQDG) and to a lesser extent digalactosyl diacylglycerol (DGDG) increased. The SQDG increase correlated with increased amounts of the SQD1 protein, an indicator for an actively mediated process. Despite of alterations in the ultrastructure, mutant thylakoids showed virtually no effects on photosynthetic electron transfer, O2 evolution and excitation energy allocation to the reaction centers. Our results support the idea that PG deficiency can at least partially be compensated for by the anionic lipid SQDG and the not charged lipid DGDG. This seems to be an important strategy to maintain an optimal thylakoid lipid milieu for vital processes, such as photosynthesis, under a restricted phosphate availability. PMID:9858733

  19. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

    Roncaglia Enrica


    Full Text Available Abstract Background Reactive oxygen species (ROS are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. Results To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2 accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. Conclusions We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are

  20. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    Dellaert, L.M.W.


    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  1. The mysterious rescue of adg1-1/tpt-2 - an Arabidopsis thaliana double mutant impaired in acclimation to high light – by exogenously supplied sugars

    Luisa eHeinrichs


    Full Text Available An Arabidopsis thaliana double mutant (adg1-1/tpt-2 defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2 and a lack of starch (mutation in ADPglucose pyrophosphorylase [AGPase]; adg1-1 exhibits severe growth retardation, a decrease in the photosynthetic capacity and a high chlorophyll fluorescence (HCF phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc or glucose (Glc. Here we address the question whether Glc-sensing hexokinase1 (HXK1 defective in the Glc insensitiv2 (gin2-1 mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase and HXK1 (adg1-1/tpt-2/gin2-1 were established as homozygous lines and grown together with Col-0 and Ler wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant and the adg1-1/tpt-2/gpt2-1 triple mutant (additionally defective in the glucose 6-phosphate/phosphate translocator2 [GPT2] on agar in the presence or absence of 50 mM of each Glc, Suc or fructose (Fru. The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru, All three sugars were capable of rescuing the HCF- and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar responsive genes revealed that plastidial HXK (pHXK was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed.

  2. Decrease in Leaf Sucrose Synthesis Leads to Increased Leaf Starch Turnover and Decreased RuBP-limited Photosynthesis But Not Rubisco-limited Photosynthesis in Arabidopsis Null Mutants of SPSA1

    SPS (Sucrose phosphate synthase) isoforms from dicots cluster into families A, B and C. In this study, we investigated the individual effect of null mutations of each of the four SPS genes in Arabidopsis (spsa1, spsa2, spsb and spsc) on photosynthesis and carbon partitioning. Null mutants spsa1 and ...

  3. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice


    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. PMID:26715025

  4. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.

    Fang, Zheng-wu; Qi, Rui; Li, Xiao-fang; Liu, Zhi-xiong


    Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum. PMID:25149019

  5. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun


    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC, another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  6. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe


    Highlight bam1 mutant plants impaired in stomatal starch degradation showed an improved drought tolerance associated with a down-regulation of guard cell-specific gene expression involved in water uptake and cell expansion.

  7. Global metabolic profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4 loss-of-function mutants exhibiting delayed dark-induced senescence

    Miren Iranzu Sequera-Mutiozabal


    Full Text Available Early and more recent studies have suggested that some polyamines (PAs, and particularly spermine (Spm, exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4, encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2 loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence.

  8. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T


    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls. PMID:24938853

  9. Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature.

    Maryke Carstens

    Full Text Available The Arabidopsis constitutive induced resistance 1 (cir1 mutant displays salicylic acid (SA-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1 and PHYTOALEXIN DEFICIENT4 (PAD4. We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.

  10. Isolation of T—DNA flanking plant DNA from T—DNA insertional embryo—lethal mutants of Arabidopsis thaliana by plasmid rescue technique



    Three T-DNA insertional embryonic lethal mutants from NASC(The Nottingham Arabidopsis Stock Center) were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion.The N4081 mutant has a segregation ratio of 1:3.04 in average and one T-DNA insertion site according to our assay.It was therefore chosen for further analysis.To isolate the joint fragment of T-DNA and plant DNA,the plasmid rescue technique was used.pEL-7,one of plasmids from left border of T-DNA,which contained pBR322 was selected from ampicillin plate.The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot.Restriction analysis confirmed the presence of known sites of EcoRI,PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid,pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA.The Southern Blot indicated the hybridization band in both of them.Furthermore,the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A sequencer.The results showed the 822 bp fragment contained a 274 bp sequence,which is 99.6%homolog(273bp/274bp) to Ti plasmid pTi 15955,DNA.The bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA. Taken together,pEL-7 should coutain a joint fragment of T-DNA and flanking plant DNA.This plasmid DNA could be used for the isolation of plant gene,which will be helpful to elucidate the relationship between gene function and plant embryo development.

  11. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    Pattanayak, Gopal K; Tripathy, Baishnab C


    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  12. Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis

    Yong ZHU; Hui Fang ZHAO; Guo Dong REN; Xiao Fei YU; Shu Qing CAO; Ben Ke KUAI


    A developmentally retarded mutant (drm1) was identified from ethyl methanesulfonate (EMS)-mutagenized M2 seeds in Columbia (Col-0) genetic background. The drm1 flowers 109 d after sowing, with a whole life cycle of about 160 d.It also shows a pleiotropic phenotype, e.g., slow germination and lower gemination rate, lower growth rate, curling leaves and abnormal floral organs. The drm1 mutation was a single recessive nuclear mutation, which was mapped to the bottom of chromosome 5 and located within a region of 20-30 kb around MXK3.1. There have been no mutants with similar phenotypes reported in the literature, suggesting that DRM1 is a novel flowering promoting locus. The findings that the drm1 flowered lately under all photoperiod conditions and its late flowering phenotype was significantly restored by vernalization treatment suggest that the drm1 is a typical late flowering mutant and most likely associated with the autonomous flowering pathway. The conclusion was further confirmed by the revelation that the transcript level of FLC was constantly upregulated in the drm1 at all the developmental phases examined, except for a very early stage. Moreover, the transcript levels of two other important repressors, EMF and TFL1, were also upregulated in the drm1, implying that the two repressors, along with FLC, seems to act in parallel pathways in the drm1 to regulate flowering as well as other aspects of floral development in a negatively additive way. This helps to explain why the drm1exhibits a much more severe late-flowering phenotype than most late-flowering mutants reported. It also implies that the DRM1 might act upstream of these repressors.

  13. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Tan Chao


    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  14. Programmed cell death in the leaves of the Arabidopsis spontaneous necrotic spots (sns-D mutant correlates with increased expression of the eukaryotic translation initiation factor eIF4B2

    Gwenael M.D.J.-M. Gaussand


    Full Text Available From a pool of transgenic Arabidopsis (Arabidopsis thaliana plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type. DNA fragmentation in the nuclei of cells in the necrotic spots and a significant increase of caspase-3 and caspase-6 like activities in sns-D leaf extracts indicated that the sns-D mutation caused programmed cell death (PCD. The integration of the activator T-DNA caused an increase of the expression level of At1g13020, which encodes the eukaryotic translation initiation factor eIF4B2. The expression level of eIF4B2 was positively correlated with the severity of sns-D mutant phenotype. Overexpression of the eIF4B2 cDNA mimicked phenotypic traits of the sns-D mutant indicating that the sns-D mutant phenotype is indeed caused by activation tagging of eIF4B2. Thus, incorrect regulation of translation initiation may result in PCD.

  15. Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants

    The presence of UV-absorptive substances in the epidermal cells of leaves is thought to protect mesophyll tissues from the harmful effects of UV-B radiation. We examined the influence of short-term UV-B exposures on UV-absorptive (330 nm) sinapates and flavonols, and on shoot growth of the Arabidopsis wild type ecotype Landsberg erecta and two mutants. 114 deficient in chalcone synthase, and 115, deficient in chalcone/flavonone isomerase. Sequential ozone exposures were used to determine the effects of oxidative stress The levels of sinapates and flavonols on a leaf fresh weight basis increased substantially in the wild type and sinapates increased in the 114 mutant in vegetative vegetative/reproductive transitional and reproductive stage plants in response to short-term (48h) UV-B radiation. When UV-B was discontinued the levels generally decreased lo pre-exposure levels after 48 h in vegetative/reproductive but not in reproductive plants. Exposure to ozone before or alter UV-B treatment did not consistently affect the levels of these UV-absorptive compounds. Dry matter accumulation was less affected by UV-B at the vegetative and reproductive stages than at the vegetative/reproductive stage. At the vegetative/reproductive stage, shoot growth of all 3 genotypes was retarded by UV-B. Growth was not retarded by short-term ozone exposure alone but when exposure to ozone followed UV-B exposure, growth was reduced in all genotypes. Leaf cupping appeared on 115 plants exposed to UV-B

  16. Characterization of variation induced by low-energy N+ and cloning of differentially expressed cDNA of a mutant in Arabidopsis thaliana


    Using Arabidopsis thaliana as experimental materials, the variations induced by low-energy N+ have been investigated. Germination rate of the treated seeds is lower than that of the control, and it decreases with the intensification of the radiation. The phenotypic variations have been observed in M2 plants irradiated with higher doses, such as chlorisis, semilethality, plant morphology, and changes of blooming habit and fertility. In random amplified polymorphic DNA (RAPD) analysis on M2 seedlings, some differences including band deletions or additions are found in treated plants compared to the control and the differences are associated with the radiation doses. One of the M1 plants from the seeds irradiated with the dose of 80×1015 N+/cm2 is a dwarf variant. Its stable M6 generation, mutant T80II, is used to construct subtractive cDNA library and to clone differentially expressed cDNA. A 721 bp cDNA fragment is partly homologous with GRF7 gene.


    门潇; 孙天虎; 杨永华


    构建了拟南芥orange(or)过表达突变体和相应的对照组,通过比较它们在色素含量、转录组、表型等方面的变化,发现or在绿色组织(拟南芥叶子、茎等)中也能起到提高类胡萝卜素含量的作用,且突变体类胡萝卜素合成途径的基因转录水平没有显著变化,但是很多防卫胁迫相关基因转录水平上调,说明突变体中存在胁迫环境.对不同生长条件下突变体幼苗下胚轴的测量等表明or突变体对光尤其是蓝光变得十分敏感.本研究分析比较了or在不同组织中的效应,为or应用于改良作物类胡萝卜素含量的基因工程和进一步揭示or的作用机制提供了参考.%It is known that orange(or) gene mutation leads to increased carotenoids content in plants.To elucidate the detailed mechanisms involved,Arabidopsis plants with over-expressed or and vector-only control were generated.Pigment content,transcriptome profile and mutant phenotypes were investigated.It was found that or was functional in green tissues,such as leaves and stems,although less functional than in non-green tissues.No major changes in transcription pattern were found for genes involved in carotenoids biosynthesis,but resistance-related genes,such as ZAT,were up-regulated,implying stressed environment in or mutants.Hypocotyl length measurements under different light conditions suggested that the or mutant became sensitive to light especially to blue light.Carotenoids enhancement of or in different plant tissues was analyzed,providing a reference for genetic engineering using or to improve nutritional status of crops,and for future work to uncover or regulatory mechanisms.

  18. Recherche d'enzymes impliquées dans la voie de biosynthèse de la carnitine chez Arabidopsis thaliana et étude préliminaire de mutants à teneur réduite en carnitine

    Zhao, Yingjuan,


    La carnitine, un acide aminé crucial pour le transfert intracellulaire des acides gras chez les animaux et les micro-organismes, est présente chez les plantes mais son mode d'implication dans le métabolisme lipidique et dans le développement reste à déterminer. Afin d'étudier le rôle biologique de la carnitine chez Arabidopsis nous avons initié une recherche bioinformatique d'enzymes susceptibles de participer à sa synthèse dans le but d'obtenir des mutants à teneur réduite en carnitine. Des ...

  19. X-ray and fast neutron-induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    The author discusses the genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT). (Auth.)

  20. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio

    Fiore Alessia


    Full Text Available Abstract Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2 and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3. The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase. This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii xanthophylls are needed for normal level of Photosystem I and LHCII accumulation.

  1. AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast GRx5 mutant phenotypes and respond to oxidative stress

    Arabidopsis monothiol glutaredoxin (Grx), AtGRX4, was targeted to chloroplasts/plastids and had high similarity to yeast Grx5. In yeast expression assays, AtGRX4 localized to the mitochondria and suppressed the sensitivity of grx5 cells to oxidants. In addition, AtGRX4 reduced iron accumulation and ...

  2. The rate of photosynthesis remains relatively high at moderately high temperatures in Arabidopsis thaliana rca mutant expressing thermostable chimeric Rubisco activase

    The rate of photosynthesis declines at moderately high temperatures (30-42 deg C) in temperate plants like Arabidopsis. The decline is due to deactivation of Rubisco which in turn is due to a reduced ability of activase to activate Rubisco (Crafts-Brandner and Salvucci, PNAS 97:13430-13435, 2000). W...

  3. SnRK2.6/OST1 from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis of K50N and D160A mutants

    Serine/threonine protein kinase SnRK2.6/OST1 (OPEN STOMATA 1) from A. thaliana has been crystallized by the hanging-drop vapour-diffusion method and a native data set has been collected to 2.8 Å resolution. The SnRK2.6 (SNF1-related kinase 2.6) gene from Arabidopsis thaliana encodes the serine/threonine protein kinase SnRK2.6/OST1 (OPEN STOMATA 1). It plays a central role in the drought-tolerance mechanism. OST1 is in fact the main positive effector in the hydric stress response. The SnRK2.6 gene was cloned into the pGEX4T1 plasmid, mutated and expressed in Escherichia coli, allowing purification to homogeneity in two chromatographic steps. Various OST1 mutants yielded crystals using vapour-diffusion techniques, but only one mutant showed a good diffraction pattern. Its crystals diffracted to 2.8 Å resolution and belonged to space group P2221, with unit-cell parameters a = 77.7, b = 99.4, c = 108.4 Å. A promising molecular-replacement solution was found using the structure of the kinase domain of the yeast AMP-activated protein kinase SNF1 as the search model

  4. Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus

    Beibei Bie


    Full Text Available The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1 is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1 was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  5. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    Yamamoto, M.; Yamamoto, K. T.


    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  6. Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies

    The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies. (author)

  7. Reduced function of the RNA-binding protein FPA rescues a T-DNA insertion mutant in the Arabidopsis ZHOUPI gene by promoting transcriptional read-through.

    Zhang, Yaohua; Li, Xin; Goodrich, Justin; Wu, Chunxia; Wei, Haichao; Yang, Suxin; Feng, Xianzhong


    T-DNA insertion mutants have been widely used to investigate plant gene functions. Unexpectedly, in several reported cases, the phenotype of T-DNA insertion mutations can be suppressed because of trans T-DNA interactions associated with epigenetic modification, which indicates that caution is needed when T-DNA mutants are used. In the present study, we characterized a novel process suppressing a T-DNA mutation. The spz2 (suppressor of zou 2) mutant was isolated as a suppressor of the phenotype of the zou-4 mutant caused by a T-DNA insertion in the first intron. The spz2 mutation partially recovered the native ZOU gene expression in the zou-4 background, but not in two other zou alleles, zou-2 and zou-3, with T-DNAs inserted in the exon and intron, respectively. The suppressed phenotype was inherited in a Mendelian fashion and is not associated with epigenetic modification. The recovery of the native ZOU gene expression in the spz2 zou-4 double mutant is caused by transcriptional read-through of the intronic T-DNA as a result of decreased proximal polyadenylation. SPZ2 encodes an RNA-binding protein, FPA, which is known to regulate polyadenylation site selection. This is the first example of FPA rescuing a T-DNA insertion mutation by affecting the polyadenylation site selection. PMID:27164978

  8. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei;


    thylakoids relative to the wild type. The changes in Ca2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1...

  9. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome

    Størseth Trond R


    Full Text Available Abstract Background Glutamate plays a central position in the synthesis of a variety of organic molecules in plants and is synthesised from nitrate through a series of enzymatic reactions. Glutamate synthases catalyse the last step in this pathway and two types are present in plants: NADH- or ferredoxin-dependent. Here we report a genome wide microarray analysis of the transcriptional reprogramming that occurs in leaves and roots of the A. thaliana mutant glu1-2 knocked-down in the expression of Fd-GOGAT1 (GLU1; At5g04140, one of the two genes of A. thaliana encoding ferredoxin-dependent glutamate synthase. Results Transcriptional profiling of glu1-2 revealed extensive changes with the expression of more than 5500 genes significantly affected in leaves and nearly 700 in roots. Both genes involved in glutamate biosynthesis and transformation are affected, leading to changes in amino acid compositions as revealed by NMR metabolome analysis. An elevated glutamine level in the glu1-2 mutant was the most prominent of these changes. An unbiased analysis of the gene expression datasets allowed us to identify the pathways that constitute the secondary response of an FdGOGAT1/GLU1 knock-down. Among the most significantly affected pathways, photosynthesis, photorespiratory cycle and chlorophyll biosynthesis show an overall downregulation in glu1-2 leaves. This is in accordance with their slight chlorotic phenotype. Another characteristic of the glu1-2 transcriptional profile is the activation of multiple stress responses, mimicking cold, heat, drought and oxidative stress. The change in expression of genes involved in flavonoid biosynthesis is also revealed. The expression of a substantial number of genes encoding stress-related transcription factors, cytochrome P450 monooxygenases, glutathione S-transferases and UDP-glycosyltransferases is affected in the glu1-2 mutant. This may indicate an induction of the detoxification of secondary metabolites in the

  10. Expression of HMA4 cDNAs of the zinc hyperaccumulator Noccaea caerulescens from endogenous NcHMA4 promoters does not complement the zinc-deficiency phenotype of the Arabidopsis thaliana hma2hma4 double mutant

    Iqbal, M.; Nawaz, I.; Hassan, Z.; Hakvoort, H.W.J.; Bliek, M.; Aarts, M.G.M.; Schat, H.


    Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is t

  11. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

    Egelund, Jack; Obel, Nicolai; Ulvskov, Peter;


    Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas...

  12. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan


    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  13. Root hair mutants of barley

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M2 seeds were sown in the field the same day. Spikes, 4-6 per M1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  14. Mutations in leaf starch metabolism modulate the diurnal root growth profiles of Arabidopsis thaliana

    Yazdanbakhsh, Nima; FISAHN, JOACHIM


    Roots of Arabidopsis thaliana exhibit stable diurnal growth profiles that are controlled by the circadian clock. Here we describe the effects of mutations in leaf starch metabolism on the diurnal root growth characteristics of Arabidopsis thaliana. High temporal and spatial resolution video imaging was performed to quantify the growth kinetics of Arabidopsis wild-type as well as pgm, sex1, mex1, dpe1 and dpe2 starch metabolism mutants grown in three different photoperiods. As a result, root g...

  15. Self-consuming innate immunity in Arabidopsis

    Hofius, Daniel; Mundy, John; Petersen, Morten


    . However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants....... Intriguingly, HR triggered by another class of immune receptors with different genetic requirements is not compromised, indicating that only a specific subset of immune receptors engage the autophagy pathway for HR execution. Thus, our work provides a primary example of autophagic cell death associated with...... innate immune responses in eukaryotes as well as of prodeath functions for the autophagy pathway in plants....

  16. Heavy ion induced mutation in arabidopsis

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment


    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  17. Telomere Rapid Deletion Regulates Telomere Length in Arabidopsis thaliana▿

    Watson, J. Matthew; Dorothy E Shippen


    Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shorten...

  18. Forward genetic screen for auxin-deficient mutants by cytokinin

    Wu, L.; Luo, P.; Di, D.W.; Wang, L.; Wang, M.; Lu, C.K.; Wei, S.D.; Zhang, L.; Zhang, T.Z.; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, G.Q.


    Roč. 5, JUL 6 (2015). ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : ETHYLENE -INSENSITIVE MUTANTS * YUCCA FLAVIN MONOOXYGENASES * ARABIDOPSIS-THALIANA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.578, year: 2014

  19. Regulation of Arabidopsis thaliana Em genes : role of AB15

    Carles, C.; Bies-Etheve, N.; Aspart, L.; Léon-Kloosterziel, K.M.; Koornneef, M.; Echeverria, M.; Delseny, M.


    In order to identify new factors involved in Em (a class I Late Embryogenesis Abundant protein) gene expression, Arabidopsis mutants with an altered expression of an Em promoter GUS fusion construct and a modified accumulation of Em transcripts and proteins were isolated. Germination tests on ABA sh

  20. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    A unique set of allelic Arabidopsis mutants are described that exhibit either suppressed or completely inhibited expression of a gene designated ECERIFERUM9 (CER9). These mutants exhibit a dramatic elevation in the total amount of leaf cutin monomers, and a dramatic shift in the leaf cuticular wax p...

  1. Analysis of T-DNA alleles of flavonoid biosynthesis genes in Arabidopsis ecotype Columbia

    Bowerman Peter A; Ramirez Melissa V; Price Michelle B; Helm Richard F; Winkel Brenda SJ


    Abstract Background The flavonoid pathway is a long-standing and important tool for plant genetics, biochemistry, and molecular biology. Numerous flavonoid mutants have been identified in Arabidopsis over the past several decades in a variety of ecotypes. Here we present an analysis of Arabidopsis lines of ecotype Columbia carrying T-DNA insertions in genes encoding enzymes of the central flavonoid pathway. We also provide a comprehensive summary of various mutant alleles for these structural...

  2. Arabidopsis thaliana glucuronosyltransferase in family GT14.

    Dilokpimol, Adiphol; Geshi, Naomi


    Arabinogalactan proteins are abundant cell-surface proteoglycans in plants and are involved in many cellular processes including somatic embryogenesis, cell-cell interactions, and cell elongation. We reported a glucuronosyltransferase encoded by Arabidopsis AtGlcAT14A, which catalyzes an addition of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT14A in cell elongation. AtGlcAt14A belongs to the family GT14 in the Carbohydrate Active Enzyme database (CAZy;, in which a total of 11 proteins, including AtGLCAT14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT14A. Evidently, two other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT14B and AtGlcAT14C, respectively. PMID:24739253

  3. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne


    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  4. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs

    Huh, Sung Un; Kim, Min Jung; Paek, Kyung-Hee


    Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly,...

  5. Root gravitropism in maize and Arabidopsis

    Evans, Michael L.


    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  6. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis

    Ulm, Roman; Revenkova, Ekaterina; Di Sansebastiano, Gian-Pietro; Bechtold, Nicole; Paszkowski, Jerzy


    Genotoxic stress activates complex cellular responses allowing for the repair of DNA damage and proper cell recovery. Although plants are exposed constantly to increasing solar UV irradiation, the signaling cascades activated by genotoxic environments are largely unknown. We have identified an Arabidopsis mutant (mkp1) hypersensitive to genotoxic stress treatments (UV-C and methyl methanesulphonate) due to disruption of a gene that encodes an Arabidopsis homolog of mitogen-activated protein k...

  7. GORDITA, a young paralog of Arabidopsis thaliana Bsister MADS-box gene ABS, has undergone neofunctionalization

    Erdmann, Robert


    Bsister genes, a clade with close relationships to the class B floral homeotic genes, have been conserved for more than 300 million years. Bsister genes in Arabidopsis thaliana underwent gene duplication probably before the diversification of Brassicaceae leading to the paralogue genes ARABIDOPSIS BSISTER (ABS) and GORDITA (GOA). The phenotype of the abs mutant, however, is rather mild as it shows only reduced seed coloration and defects in endothelium development. This thesis focuses on the ...

  8. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo


    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  9. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  10. Hemoglobin is essential for normal growth of Arabidopsis organs

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth; Jensen, Susie Bjerregaard; Jensen, Erik Østergaard


    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  11. An Arabidopsis ctpA homologue is involved in the repair of photosystem Ⅱ under high light

    YIN ShuMing; SUN XuWu; ZHANG LiXin


    A T-DNA insertion mutant AtctpA 1 was identified to study the physiological roles of a carboxyl-terminal processing protease (CtpA) homologue in Arabidopsis. Under normal growth conditions, disruption of AtctpA1 did not result in any apparent alterations in growth rate and thylakoid membrane protein components. However the mutant plants exhibited increased sensitivity to high irradiance. Degradation of PSII reaction center protein D1 was accelerated in the mutant during photoinhibition. These results demostrated that AtctpA1 was required for efficient repair of PSII in Arabidopsis under high irradiance.

  12. Testing Xylella fastidiosa pathogenesis mutants in Arabidopsis thaliana

    The bacterium Xylella fastidiosa (Xf) causes Pierce's disease and a number of other plant diseases of significant economic impact. To date, progress determining mechanisms of host plant susceptibility, tolerance or resistance has been slow, due in large part to the long generation time and limited ...

  13. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming


    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. PMID:27264339

  14. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    Petersen, M.; Brodersen, P.; Naested, H.;


    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  15. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance

    Brodersen, P; Johansen, Bo; Petersen, M;


    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  16. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis.

    Jakobson, Liina; Lindgren, Leif Ove; Verdier, Gaëtan; Laanemets, Kristiina; Brosché, Mikael; Beisson, Fred; Kollist, Hannes


    The cuticle plays a critical role in plant survival during extreme drought conditions. There are, however, surprisingly, many gaps in our understanding of cuticle biosynthesis. An Arabidopsis thaliana T-DNA mutant library was screened for mutants with enhanced transpiration using a simple condensation spot method. Five mutants, named cool breath (cb), were isolated. The cb5 mutant was found to be allelic to bodyguard (bdg), which is affected in an α/β-hydrolase fold protein important for cuticle structure. The analysis of cuticle components in cb5 (renamed as bdg-6) and another T-DNA mutant allele (bdg-7) revealed no impairment in wax synthesis, but a strong decrease in total cutin monomer load in young leaves and flowers. Root suberin content was also reduced. Overexpression of BDG increased total leaf cutin monomer content nearly four times by affecting preferentially C18 polyunsaturated ω-OH fatty acids and dicarboxylic acids. Whole-plant gas exchange analysis showed that bdg-6 had higher cuticular conductance and rate of transpiration; however, plant lines overexpressing BDG resembled the wild-type with regard to these characteristics. This study identifies BDG as an important component of the cutin biosynthesis machinery in Arabidopsis. We also show that, using BDG, cutin can be greatly modified without altering the cuticular water barrier properties and transpiration. PMID:26990896

  17. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2

    Varbanova,M.; Yamaguchi, S.; Yang, Y.; McKelvey, K.; Hanada, A.; Borochov, R.; Yu, F.; Jikumaru, Y.; Ross, J.; et al


    Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds.

  18. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  19. Analysis of Arabidopsis glutathione-transferases in yeast.

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin


    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  20. CESA5 Is Required for the Synthesis of Cellulose with a Role in Structuring the Adherent Mucilage of Arabidopsis Seeds

    Sullivan, Stuart; Ralet, Marie-Christine; Berger, Adeline; Diatloff, Eugene; Bischoff, Volker; Gonneau, Martine; Marion-Poll, Annie


    Imbibed Arabidopsis (Arabidopsis thaliana) seeds are encapsulated by mucilage that is formed of hydrated polysaccharides released from seed coat epidermal cells. The mucilage is structured with water-soluble and adherent layers, with cellulose present uniquely in an inner domain of the latter. Using a reverse-genetic approach to identify the cellulose synthases (CESAs) that produce mucilage cellulose, cesa5 mutants were shown to be required for the correct formation of these layers. Expressio...

  1. Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis

    To clarify the roles of CO, NO and auxin in the plant response to iron deficiency and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO...

  2. An En/Spm based transposable element system for gene isolation in Arabidopsis thaliana.

    Aarts, M.G.M.


    At the start of the research described in this thesis, the main aim was to develop, study and apply an efficient En/Spm-I/dSpm based transposon tagging system in Arabidopsis thaliana to generate tagged mutants and to provide insights in the possibilities for future applications of such a transposon

  3. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    Yang, Tao; Zhang, Peng; Wang, Chongying


    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034

  4. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei


    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface ( would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126

  5. Isolation, mapping, and characterization of two barley multiovary mutants.

    Soule, J D; Kudrna, D A; Kleinhofs, A


    Mutations in homeotic genes disturb the spatial and temporal patterns of development, often leading to the appearance of tissues in abnormal locations. Many homeotic genes, involved in flower development, code for proteins with a highly conserved domain called the MADS box, which acts as a sequence-specific DNA binding protein. Two floral development mutants were isolated from a fast neutron irradiated M2 barley population. The phenotypes are multiovary, that is, stamens replaced with carpels, designated mo7a, and stamens replaced with carpels and lodicules converted to leaflike structures, designated mo6b. These phenotypes resemble the Arabidopsis mutants APETALA3 (AP3) and PISTILATA (PI). The mo6b and mo7a mutants were mapped to the centromeric region of chromosome 1 (7H) and to the telomeric region of chromosome 3 (3H), respectively. PMID:11218087

  6. Arabidopsis Rab Geranylgeranyltransferases Demonstrate Redundancy and Broad Substrate Specificity in Vitro.

    Shi, Wan; Zeng, Qin; Kunkel, Barbara N; Running, Mark P


    Posttranslational lipid modifications mediate the membrane attachment of Rab GTPases, facilitating their function in regulating intracellular vesicular trafficking. In Arabidopsis, most Rab GTPases have two C-terminal cysteines and potentially can be double-geranylgeranylated by heterodimeric Rab geranylgeranyltransferases (Rab-GGTs). Genes encoding two putative α subunits and two putative β subunits of Rab-GGTs have been annotated in the Arabidopsis thaliana genome, but little is known about Rab-GGT activity in Arabidopsis. In this study, we demonstrate that four different heterodimers can be formed between putative Arabidopsis Rab-GGT α subunits RGTA1/RGTA2 and β subunits RGTB1/RGTB2, but only RGTA1·RGTB1 and RGTA1·RGTB2 exhibit bona fide Rab-GGT activity, and they are biochemically redundant in vitro. We hypothesize that RGTA2 function might be disrupted by a 12-amino acid insertion in a conserved motif. We present evidence that Arabidopsis Rab-GGTs may have preference for prenylation of C-terminal cysteines in particular positions. We also demonstrate that Arabidopsis Rab-GGTs can not only prenylate a great variety of Rab GTPases in the presence of Rab escort protein but, unlike Rab-GGT in yeast and mammals, can also prenylate certain non-Rab GTPases independently of Rab escort protein. Our findings may help to explain some of the phenotypes of Arabidopsis protein prenyltransferase mutants. PMID:26589801

  7. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    Felemban, Abrar


    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  8. The regulatory PII protein controls arginine biosynthesis in Arabidopsis.

    Ferrario-Méry, Sylvie; Besin, Evelyne; Pichon, Olivier; Meyer, Christian; Hodges, Michael


    In higher plants, PII is a nuclear-encoded plastid protein which is homologous to bacterial PII signalling proteins known to be involved in the regulation of nitrogen metabolism. A reduced ornithine, citrulline and arginine accumulation was observed in two Arabidopsis PII knock-out mutants in response to NH4+ resupply after N starvation. This difference could be explained by the regulation of a key enzyme of the arginine biosynthesis pathway, N-acetyl glutamate kinase (NAGK) by PII. In vitro assays using purified recombinant proteins showed the catalytic activation of Arabidopsis NAGK by PII giving the first evidence of a physiological role of the PII protein in higher plants. Using Arabidopsis transcriptome microarray (CATMA) and RT-PCR analyses, it was found that none of the genes involved in the arginine biosynthetic or catabolic pathways were differentially expressed in a PII knock-out mutant background. In conclusion, the observed changes in metabolite levels can be explained by the reduced activation of NAGK by PII. PMID:16545809

  9. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis.

    Vivian-Smith, A; Koltunow, A M


    In Arabidopsis, seedless silique development or parthenocarpy can be induced by the application of various plant growth regulators (PGRs) to unfertilized pistils. Ecotype-specific responses were observed in the Arabidopsis ecotypes Columbia and Landsberg relative to the type of PGR and level applied. The parthenocarpic response was greatest in ecotype Landsberg, and comparisons of fruit growth and morphology were studied primarily in this ecotype. Gibberellic acid application (10 micromol pistil(-1)) caused development similar to that in pollinated pistils, while benzyladenine (1 micromol pistil(-1)) and naphthylacetic acid (10 micromol pistil(-1)) treatment produced shorter siliques. Naphthylacetic acid primarily modified mesocarp cell expansion. Arabidopsis mutants were employed to examine potential dependencies on gibberellin biosynthesis (ga1-3, ga4-1, and ga5-1) and perception (spy-4 and gai) during parthenocarpic silique development. Emasculated spy-4 pistils were neither obviously parthenocarpic nor deficient in PGR perception. By contrast, emasculated gai mutants did not produce parthenocarpic siliques following gibberellic acid application, but silique development occurred following pollination or application of auxin and cytokinin. Pollinated gai siliques had decreased cell numbers and morphologically resembled auxin-induced parthenocarpic siliques. This shows that a number of independent and possibly redundant pathways can direct hormone-induced parthenocarpy, and that endogenous gibberellins play a role in regulating cell expansion and promoting cell division in carpels. PMID:10517835

  10. Novel aspects of COP9 signalosome functions revealed through analysis of hypomorphic csn mutants

    Parker, Jane E


    The COP9 signalosome (CSN) is a conserved eukaryotic protein complex implicated in the regulation of cullin-RING type E3 ubiquitin ligases by cleaving the small peptide RUB/Nedd8 from cullins. However, detailed analysis of CSN physiological functions in Arabidopsis has been hampered by the early seedling-lethality of csn null mutants. We and others have now identified a number of viable hypomorphic csn mutants which start to reveal novel CSN-dependent activities in adult Arabidopsis plants.1 Here, we present a detailed comparative analysis of the csn5a-1 and csn2-5 mutants as a mean to improve understanding of CSN functions in plant cells. Our observations point to CSN-independent activities of CSN5 and suggest a role of the CSN in cytoskeleton assembly/organization. PMID:19847120

  11. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs.

    Huh, Sung Un; Kim, Min Jung; Paek, Kyung-Hee


    Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs. PMID:23269841

  12. DELAYED FLOWERING, an Arabidopsis Gene That Acts in the Autonomous Flowering Promotion Pathway and Is Required for Normal Development

    Ming-Jie Chen; Zheng Yuan; Hai Huang


    The control of flowering time in higher plants is one of the most important physiological processes and is critical for their reproductive success. To investigate the mechanisms controlling flowering time, we screened for Arabidopsis mutants with late-flowering phenotypes. One mutant, designated delayed flowering (dfr) in the Landsberg erecta (Ler) ecotype, was identified with delayed flowering time. Genetic analysis revealed that dfr is a single gene recessive nuclear mutant and the mutation was mapped to a locus tightly linked to UFO on chromosome 1. To our knowledge, no gene regulating flowering time has been reported yet in this region. The dfr mutant plant showed a delayed flowering time under the different growth conditions examined,including long- and short-day photoperiods and gibberellic acid GA3 treatments, suggesting that DFR is a gene involved in the autonomous flowering promotion pathway. The Arabidopsis gene FLOWERING LOCUS C (FLC) plays a central role in repressing flowering and its transcripts are undetectable in wild-type Ler.However, FLCexpression was upregulated in the dfrmutant, suggesting that DFR is a negative regulator of FLC. In addition, the dfr mutant plant displayed altered valve shapes of the silique and the number of trichomes and branches of each trichome were both reduced, indicating that the DRFgene is also required for normal plant development. Moreover, dfr leafy-5 (Ify-5) double mutant plants showed a much later flowering time than either dfr or Ify-5 single mutants, indicating that DFR and LFYact synergistically to promote flowering in Arabidopsis.

  13. Arabidopsis in Wageningen

    Koornneef, M


    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  14. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana

    Moseler, Anna; Aller, Isabel; Wagner, Stephan; Nietzel, Thomas; Przybyla-Toscano, Jonathan; Mühlenhoff, Ulrich; Lill, Roland; Berndt, Carsten; Rouhier, Nicolas; Schwarzländer, Markus; Meyer, Andreas J.


    The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins. PMID:26483494

  15. Differences of Free Salicylic Acid Content and Root Morphology in Arabidopsis Wild-type and Mutant sex1 under Environmental Stresses%逆境下拟南芥野生型和突变体sex1游离态水杨酸含量及根形态差异

    赵培臣; 贺殿


    Changes on free salicylic acid (SA) were researched in 10 different growth-stages of Arabidopsis thaliana wild type (WT). Differences of free SA and seedling root morphology in WT and mutant sexl upon treatments with Pst. DC3000 (Pseudomonas syringae pv. Tomato DC3000) , H2O2 , MV (methyl violo-gen) and SA were analyzed by HPLC and microscope methods. The results showed that the level of free SA in WT was the lowest in flower production (6. 30 and 6. 50) and silique ripening (8. 0) growth-stages. After 2 mmol · L-1 SA treatment,we found that free SA levels both in sexl and in WT were higher than that of other treatments. However,free SA content in sexl was higher than in WT and it was about 10 times compared with other treatments. Under MV and H2O2 stresses,there were no significant differences in themain root growth. Treated by low concentration of MV,it showed that sexl seedlings had longer root hairs than WT seedlings,whereas there were no differences in the root hair density between WT seedlings and sexl seedlings. While treated by low concentration of H2O2 , the differences of the root hair in WT and sexl seedlings were similar to control group. However, upon different concentrations of SA treatments, the differences of the main root growth between WT and sexl seedlings became more prominent, especially when seedlings grew on 10 jumol · L-1 SA media in Petri plates. Interestingly, the root hair of WT and sexl seedlings gradually missed from high concentration of SA treatment to low concentration of SA treatment, but it was more distinct in sexl seedlings. Therefore,these results suggested that maybe it had some relationships between plant flowering,seed harvesting and SA-dependent pathway. Exogenous SA could accelerate more free SA production in sexl which compared with other treatments by Pst. DC3000,H2O2 and MV. Root development of sexl seedlings was more sensitive on growth environment than that of WT seedlings. In addition,root morphology of sexl

  16. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Uppalapati Srinivasa R


    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  17. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF,, we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  18. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Preuss, Aileen S.


    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  19. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N


    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. PMID:24796562

  20. Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

    Magdalena Delcado-Cerezo; Paul Schulze-Lefert; Shauna Somerville; José Manuel Estevez; Staffan Persson; Antonio Molina; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Pawel Bednarek


    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi.The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens.Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2).Accordingly,we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina.To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance,we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P cucumerina.This analysis,together with metabolomic studies,demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi,such as the salicylic acid,jasmonic acid,ethylene,abscisic acid,and tryptophan-derived metabolites signaling,as these pathways were not impaired in agb1 and agg1 agg2 mutants.Notably,many mis-regulated genes in agb1 plants were related with cell wall functions,which was also the case in agg1 agg2 mutant.Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants,and that mutant walls had similar FTIR spectratypes,which differed from that of wild-type plants.The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

  1. Gravity-regulated gene expression in Arabidopsis thaliana

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  2. Characterization of the Ubiquitin E2 Enzyme Variant Gene Family in Arabidopsis

    Yu Zhang; Pei Wen; On-Sun Lau; Xing-Wang Deng


    Ubiquitin E2 enzyme variant (UEV) proteins are similar to ubiquitin-conjugating enzyme (E2) in both sequence and structure, but the lack of a catalytic cysteine residue renders them incapable of forming a thiolester linkage with ubiquitin. While the functional roles of several UEVs have been defined in yeast and animal systems, Arabidopsis COP10, a photomorphogenesis repressor, is the only UEV characterized in plants. Phylogenetic analysis revealed that the eight Arabidopsis UEV genes belong to three subfamilies.The expression of those genes is supported by either the presence of ESTs or RT-PCR analysis. We also characterized the other members of the COP10 subfamily, UEV2. Semi-quantitative RT-PCR analysis indicated that the UEV2 transcripts can be detected in most organs of Arabidopsis. Analysis of UEV2::GUS transgenic lines also showed its ubiquitous expression in nearly all the developmental stages of Arabidopsis.Transient expression analysis indicated that the sGFP-UEV2 fusion protein can localize to both the cytoplasm and nucleus. A T-DNA insertion mutant, uev2-1, which abolished the transcription of UEV2, displays no visible phenotype. Further, the cop10-4 uev2-1 double mutant exhibits the same phenotype as the cop10-4mutant in darkness. UEV2 is therefore not functionally redundant with COP10.

  3. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis


    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  4. Identifying root system genes using induced mutants in barley

    Root systems play an important role in plant growth and development. They absorb water and nutrients, anchor plant in the soil and affect plant tolerance to various abiotic stresses. Despite their importance, the progress in understanding the molecular processes underlying root development has been achieved only in Arabidopsis thaliana. It was accomplished through detailed analysis of root mutants with the use of advanced molecular, genomic and bioinformatic tools. Recently, similar studies performed with rice and maize root mutants have led to the identification of homologous and novel genes controlling root system formation in monocots. The collection of barley mutants with changes in root system development and morphology has been developed in our Department after mutagenic treatments of spring barley varieties with N-methyl N-nitosourea (MNU) and sodium azide. Among these mutants, the majority was characterized by seminal roots significantly shorter than roots of a parent variety throughout a whole vegetation period. Additionally, several mutants with root hairs impaired at different stages of development have been identified. These mutants have become the material of studies aimed at genetic and molecular dissection of seminal root and root hair formation in barley. The studies included the molecular mapping of genes responsible for mutant phenotype using DNA markers and root transcriptome analysis in the mutant/parent variety system. Using cDNA RDA approach, we have identified the HvEXPB1 gene encoding root specific beta expansin related to the root hair initiation in barley. We have also initiated the database search for barley sequences homologous to the known Arabodopsis, maize and rice genes. The identified homologous ESTs are now used for isolation of the complete coding sequences and gene function will be validated through identification of mutations related to the altered phenotype. This work was supported by the IAEA Research Contracts 12611 and 12849

  5. Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana

    Kuan-Lin Lo; Long-Chi Wang; I-Ju Chen; Yu-Chen Liu; Mei-Chu Chung; Wan-Sheng Lo


    Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collective...

  6. The Arabidopsis NPF3 protein is a GA transporter

    Tal, Iris; Zhang, Yi; Jørgensen, Morten Egevang;


    Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants...... (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA-ABA interaction may...

  7. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis

    Guo, Lin; Yu, Yanchun; Law, Julie A.; Zhang, Xiaoyu


    Posttranslational modifications of histones play important roles in modulating chromatin structure and regulating gene expression. We have previously shown that more than two thirds of Arabidopsis genes contain histone H3 methylation at lysine 4 (H3K4me) and that trimethylation of H3K4 (H3K4me3) is preferentially located at actively transcribed genes. In addition, several Arabidopsis mutants with locus-specific loss of H3K4me have been found to display various developmental abnormalities. The...

  8. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  9. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.


    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  10. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M.; Feil, Regina; Eicke, Simona; Lunn, John E.; Zeeman, Samuel C.; Smith, Alison M.


    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf de...

  11. Productive mutants of niger

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  12. An Arabidopsis callose synthase

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;


    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...

  13. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette


    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  14. Amyloplast movement and gravityperception in Arabidopsis endoderm

    Tasaka, M.; Saito, T.; Morita, M. T.

    Gravitropism of higher plant is a growth response regulating the orientation of organs elongation, which includes four sequential steps, the perception of gravistimulus, transduction of the physical stimulus to chemical signal, transmission of the signal, and differential cell elongation depending on the signal. To elucidate the molecular mechanism of these steps, we have isolated a number of Arabidopsis mutants with abnormal shoot gravitropic response. zig (zigzag)/sgr4(shoot gravitropism 4) shows little gravitropism in their shoots. Besides, their inflorescence stems elongate in a zigzag-fashion to bend at each node. ZIG encodes a SNARE, AtVTI11. sgr3 with reduced gravitropic response in inflorescence stems had a missense mutation in other SNARE, AtVAM3. These two SNAREs make a complex in the shoot endoderm cells that are gravity-sensing cells, suggesting that the vesicle transport from trans-Golgi network (TGN) to prevacuolar compartment (PVC) and/or vacuole is involved in gravitropism. Abnormal vesicular/vacuolar structures were observed in several tissues of both mutants. Moreover, SGR2 encodes phospholipase A1-like protein that resides in the vacuolar membrane. Endodermis-specific expression of these genes could complement gravitropism in each mutant. In addition, amyloplasts thought to be statoliths localized abnormally in their endoderm cells. These results strongly suggest that formation and function of vacuole in the endoderm cells are important for amyloplasts sedimentation, which is involved in the early process of shoot gravitropism. To reveal this, we constructed vertical stage microscope system to visualize the behavior of amyloplasts and vacuolar membrane in living endodermal cells. We hope to discuss the mechanism of gravity perception after showing their movements.

  15. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu


    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.


    The RABBIT EARS (RBE) gene has been identified as a regulator of petal development in Arabidopsis thaliana. We find that second-whorl petals in rbe mutants can be replaced with staminoid organs, stamens or filaments and that some rbe flowers have increased numbers of sepals and exhibit fusion of sep...

  17. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    Brodersen, Klaus Peter; Petersen, Morten; Nielsen, Henrik Bjørn;


    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  18. Transgenic Arabidopsis Gene Expression System

    Ferl, Robert; Paul, Anna-Lisa


    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  19. Morphological mutants of garlic

    Choudhary, A.D.; Dnyansagar, V.R. (Nagpur Univ. (India). Dept. of Botany)


    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order.

  20. Morphological mutants of garlic

    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order. (author)

  1. A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.

    Bari, Rafijul; Kebeish, Rashad; Kalamajka, Rainer; Rademacher, Thomas; Peterhänsel, Christoph


    The fixation of molecular O2 by the oxygenase activity of Rubisco leads to the formation of phosphoglycolate in the chloroplast that is further metabolized in the process of photorespiration. The initial step of this pathway is the oxidation of glycolate to glyoxylate. Whereas in higher plants this reaction takes place in peroxisomes and is dependent on oxygen as a co-factor, most algae oxidize glycolate in the mitochondria using organic co-factors. The identification and characterization of a novel glycolate dehydrogenase in Arabidopsis thaliana is reported here. The enzyme is dependent on organic co-factors and resembles algal glycolate dehydrogenases in its enzymatic properties. Mutants of E. coli incapable of glycolate oxidation can be complemented by overexpression of the Arabidopsis open reading frame. The corresponding RNA accumulates preferentially in illuminated leaves, but was also found in other tissues investigated. A fusion of the N-terminal part of the Arabidopsis glycolate dehydrogenase to red fluorescent protein accumulates in mitochondria when overexpressed in the homologous system. Based on these results it is proposed that the basic photorespiratory system of algae is conserved in higher plants. PMID:14966218

  2. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe


    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

  3. Irradiation of mutants of rose

    Radiation-induced Reddish-orange (R) and Pink (P) flowered mutants of the rose cultivar Montezuma were subjected to a second treatment of gamma radiation. Effects of this treatment were recorded on bud-take, growth, survival, flowering and essential oil content. The P mutant was more radiosensitive than the R mutant. The occurrence of certain early flowering and flower yielding plants in the latter mutant proved the efficiency of this technique for inducing genetic variability in garden roses. (author)

  4. Connexin mutants and cataracts



    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  5. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis

    Zhou Dao-Xiu


    Full Text Available Abstract Background Histone acetyltransferases (HATs play critical roles in the regulation of chromatin structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological functions of many of them are still unknown. In this work, we studied the evolutionary relationship and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family members. Results An extensive phylogenetic analysis of 105 MYST proteins revealed that they can be divided into 5 classes, each of which contains a specific combination of protein modules. The two Arabidopsis MYST proteins, HAM1 and HAM2, belong to a "green clade", clearly separated from other families of HATs. Using a reverse genetic approach, we show that HAM1 and HAM2 are a functionally redundant pair of genes, as single Arabidopsis ham1 and ham2 mutants displayed a wild-type phenotype, while no double mutant seedling could be recovered. Genetic analysis and cytological study revealed that ham1ham2 double mutation induced severe defects in the formation of male and female gametophyte, resulting in an arrest of mitotic cell cycle at early stages of gametogenesis. RT-PCR experiments and the analysis of transgenic plants expressing the GUS reporter gene under the HAM1 or the HAM2 promoter showed that both genes displayed an overlapping expression pattern, mainly in growing organs such as shoots and flower buds. Conclusion The work presented here reveals novel properties for MYST HATs in Arabidopsis. In addition to providing an evolutionary relationship of this large protein family, we show the evidence of a link between MYST and gamete formation as previously suggested in mammalian cells. A possible function of the Arabidopsis MYST protein-mediated histone acetylation during cell division is suggested.

  6. A Kinesin Mutant with an Atypical Bipolar Spindle Undergoes Normal Mitosis

    Marcus, A. I.; Li, W.; Ma, H; Cyr, R. J.


    Motor proteins have been implicated in various aspects of mitosis, including spindle assembly and chromosome segregation. Here, we show that acentrosomal Arabidopsis cells that are mutant for the kinesin, ATK1, lack microtubule accumulation at the predicted spindle poles during prophase and have reduced spindle bipolarity during prometaphase. Nonetheless, all abnormalities are rectified by anaphase and chromosome segregation appears normal. We conclude that ATK1 is required for normal microtu...

  7. Targeted parallel sequencing of large genetically-defined genomic regions for identifying mutations in Arabidopsis

    Liu Kun-hsiang


    Full Text Available Abstract Large-scale genetic screens in Arabidopsis are a powerful approach for molecular dissection of complex signaling networks. However, map-based cloning can be time-consuming or even hampered due to low chromosomal recombination. Current strategies using next generation sequencing for molecular identification of mutations require whole genome sequencing and advanced computational devises and skills, which are not readily accessible or affordable to every laboratory. We have developed a streamlined method using parallel massive sequencing for mutant identification in which only targeted regions are sequenced. This targeted parallel sequencing (TPSeq method is more cost-effective, straightforward enough to be easily done without specialized bioinformatics expertise, and reliable for identifying multiple mutations simultaneously. Here, we demonstrate its use by identifying three novel nitrate-signaling mutants in Arabidopsis.

  8. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana

    Ahammed, Golam Jalal; LI, XIN; Yu, Jingquan; Kai SHI


    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol−1) conditions, HS (42°C, 24 h) drastically decrea...

  9. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M


    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  10. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.


    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  11. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning


    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation. PMID:12724534

  12. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis

    ZHANG ShengChun; WANG XiaoJing


    Separation and functional research of related components involved in gibberellins (GAs) signaling are important to clarify the mechanism of GA functioning. Research on the downstream components of DELLA, the key factor of the GA signaling pathway, is limited at present. GASA (GA-Stimulated in Arabidopsis) family contains 15 genes usually regulated by GA in Arabidopsis thaliana. All GASA proteins have a cleavable signal peptide in N terminus and a conserved GASA domain including 12 cysteines in C terminus. RT-PCR analysis revealed that the expression of GASA4 and GASA6 were down-regulated, but GASA1 and GASA9were up-regulated in the DELLA mutants, gai-t6 and rga-24, as well as the double mutant, consisting with the results that GASA4 and GASA6 were induced, but GASA1 and GASA9 were inhibited by exogenous GA3. In addition, the expression patterns of other GASA genes were regulated by GA and ABA, separately or cooperatively. Most of GASA genes were expressed in roots, stems, leaves, flowers and developing siliques. GUS gene driven by the promoters of GASA6, GASA7, GASAS, GASA9, GASA10, GASA11 and GASA12were used as reporters and it was found that all GASA genes expressed in the growing and differentiating organs and abscission zones,suggesting the role of these genes in cell growth and differentiation. This study provided an important basis for functional study of the GASA gene family in the GA and ABA signaling pathway.

  13. Polarity in the early floral meristem of Arabidopsis

    Thoma, Rahere; Chandler, John William


    The diversity of angiosperm flowers depends on organ meristy and position. However, the signaling pathways that establish polarity and positional information remain largely unelucidated. Use of the founder-cell marker DORNRÖSCHEN-LIKE (DRNL) in Arabidopsis has recently highlighted the importance of the abaxial–adaxial axis for early floral development. We have extended the use of DRNL::GFP to further characterize floral organogenesis in genotypes that are altered in floral organ meristy or position, including ettin (ett-3) and blade-on-petiole (bop)1–11 bop2–4 double mutants. The creation of supernumery sepals by the splitting of sepal founder-cell populations along an ab-/adaxial axis strengthens the importance of the ab-/adaxial developmental axis in early floral meristem development. Furthermore, we confirm the dependency of the wildtype sequence of sepal initiation on bract suppression and demonstrate that supernumery stamens derive from the imprecise resolution of a ring of DRNL expression. Expression of DRNL in apetala1 (ap1–1) and ap2–8 mutants reflect the altered whorl structure and show that these homeotic genes function upstream of DRNL. Analyzing the dynamism of early floral meristem ontogeny at a fine temporal and spatial resolution in Arabidopsis can reveal mechanisms of organogenesis and is applicable to other species with differing floral body plans in a comparative evolutionary context. PMID:25806573

  14. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  15. Proline is required for male gametophyte development in Arabidopsis

    Mattioli Roberto


    Full Text Available Abstract Background In crosses between the proline-deficient mutant homozygous for p5cs1 and heterozygous for p5cs2 (p5cs1 p5cs2/P5CS2, used as male, and different Arabidopsis mutants, used as females, the p5cs2 mutant allele was rarely transmitted to the outcrossed progeny, suggesting that the fertility of the male gametophyte carrying mutations in both P5CS1 and P5CS2 is severely compromised. Results To confirm the fertility defects of pollen from p5cs1 p5cs2/P5CS2 mutants, transmission of mutant alleles through pollen was tested in two ways. First, the number of progeny inheriting a dominant sulfadiazine resistance marker linked to p5cs2 was determined. Second, the number of p5cs2/p5cs2 embryos was determined. A ratio of resistant to susceptible plantlets close to 50%, and the absence of aborted embryos were consistent with the hypothesis that the male gametophyte carrying both p5cs1 and p5cs2 alleles is rarely transmitted to the offspring. In addition, in reciprocal crosses with wild type, about 50% of the p5cs2 mutant alleles were transmitted to the sporophytic generation when p5cs1 p5cs2/P5CS2 was used as a female, while less than 1% of the p5cs2 alleles could be transmitted to the outcrossed progeny when p5cs1 p5cs2/P5CS2 was used as a male. Morphological and functional analysis of mutant pollen revealed a population of small, degenerated, and unviable pollen grains, indicating that the mutant homozygous for p5cs1 and heterozygous for p5cs2 is impaired in pollen development, and suggesting a role for proline in male gametophyte development. Consistent with these findings, we found that pollen from p5cs1 homozygous mutants, display defects similar to, but less pronounced than pollen from p5cs1 p5cs2/P5CS2 mutants. Finally, we show that pollen from p5cs1 p5cs2/P5CS2 plants contains less proline than wild type and that exogenous proline supplied from the beginning of another development can partially complement both morphological and

  16. Modulation of reactive oxygen species by salicylic acid in arabidopsis seed germination under high salinity

    Lee, Sangmin; Park, Chung-Mo


    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the...

  17. Della proteins modulate arabidopsis defences induced in response to caterpillar herbivory

    Lan, Z.Y.; Krosse, S.; Achard, P.; Van Dam, N.M.; Bede, J.C.


    Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have constitutively elevated GA responses. The labial saliva (LS) of caterpillars of the beet armyworm, Spodop...

  18. Bemisia tabaci B-Arabidopsis Interactions Examined by Electrical Penetration Graphs

    Zhou, Jaclyn Shuzhen


    In the absence of strong resistance mechanisms to control the world-wide pest Bemisia tabaci B, new methods for control must be derived from understanding the plant innate immune response to whiteflies. Using four Arabidopsis defense-signaling mutants, transcriptome and hormone treatment studies, it was shown that B. tabaci B activates SA-regulated defenses, suppresses JA-regulated defenses, and the JA-defenses are effective in slowing whitefly nymphal development. Here we used the Ele...

  19. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Markus Otto; Christin Naumann; Wolfgang Brandt; Claus Wasternack; Bettina Hause


    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enz...

  20. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development

    Thompson, Elinor P.; Wilkins, Christopher; Demidchik, Vadim; Davies, Julia M; Glover, Beverley J.


    FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development ...

  1. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis

    Ausin, Israel; Greenberg, Maxim V. C.; Li, Carey Fei; Jacobsen, Steven E.


    Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-in...

  2. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana

    Yonekura-Sakakibara, Keiko; Fukushima, Atsushi; Nakabayashi, Ryo; Hanada, Kousuke; Matsuda, Fumio; Sugawara, Satoko; Inoue, Eri; Kuromori, Takashi; ITO, Takuya; Shinozaki, Kazuo; Wangwattana, Bunyapa; Yamazaki, Mami; Saito, Kazuki


    To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with anthocyanin biosynthetic genes. Anthocyanin was drastically reduced in ugt79b1 knockout mutants. Recombinant UGT79B1 protein converted cyanidin 3-O-glucoside to cyanidin 3-O-xylosyl(1→2)glucoside. UGT79B1 ...

  3. Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

    Stettler, Michaela; Eicke, Simona; Mettler, Tabea; Messerli, Gaëlle; Hörtensteiner, Stefan; Zeeman, Samuel C.


    In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels...

  4. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis

    Herr, Alan J.; Molnàr, Attila; Jones, Alex; Baulcombe, David C.


    Many eukaryotic cells use RNA-directed silencing mechanisms to protect against viruses and transposons and to suppress endogenous gene expression at the posttranscriptional level. RNA silencing also is implicated in epigenetic mechanisms affecting chromosome structure and transcriptional gene silencing. Here, we describe enhanced silencing phenotype (esp) mutants in Arabidopsis thaliana that reveal how proteins associated with RNA processing and 3′ end formation can influence RNA silencing. T...

  5. Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development

    Ziegelhoffer, Eva C.; Medrano, Leonard J.; Meyerowitz, Elliot M.


    Control of cellular proliferation in plant meristems is important for maintaining the correct number and position of developing organs. One of the genes identified in the control of floral and apical meristem size and floral organ number in Arabidopsis thaliana is WIGGUM. In wiggum mutants, one of the most striking phenotypes is an increase in floral organ number, particularly in the sepals and petals, correlating with an increase in the width of young floral meristems. Additional phenotypes ...

  6. The role of Arabidopsis transcription factors WRKY18 and WRKY40 in plant immunity

    Schön, Moritz


    Two related Arabidopsis thaliana transcription factors, WRKY18 and WRKY40, are induced upon infection with the obligate biotrophic powdery mildew, Golovinomyces orontii (G. orontii), during early stages of infection. WRKY18 and WRKY40 negatively regulate host resistance as wrky18wrky40 double mutants are resistant towards this fungus. Differential expression of hormone biosynthesis and response genes between susceptible wildtype and resistant wrky18wrky40 plants suggested a crucial role of ho...

  7. Induced Systemic Resistance in Arabidopsis thaliana in Response to Root Inoculation with Pseudomonas fluorescens CHA0

    Iavicoli, Annalisa; Boutet, Emmanuel; Buchala, Antony; Métraux, Jean-Pierre


    Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), a...

  8. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis

    Unte, Ulrike S.; Sorensen, Anna-Marie; Pesaresi, Paolo; Gandikota, Madhuri; Leister, Dario; Saedler, Heinz; Huijser, Peter


    SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which exhibited a strong reduction...

  9. The Recovery of Plastid Function Is Required for Optimal Response to Low Temperatures in Arabidopsis

    Kindgren, Peter; Dubreuil, Carole; Strand, Åsa


    Cold acclimation is an essential response in higher plants to survive freezing temperatures. Here, we report that two independent mutant alleles of the H-subunit of Mg-chelatase, CHLH, gun5-1 and cch in Arabidopsis are sensitive to low temperatures. Plants were grown in photoperiodic conditions and exposed to low temperatures for short-and long-term periods. Tetrapyrrole biosynthesis was initially significantly inhibited in response to low temperature but recovered in wild type (Col-0), altho...

  10. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.


    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...