Logan, J David
2013-01-01
Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
Applying Mathematical Processes (AMP)
Kathotia, Vinay
2011-01-01
This article provides insights into the "Applying Mathematical Processes" resources, developed by the Nuffield Foundation. It features Nuffield AMP activities--and related ones from Bowland Maths--that were designed to support the teaching and assessment of key processes in mathematics--representing a situation mathematically, analysing,…
Applied Mathematics Seminar 1982
This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Applied mathematics made simple
Murphy, Patrick
1982-01-01
Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte
Applied mathematics reviews, v.1
Anastassiou, George A
2000-01-01
Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world.This volume contains 14 high quality survey articles - incorporating original results and describing the main research activities of contemporary applied mathematics - written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subf
A Review of Applied Mathematics
Ó Náraigh, Lennon; Ní Shúilleabháin, Aoibhinn
2015-01-01
Applied Mahtematics is a subject which deals with problmes arising inthe physical, life, and social sciences as well as in engineering and provides a broad body of knowledge for use in a wide spectrum of research and insdustry. Applied Mathematics is an important school subject which builds students' mathematical and problem solving skills. The subject has remained on the periphery of school time-tables and, without the commitment and enthusiasm of Applied Maths teachers, would likely be omit...
Mathematics for Teaching: A Form of Applied Mathematics
Stylianides, Gabriel J.; Stylianides, Andreas J.
2010-01-01
In this article we elaborate a conceptualisation of "mathematics for teaching" as a form of applied mathematics (using Bass's idea of characterising mathematics education as a form of applied mathematics) and we examine implications of this conceptualisation for the mathematical preparation of teachers. Specifically, we focus on issues of design…
Industrial and Applied Mathematics in China
Li, Ta-Tsien
2009-01-01
This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.
Encyclopedia of applied and computational mathematics
2015-01-01
EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.
ON THE EVOLUTION OF APPLIED MATHEMATICS
林家翘
2003-01-01
The recent trend in the application of mathematics to biological sciences is discussed in historical perspective. It is suggested that this new development should be regarded as a natural evolution of applied mathematics in the expansion of its scope. The mathematical concepts and methods to be used are not expected to be substantially different from those used in traditional applied mathematics. For illustration, we sketch an application of the kinetic theory of the study of dissipative systems to the study of the structure and function of protein molecules. The traditional concepts and methods of statistical physics can be successfully applied to yield predictions for comparison with empirical data.
Applied analysis mathematical methods in natural science
Senba, Takasi
2004-01-01
This book provides a general introduction to applied analysis; vectoranalysis with physical motivation, calculus of variation, Fourieranalysis, eigenfunction expansion, distribution, and so forth,including a catalogue of mathematical theories, such as basicanalysis, topological spaces, complex function theory, real analysis,and abstract analysis. This book also gives fundamental ideas ofapplied mathematics to discuss recent developments in nonlinearscience, such as mathematical modeling of reinforced random motion ofparticles, semi-conductor device equation in applied physics, andchemotaxis in
Applied Academics. Applied Mathematics: Drafting. Curriculum Bulletin VE-53.
Cincinnati Public Schools, OH. Div. of Student Services.
This publication contains the Applied Mathematics Curriculum (Drafting) for grades 11 and 12 for the Cincinnati (Ohio) Public Schools. The curriculum is part of a larger program (the Applied Academics Program), which emphasizes the integration of mathematics and the language arts with vocational content. Included in the document is a description…
Mathematics applied to nuclear geophysics
One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.)
A First Course in Applied Mathematics
Rebaza, Jorge
2012-01-01
Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation
The 1989 progress report: Applied Mathematics
The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed
Applied Computational Mathematics in Social Sciences
Damaceanu, Romulus-Catalin
2010-01-01
Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.
Proceedings of the workshop on applied mathematics
The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics
Activities report 1977--78. Applied mathematics department 5640
This report is a compilation of independent articles highlighting some of the work done in the Applied Mathematics Department during the years 1977 and 1978. It is neither an exhaustive report on all activities in the department during this period nor a list of the most substantial mathematical contributions. Instead, it is a selection of topics which are thought to be of greatest interest because of their importance to Sandia. The report is divided into four principal sections which reflect the department's major areas of interest: Mathematical Physics, Computational Mathematics, Probability and Statistics, and Discrete Mathematics. To provide a smoother narrative, references are omitted from the text. However, a complete department bibliography of corporate and open publications as well as technical presentations for the period October 1977 through December 1978 is appended. 4 figures, 3 tables
Intelligent mathematics II applied mathematics and approximation theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
International Conference on Advances in Applied Mathematics
Hammami, Mohamed; Masmoudi, Afif
2015-01-01
This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology. Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia. Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics. These proceedings aim to foster and develop further growth in all areas of applied mathematics.
Applied mathematics for science and engineering
Glasgow, Larry A
2014-01-01
Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters
Applied mathematics for engineers and physicists
Pipes, Louis A
2014-01-01
One of the most widely used reference books on applied mathematics for a generation, distributed in multiple languages throughout the world, this text is geared toward use with a one-year advanced course in applied mathematics for engineering students. The treatment assumes a solid background in the theory of complex variables and a familiarity with complex numbers, but it includes a brief review. Chapters are as self-contained as possible, offering instructors flexibility in designing their own courses. The first eight chapters explore the analysis of lumped parameter systems. Succeeding topi
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Gulf International Conference on Applied Mathematics 2013
Advances in Applied Mathematics
2014-01-01
This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems, and engineering applications, as well as a keynote by Professor Ali Nayfeh.
Study guide for applied finite mathematics
Macri, Nicholas A
1982-01-01
Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate
Advances in interdisciplinary applied discrete mathematics
Kaul, Hemanshu
2010-01-01
In the past 50 years, discrete mathematics has developed as a far-reaching and popular language for modeling fundamental problems in computer science, biology, sociology, operations research, economics, engineering, etc. The same model may appear in different guises, or a variety of models may have enough similarities such that same ideas and techniques can be applied in diverse applications. This book focuses on fields such as consensus and voting theory, clustering, location theory, mathematical biology, and optimization that have seen an upsurge of new and exciting works over the past two d
The Applied Mathematics for Power Systems (AMPS)
Chertkov, Michael [Los Alamos National Laboratory
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.
Global Conference on Applied Physics and Mathematics
2016-01-01
The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...
Applied mathematics analysis of the multibody systems
Sahin, H.; Kar, A. K.; Tacgin, E.
2012-08-01
A methodology is developed for the analysis of the multibody systems that is applied on the vehicle as a case study. The previous study emphasizes the derivation of the multibody dynamics equations of motion for bogie [2]. In this work, we have developed a guide-way for the analysis of the dynamical behavior of the multibody systems for mainly validation, verification of the realistic mathematical model and partly for the design of the alternative optimum vehicle parameters.
Electrical engineering is an applied mathematics
Zainal, Yuda Bakti; Sambasri, Susanto; Widodo, Rohani Jahja
2015-05-01
This paper presents developments and applications of Electrical Engieering (EE) as an Applied Mathematic (AM). Several characteristics of EE can be linked to human behavior. EE can "think" in the sense that they can replace to some extent, human operation. It is a concept or principle that seems to fundamental in nature and not necessarily peculiar to engineering. EE theory can be discussed from four viewpoints as: an intellectual discipline within science and the philosophy of science, a part of engineering, with industrial applications and Social Systems (SS) of the present and the future. In global communication, developed countries and developing countries should build several attractive and sound symbiosis bridges, to prevent loss of universe balances. EE applications have social impacts not only in developed countries but also in developing countries.
Principal Leadership and Mathematics Achievement: An International Comparative Study
Shin, Seon-Hi; Slater, Charles L.
2010-01-01
This study investigated the differences and similarities in the impact of school leadership on student mathematics achievement in different global regions using TIMSS international data. Three-level unconditional and conditional hierarchical models were fitted to the data in each country. The findings showed that the variables of teacher…
Robertson, Schellia Arnette
2012-01-01
The researcher focused on the elementary principal's influence on academic achievement of minority students in mathematics in grade four. The sample population was from a parish where three schools were identified to have improved academic achievement in mathematics with the minority population. The study was a mixed method. The study was…
Principals' Leadership Practices and Mathematics Pass Rate in Jamaican High Schools
Palmer, David; Hermond, Douglas; Gardiner, Carl
2014-01-01
This research was intended to explore the degree to which leadership practices impacted Jamaican schools' mathematics achievement. More specifically, the researchers examined Jamaica's high school students' CSEC mathematics performance in relation to principals' instructional leadership behaviors as measured by teachers' perceptions, using Kouzes…
Principal Leadership Long-Term Indirect Effects on Learning Growth in Mathematics
Dumay, Xavier; Boonen, Tinneke; Van Damme, Jan
2013-01-01
In both the school effectiveness and the educational administration literature, growing attention has been paid to the extent of principal leadership effects and the means by which they affect school performance. The main goal of this study is to estimate the effects of principal leadership on students' achievement growth in mathematics over…
International Conference on Applied Mathematics and Informatics
Vasilieva, Olga
2015-01-01
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
Quantum mechanics as applied mathematical statistics
Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.
Comprehensive text book of applied mathematics
Gupta, Rakesh
2009-01-01
""This book is a comprehensive package for knowledge sharing on Mathematics. The language of the book is simple and self-explanatory, this will help the students to grasp the fundamentals of the subject easily. The book follows a to the point approach and lays stress on the understanding of the core concepts. Appropriate number of MCQs are given for each topic that are of great help to the students appearing for competitive and State Board examinations."
Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.
Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan
2015-01-01
The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics. PMID:26352604
Egodawatte, Gunawardena
2012-01-01
This mixed method research study is situated in the school effectiveness research paradigm to examine the correlation between the effectiveness of urban, primary school principals and their students' performance in mathematics. Nine, urban, primary schools from Negombo, a coastal fishing area in Sri Lanka, were selected; their student achievements…
IEMAE: mathematics & statistics applied to civil engineering & building
Serrat Piè, Carles
2009-01-01
IEMAE (Institut d’Estadística i Matemàtica Aplicada a l’Edificació - Institute of Statistics and Mathematics Applied to the Building Construction) is an academic institution interested in solving Multidisciplinary problems in the civil and building engineering area by using statistics and mathematics disciplines
Research in Applied Mathematics, Fluid Mechanics and Computer Science
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J
2016-01-01
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...
Editorial: Special Issue on Computational Problems in Applied Mathematics
Walailak Journal of Science and Technology
2014-01-01
Computational Fluid Dynamics (CFD) is a highly interdisciplinary research area which lies at the interface of physics, applied mathematics, and computer science. CFD is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solving the mathematical equations which govern these processes using a numerical process. Theoretical and Computational Fluid Dynamics provides a forum for the cross-fertilization of notions, tools and techniques a...
3rd International Conference on Applied Mathematics and Approximation Theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.
Predictive control applied to an evaporator mathematical model
Daniel Alonso Giraldo Giraldo
2010-07-01
Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.
Salvetti, Attilio; Applied Mathematics in Aerospace Science and Engineering
1994-01-01
This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa tions, mathematical programming, optimal control, numerical methods, per turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanic...
Mathematical models applied in inductive non-destructive testing
Wac-Wlodarczyk, A.; Goleman, R.; Czerwinski, D. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland); Gizewski, T. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland)], E-mail: t.gizewski@pollub.pl
2008-10-15
Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth.
Mathematical models applied in inductive non-destructive testing
Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth
Applied Mathematics for agronomical engineers in Spain at UPM
Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.
2009-04-01
Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several
Research in applied mathematics, numerical analysis, and computer science
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
Akiri, Agharuwhe A.
2014-01-01
The study is based on the assessment of instructional and administrative strategies applied by principals to improve academic performance of students in schools. This simply means that the individual talents of everyone in school needs to be maximized for the effective benefit of the school, students, parents, and the society at large. It is…
Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.
Nunokawa, Kazuhiko
1996-01-01
The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)
Mathematical modelling applied to LiDAR data
Javier Estornell
2013-06-01
Full Text Available The aim of this article is to explain the application of several mathematic calculations to LiDAR (Light Detection And Ranging data to estimate vegetation parameters and modelling the relief of a forest area in the town of Chiva (Valencia. To represent the surface that describes the topography of the area, firstly, morphological filters were applied iteratively to select LiDAR ground points. From these data, the Triangulated Irregular Network (TIN structure was applied to model the relief of the area. From LiDAR data the canopy height model (CHM was also calculated. This model allowed obtaining bare soil, shrub and tree vegetation mapping in the study area. In addition, biomass was estimated from measurements taken in the field in 39 circular plots of radius 0.5 m and the 95th percentile of the LiDAR height datanincluded in each plot. The results indicated a high relationship between the two variables (measurednbiomass and 95th percentile with a coeficient of determination (R2 of 0:73. These results reveal the importance of using mathematical modelling to obtain information of the vegetation and land relief from LiDAR data.
Ward-Penny, Robert; Johnston-Wilder, Sue; Johnston-Wilder, Peter
2013-01-01
One-third of the current A-level mathematics curriculum is determined by choice, constructed out of "applied mathematics" modules in mechanics, statistics and decision mathematics. Although this choice arguably involves the most sizeable instance of choice in the current English school mathematics curriculum, and it has a significant impact on…
Hyman, J.; Beyer, W.; Louck, J.; Metropolis, N.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Group theoretical methods are a powerful tool both in their applications to mathematics and to physics. The broad goal of this project was to use such methods to develop the implications of group (symmetry) structures underlying models of physical systems, as well as to broaden the understanding of simple models of chaotic systems. The main thrust was to develop further the complex mathematics that enters into many-particle quantum systems with special emphasis on the new directions in applied mathematics that have emerged and continue to surface in these studies. In this area, significant advances in understanding the role of SU(2) 3nj-coefficients in SU(3) theory have been made and in using combinatoric techniques in the study of generalized Schur functions, discovered during this project. In the context of chaos, the study of maps of the interval and the associated theory of words has led to significant discoveries in Galois group theory, to the classification of fixed points, and to the solution of a problem in the classification of DNA sequences.
Literature Review of Applying Visual Method to Understand Mathematics
Yu Xiaojuan
2015-01-01
As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demon...
Applying realistic mathematics education in Vietnam : teaching middle school geometry
Le, Tuan Anh
2007-01-01
Since 1971, the Freudenthal Institute has developed an approach to mathematics education named Realistic Mathematics Education (RME). The philosophy of RME is based on Hans Freudenthal’s concept of ‘mathematics as a human activity’. Prof. Hans Freudenthal (1905-1990), a mathematician and educator, believes that ‘ready-made mathematics’ should not be taught in school. By contrast, he urges that students should be offered ‘realistic situations’ so that they can rediscover from informal to forma...
Teachers of Mathematics as Problem-Solving Applied Mathematicians
Chick, Helen; Stacey, Kaye
2013-01-01
Some of mathematics teaching is routine, like an exercise from a textbook for which you have received instruction and already know what to do. On other occasions, however, teaching mathematics is challenging, involving problems of teaching for which the solutions may not be readily apparent. These situations require the application of mathematical…
Editorial: Special Issue on Computational Problems in Applied Mathematics
Walailak Journal of Science and Technology
2014-07-01
Full Text Available Computational Fluid Dynamics (CFD is a highly interdisciplinary research area which lies at the interface of physics, applied mathematics, and computer science. CFD is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solving the mathematical equations which govern these processes using a numerical process. Theoretical and Computational Fluid Dynamics provides a forum for the cross-fertilization of notions, tools and techniques across all disciplines in which fluid flow plays a role, such as: aeronautical sciences, geophysical and environmental sciences, life sciences and materials sciences. Furthermore, computational fluid dynamics is considered an indispensable analysis/design tool in an ever-increasing range of diversified industrial applications. Practical flow problems are often so complex because a high level of ingenuity is needed. Therefore, besides the development of work in CFD, innovative CFD applications are also encouraged to solve real time problems. The accuracy and fidelity of modern CFD methods have significantly increased the level of design insight available to engineers throughout the design process and hence greatly reduces companies’ exposure to technical risk when developing thermal and fluid-based products. The use of CFD in design generally leads to far fewer physical prototypes being necessary during development, far less prototype testing and consequently reduces the time-to-market and cost-to-market substantially. It is well known for the researchers working in the field of fluid (both gas and liquid flows are governed by partial differential equations which represent conservation laws for the mass, momentum, and energy. CFD is the art of replacing such partial differential equation systems by a set of algebraic equations which can be solved using digital computers. Some of the practical application includes aerodynamics, industrial fluid dynamics
Studies in Mathematics, Volume X. Applied Mathematics in the High School.
Schiffer, Max M.
This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…
Annual report of the Center for Applied Mathematics, 1986
Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented
Annual report of the Center for Applied Mathematics, 1985
Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented
Literature Review of Applying Visual Method to Understand Mathematics
Yu Xiaojuan
2015-01-01
Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.
Mathematical Optimization Applied to Thermal and Electrical Energy Systems
Bordin, Chiara
2015-01-01
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensiti...
Elements of applied probability for engineering, mathematics and systems science
McDonald, David
2004-01-01
This book has been designed for senior engineering, mathematics andsystems science students. In addition, the author has used theoptional, advanced sections as the basis for graduate courses inquality control and queueing. It is assumed that the students havetaken a first course in probability but that some need areview. Discrete models are emphasized and examples have been chosenfrom the areas of quality control and telecommunications. The bookprovides correct, modern mathematical methods and at the same timeconveys the excitement of real applications.
Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982
This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices
Research in progress in applied mathematics, numerical analysis, and computer science
1990-01-01
Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.
Mathematical modeling applied to the left ventricle of heart
Ranjbar, Saeed
2014-01-01
Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...
Applying mathematical finance tools to the competitive Nordic electricity market
Vehviläinen, Iivo
2004-01-01
This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price mo...
Applied Wave Mathematics Selected Topics in Solids, Fluids, and Mathematical Methods
Quak, Ewald
2009-01-01
This edited volume addresses the importance of mathematics in wave-related research, and its tutorial style contributions provide educational material for courses or seminars. It presents highlights from research carried out at the Centre for Nonlinear Studies in Tallinn, Estonia, the Centre of Mathematics for Applications in Oslo, Norway, and by visitors from the EU project CENS-CMA. The example applications discussed include wave propagation in inhomogeneous solids, liquid crystals in mesoscopic physics, and long ship waves in shallow water bodies. Other contributions focus on specific mathe
Applying science and mathematics to big data for smarter buildings.
Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui
2013-08-01
Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. PMID:23819911
65 nm CMOS Sensors Applied to Mathematically Exact Colorimetric Reconstruction
Mayr, C; Krause, A; Schlüßler, J -U; Schüffny, R
2014-01-01
Extracting colorimetric image information from the spectral characteristics of image sensors is a key issue in accurate image acquisition. Technically feasible filter/sensor combinations usually do not replicate colorimetric responses with sufficient accuracy to be directly applicable to color representation. A variety of transformations have been proposed in the literature to compensate for this. However, most of those rely on heuristics and/or introduce a reconstruction dependent on the composition of the incoming illumination. In this work, we present a spectral reconstruction method that is independent of illumination and is derived in a mathematically strict way. It provides a deterministic method to arrive at a least mean squared error approximation of a target spectral characteristic from arbitrary sensor response curves. Further, we present a new CMOS sensor design in a standard digital 65nm CMOS technology. Novel circuit techniques are used to achieve performance comparable with much larger-sized spe...
Applying mathematical finance tools to the competitive Nordic electricity market
This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price movements, and offers a computationally efficient way of simulating spot prices. The thesis shows that the connection between spot prices and electricity forward prices is nontrivial because electricity is a commodity that must be consumed immediately. Consequently, forward prices of different times are based on the supply-demand conditions at those times. This thesis introduces a statistical model that captures the main characteristics of observed forward price movements. The thesis presents the pricing problems relating to the common Nordic electricity derivatives, as well as the pricing relations between electricity derivatives. The special characteristics of electricity make spot electricity market incomplete. The thesis assumes the existence of a risk-neutral martingale measure so that formal pricing results can be obtained. Some concepts introduced in financial markets are directly usable in the electricity markets. The risk management application in this thesis uses a static optimal portfolio selection framework where Monte Carlo simulation provides quantitative results. The application of mathematical finance requires careful consideration of the special characteristics of the electricity markets. Economic theory and reasoning have to be taken into account when constructing financial models in competitive electricity markets. (orig.)
The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems...
Mathematical model of gas plasma applied to chronic wounds
Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P. [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Zhang, Y. T. [Shandong Provincial Key Lab of UHV Technology and Gas Discharge Physics, School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250061 (China)
2013-11-15
Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.
Using and applying international survey data on mathematics and science education
MacIntyre, Thomas Gunn
2014-01-01
There were two purposes set out in this study, first to identify the principal associations with educational performance of Scottish students as reported in the 2007 wave of the Trends in International Mathematics and Science Study (TIMSS2007), and second to evaluate methods of data analysis where sample surveys use plausible value (PV) methodology. Four sets of data were used for the secondary analysis of TIMSS2007, with student's responses to cognitive items and questionnaire data emanating...
Khuat Thanh Tung
2016-11-01
Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.
School Phobia: Effects of Behavior Modification Treatment Applied By An Elementary School Principal
Brown, Ronald E.; And Others
1974-01-01
Described are the systematic reinforcing and shaping procedures used by a school principal to modify an 11-year-old child's phobic fear of the classroom. The child's class attendance significantly increased as a consequence of the procedures. (Author/SDH)
Fu-zhou Gong; Xiao-dong Hu
2009-01-01
@@ In March of 1979, Chinese Academy of Sciences (CAS) established, with the approval of the State Council of China, an office for promoting the application of mathematics and Interdisciplinary studies in practice. Later in October of 1979, based on this office CAS established the Institute of Applied Mathematics (IAM). The first director of IAM was the world-wide famous mathematician, Professor HUA Loo-Keng, and most faculty members of IAM came from Institute of Mathematics within CAS, which was founded in July of 1952 and was also directed by Prof. HUA.
A Marking Scheme Rubric: To Assess Students' Mathematical Knowledge for Applied Algebra Test
Betsy Lee Guat Poh
2015-08-01
Full Text Available Students' ability in mathematics mainly relies on their performance in the assessment task such as tests, quizzes, assignments and final examinations. However, the grading process depends on the respective mathematics teacher who sets a marking scheme in assessing students' learning. How do these teachers assign grades to their students' problem solving work? What does it mean by five marks or ten marks for a mathematics problem? How does a teacher evaluate a student's mathematical knowledge and skills based on the grades? These questions address the vagueness of the grading process that gives no concrete evidence about a student's mathematical thinking. Hence, this paper aims to discover the effectiveness of using a marking scheme rubric to assess students' mathematical knowledge. The paper begins by reviewing different types of scoring rubrics in assessing mathematical problem solving tasks. A marking scheme rubric was proposed to assess samples of actual students' problem solving work in an applied algebra test. The rubric serves as an assessment instrument to gather information about students' achievement level in demonstrating both knowledge and skills in the test. Based on the findings, the score reflected the quality of the students’ work rather than just a numerical representation. It showed the students’ comprehension of adapting the mathematical concepts and problem solving strategies. In a nutshell, the implementation of rubric marking scheme has improved the consistency in grading and made the scoring points as a "meaningful figure" that describes the quality of a students' performance.
4th International Conference on Computer Science, Applied Mathematics and Applications
Do, Tien; Thi, Hoai; Nguyen, Ngoc
2016-01-01
This proceedings consists of 20 papers which have been selected and invited from the submissions to the 4th International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2016) held on 2-3 May, 2016 in Laxenburg, Austria. The conference is organized into 5 sessions: Advanced Optimization Methods and Their Applications, Models for ICT applications, Topics on discrete mathematics, Data Analytic Methods and Applications and Feature Extractio, respectively. All chapters in the book discuss theoretical and practical issues connected with computational methods and optimization methods for knowledge engineering. The editors hope that this volume can be useful for graduate and Ph.D. students and researchers in Applied Sciences, Computer Science and Applied Mathematics. .
Krantz, Richard; Douthett, Jack
2009-10-01
Although it is common practice to borrow tools from mathematics to apply to physics or music, it is unusual to use tools developed in music theory to mathematically describe physical phenomena. So called ``Maximally Even Set'' theory fits this unusual case. In this poster, we summarize, by example, the theory of Maximally Even (ME) sets and show how this formalism leads to the distribution of black and white keys on the piano keyboard. We then show how ME sets lead to a generalization of the well-known ``Cycle-of-Fifths'' in music theory. Subsequently, we describe ordering in one-dimensional spin-1/2 anti-ferromagnets using ME sets showing that this description leads to a fractal ``Devil's Staircase'' magnetic phase diagram. Finally, we examine an extension of ME sets, ``Iterated Maximally Even'' sets that describes chord structure in music.
Relevant principal component analysis applied to the characterisation of Portuguese heather honey
Martins, Rui C.; Lopes, Victor V.; Valentão, Patrícia; Carvalho, João C. M. F.; Isabel, Paulo; Amaral, Maria T.; Batista, Maria T.; Andrade, Paula B.; Silva, Branca M.
2008-01-01
The main purpose of this study was the characterisation of ‘Serra da Lousã’ heather honey by using novel statistical methodology, relevant principal component analysis, in order to assess the correlations between production year, locality and composition. Herein, we also report its chemical composition in terms of sugars, glycerol and ethanol, and physicochemical parameters. Sugars profiles from ‘Serra da Lousã’ heather and ‘Terra Quente de Tra´ s-os-Montes’ lavender honeys ...
1st International Conference on Industrial and Applied Mathematics of the Indian Subcontinent
Kočvara, Michal
2002-01-01
An important objective of the study of mathematics is to analyze and visualize phenomena of nature and real world problems for its proper understanding. Gradually, it is also becoming the language of modem financial instruments. To project some of these developments, the conference was planned under the joint auspices of the Indian Society of Industrial and Applied mathematics (ISlAM) and Guru Nanak Dev University (G. N. D. U. ), Amritsar, India. Dr. Pammy Manchanda, chairperson of Mathematics Department, G. N. D. U. , was appointed the organizing secretary and an organizing committee was constituted. The Conference was scheduled in World Mathematics Year 2000 but, due one reason or the other, it could be held during 22. -25. January 2001. How ever, keeping in view the suggestion of the International Mathematics union, we organized two symposia, Role of Mathematics in industrial development and vice-versa and How image of Mathematics can be improved in public. These two symposia aroused great interest among...
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses
Rima Kriauzienė
2013-08-01
Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.
Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses
Tadas Laukevičius
2011-12-01
Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.
A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V.
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods. PMID:27387139
Bidaibekov, Yessen Y.; Kornilov, Viktor S.; Kamalova, Guldina B.; Akimzhan, Nagima Sh.
2015-09-01
Methodical aspects of teaching students of higher educational institutions of natural science orientations of training of inverse problems for differential equations are considered in the article. A fact that an academic knowledge and competence in the field of applied mathematics is formed during such training is taken into consideration.
Applying Mathematics to Physics and Engineering: Symbolic Forms of the Integral
Jones, Steven Robert
2010-01-01
A perception exists that physics and engineering students experience difficulty in applying mathematics to physics and engineering coursework. While some curricular projects aim to improve calculus instruction for these students, it is important to specify where calculus curriculum and instructional practice could be enhanced by examining the…
3rd International Conference on Computer Science, Applied Mathematics and Applications
Nguyen, Ngoc; Do, Tien
2015-01-01
This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.
Biook Behnam
2014-09-01
Full Text Available In recent years, genre studies have attracted the attention of many researchers. The aim of the present study was to observe the differences in generic structure of abstract written by English native and non-native (Iranian students in two disciplines of mathematics and applied linguistics. To this end, twenty native English students’ abstract texts from each discipline and the same number of non-native (Iranian ones were selected. In this study, Hyland’s (2000 five‐move model was used to identify the rhetorical structure of the four sets of texts. After analyzing each text, the main moves were extracted and the frequencies of each one were calculated and compared. The cross-disciplinary and cross‐linguistic analyses reveal that linguistics abstracts follow a conventional scheme, but mathematics abstracts in these two languages do not exhibit the usual norms in terms of moves. Besides, greater difference in move structure is seen across languages in mathematics. The findings of the study have some pedagogical implications for academic writing courses for graduate students, especially students from non-English backgrounds in order to facilitate their successful acculturation into these disciplinary communities.Keywords: Genre Analysis, mathematics, applied linguistics
In Memory of Our Honorary Editor-in-Chief Editorial Board of Applied Mathematics and Mechanics
Editorial Board of Applied Mathematics and Mechani
2010-01-01
@@ Chien Wei-zang,one of the founders of modern mechanics in China,a world renowned scientist,educator,outstanding social leader,prominent leader of the Chinese Democratic League and a close friend of the Communist Party of China,the Vice Chairman of the 6th,7th,8th,and 9th National Committee of Chinese People's Political Consultative Conference, the Vice Chairman of the 5th, 6th, and 7th Central Committee of Chinese Democratic League, the Honorary Chairman of the 7th, 8th, and 9th Central Committee of Chinese Democratic League, a senior member of Chinese Academy of Science, the President of Shanghai University, the Director of Shanghai Institute of Applied Mathematics and Mechanics, and the Honorary Editor-in Chief of Applied Mathematics and Mechanics, Passed away at the age of 98 in Shanghai at 6:20 AM on July 30,2010.
2nd International Conference on Computer Science, Applied Mathematics and Applications
Thi, Hoai; Nguyen, Ngoc
2014-01-01
The proceedings consists of 30 papers which have been selected and invited from the submissions to the 2nd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2014) held on 8-9 May, 2014 in Budapest, Hungary. The conference is organized into 7 sessions: Advanced Optimization Methods and Their Applications, Queueing Models and Performance Evaluation, Software Development and Testing, Computational Methods for Mobile and Wireless Networks, Computational Methods for Knowledge Engineering, Logic Based Methods for Decision Making and Data Mining, and Nonlinear Systems and Applications, respectively. All chapters in the book discuss theoretical and practical issues connected with computational methods and optimization methods for knowledge engineering. The editors hope that this volume can be useful for graduate and Ph.D. students and researchers in Computer Science and Applied Mathematics. It is the hope of the editors that readers of this volume can find many inspiring idea...
ANALYSIS OF EXAM RESULTS OF THE SUBJECT ’APPLIED MATHEMATICS FOR IT’
BROŽOVÁ, Helena
2014-12-01
Full Text Available In this paper the exam results of the subject “Applied Mathematics for Informatics” from the last 10 years have been analysed. The exam has two parts: written test and oral exam. The grades of the students of the subject Applied Mathematics for Informatics formerly Methods of Operation Research have been low for a long time. We want to know if this is due to the quality of the tests or due to reducing the number of hours of contact teaching or due to the mathematical character of the subject and to the unpopularity of such kind of subjects or some other factors, for instance. Based on the bad results, students have also initiated a change in the scoring system. This article builds on our paper at the conference ERIE 2013. The main goals of this paper are to find out if the grades have had the tendency to decline during the years and to evaluate the validity, reliability, difficulty, and discrimination power of the tests.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Nadia Said
Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Bidarra, José; Araújo, João
2013-01-01
This paper argues that the dominant form of distance learning that is common in most e-learning systems rests on a set of learning devices and environments that may be outdated from the student’s perspective, namely because it is not supportive of learner empowerment and does not facilitate the efforts of self-directed learners. For this study we gathered and examined data on student’s use of Personal Learning Environments (PLEs) within a course on Mathematics Applied to Business offered by t...
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
River basin soil-vegetation condition assessment applying mathematic simulation methods
Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid
2013-04-01
Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been
Appropriate Mathematical Model of DC Servo Motors Applied in SCARA Robots
Attila L. Bencsik
2004-11-01
Full Text Available In the first part of the presentation detailed description of the modular technical system built up of electric components and end-effectors is given. Each of these components was developed at different industrial companies separately. The particular mechatronic unit under consideration was constructed by the use of the appropriate mathematical model of these units. The aim of this presentation is to publish the results achieved by the use of a mathematical modeling technique invented and applied in the development of different mechatronic units as drives and actuators. The unified model describing the whole system was developed with the integration of the models valid to the particular components. In the phase of testing the models a program approximating typical realistic situations in terms of work-loads and physical state of the system during operation was developed and applied. The main innovation here presented consists in integrating the conclusions of professional experiences the developers gained during their former R&D activity in different professional environments. The control system is constructed on the basis of classical methods, therefore the results of the model investigations can immediately be utilized by the developer of the whole complex system, which for instance may be an industrial robot.
Moarefian, Maryam; Pascal, Jennifer A
2016-02-01
Biobarriers imposed by the tumor microenvironment create a challenge to deliver chemotherapeutics effectively. Electric fields can be used to overcome these biobarriers in the form of electrochemotherapy, or by applying an electric field to tissue after chemotherapy has been delivered systemically. A fundamental understanding of the underlying physical phenomena governing tumor response to an applied electrical field is lacking. Building upon the work of Pascal et al. [1], a mathematical model that predicts the fraction of tumor killed due to a direct current (DC) applied electrical field and chemotherapy is developed here for tumor tissue surrounding a single, straight, cylindrical blood vessel. Results show the typical values of various parameters related to properties of the electrical field, tumor tissue and chemotherapy drug that have the most significant influence on the fraction of tumor killed. We show that the applied electrical field enhances tumor death due to chemotherapy and that the direction and magnitude of the applied electrical field have a significant impact on the fraction of tumor killed. PMID:26656676
CURRENT APPLIED INVESTIGATIONS OF THE DEPARTMENT OF HIGHER MATHEMATICS OF MGSU
Bobyleva Tat’yana Nikolaevna
2015-12-01
Full Text Available The article presents an overview of some research works done by the academic staff of the Department in the field of differential equations, solid mechanics, probability theory and mathematical statistics, theory of functions of real and complex variable, functional analysis, topology, the theory of polymer composites having theoretical and practical interest, which leads to wide possibilities of application of these researches for formulation and solution of model problems of construction, technology and economics. In particular, we considered the problem of planar non-rotational fluid flow with a free boundary, discrete kinetic model of rarefied gas, the Burgers-Huxley equation of advection-diffusion fractional order. We studied the stress concentrators due to the geometry of the boundary and coupling elements made of materials with different physical properties, stress relaxation in concrete, free vibrations of isotropic hollow balls. The issues of loaded systems’ research arise frequently in practice in the problems with lumped loads. Extremum problems were considered, in particular, in the loaded space of Jacobi, extremum problems for analytic functions of some classes, the use of the duality of linear spaces applied to extremum problems of complex analysis. The researches on methods of teaching mathematics in technical universities were performed.
Thomas Heckelei
2012-05-01
Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.
Mathematical model of metal-hydride phase change applied to Yttrium
We present a mathematical model for the kinetics of hydriding and dehydriding of metal powders. The single powder particle is considered. Its shape is approximated by one of the symmetric ones: sphere, long thin cylinder (wire), or flat thin plate. A few concurrent processes are considered. The model equations are derived from the mass conservation law. We consider the case of the 'shrinking core' morphology, i.e. formation of the hydride skin on the surface of the particle with subsequent growth of this skin. We consider three successive stages of the phase change: skin development, skin growth, and final saturation or degassing. We apply the model to experimental data for Yttrium and show that the approximation of the experimental curves by the model ones is comparable for different cycles and different shapes for similar sets of the kinetic parameters. This also shows that shape of powder particles do not influence significantly on the kinetics of hydriding and dehydriding
Mathematical model of metal-hydride phase change applied to Yttrium
Chernov, I. A.; Manicheva, S. V.; Gabis, I. E.
2013-08-01
We present a mathematical model for the kinetics of hydriding and dehydriding of metal powders. The single powder particle is considered. Its shape is approximated by one of the symmetric ones: sphere, long thin cylinder (wire), or flat thin plate. A few concurrent processes are considered. The model equations are derived from the mass conservation law. We consider the case of the "shrinking core" morphology, i.e. formation of the hydride skin on the surface of the particle with subsequent growth of this skin. We consider three successive stages of the phase change: skin development, skin growth, and final saturation or degassing. We apply the model to experimental data for Yttrium and show that the approximation of the experimental curves by the model ones is comparable for different cycles and different shapes for similar sets of the kinetic parameters. This also shows that shape of powder particles do not influence significantly on the kinetics of hydriding and dehydriding.
Vincent, Jill; Stacey, Kaye
2008-01-01
Australian eighth-grade mathematics lessons were shown by the 1999 TIMSS Video Study to use a high proportion of problems of low procedural complexity, with considerable repetition, and an absence of deductive reasoning. Using definitions from the Video Study, this study re-investigated this "shallow teaching syndrome" by examining the problems on…
Features of teaching mathematics students bachelor of «Applied informatics in economy»
Zulfina Sh. Aglaymova
2011-01-01
In this article the peculiarities of mathematics learning process for Bachelors of the specification "Information Technology in Economics" are discussed. In the article the great attention is paid to the ways of improving the quality of mathematics learning process.
A Marking Scheme Rubric: To Assess Students' Mathematical Knowledge for Applied Algebra Test
Betsy Lee Guat Poh; Kasturi Muthoosamy; Chiang Choon Lai; Goh Boon Hoe
2015-01-01
Students' ability in mathematics mainly relies on their performance in the assessment task such as tests, quizzes, assignments and final examinations. However, the grading process depends on the respective mathematics teacher who sets a marking scheme in assessing students' learning. How do these teachers assign grades to their students' problem solving work? What does it mean by five marks or ten marks for a mathematics problem? How does a teacher evaluate a student's mathematical knowledge ...
Applying a Universal Design for Learning Framework to Mediate the Language Demands of Mathematics
Thomas, Cathy Newman; Van Garderen, Delinda; Scheuermann, Amy; Lee, Eun Ju
2015-01-01
This article provides information about the relationship between mathematics, language, and literacy and describes the difficulties faced by students with disabilities with math content based on the language demands of mathematics. We conceptualize mathematics language as a mode of discourse for math learning that can be thought of as receptive…
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Silvano, Saragosa
2010-01-01
This paper is based on the original work of the master degree thesis [1] and also represents a revision of the models and the correlations with the analytical solutions given by other authors in the previous publications from 2003 to 2007. All the publications from 2003 to 2007 about simplified analytical methods applied to controlled-clearance pressure balances are not original re-elaborations (with some errors) of the thesis[1]. The analysis described in this paper starts with the mathematical model of thick-walled cylinder based on the solution of the Lame Equations applied to Mechanical theory of elastic equilibrium [5] for the formulation of the so called Simplified Elastic Theory that represents an analytical approach used in the study of the pressure balances. This analysis is well known as Lame problem. The solution of the Lame problem is used to determine the pressure distortion coefficient of controlled-clearance pressure balances. The analysis in this paper includes the case of pressure balances wi...
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed
Computational physics and applied mathematics capability review June 8-10, 2010
Lee, Stephen R [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution
Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum
Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.
2015-01-01
This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…
Promraksa, Siwarak; Sangaroon, Kiat; Inprasitha, Maitree
2014-01-01
The objectives of this research were to study and analyze the characteristics of computational thinking about the estimation of the students in mathematics classroom applying lesson study and open approach. Members of target group included 4th grade students of 2011 academic year of Choomchon Banchonnabot School. The Lesson plan used for data…
Solomon, Dan
2004-01-01
A.E. Allahverdyan and Th. M. Nieuwenhuizen [1] in their paper "A mathematical theorem as a basis for the second law: Thomson's formulation applied to equilibriium" present a proof of the second law of thermodynamics based on quantum mechanics. In this comment on their paper I offer a counterexample to their proof.
Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future
Brown, D L; Bell, J; Estep, D; Gropp, W; Hendrickson, B; Keller-McNulty, S; Keyes, D; Oden, J T; Petzold, L; Wright, M
2008-02-15
Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand
Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.
1981-01-01
A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.
A mathematical modeling applied to the study of two forms of artistic representation
Henrique Marins de Carvalho
2015-01-01
Full Text Available The cultural manifestation of the Arican indigenous people from Chile, through the designs found in their garments was analyzed. Comparing their techniques of mosaic formation, using geometric transformations (bijection plans in itself, it was investigated whether, mathematically, its evolution could be explained.The mosaics, as well as the known works of Escher, are constructed from the application of translations, rotations, reflections or slip reflections of an initial motif (a rosette. The archaeological clothing pieces of the Arican people were then analyzed in the same evolutionary perspective of such applications.With similar purpose - understanding the relationship between music and the evolution and complexity of a possible mathematical representation - were analyzed the geometric transformations and excerpts from three works of Johann Sebastian Bach, exponent German composer of the Baroque period.It was possible to see the link between the improvement and refinement of musical composition mathematics, particularly in the geometry necessary to translate the musical representation into a graphic symbol.It is concluded, then, the existence of a possible line between artistic evolution (the artistic culture of a people or the work of a musician and mathematical representation / geometry of such manifestations. In other words, it was possible to formulate conjectures in a search to find a possible relationship between the development degree of a given culture or musical piece and the development of a science, if mathematics, able to explain it.
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Santamaría, Lorri J.; Jean-Marie, Gaëtane
2014-01-01
This study, based on the qualitatively rendered experiences and perceptions of educational leaders from historically underserved backgrounds in the US, argues that identity impacts leadership practice. To make this point, researchers build upon an emergent theoretical framework for applied critical leadership from the theories and traditions of…
Agarwal, Pooja K.; Bain, Patrice M.; Chamberlain, Roger W.
2012-01-01
Over the course of a 5-year applied research project with more than 1,400 middle school students, evidence from a number of studies revealed that retrieval practice in authentic classroom settings improves long-term learning (Agarwal et al. 2009; McDaniel et al., "Journal of Educational Psychology" 103:399-414, 2011; McDaniel et al. 2012; Roediger…
Using LabVIEW for Applying Mathematical Models in Representing Phenomena
Faraco, G.; Gabriele, L.
2007-01-01
Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…
Tang, Michael; David, Hyerle; Byrne, Roxanne; Tran, John
2012-01-01
This paper is a mathematical (Boolean) analysis a set of cognitive maps called Thinking Maps[R], based on Albert Upton's semantic principles developed in his seminal works, Design for Thinking (1961) and Creative Analysis (1961). Albert Upton can be seen as a brilliant thinker who was before his time or after his time depending on the future of…
Goodson-Espy, Tracy; Cifarelli, Victor V.; Pugalee, David; Lynch-Davis, Kathleen; Morge, Shelby; Salinas, Tracie
2014-01-01
This study explored how mathematics content and methods courses for preservice elementary and middle school teachers could be improved through the integration of a set of instructional materials based on the National Assessment of Educational Progress (NAEP). A set of eight instructional modules was developed and tested. The study involved 7…
Developing digital technologies for university mathematics by applying participatory design methods
Triantafyllou, Eva; Timcenko, Olga
This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included in this...
CURRENT APPLIED INVESTIGATIONS OF THE DEPARTMENT OF HIGHER MATHEMATICS OF MGSU
Bobyleva Tat’yana Nikolaevna
2015-01-01
The article presents an overview of some research works done by the academic staff of the Department in the field of differential equations, solid mechanics, probability theory and mathematical statistics, theory of functions of real and complex variable, functional analysis, topology, the theory of polymer composites having theoretical and practical interest, which leads to wide possibilities of application of these researches for formulation and solution of model problems of construction, t...
Lange, Christoph; Kutz, Oliver; Mossakowski, Till; Grüninger, Michael
2012-01-01
The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper focuses on an application of DOL's meta-theoretical features in mathematical formalization: validating relationships between ontological...
Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics
Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.; Sztein, Marcelo B.; Levy, Doron
2013-01-01
We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membra...
McCall, John R.
This monograph offers leadership approaches for school principals. Discussion applies the business leadership theory of Warren Bennis and Burt Nanus to the role of the principal. Each of the booklet's three parts concludes with discussion questions. Part 1, "Visions and Values for the Provident Principal," demonstrates the importance of…
Dzierka M.
2015-12-01
Full Text Available In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.
Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.
Courtney L Davis
Full Text Available We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.
Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future
Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego
2014-05-01
The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow
Rao, K. J.; de Bruyn Kops, S. M.
2011-06-01
It is often desirable to study turbulent flows at steady state even if the flow has no inherent source of turbulence kinetic energy. Doing so requires a forcing schema, and various methods applicable to laboratory experiments or numerical simulations have been studied extensively for turbulence that is isotropic and homogeneous in three dimensions. A review of existing schemata for simulations is used to form a framework for more general forcing methods. In this framework, the problem of developing a forcing method is abstracted into the two problems of (1) prescribing the spectrum of the input power and (2) specifying a force that has the desired characteristics and that adds energy to the flow with the correct spectrum. The framework is used to construct three forcing methods for simulating horizontally homogeneous and isotropic, vertically stratified turbulence. They are implemented in a pseudo-spectral large-eddy simulations and their characteristics are analyzed. The framework is then used to characterize existing laboratory experiments. While no exact analogy can be drawn between forcing in esoteric pseudo-spectral simulations and forcing in physical experiments, there are many similarities. It is suggested that the forcing framework can be applied to predict and systematically test the effects of configuration choices made in the design of simulations and laboratory experiments.
Mine AKTAŞ
2011-08-01
Full Text Available With this study, it is aimed to afford an artistic development for science of mathematics with using literary language and learn with associating visual themes and imaginariness in essays. In the study, different written expression works, which are composed about same symmetric figure, of first grade preservice teachers of Turkish Language and Mathematics Teaching are compared.This study will put forth the grasp of communication skill of preservice students who are implementers of new program of Turkish and Mathematics lesson used from 2005 and in which the importance of this skill is emphasized. Also this study will contribute education of preservice students henceforwards.
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able to...... accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed in...
Lince, Ranak
2016-01-01
Mathematical ability of students creative thinking is a component that must be mastered by the student. Mathematical creative thinking plays an important role, both in solving the problem and well, even in high school students. Therefore, efforts are needed to convey ideas in mathematics. But the reality is not yet developed the ability to…
Pappas, Theoni
1997-01-01
In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able to...... accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... natural numbers. Apply these concepts to new problems. Division and factorizing: Define a prime number and apply Euclid´s algorithm for factorizing an integer. Regular languages: Define a language from the elements of a set; define a regular language; form strings from a regular language; construct...
Dina Aleksandrovna Kirillova
2015-12-01
Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Lee, Stephen R [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial
Principal dynamical components
de la Iglesia, Manuel D
2010-01-01
A new procedure is proposed for the dimensional reduction of time series. Similarly to principal components, the procedure seeks a low-dimensional manifold that minimizes information loss. Unlike principal components, however, the new procedure involves dynamical considerations, through the proposal of a predictive dynamical model in the reduced manifold. Hence the minimization of the uncertainty is not only over the choice of a reduced manifold, as in principal components, but also over the parameters of the dynamical model. Further generalizations are provided to non-autonomous and non-Markovian scenarios, which are then applied to historical sea-surface temperature data.
Basu, Uma; De, Soumen
2015-01-01
The book is based on research presentations at the international conference, “Emerging Trends in Applied Mathematics: In the Memory of Sir Asutosh Mookerjee, S.N. Bose, M.N. Saha, and N.R. Sen”, held at the Department of Applied Mathematics, University of Calcutta, during 12–14 February 2014. It focuses on various emerging and challenging topics in the field of applied mathematics and theoretical physics. The book will be a valuable resource for postgraduate students at higher levels and researchers in applied mathematics and theoretical physics. Researchers presented a wide variety of themes in applied mathematics and theoretical physics—such as emergent periodicity in a field of chaos; Ricci flow equation and Poincare conjecture; Bose–Einstein condensation; geometry of local scale invariance and turbulence; statistical mechanics of human resource allocation: mathematical modelling of job-matching in labour markets; contact problem in elasticity; the Saha equation; computational fluid dynamics with...
Cristache, C.I. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125 Magurele, Ilfov (Romania); Duliu, O.G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele, Ilfov (Romania)], E-mail: duliu@b.astral.ro; Culicov, O.A.; Frontasyeva, M.V. [Joint Institute of Nuclear Research, 6, Joliot Curie str. 141980, Dubna (Russian Federation); Ricman, C. [Geological Institute of Romania, 1 Caransebes Street, 012271 Bucharest (Romania); Toma, M. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125 Magurele, Ilfov (Romania)
2009-05-15
Six major (Na, Al, K, Ca, Ti, Fe) and 28 trace (Sc, Cr, V, Mn, Co, Zn, Cu, As, Br, Sr, Rb, Zr, Mo, Sn, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Hf, Ta, W, Th and U) elements were determined by epithermal neutron activation analysis (ENAA) in nine Meridional Carpathian and Macin Mountains samples of igneous and metamorphic rocks. Correlation and principal factor analysis were used to interpret data while natural radionuclides radiometry shows a good correlation with ENAA results.
Experimental Mathematics and Mathematical Physics
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Zudilin, Wadim
2009-06-26
One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.
Triantafyllou, Eva; Timcenko, Olga
2013-01-01
As a result of changes in society and education, assumptions about the knowledge of entrants to university have become obsolete. One area in which this seems to be true is mathematics. This paper presents our research aiming at tackling with this problem by developing digital educational material...
Chen, P. Daniel; Simpson, Patricia A.
2015-01-01
This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…
Hickendorff, Marian
2013-01-01
The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…
Gao, David Yang
2009-01-01
Written by some of the leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines. It investigates the developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, and theoretical and engineering mechanics
Aksu, Hasan Hüseyin
2014-01-01
This study aims to investigate, in terms of different variables, the views of prospective Mathematics teachers on tablet computers to be used in schools as an outcome of the Fatih Project, which was initiated by the Ministry of National Education. In the study, scanning model, one of the quantitative research methods, was used. In the population…
Cristache, C I; Duliu, O G; Culicov, O A; Frontasyeva, M V; Ricman, C; Toma, M
2009-05-01
Six major (Na, Al, K, Ca, Ti, Fe) and 28 trace (Sc, Cr, V, Mn, Co, Zn, Cu, As, Br, Sr, Rb, Zr, Mo, Sn, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Hf, Ta, W, Th and U) elements were determined by epithermal neutron activation analysis (ENAA) in nine Meridional Carpathian and Macin Mountains samples of igneous and metamorphic rocks. Correlation and principal factor analysis were used to interpret data while natural radionuclides radiometry shows a good correlation with ENAA results. PMID:19231213
Jothi, A Lenin
2009-01-01
Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m
Sabina-Cristiana NECULA
2010-01-01
This paper tries to discuss some findings in mathematical decision-making modeling models with applications in business processes. We start by presenting some technological implications and implementations of decision-making models. After this we discuss some implementations realized by us and that consists in a neural network, a JAVA implementation of the decision-making model, an expert systems-shell implementation and an implementation with ontology and inference engine. The paper ends wit...
Brunetti, Federico Alberto
2014-01-01
It will be soon presented to the public a new version of stereoscopic viewers designed for observing files and video projected images through a system of transparent optical prisms which allow the simultaneous perception of the surrounding environment. The real challenge for applied mathematics and visual design will be to prefigure how to use them and their applications, since these new devices can actually enable a deeper visual experience. A specific case study concerns the visualizations of the collisions at the LHC at CERN, selected to verify the traces of the boson theorized by Francois Englert and Peter Higgs, with Robert Brout, who recently (2013) received the Nobel Prize for their research.
Burger, A.J.
1975-05-26
This memorandum describes some of the ways in which the Time Sharing Option (TSO) is implemented on the 360/75 in the Applied Mathematics Division of Argonne National Laboratory differs from IBM standard TSO under OS/MVT. Differences pertaining to internal modifications to improve performance, reliability, and efficient use of direct access storage, not resulting in any changes to the syntax of any command, are not discussed. This document assumes a basic familiarity with TSO, as may be gained from TSO Terminal User's Guide. (RWR)
Introducing philosophy of mathematics
Friend, Michele
2014-01-01
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc
Virdi, Surinder
2006-01-01
Taking a starting point below that of GCSE level, by assuming no prior mathematical knowledge, Surinder Virdi and Roy Baker take the reader step by step through the mathematical requirements for Level 2 and 3 Building and Construction courses.Unlike the majority of basic level maths texts available, this book focuses exclusively on mathematics as it is applied in actual construction practice. As such, topics specific to the construction industry are presented, as well as essential areas for Level 2 craft NVQs - for example, costing calculations, labor costs, cost of materials and setting out o
Farzin Piltan
2011-10-01
Full Text Available In this study, an on-line tunable gain model free PID-like fuzzy controller (GTFLC is designed for three degrees of freedom (3DOF robot manipulator to rich the best performance. Fuzzy logic controller is studied because of its model free and high performance. Today, robot manipulators are used in unknown and unstructured environment and caused to provide sophisticated systems, therefore strong mathematical tools are used in new control methodologies to design adaptive nonlinear robust controller with acceptable performance (e.g., minimum error, good trajectory, disturbance rejection. The strategies of control robot manipulator are classified into two main groups: classical and non-classical methods, however non linear classical theories have been applied successfully in many applications, but they also have some limitation. One of the most important nonlinear non classical robust controller that can used in uncertainty nonlinear systems, are fuzzy logic controller. This paper is focuses on applied mathematical tunable gain method in robust non classical method to reduce the fuzzy logic controller limitations. Therefore on-line tunable PID like fuzzy logic controller will be presented in this paper.
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Farzin Piltan, N. Sulaiman, Arash Zargari, Mohammad Keshavarz & Ali Badri
2011-10-01
Full Text Available In this study, an on-line tunable gain model free PID-like fuzzy controller (GTFLC is designed forthree degrees of freedom (3DOF robot manipulator to rich the best performance. Fuzzy logiccontroller is studied because of its model free and high performance. Today, robot manipulatorsare used in unknown and unstructured environment and caused to provide sophisticated systems,therefore strong mathematical tools are used in new control methodologies to design adaptivenonlinear robust controller with acceptable performance (e.g., minimum error, good trajectory,disturbance rejection. The strategies of control robot manipulator are classified into two maingroups: classical and non-classical methods, however non linear classical theories have beenapplied successfully in many applications, but they also have some limitation. One of the mostimportant nonlinear non classical robust controller that can used in uncertainty nonlinear systems,are fuzzy logic controller. This paper is focuses on applied mathematical tunable gain method inrobust non classical method to reduce the fuzzy logic controller limitations. Therefore on-linetunable PID like fuzzy logic controller will be presented in this paper.
All the mechanical and electronic components for the zero power splitable machine (the critical facility) arrived in excellent condition from France. Installation began and good progress was made on the mechanical side where the base and tables were successfully assembled and are being adjusted to meet the exacting specification. Power transients arising from the insertion of short reactivity steps were studied for the reactors, HIFAR, MOATA and the critical facility. Some effort was also devoted to the study of blowdown accidents in light water reactors and calculations of some Italian experiments were made successfully. The measurements of fast fission factor and initial conversion ratios for a range of natural uranium heavy water reactors were completed, and good progress is being made with neutron streaming in aluminium-water lattices. Many other investigators of this problem appear to have neglected or given insufficient attention to the case where the neutron beam is parallel to the plates. It is difficult to fit a cosine curve uniquely as coarse and fine features can not be separated. Previous analysis of the moisture content of soils and concrete by neutron scattering was successfully applied to obtain information on the variation of the moisture in large coal stacks as a function of time. This work was done in conjunction with Electricity Commission of N.S.W. Although a small Pu/Be source was found adequate for the above work, development continued on producing neutron pulses by means of a coaxial plasma focus device. Neutron pulses were produced regularly, but the output was variable; the fault was traced to breakdowns at the breech end of the device where restriking occurs. Although discrepancies of about 2% exist between V-bar for spontaneous fission of 252Cf as measured by the liquid scintillation method and by the Manganese bath method, this important quantity is being measured locally using the liquid scintillator method. Preliminary results suggest
2016-01-01
This proceedings consists of 20 papers which have been selected and invited from the submissions to the 4th International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2016) held on 2-3 May, 2016 in Laxenburg, Austria. The conference is organized into 5 sessions: Advanced Optimization Methods and Their Applications, Models for ICT applications, Topics on discrete mathematics, Data Analytic Methods and Applications and Feature Extractio, respectively. All chap...
Principal Experiences of Succession
Steele, Farla Gay
2015-01-01
This multiple case study explored the experiences of school principals and the usefulness of Peters' (2011) succession planning model. Ten purposefully selected principals from varying grade levels were interviewed; none reported a formal succession plan, and all had been assistant principals. The study concluded the assistant principal position…
李一辰; 孟杰; 何辉; 潘迎
2011-01-01
[Objective] Applied principal component analysis in assessing preschool children physical quality in different areas of Beijing. [Methods] Excellent rate of physical quality indicators were studied which including: shuttle run. Standing long jump, throw for distance, eet consecutive jump, seat proneness and walk balance beam by the principal component analysis of preschool children in different areas of Beijing from annual report. [Results] 6 eigenvectors were 4.860,0.691,0. 221,0. 142,0. 058 and 0. 028 with their contribution of 81. 01%,11. 51%, 3. 69%,2. 37%,0. 96%and 0. 47%. The first principal component (Z1) reflected the overall physical quality level of preschool children, such as speed, sensibility, explosive force, throwing power, springing ability, balance ability and so on were better than the others. A sorting order of the principle component scores showed that the preschool children who living in remote counties had better physical quality than whose living in urban areas in Beijing. [Conclusion] Principal component analysis can generalize and reflect the overall level of preschool children physical quality.%[目的]使用主成分分析方法对北京市不同地区学龄前儿童身体素质状况进行综合评价. [方法]选取监测年报中代表各地区3～6岁儿童身体素质单项指标的优秀率作为研究对象,采用统计学中的主成分分析方法进行分析.单项指标分别为10m往返跑、立定跳远、网球掷远、双脚持续跳、坐位体前屈及走平衡木. [结果]六个主成分的特征值依次为4.860、0.691、0.221、0.142、0.058、0.028,其贡献率依次为81.01％、11.51％、3.69％、2.37％、0.96％、0.47％.第一主成分(Z1)能够较好地反映出学龄前儿童的速度与灵敏性、爆发力、投掷力、弹跳力及平衡能力等素质的综合水平.根据主成分分值排序表明:北京市远县学龄前儿童的身体素质优于城区学龄前儿童. [结论]运用主成分分析
Evaluation, Dissemination and Assessment Center, Dallas.
This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…
Evaluation, Dissemination and Assessment Center, Dallas.
This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…
Evaluation, Dissemination and Assessment Center, Dallas.
This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…
Westphael, Henning; Mogensen, Arne
2013-01-01
In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....
Elementary School Principal Effectiveness.
Cross, Ray
A review of research linking elementary principal "antecedents" (defined as traits), behaviors, school conditions, and student outcomes furnishes few supportable generalizations. The studies relating principal antecedents with behavior and principal antecedents with organizational variables reveals that the trait theory of leadership has fared…
利用模糊数学优选深井开拓方案%Applying Fuzzy Mathematical Method to Optimize Deep- well Development Scheme
饶小明; 陈建宏; 郑海力; 杨瑞波
2011-01-01
The optimization of deep - well development scheme is complex problem. Considering the factors influencing the optimization of deep - well development scheme, a fuzzy mathematical model for the optimization of deep - well development scheme was established by use of multi - level fuzzy comprehensive evaluation method, and relative comprehensive evaluation matrix was constructed also. The scheme optimization model of deep - well development was applied to some metal mine, and the determined optimal scheme is ramp and blind shaft development. The implementation of the optimal development scheme resulted better effects such as smaller investment, shorter construction period and good safety, etc. proved that the development scheme is effective, and the scheme optimization method is feasible.%深井开拓方案的优选是一个复杂系统,综合考虑影响深井开拓方案的众多因素,采用多层次模糊综合评判法优选确定深井开拓方案的模糊数学模型,建立综合评判矩阵.将该深井开拓方案优选模型应用到某金属矿山,得出了斜坡道加盲竖井开拓方案为最优方案,实践取得了投资少、工期短、安全性好等显著效果,证明该优选方案是有效的,说明了优选方法的可行性.
Equations of mathematical physics
Tikhonov, A N
2011-01-01
Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri
Surface analysis the principal techniques
Vickerman, John C
2009-01-01
This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c
Frontiers in economic research on petroleum allocation using mathematical programming methods
This paper presents a state of the art of operations research techniques applied in petroleum allocation, namely mathematical programming methods, with principal attention directed toward linear programming and nonlinear programming (including quadratic programming). Contributions to the economics of petroleum allocation are discussed for international trade, industrial organization, regional/macro economics, public finance and natural resource/environmental economics
Redesigning Principal Internships: Practicing Principals' Perspectives
Anast-May, Linda; Buckner, Barbara; Geer, Gregory
2011-01-01
Internship programs too often do not provide the types of experiences that effectively bridge the gap between theory and practice and prepare school leaders who are capable of leading and transforming schools. To help address this problem, the current study is directed at providing insight into practicing principals' views of the types of…
Mathematical problems for chemistry students
Pota, Gyorgy
2006-01-01
Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistry students in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialists of the chemistry-related fields (physicists, mathematicians, biologists, etc.) into the world of the chemical applications. Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, other
Mathematical problems for chemistry students
Pota, Gyorgy
2011-01-01
Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we
Principal Graphs and Manifolds
Gorban, A N
2008-01-01
In many physical statistical, biological and other investigations it is desirable to approximate a system of points by objects of lower dimension and/or complexity. For this purpose, Karl Pearson invented principal component analysis in 1901 and found "lines and planes of closest fit to system of points". The famous k-means algorithm solves the approximation problem too, but by finite sets instead of lines and planes. This chapter gives a brief practical introduction into the methods of construction of general principal objects, i.e. objects embedded in the "middle" of the multidimensional data set. As a basis, the unifying framework of mean squared distance approximation of finite datasets is selected. Principal graphs and manifolds are constructed as generalisations of principal components and k-means principal points. For this purpose, the family of expectation/maximisation algorithms with nearest generalisations is presented. Construction of principal graphs with controlled complexity is based on the grap...
Bundy, Alan
2006-01-01
The Annual Boole Lecture was established and is sponsored by the Boole Centre for Research in Informatics, the Cork Constraint Computation Centre, the Department of Computer Science, and the School of Mathematics, Applied Mathematics and Statistics, at University College Cork. The series in named in honour of George Boole, the first professor of Mathematics at UCC, whose seminal work on logic in the mid-1800s is central to modern digital computing. To mark this great contribution, leaders in ...
Chatterjee, Anindya
2005-01-01
I try to convey some of the variety and excitement involved in the application of mathematics to engineering problems; to provide a taste of some actual mathematical calculations that engineers do; and finally, to make clear the distinctions between the applied subject of engineering and its purer parents, which include mathematics and the physical sciences. Two main points of this article are that in engineering it is approximation, and not truth, that reigns; and that an engineer carries a ...
Structure Analysis of Network Traffic Matrix Based on Relaxed Principal Component Pursuit
Wang, Zhe; Xu, Ke; Yin, Baolin
2011-01-01
The network traffic matrix is a kind of flow-level Internet traffic data and is widely applied to network operation and management. It is a crucial problem to analyze the composition and structure of traffic matrix; some mathematical approaches such as Principal Component Analysis (PCA) were used to handle that problem. In this paper, we first argue that PCA performs poorly for analyzing traffic matrixes polluted by large volume anomalies, then propose a new composition model of the network traffic matrix. According to our model, structure analysis can be formally defined as decomposing a traffic matrix into low-rank, sparse, and noise sub-matrixes, which is equal to the Robust Principal Component Analysis (RPCA) problem defined in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, an iterative algorithm for decomposing a traffic matrix is presented, and our experiment results demonstrate its efficiency and flexibility. At last, f...
Dana Bednářová
2009-03-01
actively and accept the responsibility for their development. Additional investigation is needed in order to estimate the contribution of the Gestalt approach to different age groups and at various performance levels. Further research might also be directed towards applying Gestalt coaching principles, used in organizations, in working with team sports. Článek prezentuje základní teoretické principy Gestalt terapie (GT a hledá možnosti jejich aplikace ve sportovní psychologii. GT (Perls, Heff erline, & Goodman, 2004 vychází z existenciálně-fenomenologických základů, teorie pole, existenciálního dialogu a předpokladu, že lidé se rodí s přirozenou tendencí k osobnostnímu rozvoji. V druhé části příspěvku je uveden příklad použití rámce GT v rozboru výkonů orientační běžkyně dorosteneckého věku. Předpokládali jsme, že dorostenka může lépe pochopit své silné a slabé stránky, pokud bude podporována, aby si uvědomila souvislost svých reakcí při úspěšných a neúspěšných výkonech. Vzhledem k relevantnosti výzkumného tématu pouze pro úzce specifikovanou skupinu osob byl proveden záměrný výběr výzkumného souboru (Giorgi, 2005; Stake, 2005. V této studii je participantem šestnáctiletá orientační běžkyně, která dosáhla medailových pozic v národních i mezinárodních závodech. Za použití GT principů byl proveden fenomenologický rozhovor (Pollio, Henley, & Thompson, 1997. Z rozhovoru vyplývá, že GT techniky napomohly dorostence profitovat ze zkušeností z úspěšných i neúspěšných výkonů. Sama identifikovala rozpor mezi nimi a došla k tomu, že navigační strategie podle záchytných bodů (krok za krokem podporuje její dobrý výkon. I přesto, že jí trenéři tuto taktiku radili již dříve, považujeme v tomto případě za klíčové, že ji uchopila dorostenka sama a pochopila její konkrétní použití ve svém individuálním případě (místo přijímání rad na
Bozman, Charles E., Sr.
2011-01-01
The purpose of the study was to determine the relationship between the principals' leadership behavioral style, teacher' efficacious beliefs, and teachers' trust in the principal to the schools' graduation rate, the ACT and TCAP writing assessment school-wide averages, and the AYP English/reading and AYP mathematics school-wide. Working on the…
Brief Lecture Notes on Self-Referential Mathematics, and Beyond
Rosinger, Elemer E.
2009-01-01
Recently delivered lectures on Self-Referential Mathematics, [2], at the Department of Mathematics and Applied Mathematics, University of Pretoria, are briefly presented. Comments follow on the subject, as well as on Inconsistent Mathematics.
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
Patricia Tholon
2009-10-01
biological interpretation of parameters. Studies involving modeling and description of growth curve and their components are described in literature, but, there is no selection programs applied to the growth curve shape. The importance of determinating the parameters of growth curve models is more relevant when considering that most of the genetic gains for growth traits are related to selection, on weights near to the inflexion point. Often, selection to fast growth is important in all breeding programs, and could be based on genetic parameters of the growth curve parameters. These parameters are related to important productive and reproductive traits, and present different values, according to specie, sex and models used in evaluation. Alternatively, other methodology used is random regression models, allowing graduation changes in (co variances between ages during the time and predicting (covariances during the studied trajectory. The use of random regression models has the advantage to allow the partition of phenotypic growth curve (covariance in its different genetic additive and the permanent environment effects, using random regression coefficients for each different effect. This review aimed at summarizing the main frequentists mathematical models used in the studies of growth curves in birds, emphasizing those applied to estimate genetic and phenotypic parameters.
García-Rojo Gambín, Ana María; Martínez Sánchez, Ana Isabel; López Fernández, Rafael; García de la Vega, José Manuel; Rica Matea, Mario; González, Mariano; Disney, R.H.L.
2013-01-01
We present a forensic case associated with skeletonized human remains found inside a cistern in a coastal town located in the eastern Iberian Peninsula (Valencian Regional Government, Spain). In order to analyse the particular environmental conditions that occurred during oviposition and development of the collected insects, estimated temperatures at the crime scene were calculated by a predictive mathematical model. This model analyses the correlation between the variability of the internal ...
Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie
2016-08-01
Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch–Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.
Mathematical Footprints Discovering Mathematics Everywhere
Pappas, Theoni
1999-01-01
MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent
The fundamentals of mathematical analysis
Fikhtengol'ts, G M
1965-01-01
The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i
Easy mathematics for biologists
Foster, Peter C
2014-01-01
Because elementary mathematics is vital to be able to properly design biological experiments and interpret their results. As a student of the life sciences you will only make your life harder by ignoring mathematics entirely. Equally, you do not want to spend your time struggling with complex mathematics that you will never use. This book is the perfect answer to your problems. Inside, it explains the necessary mathematics in easy-to-follow steps, introducing the basics and showing you how to apply these to biological situations. Easy Mathematics for Biologists covers the basic mathematical ideas of fractions, decimals and percentages, through ratio and proportion, exponents and logarithms, to straight line graphs, graphs that are not straight lines, and their transformation. Direct application of each of these leads to a clear understanding of biological calculations such as those involving concentrations and dilutions, changing units, pH, and linear and non-linear rates of reaction. Each chapter contains wo...
Nash, Jr, John Forbes
2016-01-01
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...
Reys, Robert; Reys, Rustin
2011-01-01
In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…
Mathematics as verbal behavior.
Marr, M Jackson
2015-04-01
"Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. PMID:25595115
Introduction to mathematical logic
Mendelson, Elliott
2015-01-01
The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th
Mathematical modelling of metabolism
Gombert, Andreas Karoly; Nielsen, Jens
2000-01-01
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new process...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology.......Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...
Experimental Mathematics and Computational Statistics
Bailey, David H.; Borwein, Jonathan M.
2009-04-30
The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.
Multiscale principal component analysis
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between data projections. This definition opens up more flexibility in the analysis of principal components which is useful in enhancing PCA. In this paper we introduce scales into PCA by maximizing only the sum of pairwise distances between projections for pairs of datapoints with distances within a chosen interval of values [l,u]. The resulting principal component decompositions in Multiscale PCA depend on point (l,u) on the plane and for each point we define projectors onto principal components. Cluster analysis of these projectors reveals the structures in the data at various scales. Each structure is described by the eigenvectors at the medoid point of the cluster which represent the structure. We also use the distortion of projections as a criterion for choosing an appropriate scale especially for data with outliers. This method was tested on both artificial distribution of data and real data. For data with multiscale structures, the method was able to reveal the different structures of the data and also to reduce the effect of outliers in the principal component analysis
PRINCIPAL ISOTOPE SELECTION REPORT
Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM)
Mastering mathematics for OCR GCSE
Lambert, Elaine
2015-01-01
Build your students' knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts; with resources developed specifically for the OCR GCSE 2015 specification by mathematics subject specialists experienced in teaching and examining GCSE. - Supports you and your students through the new specifications, with topic explanations and new. exam-style questions, written in line with the new assessment objectives. - Measure progress and assess learning throughout the cour
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...
Mathematics disorder is a condition in which a child's math ability is far below normal for their ... Children who have mathematics disorder have trouble with simple ... disorder may appear with: Developmental coordination ...
Projected principal component analysis in factor models
Fan, Jianqing; Liao, Yuan; Wang, Weichen
2014-01-01
This paper introduces a Projected Principal Component Analysis (Projected-PCA), which employees principal component analysis to the projected (smoothed) data matrix onto a given linear space spanned by covariates. When it applies to high-dimensional factor analysis, the projection removes noise components. We show that the unobserved latent factors can be more accurately estimated than the conventional PCA if the projection is genuine, or more precisely, when the factor loading matrices are r...
Trinajstić, Nenad; Gutman, Ivan
2002-01-01
A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...
Principals as Cultural Leaders
Louis, Karen Seashore; Wahlstrom, Kyla
2011-01-01
Principals have a strong role to play in forming school cultures that encourage change. Changing a school's culture requires shared or distributed leadership and instructional leadership. A multiyear study found that three elements are necessary for a school culture that stimulates teachers to improve their instruction: 1) Teachers and…
Principals as Classroom Leaders
Bunting, Carolyn
2007-01-01
The author suggests five ways in which busy principals can indirectly demonstrate their classroom leadership by encouraging teacher specialization, giving teachers opportunities to present case studies of at-risk students, building a diverse intellectual climate, instituting an idea exchange, and scheduling time for teachers to openly discuss a…
Principal noncommutative torus bundles
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the...
Advanced engineering mathematics
Jeffrey, Alan
2001-01-01
Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...
Kilpatrick, Jeremy
2014-01-01
This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…
Noncommutative principal torus bundles via parametrised strict deformation quantization
Hannabuss, Keith; Mathai, Varghese
2009-01-01
In this paper, we initiate the study of a parametrised version of Rieffel's strict deformation quantization. We apply it to give a classification of noncommutative principal torus bundles, in terms of parametrised strict deformation quantization of ordinary principal torus bundles. The paper also contains a putative definition of noncommutative non-principal torus bundles.
Panza, Marco
2003-01-01
The aim I am pursuing here is to describe some general aspects of mathematical proofs. In my view, a mathematical proof is a warrant to assert a non-tautological statement which claims that certain objects (possibly a certain object) enjoy a certain property. Because it is proved, such a statement is a mathematical theorem. In my view, in order to understand the nature of a mathematical proof it is necessary to understand the nature of mathematical objects. If we understand them as external e...
García-Rojo, A M; Martínez-Sánchez, A; López, R; García de la Vega, J M; Rica, M; González, M; Disney, R H L
2013-09-10
We present a forensic case associated with skeletonized human remains found inside a cistern in a coastal town located in the eastern Iberian Peninsula (Valencian Regional Government, Spain). In order to analyse the particular environmental conditions that occurred during oviposition and development of the collected insects, estimated temperatures at the crime scene were calculated by a predictive mathematical model. This model analyses the correlation between the variability of the internal temperature depending on the variability of the external ones. The amplitude of the temperature oscillations inside the tank and the containment of the enclosure is reduced by the presence of water. Such variation occurred within about 2h due to the time required for heat exchange. The differential equations employed to model differences between outdoor and indoor temperatures were an essential tool which let us estimate the post-mortem interval (PMI) that was carried out by the study of the insect succession and the development time of the collected Diptera specimens under the adjusted temperatures. The presence of live larvae and pupae of Sarcophagidae and empty pupae of Calliphoridae, Sarcophagidae, Fanniidae, Muscidae, Phoridae and Piophilidae and the decomposition stage suggested the possibility that the remains were in the tank at least a year. We highlight the absence of Calliphora and Lucilia spp., and the first occurrence of the phorid Conicera similis in a human cadaver among the entomological evidence. PMID:23845917
Mathematical modelling techniques
Aris, Rutherford
1995-01-01
""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...
Astronomy and Mathematics Education
Ros, Rosa M.
There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.
Northeastern Mathematical Journal Aims and Scope
无
2004-01-01
Northeastern Mathematical Journal (NMJ) is a comprehensive mathematical journal carrying original papers on pure and applied mathematics. It started publication in September, 1985, and appears quarterly. The primary purpose is to present latest achievements in mathematical research and to promote national and international academic exchange.
Northeastern Mathematical Journal Aims and Scope
无
2005-01-01
Northeastern Mathematical Journal (NMJ) is a comprehensive mathematical journal carrying original papers on pure and applied mathematics. It started publication in September, 1985, and appears quarterly. The primary purpose is to present latest achievements in mathematical research and to promote national and international academic exchange, The Editorial Committee of NMJ consists of 49 members from different parts and units of China.
Sanchez Lopez, Hector [Universidad de Oriente, Santiago de Cuba (Cuba). Centro de Biofisica Medica]. E-mail: hsanchez@cbm.uo.edu.cu
2001-08-01
This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)
Tables of the principal unitary representations of Fedorov groups
Faddeyev, D K
1961-01-01
Tables of the Principal Unitary Representations of Fedorov Groups contains tables of all the principal representations of Fedorov groups from which all irreducible unitary representations can be obtained with the help of some standard operations. The work originated at a seminar on mathematical crystallography held in 1952-1953 at the Faculty of Mathematics and Mechanics of the Leningrad State University. The book is divided into two parts. The first part discusses the relation between the theory of representations and the generalized Fedorov groups in Shubnikov's sense. It shows that all un
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Nuclear physics mathematical methods
The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity
Mathematical modelling of scour: A review
Sumer, B. Mutlu
2007-01-01
A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers/piles and pipeli...
Stroud, K A
2013-01-01
A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.
Principal Contradictions and Changes
Wang Zaibang
2006-01-01
@@ The September 11 terrorist attacks are the most notable events that occurred since the end of the Cold War. It is not only a logical outcome of world development post Cold War but is also an important variable influencing world development. In order to evaluate the influence of the development of the international relations in these five years, the international background after the Cold War must be taken into consideration and the characteristics and changes of the three principal contradictions described below need to be understood.
Mediation analysis with principal stratification.
Gallop, Robert; Small, Dylan S; Lin, Julia Y; Elliott, Michael R; Joffe, Marshall; Ten Have, Thomas R
2009-03-30
In assessing the mechanism of treatment efficacy in randomized clinical trials, investigators often perform mediation analyses by analyzing if the significant intent-to-treat treatment effect on outcome occurs through or around a third intermediate or mediating variable: indirect and direct effects, respectively. Standard mediation analyses assume sequential ignorability, i.e. conditional on covariates the intermediate or mediating factor is randomly assigned, as is the treatment in a randomized clinical trial. This research focuses on the application of the principal stratification (PS) approach for estimating the direct effect of a randomized treatment but without the standard sequential ignorability assumption. This approach is used to estimate the direct effect of treatment as a difference between expectations of potential outcomes within latent subgroups of participants for whom the intermediate variable behavior would be constant, regardless of the randomized treatment assignment. Using a Bayesian estimation procedure, we also assess the sensitivity of results based on the PS approach to heterogeneity of the variances among these principal strata. We assess this approach with simulations and apply it to two psychiatric examples. Both examples and the simulations indicated robustness of our findings to the homogeneous variance assumption. However, simulations showed that the magnitude of treatment effects derived under the PS approach were sensitive to model mis-specification. PMID:19184975
Attitude towards mathematics of computer engineering students
Maz-Machado, Alexander; León-Mantero, Carmen; Casas, Jose Carlos; Renaudo, Juan Antonio
2015-01-01
There are several factors, which influence people’s perception and valuation of different branches of knowledge and particularly of mathematics. This paper reports a study, which investigated the attitudes towards mathematics of computer engineering students. Likert scale test was applied to analyze the attitudes towards mathematics widely used in mathematics education. The results of this research showed that students consider mathematics to be useful, but at the same time com...
Mayari, R.; Espinosa, M. C.; Ruiz, M. [Centro Nacional de Investigaciones Ceintificas. La Habana (Cuba); Romero, E. [Universidad de Huelva (Spain)
2000-07-01
This work shows as specific methodology for the determination of dissolved oxygen in saline waters that allows to consider the variations of temperature and of concentration of salts. Both factors influence the solubility of the gases in water, making possible in place measurements, in bodies of water with content of salts unto of the concentration of sea water, with greater dependability. The mathematical models obtained are shown, the errors due to equipment, as well as the results obtained when applying this methodology in saline waters with diverse levels of contamination this allows to discern when the decrease of dissolved oxygen levels is due to an increase in the salinity or to an increase in the contamination of the water body. (Author) 7 refs.
Modern problems in insurance mathematics
Martin-Löf, Anders
2014-01-01
This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance, and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.
Principals' Supervision and Evaluation Cycles: Perspectives from Principals
Hvidston, David J.; McKim, Courtney Ann; Mette, Ian M.
2016-01-01
The goals for this quantitative study were to examine principals' perceptions regarding supervision and evaluation within their own evaluations. Three research questions guided the inquiry: (1) What are the perceptions of principals' regarding their own supervision?; (2) What are the perceptions of principals' regarding their own evaluation?; and…
The Mathematical Basis of Mendelian Genetics
Dudley, B.
1972-01-01
Applies set theory to the mono- and dihybrid Mendelian genetic crosses, multiple allelism, sex linkage, and linkage to show the application of mathematics to biology teaching (and of biology examples to mathematics instruction). (AL)
袁嘉芮
2015-01-01
阐述了少儿志愿者活动中存在的问题，基于应用行为分析之强化原理，探讨了针对少儿心理行为特点建立激励策略的措施。%ABSTRACT:This paper expounds some problems existing in children’s volunteer activities, and based on the reinforcement principal of applied behavior analysis, probes into the measures for establishing the motivation strategies in the light of children’s psychological behavior characteristics.
Prochazka, Helen
2004-01-01
One section of this "scrapbook" section describes Pythagoras' belief in the connections between music and mathematics -- that everything in the universe was a series of harmonies and regulated by music. Another section explains why Phythagoras felt it important for women to be encouraged to learn mathematics. At least 28 women were involved in his…
Thurston, William P.
2005-01-01
This essay, originally published in the Sept 1990 Notices of the AMS, discusses problems of our mathematical education system that often stem from widespread misconceptions by well-meaning people of the process of learning mathematics. The essay also discusses ideas for fixing some of the problems. Most of what I wrote in 1990 remains equally applicable today.
Kleene, Stephen Cole
2002-01-01
Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.
Generalized principal component analysis
Vidal, René; Sastry, S S
2016-01-01
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts ...
Functional Principal Components direction to cluster earthquake
Adelfio, Giada; Chiodi, Marcello; D'Alessandro, Antonino; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Luzio, Dario
2010-01-01
Looking for curves similarity could be a complex issue characterized by subjective choices related to continuous transformations of observed discrete data (Chiodi, 1989). In this paper we combine the aim of finding clusters from a set of individual curves to the functional nature of data, applying a variant of a k-means algorithm based on the principal component rotation of data. We apply a classical clustering method to rotated data, according to the direction of maximum variance...
Mastering mathematics for Edexcel GCSE
Davis, Heather; Liggett, Linda
2015-01-01
Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty
School Principals' Emotional Coping Process
Poirel, Emmanuel; Yvon, Frédéric
2014-01-01
The present study examines the emotional coping of school principals in Quebec. Emotional coping was measured by stimulated recall; six principals were filmed during a working day and presented a week later with their video showing stressful encounters. The results show that school principals experience anger because of reproaches from staff…
Principals' Relationship with Computer Technology
Brockmeier, Lantry L.; Sermon, Janet M.; Hope, Warren C.
2005-01-01
This investigation sought information about principals and their relationship with computer technology. Several questions were fundamental to the inquiry. Are principals prepared to facilitate the attainment of technology's promise through the integration of computer technology into the teaching and learning process? Are principals prepared to use…
Using History to Teach Mathematics: The Case of Logarithms
Panagiotou, Evangelos N.
2011-01-01
Many authors have discussed the question "why" we should use the history of mathematics to mathematics education. For example, Fauvel ("For Learn Math," 11(2): 3-6, 1991) mentions at least fifteen arguments for applying the history of mathematics in teaching and learning mathematics. Knowing "how" to introduce history into mathematics lessons is a…