WorldWideScience

Sample records for antioxidant treatment alters

  1. Rationale for dietary antioxidant treatment of ADHD

    NARCIS (Netherlands)

    Verlaet, Annelies A.J.; Maasakkers, Carlijn M.; Hermans, Nina; Savelkoul, Huub F.J.

    2018-01-01

    Increasing understanding arises regarding disadvantages of stimulant medication in children with ADHD (Attention-Deficit Hyperactivity Disorder). This review presents scientific findings supporting dietary antioxidant treatment of ADHD and describes substantial alterations in the immune system,

  2. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  3. Oxidant and antioxidant parameters in the treatment of meningitis.

    Science.gov (United States)

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Ocak, Ali Riza

    2007-08-01

    The aim of this study was to assess the effects of meningitis treatment on the serum and cerebrospinal-fluid oxidant and antioxidant status in children with bacterial meningitis. Forty children with bacterial meningitis, at ages ranging from 4 months to 12 years (mean age, 4 years), were enrolled in the study. Within 8 hours after admission (before treatment) and 10 days after clinical and laboratory indications of recovery (after treatment), cerebrospinal fluid and venous blood were collected. Thirty-seven healthy children (mean age, 4 years) were enrolled as control subjects, and only venous blood was collected. Serum total oxidant status, lipid hydroperoxide, oxidative stress index, uric acid, albumin, and ceruloplasmin levels were lower in the patient group after treatment (Ptotal antioxidant capacity levels, vitamin C, total bilirubin, and catalase concentrations were not significantly altered by treatment (P>0.05). However, cerebrospinal fluid total oxidant status, lipid hydroperoxide, and oxidative stress index levels were higher, and cerebrospinal fluid total antioxidant capacity levels were lower after treatment than before treatment (P<0.05). In conclusion, we demonstrated that serum oxidative stress was lower, and cerebrospinal fluid oxidative stress was higher, after rather than before treatment in children with bacterial meningitis.

  4. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  5. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Total anti-oxidant capacity of saliva in chronic periodontitis patients before and after periodontal treatment.

    Science.gov (United States)

    Shirzaiy, M; Ansari, S M; Dehghan, J H; Ghaeni, S H

    2014-01-01

    Periodontal disease is among the most common inflammatory conditions which is associated with many different factors. One of the contributing factors to the pathogenesis of this condition may compromise the defensive mechanism of antioxidants. The present study evaluates the antioxidant capacity of saliva in periodontal patients before and after periodontal treatment. In this cross sectional study, 31 patients systemically healthy non smokers with chronic periodontitis were recruited. The antioxidant capacity of saliva was measured before the initial phase of periodontal therapy and after completion of the treatment. Data were analyzed using SPSS 19 software. Paired T-Test, Independent sample T-test and ANOVA tests were used as appropriated. The mean and standard deviation antioxidant capacity of the saliva after the treatment.(0.962± 0.287µM)was significantly higher than before the treatment (0.655 ± 0.281 µM ,pperiodontal treatment was higher among men than among women; however, the difference was not significant (P=0.07). The mean difference of salivary antioxidant capacity was not significantly differed among different ages (P=0.772). The antioxidant capacity of saliva was higher after periodontal therapy among patients with periodontal disease, however the change was not varied across the ages and gender. Therefore, the alterations in the defensive mechanism of antioxidants could be the key factors contribute to the pathogenesis of periodontal diseases.

  7. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Directory of Open Access Journals (Sweden)

    Emilio A Herrera

    2010-02-01

    Full Text Available Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects.Male rat pups received a course of dexamethasone (Dex, or Dex with vitamins C and E (DexCE, on postnatal days 1-6 (P1-6. Controls received vehicle (Ctrl or vehicle with vitamins (CtrlCE. At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05. Constrictor responses to phenylephrine (PE and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05; effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05. Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05; however, this effect was not restored in DexCE (68.3+/-8.3, AUC. Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05.Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.

  8. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  9. Pre-harvest UV-C irradiation triggers VOCs accumulation with alteration of antioxidant enzymes and phytohormones in strawberry leaves.

    Science.gov (United States)

    Xu, Yanqun; Luo, Zisheng; Charles, Marie Thérèse; Rolland, Daniel; Roussel, Dominique

    2017-11-01

    Recent studies have highlighted the biological and physiological effects of pre-harvest ultraviolet (UV)-C treatment on growing plants. However, little is known about the involvement of volatile organic compounds (VOCs) and their response to this treatment. In this study, strawberry plants were exposed to three different doses of UV-C radiation for seven weeks (a low dose: 9.6kJm -2 ; a medium dose: 15kJm -2 ; and a high-dose: 29.4kJm -2 ). Changes in VOC profiles were investigated and an attempt was made to identify factors that may be involved in the regulation of these alterations. Principle compounds analysis revealed that VOC profiles of UV-C treated samples were significantly altered with 26 VOCs being the major contributors to segregation. Among them, 18 fatty acid-derived VOCs accumulated in plants that received high and medium dose of UV-C treatments with higher lipoxygenase and alcohol dehydrogenase activities. In treated samples, the activity of the antioxidant enzymes catalase and peroxidase was inhibited, resulting in a reduced antioxidant capacity and higher lipid peroxidation. Simultaneously, jasmonic acid level was 74% higher in the high-dose group while abscisic acid content was more than 12% lower in both the medium and high-dose UV-C treated samples. These results indicated that pre-harvest UV-C treatment stimulated the biosynthesis of fatty acid-derived VOCs in strawberry leaf tissue by upregulating the activity of enzymes of the LOX biosynthetic pathway and downregulating antioxidant enzyme activities. It is further suggested that the mechanisms underlying fatty acid-derived VOCs biosynthesis in UV-C treated strawberry leaves are associated with UV-C-induced changes in phytohormone profiles. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  10. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  12. UBC-Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea level or high altitude.

    Science.gov (United States)

    Hansen, Alexander B; Hoiland, Ryan L; Lewis, Nia C S; Tymko, Michael M; Tremblay, Joshua C; Stembridge, Michael; Nowak-Flück, Daniela; Carter, Howard H; Bailey, Damian M; Ainslie, Philip N

    2018-04-01

    What is the central question of the study? Does the use of antioxidants alter cerebrovascular function and blood flow at sea level (344 m) and/or high altitude (5050 m)? What is the main finding and its importance? This is the first study to investigate whether antioxidant administration alters cerebrovascular regulation and blood flow in response to hypercapnia, acute hypoxia and chronic hypoxia in healthy humans. We demonstrate that an acute dose of antioxidants does not alter cerebrovascular function and blood flow at sea level (344 m) or after 12 days at high altitude (5050 m). Hypoxia is associated with an increase in systemic and cerebral formation of free radicals and associated reactants that may be linked to impaired cerebral vascular function and neurological sequelae. To what extent oral antioxidant prophylaxis impacts cerebrovascular function in humans throughout the course of acclimatization to the hypoxia of terrestrial high altitude has not been examined. Thus, the purpose of the present study was to examine the influence of orally ingested antioxidants at clinically relevant doses (vitamins C and E and α-lipoic acid) on cerebrovascular regulation at sea level (344 m; n = 12; female n = 2 participants) and at high altitude (5050 m; n = 9; female n = 2) in a randomized, placebo-controlled and double-blinded crossover design. Hypercapnic and hypoxic cerebrovascular reactivity tests of the internal carotid artery (ICA) were conducted at sea level, and global and regional cerebral blood flow (CBF; i.e. ICA and vertebral artery) were assessed 10-12 days after arrival at 5050 m. At sea level, acute administration of antioxidants did not alter cerebral hypoxic cerebrovascular reactivity (pre versus post: 1.5 ± 0.7 versus 1.2 ± 0.8%∆CBF/-%∆SpO2; P = 0.96) or cerebral hypercapnic cerebrovascular reactivity (pre versus post: 5.7 ± 2.0 versus 5.8 ± 1.9%∆CBF/∆mmHg; P = 0.33). Furthermore, global CBF (P = 0.43) and

  13. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  14. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment

    Directory of Open Access Journals (Sweden)

    Aarron Phensy

    2017-06-01

    Full Text Available Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH precursor N-acetyl-cysteine (NAC can prevent the development of these behavioral deficits. On postnatal days (PND 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg of ketamine or saline. Two groups (either ketamine or saline treated also received NAC throughout development. In adult animals (PND 70–120 we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

  15. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  16. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve

    Directory of Open Access Journals (Sweden)

    Zsolt Radak

    2017-08-01

    Full Text Available It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve.

  17. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2015-11-01

    Full Text Available Overproduction of oxidants (reactive oxygen species and reactive nitrogen species in the human body is responsible for the pathogenesis of some diseases. The scavenging of these oxidants is thought to be an effective measure to depress the level of oxidative stress of organisms. It has been reported that intake of vegetables and fruits is inversely associated with the risk of many chronic diseases, and antioxidant phytochemicals in vegetables and fruits are considered to be responsible for these health benefits. Antioxidant phytochemicals can be found in many foods and medicinal plants, and play an important role in the prevention and treatment of chronic diseases caused by oxidative stress. They often possess strong antioxidant and free radical scavenging abilities, as well as anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative diseases. This review summarizes recent progress on the health benefits of antioxidant phytochemicals, and discusses their potential mechanisms in the prevention and treatment of chronic diseases.

  18. Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1. We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1, and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.

  19. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B.

    Science.gov (United States)

    Huang, Yansong; Zhang, Yuan; Lin, Zhexuan; Han, Ming; Cheng, Hongqiu

    2018-06-01

    Copper homeostasis can be altered by inflammation. This study aimed to investigate the alteration of serum copper homeostasis and to explore its clinical significance in patients with chronic hepatitis B (CHB).Thirty-two patients with CHB and 10 aged- and sex-matched healthy controls were recruited. Analyses included serum levels of total copper (TCu), copper ions (Cu), small molecule copper (SMC), ceruloplasmin (CP), Cu/Zn superoxide dismutase 1 (SOD1), urinary copper, and the activities of serum CP and SOD1.The serum TCu and urinary copper levels in patients with CHB were significantly higher than the controls (P = .04 and .003), while the serum Cu was lower than the controls (P = .0002). CP and SOD1 activities in the serum were significantly lower in patients with CHB compared to controls (P = .005) despite higher serum concentrations. In addition, serum alanine aminotransferase inversely correlated with serum CP activity (P = .0318, r = -0.4065).Serum copper homeostasis was altered in this cohort of patients with CHB. The results suggest increased oxidative stress and impaired antioxidant capability in patients with CHB, in addition to necroinflammation. These results may provide novel insights into the diagnosis and treatment of patients with CHB.

  20. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat

    Directory of Open Access Journals (Sweden)

    L.G.A. Chuffa

    2011-03-01

    Full Text Available Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g, were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1 both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05. Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2% and estrous cycle remained extensive (26.7%, arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9% and total antioxidant substances were enhanced within the ovaries (23.9%. Additionally, melatonin increased superoxide dismutase (21.3%, catalase (23.6% and glutathione-reductase (14.8% activities and the reducing power (10.2% GSH/GSSG ratio. We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

  1. Influence of drying treatments on antioxidant capacity of forage legume leaves.

    Science.gov (United States)

    Sang, Saw Yei; Jamharee, Fazrina; Prasad, K Nagendra; Azlan, Azrina; Maliki, Nurzillah

    2014-05-01

    This study was aimed to investigate the antioxidant capacities of four common forage legume leaves namely, Arachis pintoi (Pintoi), Calapogonium mucunoides (Calapo), Centrosema pubescens (Centro), and Stylosanthes guanensis (Stylo). Two different drying methods (oven-drying and freeze-drying) were employed and antioxidant activities were determined by DPPH, Ferric Reducing Antioxidant Power (FRAP) and β-carotene bleaching assays. Total phenolic content (TPC) was determined using Folin-Ciocalteu assay. Freeze-dried extract showed the highest antioxidant activities by DPPH (EC50 values 1.17-2.13 mg/ml), FRAP (147.08-246.42 μM of Fe(2+)/g), and β-carotene bleaching (57.11-78.60%) compared to oven drying. Hence, freeze drying treatment could be considered useful in retention of antioxidant activity and phenolic content.

  2. Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa

    Science.gov (United States)

    Martínez-Fernández de la Cámara, Cristina; Salom, David; Sequedo, Ma Dolores; Hervás, David; Marín-Lambíes, Cristina; Aller, Elena; Jaijo, Teresa; Díaz-LLopis, Manuel; Millán, José María; Rodrigo, Regina

    2013-01-01

    Retinitis Pigmentosa is a common form of hereditary retinal degeneration constituting the largest Mendelian genetic cause of blindness in the developed world. It has been widely suggested that oxidative stress possibly contributes to its pathogenesis. We measured the levels of total antioxidant capacity, free nitrotyrosine, thiobarbituric acid reactive substances (TBARS) formation, extracellular superoxide dismutase (SOD3) activity, protein, metabolites of the nitric oxide/cyclic GMP pathway, heme oxygenase-I and inducible nitric oxide synthase expression in aqueous humor or/and peripheral blood from fifty-six patients with retinitis pigmentosa and sixty subjects without systemic or ocular oxidative stress-related disease. Multivariate analysis of covariance revealed that retinitis pigmentosa alters ocular antioxidant defence machinery and the redox status in blood. Patients with retinitis pigmentosa present low total antioxidant capacity including reduced SOD3 activity and protein concentration in aqueous humor. Patients also show reduced SOD3 activity, increased TBARS formation and upregulation of the nitric oxide/cyclic GMP pathway in peripheral blood. Together these findings confirmed the hypothesis that patients with retinitis pigmentosa present reduced ocular antioxidant status. Moreover, these patients show changes in some oxidative-nitrosative markers in the peripheral blood. Further studies are needed to clarify the relationship between these peripheral markers and retinitis pigmentosa. PMID:24069283

  3. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.

    Science.gov (United States)

    Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław

    2017-05-14

    The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  4. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione.

    Science.gov (United States)

    Carpentieri, A; Marchionatti, A; Areco, V; Perez, A; Centeno, V; Tolosa de Talamoni, N

    2014-02-01

    The intestinal Ca²⁺ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca²⁺ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca²⁺ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca²⁺ absorption in certain gut disorders that occur with oxidative stress and apoptosis.

  5. Alteration in antioxidant potential of spinacia oleracea in response to selected plant growth regulators

    International Nuclear Information System (INIS)

    Aslam, M.; Sultana, B.; Ali, S.; Rehman, K.U.

    2013-01-01

    The spinach (Spinacia oleracea) plants treated with certain seed priming (bio-fertilizer and Humic acid) and foliar treatments (Humic acid, Moringa leaf extract, 6-Benzyl amino purine etc.) were tested for total phenolic content and the antioxidant activity. Methanolic extracts of all spinach samples were assessed performing three different protocols including Folin-Ciocalteu, reducing power and DPPH radical scavenging assays. TPC value ranged 4.678-13.236 mg GAE/g of dry matter. Reducing power assay showed values (absorbance at lambda max=700nm) in the range of 0.351-1.874 at 10 mg/mL extract concentration. The range of IC 50 values in DPPH radical scavenging assay was 0.499-1.063 mu g/mL extract concentration. The one way ANOVA under CRD showed significant differences among treatments. Among various plant growth regulators, fresh Moringa leaf extract proved as the potent enhancer of antioxidant activity of spinach leaves. (author)

  6. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    Science.gov (United States)

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  7. Findings on sperm alterations and DNA fragmentation, nutritional, hormonal and antioxidant status in an elite triathlete. Case report

    Directory of Open Access Journals (Sweden)

    D. Vaamonde

    2014-12-01

    Conclusions: In this high-intensity endurance athlete, sperm parameters, mainly sperm morphology and DNA fragmentation, are altered. Further knowledge is needed with regards nutritional antioxidant intake and other dietetic strategies oriented toward avoiding oxidative damage in semen of high-performance triathletes. Moreover, adequate nutritional strategies must be found and nutritional advice given to athletes so as to palliate or dampen the effects of exercise on semen quality.

  8. Antioxidants from diet or supplements do not alter inflammatory markers in adults with cardiovascular disease risk. A pilot randomized controlled trial.

    Science.gov (United States)

    Dewell, Antonella; Tsao, Philip; Rigdon, Joseph; Gardner, Christopher D

    2018-02-01

    Antioxidants have been reported to have anti-inflammatory effects, but there is a lack of research comparing food to supplement antioxidant sources. The aim of this study was to determine if increases in intake of foods naturally rich in antioxidants would lower blood levels of inflammatory markers more than consuming antioxidant supplements among adults with cardiovascular disease risk factors. Eighty-eight generally healthy adults with ≥1 elevated risk factor for cardiovascular disease were randomized in a single-blind (diets)/double-blind (supplements), parallel-group study for 8 weeks. Participants consumed (1) usual diet and placebo pills (n = 29), (2) usual diet and antioxidant supplements (n = 29), or (3) antioxidant-rich foods closely matched to antioxidant content of supplements and placebo (n = 30). Usual diet combined with antioxidant supplements or increased antioxidant-rich food intake was designed to approximately double daily habitual antioxidant intake. Antioxidant pills included carotenoids, mixed tocopherols, vitamin C, and selenium. Fasting blood samples were analyzed for inflammatory marker concentrations of interleukin-6, monocyte chemotactic protein-1, and soluble intercellular adhesion molecule-1. Participants in the intervention groups successfully doubled most antioxidants as verified by diet records and elevated blood concentrations in treatment groups. Baseline levels of inflammatory markers for the entire study group were 110 ± 65 pg/mL for monocyte chemotactic protein-1, 0.9 ± 0.7 pg/mL for interleukin-6, and 217 ± 56 ng/mL for soluble intercellular adhesion molecule-1 (means ± standard deviation) and did not differ by treatment arm. After 8 weeks, there were no significant within-group changes or between-group 8-week change differences in inflammatory marker concentrations. In conclusion, no beneficial effects were detected on the inflammatory markers investigated in response to antioxidants from foods or supplements. Copyright

  9. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    contractile dysfunction. Finally, the transgenic overexpression of independent endogenous antioxidants alters diaphragm skeletal muscle morphology, and these changes may also contribute to the diminished specific force production observed in these animals. PMID:19783618

  10. Effects of pectolytic enzyme treatment and microfiltration on antioxidant components of elderberry juice

    Directory of Open Access Journals (Sweden)

    Furulyás D.

    2017-10-01

    Full Text Available In this study, pectolytic enzymes (Pectinex BE XXL, Trenolin Rot, and Fructozym P were investigated for their influence on phenolic, anthocyanin content, and antioxidant activities of elderberry (Sambucus nigra L. pulps during juice processing. Prior to pressing the berries, three different enzymes were added to pulps in order to evaluate the effect of different pectolytic enzyme treatments on the valuable components of elderberry juice. Control sample was prepared without enzyme. After treatment, squeezing, and clarification steps, microfiltration was carried out with ceramic membrane. The effect of this technology on the antioxidant capacity, total polyphenol content, and total anthocyanin content of the clarified elderberry juices has been evaluated in permeate and retentate samples, and membrane retention was calculated. Significantly lower antioxidant capacity was detected in the case of control sample than that obtained using enzyme-treated juices. Retention of antioxidant content on the microfiltration membrane was greatly reduced by using the enzymes. Higher valuable component yield was obtained using Fructozym P enzyme compared with Pectinex BE XXL used in industry.

  11. Does ibuprofen treatment in patent ductus arteriosus alter oxygen free radicals in premature infants?

    Science.gov (United States)

    Akar, Melek; Yildirim, Tulin G; Sandal, Gonca; Bozdag, Senol; Erdeve, Omer; Altug, Nahide; Uras, Nurdan; Oguz, Serife S; Dilmen, Ugur

    2017-04-01

    Introduction Ibuprofen is used widely to close patent ductus arteriosus in preterm infants. The anti-inflammatory activity of ibuprofen may also be partly due to its ability to scavenge reactive oxygen species and reactive nitrogen species. We evaluated the interaction between oxidative status and the medical treatment of patent ductus arteriosus with two forms of ibuprofen. Materials and methods This study enrolled newborns of gestational age ⩽32 weeks, birth weight ⩽1500 g, and postnatal age 48-96 hours, who received either intravenous or oral ibuprofen to treat patent ductus arteriosus. Venous blood was sampled before ibuprofen treatment from each patient to determine antioxidant and oxidant concentrations. Secondary samples were collected 24 hours after the end of the treatment. Total oxidant status and total antioxidant capacity were measured using Erel's method. This prospective randomised study enrolled 102 preterm infants with patent ductus arteriosus. The patent ductus arteriosus closure rate was significantly higher in the oral ibuprofen group (84.6 versus 62%) after the first course of treatment (p=0.011). No significant difference was found between the pre- and post-treatment total oxidant status and total antioxidant capacity in the groups. Discussion Ibuprofen treatment does not change the total oxidant status or total antioxidant capacity. We believe that the effect of ibuprofen treatment in inducing ischaemia overcomes the scavenging effect of ibuprofen.

  12. Alteration of diaspore by thermal treatment

    Institute of Scientific and Technical Information of China (English)

    杨华明; 胡岳华; 杨武国; 敖伟琴; 邱冠周

    2004-01-01

    Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and X-ray diffraction. The mechanism of thermal decomposition of diaspore was discussed according to the Coats-Redfern equation. It is found that after thermal treatment at 500 ℃, diaspore is transformed entirely to corundum (α-Al2O3). Combined with the mass loss ratio obtained from the thermogravimetric analysis data, the activation energies for the thermal treatment of diaspore are calculated as Ea=10.4 kJ/mol below 400 ℃ and Eb=47.5 kJ/mol above 400 ℃, respectively, which is directly related to the structural alteration of diaspore during the thermal treatment. The results indicate that the thermal decomposition of diaspore is conducted primarily by means of an interfacial reaction.

  13. Delayed Posthypoxic Leukoencephalopathy: Improvement with Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Franklin King

    2015-12-01

    Full Text Available Introduction: Delayed posthypoxic leukoencephalopathy (DPHL may result from a variety of hypoxic insults, including respiratory depression from an opiate overdose. The underlying pathophysiological mechanism of DPHL remains uncertain. We describe a patient with a typical case of DPHL who responded clinically to antioxidant treatment. Methods: Clinical, serological, and radiographic investigations were undertaken in the evaluation of the patient. Results: A 63-year-old man developed altered mental status 10 days following recovery from an opiate overdose and aspiration pneumonia that required intubation. The clinical course and brain imaging were consistent with DPHL. Initiation of antioxidant therapy with vitamin E, vitamin C, B-complex vitamins, and coenzyme Q10 coincided with the prompt reversal of clinical deterioration. Conclusions: The potential therapeutic effect of antioxidants on DPHL needs to be explored in future cases. If this relationship indeed holds true, it would be consistent with the hypothesis that formation of reactive oxygen species during reperfusion plays a role in the pathophysiology of this disorder.

  14. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    Directory of Open Access Journals (Sweden)

    José A. Morales-González

    2010-06-01

    Full Text Available Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF treatment on malondialdehyde (MDA levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress.

  15. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions.

    Science.gov (United States)

    Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia

    2016-01-01

    Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating

  16. Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants.

    Science.gov (United States)

    Calogero, Aldo E; Condorelli, Rosita A; Russo, Giorgio Ivan; La Vignera, Sandro

    2017-01-01

    The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be prescribed. Infection, inflammation, and/or increased oxidative stress often require a specific treatment with antibiotics, anti-inflammatory drugs, and/or antioxidants. Combined therapies can contribute to improve sperm quality.

  17. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    Science.gov (United States)

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (pgallic acid treatment significantly reduced (pgallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Carcass characteristics and meat evaluation of Nelore cattle subjected to different antioxidant treatments

    Directory of Open Access Journals (Sweden)

    Thiago de Jesus do Carmo

    Full Text Available ABSTRACT Forty Nelore cattle were used to evaluate the effects of supplementation with different antioxidants on carcass characteristics and meat quality of feedlot cattle. Animals were fed Brachiaria brizantha hay and subjected to five treatments (control and four antioxidants: zinc, selenium, vitamin E, and selenium + vitamin E. After a 105-day feeding period, cattle were slaughtered. Tissue composition, as well as carcass proximate composition, color, tenderness, pH, and fatty acid profile were evaluated. Analysis of variance was carried out and means compared by Tukey test at 0.05 probability. The group fed selenium showed the lowest muscle amount (66.61 g/100 g compared with the other antioxidants evaluated. There was no difference among treatments for bone, fat, and comestible portion percentages as well as muscle:bone, muscle:fat, and comestible portion:bone ratios, with mean values of 16.85 g/100 g, 14.70 g/100 g, 82.99 g/100 g, 4.06, 4.85, and 4.95, respectively. Neither brightness, red, or yellow contents of the meat nor carcass pH were affected by treatments. For tenderness and losses during thawing and cooking, there were no differences among treatments, with averages of 6.43 kgf cm2, 3.22 g/100 g, and 21.15 g/100 g, respectively. Supplementation of Nelore cattle fed Brachiaria brizantha hay with antioxidants do not influence carcass characteristics or meat quality. However, vitamin E supplementation reduces the levels of omega 3 fatty acid, whereas supplementation with selenium + vitamin E promotes an increase in linoleic and palmitoleic acids and a decrease in myristoleic acid, making the supplementation feasible due to the beneficial effects provided by these acids.

  19. The Oxidant-Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes.

    Science.gov (United States)

    Sielski, Łukasz; Sutkowy, Paweł; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław; Woźniak, Alina

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill ( p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill ( p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill ( p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant-antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.

  20. The Oxidant–Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes

    Science.gov (United States)

    Sielski, Łukasz; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344. PMID:29765494

  1. The Oxidant–Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes

    Directory of Open Access Journals (Sweden)

    Łukasz Sielski

    2018-01-01

    Full Text Available The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey’s test and Pearson’s linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p<0.001. The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p<0.001. The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p<0.001. It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.

  2. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants

    International Nuclear Information System (INIS)

    Poliandri, Ariel H.B.; Cabilla, Jimena P.; Velardez, Miguel O.; Bodo, Cristian C.A.; Duvilanski, Beatriz H.

    2003-01-01

    Cadmium (Cd 2+ ) is an ubiquitous toxic metal that is involved in a variety of pathological conditions. Several reports indicate that Cd 2+ alters normal pituitary hormone secretion; however, little is known about the mechanisms that induce this misregulation. This paper reports the effect of Cd 2+ on anterior pituitary cell viability and its relation to prolactin secretion. Cd 2+ concentrations above 10 μM were found to be cytotoxic for pituitary cells. Morphological studies as well as DNA ladder fragmentation and caspase activation showed that Cd 2+ -treated cells undergo apoptosis. Even though several hours were needed to detect Cd 2+ -induced cytotoxicity, the effect of the metal became irreversible very quickly, requiring only 3 h of treatment. Prolactin release (measured at 48 h) was inhibited when the cells were exposed to Cd 2+ for 1 h, before any change in cell viability was observed. The antioxidants N-acetyl-cysteine and Trolox (a hydrosoluble derivative of vitamin E), but not ascorbic acid, reversed both Cd 2+ -mediated cytotoxicity and the inhibition of prolactin release, supporting the involvement of oxidative stress in the mechanism of Cd 2+ action. In summary, the present work demonstrates that Cd 2+ is cytotoxic for anterior pituitary cells, that this effect is due to an induction of apoptosis, and that it can be reversed by antioxidants

  3. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage.

    Science.gov (United States)

    Yeoh, Wei Keat; Ali, Asgar

    2017-02-01

    Ultrasound treatment at different power output (0, 25 and 29W) and exposure time (10 and 15min) was used to investigate its effect on the phenolic metabolism enzymes, total phenolic content and antioxidant capacity of fresh-cut pineapple. Following ultrasound treatment at 25 and 29W, the activity of phenylalanine ammonia lyase (PAL) was increased significantly (Ppineapple was significantly (Ppineapple. Results suggest that hormetic dosage of ultrasound treatment can enhance the activity of PAL and total phenolic content and hence the total antioxidant capacity to encounter with oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  4. Garlic Consumption Alters Testicular Histology and Anti-Oxidant ...

    African Journals Online (AJOL)

    dependent fashion. These histological observations and the depletion in endogenous anti-oxidant status associated with the administration of garlic could result in significant affectation of male reproductive functions. Keywords: garlic, superoxide ...

  5. THE IMPACT OF ENVIRONMENTALLY FRIENDLY POSTHARVEST TREATMENTS ON THE ANTIOXIDANT ACTIVITY OF STRAWBERRY FRUITS DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Ivna Štolfa

    2014-12-01

    Full Text Available Proper postharvest storage is an effective way to maintain the quality and nutritional values of fruits. The aim of this study was to determine how environmentally friendly postharvest treatments with salicylic acid solution, colloidal silver solution and ozone, affect the antioxidant activity of strawberry fruits (Fragaria x ananassa Duch. cv. Albion during 7 days of storage at 4°C. The content of ascorbic acid, total phenols and antioxidant activity of strawberry fruits were determined spec-trophotometrically. After 7 days of storage in strawberry fruits treated with all three treatments separately, the contents of ascorbic acid were higher than in the control fruits, supporting the usefulness of these treatments for preserving fruit quality and nutritional value during storage. The treatment with salicylic acid solution showed the most beneficial effect during storage causing a significant increase in the content of ascorbic acid, phenols and antioxidant activity at the end of the storage period.

  6. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    Science.gov (United States)

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Antioxidant Capacity and Phenolic Content in Olive Leaf Tisane as Affected by Boiling Treatment

    Directory of Open Access Journals (Sweden)

    Fathia AOUIDI

    2016-06-01

    Full Text Available This paper investigated the effect of preparation method on the quality of olive leaf tisane. Secondly, it aimed at evaluating and understanding the effect of boiling treatment on phenolic compounds and antioxidant capacity of an aqueous extract of olive leaves. The Phenolic content was determined by Folin-Ciocalteu method. The antioxidant capacity was assessed by ABTS+ method. The Phenolic content and antioxidant capacity depended on extraction procedure of olive leaf tisane. It was found that boiling leads to a decrease in the phenolic content and a rise of antioxidant capacity of aqueous extract from olive leaves. The mass molecular distribution of the polymeric aromatic fraction was analyzed by gel filtration chromatography on Sephadex G50. Results suggested the hydrolysis of phenolic polymers following boiling. Moreover, HPLC analyses showed an increase in rutin, oleuropein and caffeic acid levels in treated sample. As a conclusion, thermal processing could be useful for enhancing the antioxidant capacity and the extractability of phenolic compounds in olive leaf tisane.

  8. Antioxidant treatment attenuates lactate production in diabetic nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Nielsen, Per Mose; Stokholm Nørlinger, Thomas

    2017-01-01

    -IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [13C]alanine levels......, indicating an intact glucose-alanine cycle, or [13C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment......The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying...

  9. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  10. Natural antioxidants for protection and radiation effects treatment

    International Nuclear Information System (INIS)

    Kafafi, Y.A.

    2010-01-01

    Since many degenerative human diseases have been recognized as being a consequence of free radical damage, there have been many studies undertaken on how to delay or prevent the onset of these diseases. The most likely and practical way to fight against degenerative diseases is to improve body antioxidant status which could be achieved by higher consumption of vegetables and fruits. Foods from plant origin usually contain natural antioxidants that can scavenge free radicals. It is clear that vitamin C and antioxidant capacity are not directly related and thus that vitamin C is not the only antioxidant in juices with high content of vitamin C. Antioxidant capacity may also arise from phenolics / flavonoids found in plants. Three major antioxidant nutrients are vitamin C, vitamin E and beta carotene. Intake of these nutrients has an inverse relationship with degenerative disease risk. In an elderly study, it was found that high consumption of flavonoids correlated with low risk of coronary heart disease. Some evidence showed that flavonoids could protect membrane lipid from oxidation. A major source of flavonoids are vegetables and fruits. (author)

  11. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  12. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  13. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  14. Micro-encapsulation of refined olive oil: influence of capsule wall components and the addition of antioxidant additives on the shelf life and chemical alteration.

    Science.gov (United States)

    Calvo, Patricia; Castaño, Angel Luís; Lozano, Mercedes; González-Gómez, David

    2012-10-01

    Although refined olive oils (ROOs) exhibit lower quality and less stability toward thermal stress than extra-virgin olive oils, these types of oil are gaining importance in the food industry. The inclusion of ROOs in processed food may alter the oxidative stability of the manufactured products, and therefore having technological alternatives to increase oil stability will be an important achievement. For this reason the main goal of this study was to assess the influence of the micro-encapsulation process on the ROO chemical composition and its oxidative stability. Factors such as microcapsule wall constituents and the addition of the antioxidant butyl hydroxytoluene were investigated in order to establish the most appropriate conditions to ensure no alteration of the refined olive oil chemical characteristics. The optimised methodology exhibited high encapsulation yield (>98%), with micro-encapsulation efficiency ranging from 35 to 69% according to the nature of the wall components. The encapsulation process slightly altered the chemical composition of the olive oil and protected the oxidative stability for at least 11 months when protein components were included as wall components. It was concluded that the presence of proteins constituents in the microcapsule wall material extended the shelf life of the micro-encapsulated olive oil regardless the use of antioxidant additives. Copyright © 2012 Society of Chemical Industry.

  15. Effect of Antioxidant Mineral Elements Supplementation in the Treatment of Hypertension in Albino Rats

    Directory of Open Access Journals (Sweden)

    S. A. Muhammad

    2012-01-01

    Full Text Available Oxidative stress has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic renal disease. The current work was designed with the aim of investigating the potentials of antioxidants copper, manganese, and zinc in the treatment of hypertension in Wistar rats. The rats were fed 8% NaCl diet for 5 weeks and treatment with supplements in the presence of the challenging agent for additional 4 weeks. The supplementation significantly decreased the blood pressure as compared with hypertensive control. The result also indicated significant decreased in the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol and very low-density lipoprotein cholesterol, malondialdehyde, insulin and increase in the high-density lipoprotein cholesterol, total antioxidant activities, and nitric oxide of the supplemented groups relative to the hypertensive control. The average percentage protection against atherogenesis indicated 47.13 ± 9.60% for all the supplemented groups. The mean arterial blood pressure showed significant positive correlation with glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, insulin resistance and malondialdehyde while high density lipoprotein-cholesterol and total antioxidant activities showed negative correlation. The result therefore indicated strong relationship between oxidative stress and hypertension and underscores the role of antioxidant minerals in reducing oxidative stress, dyslipidemia, and insulin resistance associated with hypertension.

  16. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients.

    Science.gov (United States)

    Gual-Frau, Josep; Abad, Carlos; Amengual, María J; Hannaoui, Naim; Checa, Miguel A; Ribas-Maynou, Jordi; Lozano, Iris; Nikolaou, Alexandros; Benet, Jordi; García-Peiró, Agustín; Prats, Juan

    2015-09-01

    Infertile males with varicocele have the highest percentage of sperm cells with damaged DNA, compared to other infertile groups. Antioxidant treatment is known to enhance the integrity of sperm DNA; however, there are no data on the effects in varicocele patients. We thus investigated the potential benefits of antioxidant treatment specifically in grade I varicocele males. Twenty infertile patients with grade I varicocele were given multivitamins (1500 mg L-Carnitine, 60 mg vitamin C, 20 mg coenzyme Q10, 10 mg vitamin E, 200 μg vitamin B9, 1 μg vitamin B12, 10 mg zinc, 50 μg selenium) daily for three months. Semen parameters including total sperm count, concentration, progressive motility, vitality, and morphology were determined before and after treatment. In addition, sperm DNA fragmentation and the amount of highly degraded sperm cells were analyzed by Sperm Chromatin Dispersion. After treatment, patients showed an average relative reduction of 22.1% in sperm DNA fragmentation (p = 0.02) and had 31.3% fewer highly degraded sperm cells (p = 0.07). Total numbers of sperm cells were increased (p = 0.04), but other semen parameters were unaffected. These data suggest that sperm DNA integrity in grade I varicocele patients may be improved by oral antioxidant treatment.

  17. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus.

    Science.gov (United States)

    Wei, Yunxiao; Liu, Zhenfeng; Su, Yujing; Liu, Donghong; Ye, Xingqian

    2011-03-01

    The effects of salicylic acid (SA) on the quality and antioxidant activity of asparagus stored at 18 ± 2 °C were investigated by analyzing the color, chlorophyll, shear force, and the activity of antioxidant compounds such as ascorbic acid, phenolics, flavonoids, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ferric reducing antioxidant power (FRAP), and polyamines (PAs). The results showed that SA improved the color and maintained the chlorophyll, phenolic, flavonoid, and ascorbic acid content of asparagus. High concentrations of SA caused a deterioration in asparagus would harm to color and had no effect on shear force within 6 d. SA induced the maximum concentration of phenolics in postharvest asparagus, promoted the increase in total flavonoids before 6 to 9 d, affected the antioxidant activity positively as indicated by the resultant increase in FRAP concentration; however, SA was only active with regard to DPPH scavenging activity within 6 d of treatment. Spermidine (Spd) is the most common form of PA in asparagus, and free putrescine (Put) contents increased over the first 3 d following harvest and then decreased. Spd and Spm concentrations evolved in a similar way and decreased during storage. Higher Spd and Spm contents in the SA pre-treatment Put was inhabited and its peaks appeared later.

  18. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  19. The Role of Antioxidants in Biochemical Disorders Induced by Arsenic in Adult male Rats

    International Nuclear Information System (INIS)

    Hassanin, M.M.; Zaki, Z.T.; Emarah, E.A.M.; Hussein, A.M.M.

    2010-01-01

    The present investigation included biochemical, radiometric, molecular studies and histopathological examination to evaluate the protective role of Antox tablets toward Arsenic toxicity in adult male albino rats (Rattus rattus). Arsenic were given as sodium arsenate to different groups in drinking water at a dose of 100 mg/L, for 3 and 6 weeks led to severe tissue damage as revealed by an elevation of serum total protein and alteration of serum protein fractions. Using radioimmunoassay it was found that serum total testosterone level was significantly decreased. The decreased level of total testosterone paralleled the observed testicular damage. Treatment of male rats with antioxidant (Antox) along with arsenic led to an improvement in both the biochemical and histological alterations induced by arsenic. Thus the protective role of Antox is attributed to its antioxidant and free radicals scavenging properties of its components (selenium, vitamin A acetate, ascorbic acid and vitamin E).

  20. Serum oxidant and antioxidant status of patients with chronic tension-type headache: possible effects of medical treatment.

    Science.gov (United States)

    Gökçe Çokal, Burcu; Aytaç, Bilal; Durak, Zahide Esra; Güneş, Hafize Nalan; Öztürk, Bahadır; Keskin Güler, Selda; Durak, İlker; Yoldaş, Tahir Kurtuluş

    2015-10-01

    Tension-type headache (TTH) is one of the most common and costly primary types of headache in clinical practice, with an unknown etiology. This study assessed to investigate oxidative and antioxidative status in patients with chronic tension-type headache (CTTH), and to evaluate possible effect of medical treatment. The study included 41 CTTH patients and 19 age- and sex-matched healthy subjects without headache as controls. The CTTH group comprised 20 patients receiving treatment and 21 untreated patients. We evaluated oxidant/antioxidant status by measuring serum malondialdehyde (MDA) levels and activities of antioxidant enzymes, namely glutathione peroxidase (GSH-Px) and catalase (CAT). Comparison of oxidative parameters in the patient and control groups revealed significantly lower CAT activities and higher MDA level and GSH-Px activities in the patient group. In the CTTH group, serum CAT activities were found to be significantly decreased in patient groups, while serum MDA levels and GSH-Px activities were found to be higher in the untreated CTTH patients. These findings suggest that oxidative stress is increased in the patients with CTTH, and medical treatment abolishes the stress in part. It has been concluded that antioxidant support might be helpful for the patients with CTTH to prevent oxidant stress and peroxidation damages further.

  1. From Radiation to Antioxidants

    International Nuclear Information System (INIS)

    Thongphasak, J.

    1998-01-01

    Radiation induces the formation of reactive oxygen species (ROS), which can damage cells. Antioxidants (AO) can decrease these damage. In addition to radiation, ROS is normally generated by metabolic processes in our bodies. Alteration of ROS and AO levels is related to several diseases and pathologic conditions e.g. cancer, diabetes, Alzheimer, AIDS, and aging. In addition, emotion such as stress can change ROS and AO levels. Antioxidants from nutrient and happy mind will make us healthy, decrease radiation-induced damage, reduce the medical cost, and consequently assist in the development of our economy

  2. Effects of NaCl treatment on the antioxidant enzymes of oilseed rape ...

    African Journals Online (AJOL)

    The effects of NaCl treatment on the activity of antioxidant enzymes in leaves of oilseed rape seedlings (Brassica napus L.) were studied. The results showed that the relative water content from leaves of oilseed rape seedlings was gradually decreased and the electronic conductivity was increased during 0 - 24 h under 200 ...

  3. Strengthening of antioxidant defense by Azadirachta indica in alloxan-diabetic rat tissues

    Directory of Open Access Journals (Sweden)

    Sweta Shailey

    2012-01-01

    Full Text Available Background: Azadirachta indica has been reported to correct altered glycaemia in diabetes. Objective: The aqueous extract of A. indica leaf and bark has been evaluated for its effect on antioxidant status of alloxan diabetic rats and compared with insulin treatment. Materials and Methods: The oral effective dose of A. indica leaf (500 mg/kg body weight and A. indica bark (100 mg/kg body weight were given once daily for 21 days to separate groups of diabetic rats. At the end of the experimental period blood glucose level and activity of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR, glucose-6-phosphate dehydrogenase (G-6-PD, and membrane lipid peroxidation were determined in different fractions of liver and kidney tissues. Results: Diabetic rats showed high blood glucose (P<0.01, increased level of malondialdehyde (P<0.05 and a significant decrease in the activity of antioxidant enzymes. Treatment with insulin, A. indica leaf extract (AILE, and A. indica bark extract (AIBE restored the above altered parameters close to the control ones. Conclusions: Both AILE and AIBE were found significantly effective in reducing hyperglycemia-induced oxidative stress. The findings suggest further investigations for the possible use of A. indica as alternative medicine to prevent long-term complications of diabetes.

  4. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  5. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    Science.gov (United States)

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  6. Serum Oxidative Stress Markers and Lipidomic Profile to Detect NASH Patients Responsive to an Antioxidant Treatment: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Paola Stiuso

    2014-01-01

    Full Text Available Liver steatosis can evolve to steatohepatitis (NASH through a series of biochemical steps related to oxidative stress in hepatocytes. Antioxidants, such as silybin, have been proposed as a treatment of patients with nonalcoholic fatty liver disease (NAFLD and NASH. In this study, we evaluated, in patients with histologically documented NASH, the oxidant/antioxidant status and lipid “fingerprint” in the serum of NASH patients, both in basal conditions and after 12 months of treatment with silybin-based food integrator Realsil (RA. The oxidant/antioxidant status analysis showed the presence of a group of patients with higher basal severity of disease (NAS scores 4.67 ± 2.5 and a second group corresponding to borderline NASH (NAS scores = 3.8 ± 1.5. The chronic treatment with RA changed the NAS score in both groups that reached the statistical significance only in group 2, in which there was also a significant decrease of serum lipid peroxidation. The lipidomic profile showed a lipid composition similar to that of healthy subjects with a restoration of the values of free cholesterol, lysoPC, SM, and PC only in group 2 of patients after treatment with RA. Conclusion. These data suggest that lipidomic and/or oxidative status of serum from patients with NASH could be useful as prognostic markers of response to an antioxidant treatment.

  7. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    R. Andrew Shanely

    2016-08-01

    Full Text Available Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125. Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05, however, the rating of perceived exertion was greater during the WM trial (p > 0.05. WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05, but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine, antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.

  8. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment.

    Science.gov (United States)

    Cruz-Cansino, Nelly Del Socorro; Ramírez-Moreno, Esther; León-Rivera, Jesús Ernesto; Delgado-Olivares, Luis; Alanís-García, Ernesto; Ariza-Ortega, José Alberto; Manríquez-Torres, José de Jesús; Jaramillo-Bustos, Diana Pamela

    2015-11-01

    The objective of this study was to evaluate changes in color, betalain content, browning index, viscosity, physical stability, microbiological growth, antioxidant content and antioxidant activity of purple cactus pear juice during storage after thermoultrasonication at 80% amplitude level for 15 and 25 min in comparison with pasteurized juice. Thermoultrasound treatment for 25 min increased color stability and viscosity compared to treatment for 15 min (6.83 and 6.72 MPa, respectively), but this last parameter was significantly lower (p<0.05) compared to the control and pasteurized juices (22.47 and 26.32 MPa, respectively). Experimental treatment reduced significantly (p<0.05) sediment solids in juices. Total plate counts decreased from the first day of storage exhibiting values of 1.38 and 1.43 logCFU/mL, for 15 and 25 min treatment, respectively. Compared to the control, both treatments reduced enterobacteria counts (1.54 logCFU/mL), and compared to pasteurized juice decreased pectinmethylesterase activity (3.76 and 3.82 UPE/mL), maintained high values of ascorbic acid (252.05 and 257.18 mg AA/L) and antioxidant activity (by ABTS: 124.8 and 115.6 mg VCEAC/100 mL; and DPPH: 3114.2 and 2757.1 μmol TE/L). During storage thermoultrasonicated juices had a minimum increase in pectinmethylesterase activity (from day 14), and exhibited similar total plate counts to pasteurized juice. An increase of phenolic content was observed after 14 days of storage, particularly for treatment at 80%, 25 min, and an increase in antioxidant activity (ABTS, DPPH) by the end of storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous

  10. Alterations in the antioxidant status of patients suffering from ...

    African Journals Online (AJOL)

    In view of the high prevalence of type 2 diabetes mellitus, this study aimed at determining the total plasma antioxidant capacity of type 2 diabetic patients with and without macrovascular complications. The erythrocyte catalase level was also evaluated because of the implication of catalase as a risk factor in diabetes.

  11. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    Science.gov (United States)

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  12. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    Science.gov (United States)

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal

  13. A randomized controlled trial evaluating antioxidant-essential oil gel as a treatment for gingivitis in orthodontic patients.

    Science.gov (United States)

    Martin, Benjamin J; Campbell, Phillip M; Rees, Terry D; Buschang, Peter H

    2016-05-01

    To evaluate the treatment effect of an antioxidant-essential oil gel on orthodontic patients with generalized gingivitis. The gel contains the essential oils menthol and thymol and the antioxidants ferulic acid and phloretin. Thirty patients from the university's orthodontic clinic were screened for gingivitis and randomly allocated into treatment and placebo-control groups. Each patient was evaluated at three orthodontic treatment visits (T1, T2, and T3). A periodontal examination, including probing depth (PD), bleeding on probing (BOP), gingival index (GI), and plaque index (PI) was performed at each visit. Between T1 and T2, patients were instructed to apply a topical gel (active or placebo) to their gingiva twice daily after brushing. From T2 to T3, patients were instructed to discontinue use of the gel. The treatment group showed statistically significant (P gingivitis.

  14. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Zohreh Oghabian

    2016-08-01

    Full Text Available Aluminium phosphide (AlP is used to protect stored grains from rodents. It produces phosphine gas (PH3, a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-yearold male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols.

  15. Effects of heat treatment on antioxidative and anti-inflammatory properties of orange by-products

    Science.gov (United States)

    This study investigated the changes in functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) by heat treatment at 50 and 100 degrees C (hereafter, 50D and 100D extracts, respectively). Optimal...

  16. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    Directory of Open Access Journals (Sweden)

    Orn-uma Yanpanitch

    2015-01-01

    Full Text Available Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE, which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR or vitamin E (Vit-E, and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P<0.01 in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.

  17. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  18. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    Science.gov (United States)

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 International Union of Biochemistry and Molecular Biology.

  19. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Jing-xian Wu

    2015-01-01

    Full Text Available Recent studies have shown that induced expression of endogenous antioxidative enzymes thr-ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2 pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 μM curcumin or post-treated with 5 μM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thioredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neuroprotection after cerebral ischemia.

  20. Interleukin-6, Creatine Kinase, and Antioxidant Enzyme Activities following Platelet-Rich Plasma Treatment on Muscle Injury: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lingling Lai

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of autologous platelet-rich plasma (PRP treatment alongside rehabilitation compared with rehabilitation alone on inflammatory cytokine (interleukin-6, IL-6, creatine kinase muscle type (CKM, and antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT following hamstring injury. This study was a randomised control trial. Participants diagnosed with grade-2 acute hamstring injury (n=16 were divided into 2 groups of PRP treatment with rehabilitation program (PRP-T and rehabilitation program (CON. Blood samples were collected at baseline, and 2 fortnightly for the various biochemical assessments. Participants were certified to have recovered upon fulfilling return to play (RTP criteria. Level of IL-6 and the activities of CKM, SOD, and CAT were measured. PRP-T group benefited from earlier time to RTP with significantly lower IL-6 level and CAT activity compared to CON group. There was no significant difference in CKM and SOD activities between the groups, though a trend of lower values in all variables was observed at week 4 compared to week 0. PRP treatment potentially improves muscle healing process by altering both the inflammatory and oxidative responses, hence hastens time to RTP. KEY WORDS:  Autologous, blood injection, rehabilitation, sports injury, hamstring injury

  1. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  2. Protective effect of antioxidant rich aqueous curry leaf (Murraya koenigii extract against gastro-toxic effects of piroxicam in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Syed Benazir Firdaus

    2014-01-01

    Full Text Available Piroxicam (chemically 4-hydroxy-2-methyl-N-2-pyridinyl-2H-1,2-benzothiazine-3-carboxamide, a classical non-steroidal anti-inflammatory drug (NSAID is orally administered to arthritic patients. Inhibition of prostaglandin E2 (PGE2 synthesis and subsequent free hydroxyl radical generation in vivo exert gastro-toxic side effects on piroxicam treatment. Leaves of curry plant are rich in antioxidants with prolific free radical scavenging activities. This led us to investigate the efficiency of the use of curry leaves in ameliorating piroxicam induced gastric damage. Piroxicam was orally (30 mg per kg body weight administered in male albino Wistar rats to generate gastric ulcers. These rats were orally fed with graded doses of aqueous extract of curry or Murraya koenigii leaves (Cu LE prior to piroxicam administration. Oxidative stress biomarkers, activities of antioxidant and pro-oxidant enzymes, mucin content and nature, PGE2 level, activities of mitochondrial enzymes and histomorphology of gastric tissues were studied. Piroxicam treatment altered all the above mentioned parameters whereas, curry leaf extract pre-treated animals were protected against piroxicam induced alterations. Hence, the protective action of the antioxidant rich Cu LE was investigated to propose a new combination therapy or dietary management to arthritic patients using piroxicam.

  3. Antioxidant Protection in Blood against Ionising Radiation

    International Nuclear Information System (INIS)

    Bognar, G.; Meszaros, G.; Koteles, G. J.

    2001-01-01

    Full text: The quantities of the antioxidants in the human blood are important indicators of health status. The routine determinations of activities/capacities of antioxidant compounds would be of great importance in assessing individual sensitivities against oxidative effects. We have investigated the sensitivities of those antioxidant elements against various doses of ionising radiation tested by the RANDOX assays. Our results show dose-dependent decreases of antioxidant activities caused by the different doses. The total antioxidant status value linearly decreased up to 1 Gy, but further increase of dose (2 Gy) did not influence the respective values although the test system still indicated their presence. It means that the human blood retains 60-70% of its total antioxidant capacity. Radiation induced alterations of the antioxidant enzymes: glutathione peroxidase and superoxide dismutase have been also investigated. The activities of glutathione peroxidase and superoxide dismutase decreased linearly upon the effects of various doses of ionising radiation till 1 Gy. Between 1 and 2 Gy only further mild decreases could be detected. In this case the human blood retained 40-60% of these two antioxidant enzymes. These observations suggest either the limited response of antioxidant system against ionising radiation, or the existence of protection system of various reactabilities. (author)

  4. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion*

    Science.gov (United States)

    Bao, Tao; Wang, Ye; Li, Yu-ting; Gowd, Vemana; Niu, Xin-he; Yang, Hai-ying; Chen, Li-shui; Chen, Wei; Sun, Chong-de

    2016-01-01

    Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties. PMID:27921399

  5. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion.

    Science.gov (United States)

    Bao, Tao; Wang, Ye; Li, Yu-Ting; Gowd, Vemana; Niu, Xin-He; Yang, Hai-Ying; Chen, Li-Shui; Chen, Wei; Sun, Chong-de

    Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.

  6. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus.

    Science.gov (United States)

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2016-08-01

    Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naïve mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average

  7. Effect of selenium-saturated bovine lactoferrin (Se-bLF) on antioxidant enzyme activities in human gut epithelial cells under oxidative stress.

    Science.gov (United States)

    Burrow, Hannah; Kanwar, Rupinder K; Mahidhara, Ganesh; Kanwar, Jagat R

    2011-10-01

    Cancer and many chronic inflammatory diseases are associated with increased amounts of reactive oxygen species (ROS). The potential cellular and tissue damage created by ROS has significant impact on many disease and cancer states and natural therapeutics are becoming essential in regulating altered redox states. We have shown recently that iron content is a critical determinant in the antitumour activity of bovine milk lactoferrin (bLF). We found that 100% iron-saturated bLF (Fe-bLF) acts as a potent natural adjuvant and fortifying agent for augmenting cancer chemotherapy and thus has a broad utility in the treatment of cancer. Furthermore, we also studied the effects of iron saturated bLF's ability as an antioxidant in the human epithelial colon cancer cell line HT29, giving insights into the potential of bLF in its different states. Thus, metal saturated bLF could be implemented as anti-cancer neutraceutical. In this regard, we have recently been able to prepare a selenium (Se) saturated form of bLF, being up to 98% saturated. Therefore, the objectives of this study were to determine how oxidative stress induced by hydrogen peroxide (H2O2) alters antioxidant enzyme activity within HT29 epithelial colon cancer cells, and observe changes in this activity by treatments with different antioxidants ascorbic acid (AA), Apo (iron free)-bLF and selenium (Se)-bLF. The states of all antioxidant enzymes (glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- s-transferase (GsT), catalase and superoxide dismutase (SOD)) demonstrated high levels within untreated HT29 cells compared to the majority of other treatments being used, even prior to H2O2 exposure. All enzymes showed significant alterations in activity when cells were treated with antioxidants AA, Apo-bLF or Se-bLF, with and/or without H2O2 exposure. Obvious indications that the Se content of the bLF potentially interacted with the glutathione (GSH)/GPx/GR/GsT associated redox system could be

  8. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  9. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  10. Physical, Textural, and Antioxidant Properties of Extruded Waxy Wheat Flour Snack Supplemented with Several Varieties of Bran.

    Science.gov (United States)

    Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F

    2016-09-28

    Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®

  11. ROS and RNS Signaling in Heart Disorders: Could Antioxidant Treatment Be Successful?

    Directory of Open Access Journals (Sweden)

    Igor Afanas'ev

    2011-01-01

    Full Text Available There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS and reactive nitrogen species (RNS play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF, left ventricular hypertrophy (LVH, coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.

  12. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  13. Scaling-Stimulated Salivary Antioxidant Changes and Oral-Health Behavior in an Evaluation of Periodontal Treatment Outcomes

    Directory of Open Access Journals (Sweden)

    Po-Sheng Yang

    2014-01-01

    Full Text Available Aim. Our goal was to investigate associations among scaling-stimulated changes in salivary antioxidants, oral-health-related behaviors and attitudes, and periodontal treatment outcomes. Materials and Methods. Thirty periodontitis patients with at least 6 pockets with pocket depths of >5 mm and more than 16 functional teeth were enrolled in the study. Patients were divided into three groups: an abandoned group (AB group, a nonprogress outcome group (NP group, and an effective treatment group (ET group. Nonstimulated saliva was collected before and after scaling were received to determine superoxide dismutase (SOD and the total antioxidant capacity (TAOC. Results. Salivary SOD following scaling significantly increased from 83.09 to 194.30 U/g protein in patients who had irregular dental visit patterns (<1 visit per year. After scaling, the TAOC was significantly higher in patients who had regular dental visits than in patients who had irregular dental visits (3.52 versus 0.70 mmole/g protein, P<0.01. The scaling-stimulated increase in SOD was related to a higher severity of periodontitis in the NP group, while the scaling-stimulated increase in the TAOC was inversely related to the severity of periodontitis in the AB group. Conclusions. These results demonstrate the importance of scaling-stimulated salivary antioxidants as prognostic biomarkers of periodontal treatment.

  14. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  15. Status of plasma nitric oxide and non-enzymatic antioxidants before and after antipsychotic treatment in Nigerian patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Ganiyu Olatubosun Arinola

    2009-02-01

    Full Text Available

    • BACKGROUND: Recently, it is proposed that oxidant-antioxidant imbalance may have a role in the pathophysiology of schizophrenia. The present study was performed to assess differences in plasma levels of nitric oxide (as oxidant, caeruloplasmin (secondary antioxidant, and antioxidant trace metals (Zn, Se, Mn, Cu and Fe in patients with schizophrenia compared with healthy controls. Our secondary aim was to further evaluate the impact of psychopharmacologic treatment on these parameters.
    • METHODS: Plasma levels of nitric oxides (NO, caeruloplasmin, zinc (Zn, selenium (Se, manganese (Mn, copper (Cu and iron (Fe in patients with schizophrenia before (n = 15 and after antipsychotic drug treatment (n = 20 were compared with those of healthy controls (n = 20. Convenient sampling method was used for the selection of subjects. NO was estimated by the use of Griess method, caeruloplasmin was estimated by the use of immunodiffusion method and antioxidant trace metals was estimated by the use of atomic absorption spectrophotometer.
    • RESULTS: The levels of Cu and caeruloplasmin were not significantly different while Fe and Se were significantly reduced in both groups of schizophrenic patients compared with the controls. Zn was significantly elevated in medicated
    • schizophrenics compared with drug-free patients or controls. NO was significantly elevated in drug free patients with schizophrenia compared with controls or treated patients.
    • CONCLUSIONS: Our findings suggest the application of management strategies that will reduce NO but will increase antioxidant trace metals in patients with schizophrenia.
    • KEYWORDS: Schizophrenia, antioxidant defense system, antioxidant status, oxidative Stress.

  16. Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants

    OpenAIRE

    Calogero, Aldo E.; Condorelli, Rosita A.; Russo, Giorgio Ivan; La Vignera, Sandro

    2017-01-01

    The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be pr...

  17. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Radiation recall dermatitis after docetaxel chemotherapy. Treatment by antioxidant ointment

    International Nuclear Information System (INIS)

    Duncker-Rohr, Viola; Freund, Ulrich; Momm, Felix

    2014-01-01

    Radiation recall dermatitis (RRD) is an acute skin toxicity caused by different anticancer or antibiotic drugs within a former completely healed irradiation field. Predictive factors for RRD are not known and its mechanisms are not completely understood. A case of RRD induced by docetaxel and successfully treated by an antioxidant ointment (Mapisal registered ) is presented here. Such an ointment might be useful not only in RRD therapy, but also in the treatment of high-grade dermatitis induced by radiotherapy and thus may contribute to the improvement of patients' quality of life and to the scheduled completion of cancer therapies. (orig.) [de

  19. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment

    Directory of Open Access Journals (Sweden)

    Daniel Pereira Bezerra

    2017-12-01

    Full Text Available The formation of reactive oxygen species (ROS during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.

  20. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status.

    Science.gov (United States)

    Erdamar, Hüsamettin; Demirci, Hüseyin; Yaman, Halil; Erbil, M Kemal; Yakar, Tolga; Sancak, Banu; Elbeg, Sehri; Biberoğlu, Gürsel; Yetkin, Ilhan

    2008-01-01

    Free radical-mediated oxidative stress has been implicated in the etiopathogenesis of several autoimmune disorders. Also, there is growing evidence supporting the role of reactive oxygen species in the pathogenesis of thyroid disorders. The aim of this study was to investigate the influence of hypothyroidism, hyperthyroidism, and their treatments on the metabolic state of oxidative stress, and antioxidant status markers. A total of 20 newly diagnosed patients with overt hypothyroidism due to Hashimoto's thyroiditis, 20 patients with overt hyperthyroidism due to Graves' disease, and 20 healthy subjects as the control group were enrolled in the study. Fasting blood samples (12 h), taken at the initiation, after the 30th and 60th day of therapy were analyzed for malondialdehyde, nitrite, vitamin E, vitamin A, beta-carotene, ascorbate, and myeloperoxidase and superoxide dismutase activity. No patient presented additional risk factors for increased reactive oxygen species levels. Malondialdehyde, nitrite, vitamin E, and myeloperoxidase activity increased in patients with hypothyroidism. After 2 months, the levels of nitrite and vitamin E were reduced to control levels by treatment. The patients with hyperthyroidism had increased levels of malondialdehyde and myeloperoxidase activity in comparison with the controls. Treatment with propylthiouracil attenuated these increments after 1 month. Our results reveal an increased generation of reactive oxygen species and impairment of the antioxidant system in patients with hyperthyroidism, and particularly in patients with hypothyroidism. These findings indicate that thyroid hormones have a strong impact on oxidative stress and the antioxidant system.

  1. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet.

    Science.gov (United States)

    Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark

    2015-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (Pwatermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (Pwatermelon was consumed (Pwatermelon group without DSS (Pwatermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Does green tea consumption improve the salivary antioxidant status of smokers?

    Science.gov (United States)

    Azimi, Somayyeh; Mansouri, Zahra; Bakhtiari, Sedigheh; Tennant, Marc; Kruger, Estie; Rajabibazl, Masoumeh; Daraei, Azam

    2017-06-01

    
Considering the higher rate of oral cancer, and reduction in salivary antioxidants in smokers as indicated in previous studies, antioxidant- containing nutrients such as green tea, seem to be beneficial in counteracting against oxidative stress in this group. This study assessed the salivary total antioxidant alteration in smokers compared to nonsmokers, after short-tem (7days) and long-term (3 weeks), green tea drinking. In this experimental study, 20 volunteer moderate-to-heavy male smokers, and 20 matched healthy non-smokers were selected to participate, according to the inclusion criteria. Participants were instructed to drink two cups of green tea per day, by dissolving 2g of green tea in 150ml of hot water for each cup. After saliva collection, antioxidant capacity of saliva was measured at baseline, after 7days, and after 21days. Statistical evaluation was done by SPSS 21, using paired samplet tests, one-way ANOVA and Bonferroni tests. 
 At day zero nonsmokers had a higher antioxidant capacity than smokers (686.6±62.22 vs. 338.8±59.9) mM/50μl, Psmokers and non-smokers over the study period (after tea drinking). In addition, a significant difference was found in total antioxidant capacity alteration in smokers compared to non-smokers from baseline to day 21. Results support the effectiveness of green tea consumption in salivary antioxidants enhancement in smokers, in both the short- and long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

  4. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  5. Antioxidative Activity of Colostrum and Human Milk: Effects of Pasteurization and Storage.

    Science.gov (United States)

    Marinković, Vesna; Ranković-Janevski, Milica; Spasić, Snežana; Nikolić-Kokić, Aleksandra; Lugonja, Nikoleta; Djurović, Dijana; Miletić, Srdjan; Vrvić, Miroslav M; Spasojević, Ivan

    2016-06-01

    Milk banks collect, pasteurize, and freeze/store human milk. The processing may alter redox properties of milk, but the effects have not been fully examined. We collected 10 mature milk and 10 colostrum samples and applied a battery of biochemical assays and electron paramagnetic resonance spectroscopy to inspect changes that milk undergoes with pasteurization and 30 days storage at -20°C. Pasteurization and storage of raw milk did not affect total nonenzymatic antioxidative capacity, but specific components and features were altered. Urate radical and ascorbyl radical emerge as products of exposure of milk to hydroxyl radical-generating system. Processing shifted the load of antioxidative activity from ascorbate to urate and lowered the capacity of milk to diminish hydroxyl radical. Pasteurization caused a significant drop in the activity of 2 major antioxidative enzymes-superoxide dismutase and glutathione peroxidase, whereas freezing/storage of raw milk affected only superoxide dismutase. Colostrum showed drastically higher total nonenzymatic antioxidative capacity, hydroxyl radical scavenging ability, and glutathione reductase activity compared with mature milk. Pasteurization and storage affect nonenzymatic and enzymatic antioxidative agents in human milk. It appears that nonenzymatic antioxidative systems in colostrum and milk are different. The effects of processing may be partially compensated by fortification/spiking with ascorbate before use.

  6. Antioxidant dietary approach in treatment of fatty liver: New insights and updates.

    Science.gov (United States)

    Ferramosca, Alessandra; Di Giacomo, Mariangela; Zara, Vincenzo

    2017-06-21

    Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols ( i.e ., resveratrol, quercetin, coumestrol, anthocyanins, epigallocatechin gallate and curcumin), carotenoids ( i.e ., lycopene, astaxanthin and fucoxanthin) and glucosinolates ( i.e ., glucoraphanin, sulforaphane, sinigrin and allyl-isothiocyanate), on the reversion of fatty liver. Although the mechanism of action is not yet fully elucidated, in some cases an indirect interaction with mitochondrial metabolism is expected. We believe that such knowledge will eventually translate into the development of novel therapeutic approaches for fatty liver.

  7. Medico-legal aspects of altered sensation following endodontic treatment: a retrospective case series

    DEFF Research Database (Denmark)

    Givol, Navot; Rosen, Eyal; Bjørndal, Lars

    2011-01-01

    The objective of this study was to analyze cases of liability claims related to persistent altered sensation following endodontic treatments so as to characterize the medico-legal aspects of this complication.......The objective of this study was to analyze cases of liability claims related to persistent altered sensation following endodontic treatments so as to characterize the medico-legal aspects of this complication....

  8. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  9. Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture

    Directory of Open Access Journals (Sweden)

    Doganlar Oguzhan

    2015-01-01

    Full Text Available The effects of a mixture of seven pesticides were examined on the expression of antioxidant enzymes, Mn superoxide dismutase (Mn-SOD, catalase (CAT, glutathione synthetase (GS, and heat shock proteins (HSP 26, 60, 70 and 83 in adult fruit flies (Drosophila melanogaster Oregon R. The flies were reared under controlled conditions on artificial diets and treated with a mixture of seven pesticides (molinate, thiobencarb, linuron, phorate, primiphos-methyl, fenvalerate and lambda-cyhalothrin commonly found in water, at concentrations of 0.1, 0.5 and 1 parts per billion (ppb for 1 and 5 days. Quantitative real-time PCR (qRT-PCR analysis of Mn-SOD, CAT and GS expression revealed that the analyzed markers responded significantly to pesticide-induced oxidative stress, in particular on the 5th day of treatment. On the 1st day of treatment, the relative expression of HSP26 and HSP60 genes increased only after exposure to the highest concentrations of pesticides, whereas HSP70 and HSP83 expression increased after exposure to 0.5 and 1 ppb. After five days of treatment, the expression of all HSP genes was increased after exposure to all pesticide concentrations. A positive correlation was determined between the relative expression levels of some HSPs (except HSP60, and antioxidant genes. The observed changes in antioxidant enzyme and HSP mRNA levels in D. melanogaster suggest that the permissible limits of pesticide concentrations for clean drinking water outlined in the regulations of several countries are potentially cytotoxic. The presented findings lend support for reevaluation of these limits.

  10. Dietary antioxidants for chronic periodontitis prevention and its treatment: a review on current evidences from animal and human studies

    Directory of Open Access Journals (Sweden)

    Alfonso Varela-López

    2015-09-01

    Full Text Available Objectives: Given the relationship between chronic periodontitis and high levels of oxidative stress, this review aims to clarify what role can played the dietary intake of different antioxidants in maintaining a healthy periodontium and in reducing chronic periodontitis risk, as well as possible use of dietary therapies based on them for this disease treatment. Methods: The database of the National Library of Medicine, Washington, DC (MEDLINE PubMed was used and all the studies in animals and humans are on the subject of interest in English writing online available from inception of the database until May 2015 were collected. Results: Antioxidants analyzed in this regard include vitamin C, vitamin A, carotenoids and some polyphenols, and coenzyme Q; as well as minerals iron, copper and zinc that are constituents of antioxidant enzymes. Still, there is a paucity of studies with few human studies, mostly observational. Among the various antioxidants, vitamin E and polyphenols seem to have more evidence for its beneficial effect, but in general the studies are insufficient to rule out or establish what antioxidants are useful and which are not. Conclusions: Overall, the data presented indicate that dietary antioxidants are beneficial for periodontal health, at least under certain circumstances. However more studies are needed to establish the relationship between chronic periodontitis and each specific antioxidant and to design useful dietary interventions for this disease management.

  11. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies.

    Science.gov (United States)

    Maatouk, Mouna; Mustapha, Nadia; Mokdad-Bzeouich, Imen; Chaaban, Hind; Abed, Besma; Iaonnou, Irina; Ghedira, Kamel; Ghoul, Mohamed; Ghedira, Leila Chekir

    2017-11-01

    Phytochemicals extracted from flowers, roots and bark, leaves, and other plant sources have been used extensively throughout human history with varying levels of efficacy in prevention and treatment of disease. Recently, advanced methods for characterization and clinical use of these materials have allowed modern understanding of their properties to be used as immunomodulatory agents that act by enhancement of endogenous cytoprotective mechanisms, avoiding interference with normal physiologic signaling and highly effective medical treatment with minimal adverse side effects. Simple methods have been identified for improving their biological effects, such as thermal conditioning by heating or freezing-prominent example being heat treatment of lycopene and tetrahydrocannabinol. The present investigation shows improvement of the ability of heat to augment splenocyte proliferation, natural killer (NK) cell activities, and antioxidant capacity of the flavonoid luteolin-7-O-β-glucoside (L7G) in comparison with the native (non heat-treated) molecule, while further demonstrating that both the native and the heat-treated variants exhibit comparable antioxidant properties, as evidenced by their effects in macrophages by inhibition of nitric oxide production and lysosomal enzyme activity in experiments that strengthen lysosomal membrane integrity. Outcomes of these studies suggest that heat-treated L7G shows promise for use in immunotherapy, including anti-cancer regimens, as shown by its improvement of NK cell cytotoxicity.

  12. Periconceptional growth hormone treatment alters fetal growth and development in lambs.

    Science.gov (United States)

    Koch, J M; Wilmoth, T A; Wilson, M E

    2010-05-01

    Research in the area of fetal programming has focused on intrauterine growth restriction. Few studies have attempted to examine programming mechanisms that ultimately lead to lambs with a greater potential for postnatal growth. We previously demonstrated that treatment of ewes with GH at the time of breeding led to an increase in birth weight. Therefore, the objective of this study was to determine the effects of a single injection of sustained-release GH given during the periconceptional period on fetal growth and development and to determine if the GH axis would be altered in these offspring. Estrus was synchronized using 2 injections of PGF(2alpha); at the time of the second injection, ewes assigned to treatment were also given an injection of sustained-release GH. A maternal jugular vein sample was taken weekly to analyze IGF-I as a proxy for GH to estimate the duration of the treatment effect. In ewes treated with GH, IGF-I increased (P brain weights were obtained, as well as left and right ventricular wall thicknesses. On postnatal d 100, a subset of ewe lambs were weighed and challenged with an intravenous injection of GHRH. Lambs from treated ewes had increased (P left ventricular wall was thinner (P development. Lambs born to ewes treated with GH were larger at birth and had altered organ development, which may indicate that early maternal GH treatment may lead to permanent changes in the developing fetus. The ewe lambs maintained their growth performance to at least 100 d of postnatal life and appeared to have an altered GH axis, as demonstrated by the altered response to GHRH.

  13. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    Science.gov (United States)

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Vegetable, Launaea taraxacifolia, Mitigated Mercuric Chloride Alteration of the Microanatomy of Rat Brain.

    Science.gov (United States)

    Owoeye, Olatunde; Arinola, Ganiyu O

    2017-11-02

    Mercuric chloride is an environmental pollutant that affects the nervous systems of mammals. Oxidative damage is one of the mechanisms of its toxicity, and antioxidants should mitigate this effect. A vegetable with antioxidant activity is Launaea taraxacifolia, whose ethanolic extract (EELT) was investigated in this experiment to determine its effect against mercuric chloride (MC) intoxication in rat brain. Thirty male Wistar rats were randomly assigned into five groups (n = 6) as follows: control; propylene glycol; EELT (400 mg/kg bwt) for 19 days; MC (HgCl 2 ) (4 mg/bwt) for 5 days from day 15 of the experiment; EELT+ MC, EELT (400 mg/kg bwt) for 14 days + MC (4 mg/bwt) for 5 days from day 15 of the experiment. All treatments were administered orally by gastric gavage. Behavioral tests were conducted on the 20th day, and rats were euthanized the same day. Blood and brain tissue were examined with regard to microanatomical parameters. Data were analyzed using analysis of variance with statistical significance set at p cerebral cortex, dentate gyrus, cornu ammonis 3, and cerebellum of rats. Treatment with EELT prior to MC administration significantly reduced the effect of MC on the hematological, behavioral, and ameliorated histological alterations of the brain. These findings may be attributed partially to the antioxidant property of EELT, which demonstrated protective effects against MC-induced behavioral parameters and alteration of microanatomy of rats' cerebral cortex, hippocampus, and cerebellum. In conclusion, EELT may be a valuable agent for further investigation in the prevention of acute neuropathy caused by inorganic mercury intoxication.

  15. Strong enhancement of antioxidant activity of Aloe vera extracts by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Mi; Bai, Hyoung Woo; Lee, Seung Sik; Hong, Sung Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Jae Young; Chung, Byung Yeoup [Chonbuk National University, Jeonju (Korea, Republic of)

    2011-10-15

    The World Health Organization (WHO) has estimated that approximately 80% of individuals rely on traditional medicines. Among over 400 Aloe species, Aloe vera was the most accepted species for various medical, cosmetic and neutraceutical purposes. Aloe vera (syn.: Aloe barbadensis Miller) was a perennial succulent plant belonging to the Aloeaceae family (subfamily of the Asphodelaceae). It has been reported that Aloe vera extracts were useful in the treatment of wound and burn healing, minor skin infections, sebaceous cyst, diabetes, and elevated blood lipids in humans. Recent studies have shown that treatment with either Aloe vera crude gel or its extracts, such as acemannan, {beta}-sitosterol, and others, resulted in faster healing of wounds by stimulating fibroblast proliferation, collagen deposition, angiogenesis, and production of growth factors. Ionizing radiation technology has been developed to improve our daily life such as cancer therapy and sterilizing tool due to its unique feature that could be penetrated biomaterials leading to alter their own physical properties. More recently, many studies have attempted to apply the radiation technology to enhance their biological activities. At present, however, very little was known about whether naturally-occurring phenolic compounds of ethanolic aloe gel extracts that were altered their biological activities by ionizing radiation to serve as antioxidant in the body to reduce ROS produced by the stresses. The purpose of the current study was to investigate the influence of gamma irradiation on antioxidant activity of Aloe vera extracts, and open insight new possibilities that gamma ray could be a powerful tool for improving its own biological activities

  16. Strong enhancement of antioxidant activity of Aloe vera extracts by gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae Young; Chung, Byung Yeoup

    2011-01-01

    The World Health Organization (WHO) has estimated that approximately 80% of individuals rely on traditional medicines. Among over 400 Aloe species, Aloe vera was the most accepted species for various medical, cosmetic and neutraceutical purposes. Aloe vera (syn.: Aloe barbadensis Miller) was a perennial succulent plant belonging to the Aloeaceae family (subfamily of the Asphodelaceae). It has been reported that Aloe vera extracts were useful in the treatment of wound and burn healing, minor skin infections, sebaceous cyst, diabetes, and elevated blood lipids in humans. Recent studies have shown that treatment with either Aloe vera crude gel or its extracts, such as acemannan, β-sitosterol, and others, resulted in faster healing of wounds by stimulating fibroblast proliferation, collagen deposition, angiogenesis, and production of growth factors. Ionizing radiation technology has been developed to improve our daily life such as cancer therapy and sterilizing tool due to its unique feature that could be penetrated biomaterials leading to alter their own physical properties. More recently, many studies have attempted to apply the radiation technology to enhance their biological activities. At present, however, very little was known about whether naturally-occurring phenolic compounds of ethanolic aloe gel extracts that were altered their biological activities by ionizing radiation to serve as antioxidant in the body to reduce ROS produced by the stresses. The purpose of the current study was to investigate the influence of gamma irradiation on antioxidant activity of Aloe vera extracts, and open insight new possibilities that gamma ray could be a powerful tool for improving its own biological activities

  17. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment.

    Science.gov (United States)

    Sogi, D S; Siddiq, M; Roidoung, S; Dolan, K D

    2012-11-01

    Mango (Mangifera indica L.) is a major tropical fruit that has not been exploited for fresh-cut or minimally processed products on a scale similar to apples, pineapples, or melons. The objective of this study was to investigate the effect of infrared (IR) treatment on total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut cubes from 'Tommy Atkin' mangoes. Mango cubes were IR treated (5, 10, 15 min) and evaluated at 4-d intervals during 16-d storage at 4 ± 1 °C. Total phenolics, carotenoids, and ascorbic acid content in fresh-cut control mango cubes were 43.33, 1.37, and 15.97 mg/100 g FW, respectively. IR treatments increased total phenolics (59.23 to 71.16 mg/100 g FW) and decreased ascorbic acid (12.14 to 15.38 mg/100 g, FW). Total carotenoids showed a mixed trend (1.13 to 1.66 mg/100 g, FW). The IR treatment showed a significant positive impact on antioxidant properties (μM TE/100 g, FW) of mango cubes, as assayed by ABTS (261.5 compared with 338.0 to 416.4), DPPH (270.5 compared with 289.4 to 360.5), and ORAC (6686 compared with 8450 to 12230). Total phenolics, carotenoids, ascorbic acid, and antioxidant capacity decreased over 16-d storage. However, IR treated samples had consistently higher ABTS, DPPH, and total phenolics during storage. It was demonstrated that IR treatment can be effectively used in improving antioxidant properties of fresh-cut mangoes with minimal effect on the visual appearance. Various methods/treatments are in use for extending the quality of fresh-cut fruits, including mild heat treatment. This study explored the application of infrared (IR) heat for processing fresh-cut mango cubes and evaluated its effect on vitamin C and antioxidant capacity during 16-d storage. This is the first study reporting on the use of IR heat in fresh-cut fruits. IR treatment was shown to be effective in retaining antioxidant properties of fresh-cut mango cubes with minimal effect on the visual appearance. © 2012 Institute

  18. Biochemical composition and antioxidant properties of Lavandula angustifolia Miller essential oil are shielded by propolis against UV radiations.

    Science.gov (United States)

    Gismondi, Angelo; Angelo, Gismondi; Canuti, Lorena; Lorena, Canuti; Grispo, Marta; Marta, Grispo; Canini, Antonella; Antonella, Canini

    2014-01-01

    UV radiations are principal causes of skin cancer and aging. Suntan creams were developed to protect epidermis and derma layers against photodegradation and photooxidation. The addition of antioxidant plant extracts (i.e. essential oil) to sunscreens is habitually performed, to increase their UV protective effects and to contrast pro-radical and cytotoxic compounds present in these solutions. According to these observations, in the present work, the alteration of chemical composition and bioactive properties of Lavandula angustifolia Miller essential oil, exposed to UV light, was investigated. UV induced a significant deterioration of lavender oil biochemical profile. Moreover, the antioxidant activity of this solution, in in vitro tests and directly on B16-F10 melanoma cells, greatly decreased after UV treatment. Our results also showed that essential oil was shielded from UV stress by propolis addition. Even after UV treatment, bee glue highly protected lavender oil secondary metabolites from degradation and also preserved their antiradical properties, both in in vitro antioxidant assays and in cell oxidative damage evaluations. This research proposed propolis as highly efficient UV protective and antiradical additive for sunscreens, cosmetics and alimentary or pharmaceutical products containing plant extracts. © 2013 The American Society of Photobiology.

  19. Enhanced antioxidant activity of polyolefin films integrated with grape tannins.

    Science.gov (United States)

    Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A

    2016-06-01

    A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Acetone Extract from Rhodomyrtus tomentosa: A Potent Natural Antioxidant

    Directory of Open Access Journals (Sweden)

    Goodla Lavanya

    2012-01-01

    Full Text Available Rhodomyrtus tomentosa (Myrtaceae has been employed in traditional Thai medicine to treat colic diarrhoea, dysentery, abscesses, haemorrhage, and gynaecopathy. In addition, it has been used to formulate skin-whitening, anti-aging and skin beautifying agents. Ethnomedical activities of this plant may be due its antioxidant property. Hence, the aim of this study was to evaluate both in vitro and in vivo antioxidant activities of R. tomentosa leaf extract. In vitro antioxidant activity of the extract was assessed by lipid peroxidation inhibition capacity, ferric reducing antioxidant power, and metal chelating activity. R. tomentosa extract demonstrated its free radical scavenging effects in concentration dependent manner. In vivo antioxidant activity of the extract was conducted in Swiss Albino mice. Levels of thio-barbituric acid reactive substances (TBARS, glutathione (GSH, and the activities of antioxidant enzymes including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx in blood, liver, and kidney were analyzed using microtitre plate photometer. Administration of CCl4 caused significant increase in TBARS and decrease in GSH, SOD, CAT and GPx levels. In contrast, R. tomentosa extract (0.8 g/kg effectively prevented these alterations and maintained the antioxidant status. The results suggest that R. tomentosa extract can serve as a potent antioxidant.

  1. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  2. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  3. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  4. Antioxidant activity of lichen Cetraria aculeata

    Directory of Open Access Journals (Sweden)

    Tomović Jovica

    2016-01-01

    Full Text Available The aim of the present study is to investigate the antioxidant properties of the lichen Cetraria aculeata. Antioxidant activity of the methanol and ethyl acetate extracts of lichen was tested by different methods including determination of total phenolics content, determination of total antioxidant capacity, DPPH free radical scavenging activity, inhibitory activity towards lipid peroxidation, ferrous ion chelating ability and hydroxyl radical scavenging activity. The extracts of the lichen C. aculeata showed significant antioxidant activity. The methanol extract showed higher values for total phenolics and total antioxidant capacity compared to the ethyl acetate extract, while the ethyl acetate extract demonstrated better results for DPPH radical scavenging, inhibitory activity towards lipid peroxidation, chelating ability and hydroxyl radical scavenging than the methanol extract. This is the first report of the antioxidant properties of Cetraria aculeata growing in Serbia. The results of antioxidant activity indicate the application of this lichen as source of natural antioxidants that could be used as a possible food supplement, in the pharmaceutical industry and in the treatment of various diseases.

  5. Antioxidant Role of Vitamin D in mice with Alloxan-Induced Diabetes.

    Science.gov (United States)

    Iqbal, Sarah; Khan, Saman; Naseem, Imrana

    2017-12-04

    The discovery of vitamin D receptors has revolutionized the understanding of vitamin D biology, which is now thought to influence a wide array of cell pathways. The antihyperglycemic actions of vitamin D involving calcium metabolism have been widely discussed, but studies are now suggesting a possibility of vitamin D-induced amelioration of oxidative stress. Despite its significance in disease pathogenesis, oxidative status remains poorly investigated with respect to vitamin D treatment in the biology of diabetes mellitus. The present study was aimed at assessing the antioxidant therapeutic potential of vitamin D in diabetes mellitus. Balb/c mice were induced to experimental diabetes with a single dose of alloxan. Following a 15-day treatment period, various parameters pertaining to glucose metabolism, oxidative stress, zinc concentration and DNA damage were analyzed. With the exception of superoxide dismutase and catalase, the antioxidant enzyme activities were slightly altered in various groups. However, improved glucose homeostasis and zinc concentration and reduced DNA damage were observed in the group treated with vitamin D. The present work accounts for the ubiquitous roles of vitamin D in various diseases and highlights its role as a therapeutic intervention in diabetes mellitus. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  6. Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium

    Directory of Open Access Journals (Sweden)

    Peñas Elena

    2018-06-01

    Full Text Available Broccoli consumption is rising worldwide and fertilization is a tool to increase its production. However, little is known about the effect of mineral supplementation to the soil on the bioactive compounds. Therefore, the aim of this investigation was to analyze the content of vitamin C, total phenolic compounds and the antioxidant capacity of broccoli florets cultivated under different nitrogen (N conditions in combination with selenium (IV and VI. Greenhouse experiments were conducted in broccoli grown in commercial soil treated with different N sources [(NH42SO4, NaNO3, NH4NO3 or CO(NH22 at 160 kg N/ha]. In addition, selenium (Se salts [Na2SeO3 (Se IV or Na2SeO4 (Se VI at 10 and 20 kg Se/ha] were applied. There were no evidences of the influence of N treatment on vitamin C content whilst Se (IV or VI uptake led to a significant reduction of this vitamin in broccoli florets, irrespective of the N source. In contrast, total phenolics content and antioxidant capacity underwent a significant increment under N application. However, their combination with Se salts modified total phenolic content and antioxidant capacities in broccoli florets depending on N source and Se doses. Among all the experimental trials, application of NH4NO3 combined with 10 g Se (IV/ha was the elective treatment strategy to produce broccoli florets with higher content of phenolic compounds and antioxidant capacity and, therefore, enhanced functionality.

  7. Evaluation of antioxidant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell model.

    Science.gov (United States)

    Tinti, Laura; Spreafico, Adriano; Braconi, Daniela; Millucci, Lia; Bernardini, Giulia; Chellini, Federico; Cavallo, Giovanni; Selvi, Enrico; Galeazzi, Mauro; Marcolongo, Roberto; Gallagher, James A; Santucci, Annalisa

    2010-10-01

    Alkaptonuria (AKU) is a rare autosomal recessive disease, associated with deficiency of homogentisate 1,2-dioxygenase activity in the liver. This leads to an accumulation of homogentisic acid (HGA) and its oxidized derivatives in polymerized form in connective tissues especially in joints. Currently, AKU lacks an appropriate therapy. Hence, we propose a new treatment for AKU using the antioxidant N-acetylcysteine (NAC) administered in combinations with ascorbic acid (ASC) since it has been proven that NAC counteracts the side-effects of ASC. We established an in vitro cell model using human articular primary chondrocytes challenged with an excess of HGA (0.33 mM). We used this experimental model to undertake pre-clinical testing of potential antioxidative therapies for AKU, evaluating apoptosis, viability, proliferation, and metabolism of chondrocytes exposed to HGA and treated with NAC and ASC administered alone or in combination addition of both. NAC decreased apoptosis induced in chondrocytes by HGA, increased chondrocyte growth reduced by HGA, and partially restored proteoglycan release inhibited by HGA. A significantly improvement in efficacy was found with combined addition of the two antioxidants in comparison with NAC and ASC alone. Our novel in vitro AKU model allowed us to demonstrate the efficacy of the co-administration of NAC and ASC to counteract the negative effects of HGA for the treatment of ochronotic arthropathy. (c) 2010 Wiley-Liss, Inc.

  8. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men.

    Science.gov (United States)

    Ajina, T; Sallem, A; Haouas, Z; Mehdi, M

    2017-09-01

    The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation. © 2016 Blackwell Verlag GmbH.

  9. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Suryanarayana, Palla; Satyanarayana, Alleboena; Balakrishna, Nagalla; Kumar, Putcha Uday; Reddy, Geereddy Bhanuprakash

    2007-12-01

    There is increasing evidence that complications related to diabetes are associated with increased oxidative stress. Curcumin, an active principle of turmeric, has several biological properties, including antioxidant activity. The protective effect of curcumin and turmeric on streptozotocin (STZ)-induced oxidative stress in various tissues of rats was studied. Three-month-old Wistar-NIN rats were made diabetic by injecting STZ (35 mg/kg body weight) intraperitoneally and fed either only the AIN-93 diet or the AIN-93 diet containing 0.002% or 0.01% curcumin or 0.5% turmeric for a period of eight weeks. After eight weeks the levels of oxidative stress parameters and activity of antioxidant enzymes were determined in various tissues. STZ-induced hyperglycemia resulted in increased lipid peroxidation and protein carbonyls in red blood cells and other tissues and altered antioxidant enzyme activities. Interestingly, feeding curcumin and turmeric to the diabetic rats controlled oxidative stress by inhibiting the increase in TBARS and protein carbonyls and reversing altered antioxidant enzyme activities without altering the hyperglycemic state in most of the tissues. Turmeric and curcumin appear to be beneficial in preventing diabetes-induced oxidative stress in rats despite unaltered hyperglycemic status.

  10. Gas exchange and antioxidant activity in seedlings of C opaifera langsdorffii Desf. under different water conditions.

    Science.gov (United States)

    Rosa, Derek B C J; Scalon, Silvana P Q; Cremon, Thais; Ceccon, Felipe; Dresch, Daiane M

    2017-01-01

    The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%), and evaluated at four different time (T- 30, 60, 90, and 120 days). During the experimental period, seedlings presented the highest values for carboxylation efficiency of Rubisco (A/Ci), intrinsic water use efficiency (IWUE = A/gs), chlorophyll index, and stomatal opening, when grown in the substrate with 75% WRC, but the stomatal index (SI) was less the 25% WRC. The efficiency of photosystem II was not significantly altered by the treatments. Comparison between the extreme treatments in terms of water availability, represented by 25% and 100% WRC, represent stress conditions for the species. Water availability causes a high activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the plant.

  11. Gas exchange and antioxidant activity in seedlings of C opaifera langsdorffii Desf. under different water conditions

    Directory of Open Access Journals (Sweden)

    DEREK B.C.J. ROSA

    Full Text Available ABSTRACT The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%, and evaluated at four different time (T- 30, 60, 90, and 120 days. During the experimental period, seedlings presented the highest values for carboxylation efficiency of Rubisco (A/Ci, intrinsic water use efficiency (IWUE = A/gs, chlorophyll index, and stomatal opening, when grown in the substrate with 75% WRC, but the stomatal index (SI was less the 25% WRC. The efficiency of photosystem II was not significantly altered by the treatments. Comparison between the extreme treatments in terms of water availability, represented by 25% and 100% WRC, represent stress conditions for the species. Water availability causes a high activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase in the plant.

  12. Effects of 200 Gy 60Co-γ Radiation on the Regulation of Antioxidant Enzymes, Hsp70 Genes, and Serum Molecules of Plutella xylostella (Linnaeus).

    Science.gov (United States)

    Li, Xiaoxue; Luo, Lingyan; Karthi, Sengodan; Zhang, Ke; Luo, Jianjun; Hu, Qiongbo; Weng, Qunfang

    2018-04-26

    The diamondback moth, Plutella xylostella (Linnaeus), is one of the notorious pests causing substantial loses to many cruciferous vegetables across the nations. The effects of 60 Co-γ radiation on physiology of P. xylostella were investigated and the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella . First, in our research, we detected Oxidase system and stress response mechanism of irradiated pupae, the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella . The levels of superoxide dismutase (SOD) and catalase (CAT) were increased significantly in contrast the level of peroxidase (POD) and glutathione S-transferase (GST) were decreased in 12⁻24 h post-treatment. The heat shock proteins (Hsps) gene expression level was significant increasing, maximum > 2-folds upregulation of genes were observed in peak. However, they also had a trend of gradual recovery with development. Second, we detected the testis lactate dehydrogenase (LDH) and acid phosphatase (ACP) activity found that in male adults testis they increased significantly than control during its development. Thus the present research investigation highlights that the 60 Co-γ radiation treatments alters the physiological development of diamondback moth. The results showed that 200 Gy dosage resulted in stress damage to the body and reproductive system of the diamondback moth.

  13. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  14. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    Science.gov (United States)

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  15. Oxidant-Antioxidant Balance In Epileptic Children

    International Nuclear Information System (INIS)

    Moawad, A.T.; Mohammed, A.A.; El-Maghraby, D.M.F.

    2011-01-01

    Epilepsy is one of the most common neurological disorders which are characterized by recurrent unprovoked seizures. It is usually controlled, but cannot be cured with medications, although surgery may be considered in difficult cases. Over 30% of people with epilepsy don't have seizure control even with the best available medications. In epileptic children, oxidant-antioxidant balance is disturbed. Glutathione homeostasis may be altered as a consequence of reactive metabolites and/or reactive oxygen species produced during treatment with antiepileptic drugs. Per-oxidation of membrane lipid caused by an increase in generation of free radical or decrease in the activities of antioxidant defense systems have been suggested to be critically involved in seizure control. The effect of antiepileptic monotherapy as valproic acid (VPA) or carbamazepine (CBZ) or both on level of glutathione-S-transferase (GST) as an index of antioxidant and the plasma of malondialdehyde (MDA) as an index of oxidative stress were studied in this study. Forty children (18 males and 22 females) with idiopathic generalized epilepsy, diagnosed in the Pediatric Neurology Unit, Children Hospital, Ain Shams University, Cairo, Egypt, were selected to represent group (1) with mean age of 5.13 ± 4.36 years. Thirty healthy children (14 males and 16 females) matched in age, sex and social life status served as normal control group (2). The results revealed that there was high significant increase in the plasma level of MDA in patients with idiopathic epilepsy as compared to the control while the serum level of GST was significantly decreased in epileptic children as compared to the control group. Non-significant difference in plasma level of MDA and serum level of GST among the epileptic subgroups was observed. In uncontrolled epileptic patients (seizures more than 4/month), the plasma level of MDA displayed higher significant increase than in controlled epileptic patients. On the other hand, serum GST

  16. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer.

    Science.gov (United States)

    Bonner, Michael Y; Arbiser, Jack L

    2014-01-01

    So-called antioxidants have yet to make a clinical impact on the treatment of human cancer. The reasons for this failure are several. First, many agents that are called antioxidants are truly antioxidants at a given dose, but this dose may not have been given in clinical trials. Second, many agents are not antioxidants at all. Third, not all tumors use reactive oxygen as a signaling mechanism. Finally, reactive oxygen inhibition is often insufficient to kill or regress a tumor cell by itself, but requires sequential introduction of a therapeutic agent for maximal effect. We hope to provide a framework for the logical use of these agents in cancer.

  17. Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress

    Directory of Open Access Journals (Sweden)

    Md. Saydur Rahman

    2014-05-01

    Full Text Available Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT and its precursor, 5-hydroxytryptophan (5-HTP as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks which were partially restored by repeated injections with a nitric oxide synthase (NOS-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress.

  18. Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy.

    Science.gov (United States)

    Gonçalves, Danielle; Lima, Claudia; Ferreira, Paula; Costa, Paulo; Costa, Angela; Figueiredo, Walter; Cesar, Thais

    2017-01-01

    Background: HCV causes alterations in liver metabolism, resulting in biochemical and nutritional disorders. Supplementation with antioxidants has been suggested to minimize the diseases effects. Objective: This study assessed whether orange juice, a source of citrus flavonoids and vitamin C, may contribute to the treatment of patients with chronic hepatitis C. Design: Anthropometric, hemodynamic, dietary, and biochemical parameters, CRP and liver enzymes were measured in 43 adult patients of both genders who were diagnosed with chronic hepatitis C and were under antiviral therapy. Twenty-three patients were supplemented with orange juice for eight consecutive weeks, while 20 were enrolled as control group. Results: Following regular use of orange juice, no alterations were found in body mass, fat, and waist circumference. The serum levels of total cholesterol, LDL-cholesterol, CRP and parameters of oxidative stress decreased in the orange juice group. Furthermore, the levels of the liver enzyme AST decreased in those who had high levels before the intervention. Conclusion: The orange juice was a convenient food in the diet of patients due to the increase in antioxidant capacity and decreased inflammation and cholesterol in blood serum, in addition to maintaining body mass, which protect against the harmful effects caused by the chronic hepatitis C virus.​​​.

  19. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine; degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65 nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  20. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    Science.gov (United States)

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  1. Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats.

    Science.gov (United States)

    Golshan, Alireza; Hayatdavoudi, Parichehr; Hadjzadeh, Mousa Al-Reza; Khajavi Rad, Abolfazl; Mohamadian Roshan, Nema; Abbasnezhad, Abbasali; Mousavi, Seyed Mojtaba; Pakdel, Roghayeh; Zarei, Batool; Aghaee, Azita

    2017-01-01

    The antioxidant capacity impairs in kidney and urinary bladder of animals with stone disease. Herbal medicine can improve the antioxidant condition of renal tissue. Cynodon dactylon ( C. dactylon ) is a medicinal plant with antioxidative and diuretic properties and different preparations of this plant have shown promising effects in stone disease. Assessment of the whole plant decoction to prevent kidney stone disease as well as its antioxidant effects was the aim of this paper. Fifty male Wistar rats were randomly divided into 5 experimental groups (n=10). One group was left without treatment and four groups received ethylene glycol (1% v/v) in drinking water for 6 weeks. Three doses of Cynodon dactylon aqueous decoction (12.5, 50 and 200 mg/kg BW) were added to the drinking water of groups 3-5. Finally, water intake, 24-hour urine volume, MDA, total thiol concentration and FRAP value were measured in the serum and kidney tissues. The CaOx depositions were evaluated by hematoxylin and eosin staining. Compared to the ethylene glycol-treated group, 200 mg/kg C. dactylon , lowered stone incidents, decreased urine volume, increased FRAP/g Cr (43%) and thiol content (p<0.05) with no significant alteration of water intake, MDA decreased significantly compared to C. dactylon 12.5 (p<0.01). Kidney weight increased and body weight decreased in ethylene glycol-treated group compared to the control group (p<0.05). A minimum dose of 200 mg/kg C. dactylon reduced stone formation and simultaneously increased total antioxidant power of serum and preserved MDA content and water.

  2. Alpha-Fetoprotein, Identified as a Novel Marker for the Antioxidant Effect of Placental Extract, Exhibits Synergistic Antioxidant Activity in the Presence of Estradiol

    Science.gov (United States)

    Choi, Hye Yeon; Kim, Seung Woo; Kim, BongWoo; Lee, Hae Na; Kim, Su-Jeong; Song, Minjung; Kim, Sol; Kim, Jungho; Kim, Young Bong; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-01-01

    Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol. PMID:24922551

  3. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Choi

    Full Text Available Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol.

  4. Antioxidants: Friends or foe in prevention or treatment of cancer: The debate of the century

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-08-15

    There are a number of intrinsic (e.g. oncogenes) and extrinsic (e.g. radiation and inflammation) factors, which may arise in reactive oxygen species (ROS), resulting in DNA instability and then cancer. In this situation, initial cancerous cells would balance the harmful effects of ROS by switching on the protective effects in a longstanding manner. In normal conditions, ROS have an important role in signal transduction and gene transcription, nevertheless, ROS may act as a trigger for carcinogenesis via persistent DNA injuries as well as mutations in p53 such as conditions observed in skin, hepatocellular, and colon cancers. Some compounds like paclitaxel are able to attack cancer cells through generation of ROS or interfering with ROS metabolism, while there are a few anti-angiogenesis compounds without toxicity such as endostatin, which act as anti-neoplastic only together with another chemotherapeutic drug. Furthermore, some anti-cancer agents like piperlongumine bind to the active sites of several key cellular antioxidants including glutathione S transferase and carbonyl reductase 1 only in the cancer cells. Although the natural antioxidants can alone or in combination with the diet provide some benefits for chemoprevention, their position in cancer therapy, especially initial stages of carcinogenesis is breaking down. On the other hand antioxidants can promote the survival of detached cells from extra cellular medium playing dual activities with respect to tumorigenesis through inhibition of tumorigenesis by preventing oxidative injuries to DNA and otherwise maintenance of tumor by promoting cell survival via metabolic rescue. Hopefully, more details of antioxidant and anti-neoplastic mechanisms become clear day by day, which have made researchers renew the strategy for designing cancer prevention or treatment.

  5. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats.

    Science.gov (United States)

    Jiménez-Escrig, Antonio; Dragsted, Lars Ove; Daneshvar, Bahram; Pulido, Raquel; Saura-Calixto, Fulgencio

    2003-08-27

    Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) scavenging, (b) ferric-reducing antioxidant power (FRAP), and (c) inhibition of copper(II)-catalyzed in vitro human low-density lipoprotein (LDL) oxidation. In addition, the present study was performed to investigate the ability of the edible portion of artichoke to alter in vivo antioxidative defense in male rats using selected biomarkers of antioxidant status. One gram (dry matter) had a DPPH(*) activity and a FRAP value in vitro equivalent to those of 29.2 and 62.6 mg of vitamin C and to those of 77.9 and 159 mg of vitamin E, respectively. Artichoke extracts showed good efficiency in the inhibition in vitro of LDL oxidation. Neither ferric-reducing ability nor 2,2'-azinobis(3-ethylbenzothiazolin-6-sulfonate) radical scavenging activity was modified in the plasma of the artichoke group with respect to the control group. Among different antioxidant enzymes measured (superoxide dismutase, gluthatione peroxidase, gluthatione reductase, and catalase) in erythrocytes, only gluthatione peroxidase activity was elevated in the artichoke group compared to the control group. 2-Aminoadipic semialdehyde, a protein oxidation biomarker, was decreased in plasma proteins and hemoglobin in the artichoke-fed group versus the control group. In conclusion, the in vitro protective activity of artichoke was confirmed in a rat model.

  6. New Hydrogels Enriched with Antioxidants from Saffron Crocus Can Find Applications in Wound Treatment and/or Beautification.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Sansone, Claudia; Macchiarelli, Guido; Continenza, Maria Adelaide; Arroo, Randolph R J

    2018-01-01

    Saffron extracts have a long history of application as skin protectant, possibly due to their ability to scavenge free radicals. In this work, the performance of a hydrogel enriched with antioxidant compounds isolated from saffron crocus (Crocus sativus L.) petals was tested. These hydrogels could be considered as new drug delivery system. Hydrogels are crosslinked polymer networks that absorb large quantities of water but retain the properties of a solid, thus making ideal dressings for sensitive skin. We tested antioxidant-enriched hydrogels on primary mouse fibroblasts. Hydrogels enriched with kaempferol and crocin extracted from saffron petals showed good biocompatibility with in vitro cultured fibroblasts. These new types of hydrogels may find applications in wound treatment and/or beautification. © 2018 S. Karger AG, Basel.

  7. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    International Nuclear Information System (INIS)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L.; Heck, Diane E.; Laskin, Jeffrey D.

    2008-01-01

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity

  8. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  9. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches.

    Science.gov (United States)

    Carrillo, Celia; Rey, Raquel; Hendrickx, Marc; Del Mar Cavia, María; Alonso-Torre, Sara

    2017-09-01

    Red beetroot has been ranked among the 10 most potent antioxidant vegetables, although only extraction-based methods have been used to evaluate its total antioxidant capacity. Therefore, the present study aims at comparing the traditional extraction-based method with two more recent approaches (QUENCHER -QUick, Easy, New, CHEap and Reproducible- and GAR -global antioxidant response method), in order to establish their suitability in the case of beetroot. Our results indicate that the total antioxidant capacity of beetroot would be underestimated when using extraction-based procedures, since both QUENCHER and GAR methods resulted in a higher total antioxidant capacity. The effect of a thermal treatment on the total antioxidant capacity of beetroot varies among the methods evaluated and our findings suggest different compounds responsible for the total antioxidant capacity detected in each pre-processing method. Remarkably, the present study demonstrates that the traditional extraction-based method seems useful to screen for (changes in) the "bioavailable" antioxidant potential of the root.

  10. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    Science.gov (United States)

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. [EFFICACY OF COMBINED USE OF ANTIOXIDATIVE AND PHOTOTHERAPY IN THE TREATMENT OF VITILIGO].

    Science.gov (United States)

    Tsiskarishvili, N I; Katsitadze, A; Tsiskarishvili, N V; Tsiskarishvili, Ts; Chitanava, L

    2016-11-01

    Despite of numerous investigations, carried out practically in all countries of the world for the study of vitiligo and the search for its new effective therapies, pathogenic mechanisms of vitiligo are still poorly understood, and the proposed treatments are not perfect. One of the most accepted theories of the pathogenesis of vitiligo is an oxidative stress theory, according to which a series of biochemical anomalies cause oxidative stress, leading to accumulation of melanocytotoxic substances and inhibition of natural processes of detoxification with subsequent destruction of melanocytes in vitiligo focus. On the other hand, the use of antioxidants in combination with ultraviolet therapy of dermatological diseases, has been theoretically proved by biophysical studies, according to which- the antioxidants inhibit the oxidation of products, formed in the skin after ultraviolet irradiation and greatly reduce erythema sensitivity (1.5-2 times). Due to this effect, the power of radiation exposure can be approximately increased many times. Based on the foregoing, the use of antioxidants during phototherapy of vitiligo pathogenetically is justified. The aim of the study was to evaluate the therapeutic efficacy of Se ACE in treatment of patients with various forms of vitiligo. 35 patients (23 women and 12 men) aged 18 to 40 years with duration of the pathological process from 2 months to 15 years were under observation. 17 of these were diagnosed with a form of non segmental vitiligo (NSV), 18- segmental vitiligo. In 11 patients onset of the disease was not connected with any other problem, 24 noted the appearance of white spots after stress. Vitiligo patients were divided into 2 groups: the study group and the group of comparison. The study group included 17 patients (9 women and 8 men) aged 18 to 40 years with duration of the disease from 2 months to 5 years. The comparison group consisted of 18 patients (10 women and 8 men). Distribution of patients in both groups was

  12. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results

    Science.gov (United States)

    Mut-Salud, Nuria; Álvarez, Pablo Juan; Garrido, Jose Manuel; Carrasco, Esther; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2016-01-01

    The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency. PMID:26682013

  13. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results

    Directory of Open Access Journals (Sweden)

    Nuria Mut-Salud

    2016-01-01

    Full Text Available The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous or incorporated through the diet and nutritional supplements (exogenous. In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.

  14. ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Giriraja Vrushabaiah Kanakapura

    2017-09-01

    Full Text Available BACKGROUND Diabetic neuropathy, retinopathy and nephropathy are the chronic complications of diabetes mellitus. Neuropathy, retinopathy and nephropathy are microvascular complication of diabetes mellitus. Antioxidant status is reduced in DM-induced retinopathy and nephropathy. Present study is undertaken to evaluate the degree of oxidative stress in diabetic neuropathy patients. The aim of the study is to study on oxidative stress as measured by lipid peroxidation marker, malondialdehyde and antienzyme status in type II DM patients with neuropathy and compared them with a controlled nondiabetic group. MATERIALS AND METHODS The study included 100 subjects from Sapthagiri Medical College, Bangalore, from January 1, 2015, to December 31, 2015, of age group 50 to 70 yrs. out of which 50 patients were non-insulin-dependent DM with neuropathy and rest 50 age and sex matched apparently healthy individuals (control group. Antioxidant status was assessed by measuring superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GR, Catalase and Reduced Glutathione (GSH. RESULTS It showed a significant increase p<0.001 in FBS, PPBS, TC, TG, LDL, VLDL, CAT, MDA, while HDL, GSH, GPX, GR and SOD were found to be decreased significantly (p 0.001. CONCLUSION MDA was significantly elevated in diabetic group, whereas antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase and reduced glutathione were significantly decreased, which might be helpful in risk assessment of various complications of DM. The data suggests that alteration in antioxidant status and MDA may help to predict the risk of diabetic neuropathy.

  15. Alterations in the metabolism of benzo[a]pyrene in syrian hamster embryo (SHE) cells pretreated with phenolic antioxidants

    International Nuclear Information System (INIS)

    Strniste, G.F.; Okinaka, R.T.; Chen, D.J.

    1983-01-01

    Inhibition of chemical- or radiation-induced neoplasia has been observed in animals whose diets were supplemented with antioxidants commonly used as food additives. Inhibition of the carcinogenicity of benzo[a]pyrene (BaP) or of 7,12-dimenthylbenz[a]anthracene (DMBA) - in rats has been achieved by the addition of the phenolic antioxidants butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT) to the diet. Our data suggest that in SHE cells antioxidants inhibit the overall metabolism of BaP to its various oxidized moieties including 7,8-diol- and 7,8,9,10-tetrol-BaP. A plausible explanation for our results with SHE cells is that the antioxidants interact directly with AHH, thus inhibiting AHH metabolic capacity. From analysis of nuclear material from SHE cells (+- antioxidants) incubated for 36 hours with BaP at 1 μg/ml, it is calculated that 4.6, 2.4 and 2.9 pmol BaP are bound to the DNA isolated from 10 7 nuclei of control, BHA-(20 μg/ml) and p-MP-(10 μg/ml) treated cultures, respectively

  16. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice.

    Science.gov (United States)

    Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro

    2016-01-30

    Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.

  17. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans

    International Nuclear Information System (INIS)

    Marathe, S.A.; Deshpande, R.; Khamesra, Arohi; Ibrahim, Geeta; Jamdar, Sahayog N.

    2016-01-01

    In the present study dry red kidney beans (Phaseolus vulgaris), irradiated in the dose range of 0.25–10.0 kGy were evaluated for proximate composition, functional, sensory and antioxidant properties. Radiation processing up to 10 kGy did not affect proximate composition, hydration capacity and free fatty acid value. All the sensory attributes were unaffected at 1.0 kGy dose. The dose of 10 kGy, showed lower values for odor and taste, however, they were in acceptable range. Significant improvement in textural quality and reduction in cooking time was observed at dose of 10 kGy. Antioxidant activity of radiation processed samples was also assessed after normal processing such as soaking and pressure cooking. Both phenolic content and antioxidant activity evaluated in terms of DPPH free radical scavenging assay and inhibition in lipid peroxidation using rabbit erythrocyte ghost system, were marginally improved (5–10%) at the dose of 10 kGy in dry and cooked samples. During storage of samples for six months, no significant change was observed in sensory, cooking and antioxidant properties. Thus, radiation treatment of 1 kGy can be applied to get extended shelf life of kidney beans with improved functional properties without impairing bioactivity; nutritional quality and sensory property. - Highlights: • Nutritional and sensory aspects of kidney beans are not altered up to 10 kGy dose of gamma radiation. • Radiation processing at 10 kGy improves cooking quality of kidney bean seeds. • Radiation processing at 10 kGy increases antioxidant activity of kidney bean seeds.

  18. Alterations in antioxidant metabolism in coffee leaves infected by Cercospora coffeicola

    Directory of Open Access Journals (Sweden)

    Camila Cristina Lage de Andrade

    2016-01-01

    Full Text Available ABSTRACT: Brown eye spot (BE caused by Cercospora coffeicola is the main disease of coffee crop. A variation in symptoms of BE has been reported in the field, raising suspicion of occurrence of new species. However, information about coffee- C. coffeicola interaction is still limited. This research aimed to determine the difference between antioxidant metabolism of coffee plants cultivar Mundo Novo inoculated with a strain isolated from a common BE lesion (CML 2984 and a strain isolated from a black BE lesion (CML 2985. The enzyme activity of peroxidase (POX, catalase (CAT, superoxide dismutase (SOD, ascorbate peroxidase (APX and phenylalanine ammonia lyase (PAL were determined. Activities of POX, APX, and PAL increased in plants inoculated with both strains compared to non-inoculated plants at 12 and 24 hours post inoculation (hpi. CAT activity increased in inoculated plants with black BE strain at 24 hpi and both strains at 48 hpi. The SOD activity only increased in inoculated plants with both strains at 48 hpi. These results show that an elevated antioxidant response was observed when the plants were challenged with both strains of C. coffeicola. Both strains produced lesions of the common type, suggesting that other factors lead to the development of black BE lesion type under field conditions and further investigation is needed.

  19. APPLICATION OF ANTIOXIDANTS AND EDIBLE STARCH COATING TO REDUCE BROWNING OF MINIMALLY - PROCESSED CASSAVA

    Directory of Open Access Journals (Sweden)

    DANIEL GOMES COELHO

    2017-01-01

    Full Text Available This study aimed to evaluate the quality of minimally - processed cassava treated with antioxidants and a starch - based edible coating. Cassava roots were washed, cooled, immersed in cold water, peeled and then cut. Root pieces were then immersed in a chloride solution, centrifuged, and subsequently immersed in either a starch suspension (3%, a solution containing antioxidants (3% citric acid and 3% ascorbic acid, or in both the coating and antioxidant solutions. Coated root pieces were dried at 18 ± 2°C for 1 hour, then packaged into polypropylene bags (150 g per pack and kept at 5 ± 2°C for 15 days, and assessed every 3 days. A completely randomized design was used in a 4 × 6 factorial consisting of the treatment (control, coating, antioxidant, or coating and antioxidant and the storage period (0, 3 6, 9, 12 or 15 days, with three replicates in each group. The pH, blackened area and peroxidase and polyphenol oxidase activities of the cassava was reduced in treatments containing antioxidants and the scores of visual analysis and phenolic content were higher. Therefore, treatment with antioxidants was effective for reducing browning in minimally - processed cassava, retaining the quality of cassava pieces stored for 15 days at 5 ± 2°C. The combination of antioxidants and the edible coating showed no improvement compared to treatment with antioxidants alone.

  20. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  1. Effects of 200 Gy 60Co-γ Radiation on the Regulation of Antioxidant Enzymes, Hsp70 Genes, and Serum Molecules of Plutella xylostella (Linnaeus

    Directory of Open Access Journals (Sweden)

    Xiaoxue Li

    2018-04-01

    Full Text Available The diamondback moth, Plutella xylostella (Linnaeus, is one of the notorious pests causing substantial loses to many cruciferous vegetables across the nations. The effects of 60Co-γ radiation on physiology of P. xylostella were investigated and the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella. First, in our research, we detected Oxidase system and stress response mechanism of irradiated pupae, the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella. The levels of superoxide dismutase (SOD and catalase (CAT were increased significantly in contrast the level of peroxidase (POD and glutathione S-transferase (GST were decreased in 12–24 h post-treatment. The heat shock proteins (Hsps gene expression level was significant increasing, maximum > 2-folds upregulation of genes were observed in peak. However, they also had a trend of gradual recovery with development. Second, we detected the testis lactate dehydrogenase (LDH and acid phosphatase (ACP activity found that in male adults testis they increased significantly than control during its development. Thus the present research investigation highlights that the 60Co-γ radiation treatments alters the physiological development of diamondback moth. The results showed that 200 Gy dosage resulted in stress damage to the body and reproductive system of the diamondback moth.

  2. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  3. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.

    Science.gov (United States)

    Cooper-Mullin, Clara; McWilliams, Scott R

    2016-12-01

    During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.

  4. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus.

    Science.gov (United States)

    Chen, Siyu; Qu, Mengjie; Ding, Jiawei; Zhang, Yifei; Wang, Yi; Di, Yanan

    2018-04-18

    Both benzo(α)pyrene (BaP) and metals are frequently found in marine ecosystem and can cause detrimental effects in marine organism, especially the filter feeder-marine mussels. Although the biological responses in mussels have been well-studied upon the single metal or BaP exposure, the information about antioxidant defense, especially in different tissues of mussels, are still limited. Considering the variety of contaminants existing in the actual marine environment, single BaP (56 μg/L) and the co-exposure with Cu, Cd and Pb (50 μg/L, 50 μg/L and 3 mg/L respectively) were applied in a 6 days exposure followed by 6 days depuration experiment. The alterations of superoxide dismutase (SOD), catalase (CAT) activities and total antioxidant capacity (TAC) level were assessed in haemolymph, gills and digestive glands of marine mussels, Mytilus coruscus. An unparalleled change in antioxidant biomarkers was observed in all cells/tissues, with the SOD activity showing higher sensitivity to exposure. A tissue-specific response showing unique alteration in gill was investigated, indicating the different function of tissues during stress responses. Depressed antioxidant effects were induced by BaP-metals co-exposure, indicating the interaction may alter the intact properties of BaP. To our knowledge, this is the first research to explore the antioxidant defense induced by combined exposure of BaP-metals regarding to tissue-specific responses in marine mussels. The results and experimental model will provide valuable information and can be utilized in the investigation of stress response mechanisms, especially in relation to tissue functions in marine organism in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effects of polymannuronate on performance, antioxidant capacity, immune status, cecal microflora, and volatile fatty acids in broiler chickens.

    Science.gov (United States)

    Zhu, Wenhui; Li, Defa; Wang, Jianhong; Wu, Hui; Xia, Xuan; Bi, Wanghua; Guan, Huashi; Zhang, Liying

    2015-03-01

    The aim of this study was to assess the effects of purified polymannuronate (PM) obtained from marine brown algae on the performance, antioxidant capacity, immune status, and cecal fermentation profile of broiler chickens. In a 42 d experiment, 540 (average BW 43.77±1.29 g) 1-d-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicates of 18 chicks and fed a corn and soybean meal (SBM)-based diet supplemented with 0, 1, 2, 3, or 4 g/kg polymannuronate. Adding polymannuronate to the broiler chickens' diets resulted in a significantly increased ADG and improved feed conversion compared with the control treatment. From d 1 to 42, the ADG of broilers fed 1, 2, 3, or 4 g/kg of polymannuronate was increased by 2.58, 4.33, 4.20, and 3.47%, respectively. Furthermore, parameters related to immune status, antioxidant capacity, and composition of the cecal microflora in broiler chickens fed the polymannuronate-containing diets were altered compared with broiler chickens fed a diet without polymannuronate. Supplementation with polymannuronate significantly increased the concentrations of lactic acid and acetic acid in the cecum compared with the control group. The results indicate that polymannuronate has the potential to improve broiler chicken immune status, antioxidant capacity, and performance. © 2015 Poultry Science Association Inc.

  6. Antioxidant-mediated preventative effect of Dragon-pearl tea crude polyphenol extract on reserpine-induced gastric ulcers.

    Science.gov (United States)

    Yi, Ruokun; Wang, Rui; Sun, Peng; Zhao, Xin

    2015-07-01

    Dragon-pearl tea is a type of green tea commonly consumed in Southwest China. In the present study, the antioxidative and anti-gastric ulcer effects of Dragon-pearl tea crude polyphenols (DTCP) were determined in vitro and in vivo . Treatment with 25, 50 or 100 µg/ml DTCP resulted in notable antioxidant effects in vitro , which manifested as 2,2-diphenyl-1-picrylhydrazyl and OH radical-scavenging activity. Furthermore, using an in vivo mouse model, DTCP was shown to reduce the gastric ulcer area in the stomach, in which the 200 mg/kg DTCP dose exhibited the most marked effect, with a gastric ulcer index inhibitory rate of 72.63%. In addition, DTCP was demonstrated to improve stomach acidity conditions in vivo by increasing the pH and reducing the level of gastric juice, as compared with the reserpine-induced gastric ulcer control mice. Furthermore, DTCP altered the serum levels of a number of oxidation-related biomolecules, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), lipid peroxidation (LPO) and catalase (CAT), to subsequently exert an anti-gastric ulcer effect. Treatment with 50, 100 and 200 mg/kg DTCP increased the SOD, GSH-Px and CAT levels and reduced the MDA and LPO levels in the mouse model of gastric ulcers. These serum level alterations resulted in the modified serum levels of prostaglandin E2 (PGE2) and nitric oxide (NO), which are associated with gastric mucosal protection. A reverse transcription-quantitative polymerase chain reaction (RT-PCR) assay is a molecular biology experiment which could determine the changes of mRNA in tissues. Using the RT-PCR assay, DTCP was observed to increase the mRNA expression levels of certain genes associated with gastric ulcers: Epidermal growth factor, epidermal growth factor receptor, vascular endothelial growth factor and vascular endothelial growth factor receptor 1, while reducing gastrin expression levels. Therefore, the results indicated that DTCP induced a

  7. Effect of supplemented and topically applied antioxidant substances on human tissue.

    Science.gov (United States)

    Darvin, M; Zastrow, L; Sterry, W; Lademann, J

    2006-01-01

    Systemic and topical application of antioxidant substances for the medical treatment and prophylaxis of many diseases as well as additional protection of the skin against the destructive action of free radicals and other reactive species has become very popular during the past years. Stimulated by the positive results of a fruit and vegetable diet in supporting medical treatment and in cosmetics, artificial and extracted antioxidant substances have been broadly applied. Surprisingly, not only positive but also strong negative results have been obtained by different authors. According to study reports artificial and extracted antioxidant substances support different kinds of medical therapies, if they are applied in mixtures of different compounds at low concentration levels. In the case of the application of high concentration of some single compounds, side effects were often observed. Regarding skin treatment by systemically applied antioxidant substances for cosmetic purposes, positive cosmetic effects as well as no effects, but almost no side effects, apart from a number of allergic reactions, were reported. One reason for this seems to be the lower concentration of systemically applied antioxidant substances in comparison with a medical application. Topical application of antioxidant substances is closely related to cosmetic treatment for skin protection and anti-aging. Positive results were also obtained in this case. The present review is an attempt to classify and summarize the published literature concerning the efficiency of action of systemic and topical applications of antioxidant substances, such as carotenoids and vitamins, on human organism and especially on the skin. The available literature on this topic is very extensive and the results are often contradictory. Nevertheless, there are some clear tendencies concerning systemic and topical application of antioxidant substances in medicine and cosmetics, and we summarize them in the present paper.

  8. [Efficacy of disinfection treatments using essential oils and ultrasound on tomato fruits inoculated with Escherichia coli and impact on antioxidant activity].

    Science.gov (United States)

    Luna Guevara, María L; Luna Guevara, Juan J; Ruiz Espinosa, Héctor; Leyva Abascal, Lucero; Díaz González, Carolina B

    2015-01-01

    Fresh produce often harbors a great number of microorganisms; hence, its growing demand may constitute a risk for consumers. The aim of this study was to evaluate the efficacy of several disinfection procedures against enterotoxigenic Escherichia coli (ETEC) inoculated on tomato fruits and the conservation of the antioxidant properties of these disinfected fruits. Fruits were immersed for 5 or 10min in oregano or thyme essential oil dispersions (5, 10ppm), with or without ultrasound treatment. Antioxidant activity of disinfected fruits was determined as the ability to scavenge 2,2-diphenyl-1-pricrylhydrazyl (DPPH) radicals and was reported as percentage of inhibition (%I). The most efficient disinfectant treatments showing significant differences (p≤.05) between the reductions log10 CFU/g (S) of ETEC were those using 10ppm oregano for 10min, with S=3.05 in individual treatments and S=4.03 in mixed treatments. The highest %I was obtained with individual sonication treatments (69.52 and 72.48), while in combined treatments the %I values increased with thyme oil 5ppm and ultrasound for 5min (51.27%) and 10min (53.31%). Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Semiz Asli

    2017-01-01

    Full Text Available In the last decade, hydroxycinnamic acids (HCA have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mM/kg/day, i.p. was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19 activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(PH:quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx and glutathione S-transferases (GSTs activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels. These observations may be of importance given the potential use of HCA as a chemopreventive and as an anticancer agent.

  10. Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems.

    Science.gov (United States)

    Tas, Sibel; Sarandol, Emre; Ayvalik, Sedef Ziyanok; Serdar, Zehra; Dirican, Melahat

    2007-04-01

    Vanadyl sulfate (VS) and taurine are two promising agents in the treatment of diabetes related to their antihyperglycemic, antihyperlipidemic, and hyperinsulinemic effects. Data about the effects of VS on the oxidant-antioxidant system is limited and controversial. However, taurine is a well-documented antioxidant agent and our aim was to investigate the effects of VS, taurine and VS and taurine combination on the oxidative-antioxidative systems in streptozotocin-nicotinamide (STZ-NA) diabetic rats. Nicotinamide (230 mg/kg, i.p.) and streptozotocin (65 mg/kg, i.p.) were administered. VS (0.75 mg/mL) and taurine (1%) were added to drinking water for 5 weeks. Rats were divided as control (C), diabetes (D), diabetes+VS (D+VS), diabetes+taurine (D+T), diabetes+VS and taurine (D+VST). Plasma and tissue malondialdehyde (MDA) levels were measured by high-performance liquid chromatography and spectrophotometry, respectively. Paraoxonase and arylesterase activities were measured by spectrophotometric methods and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined using commercial kits. VS, taurine and VS and taurine combination treatments reduced the enhanced blood glucose, serum total cholesterol and triglyceride, tissue MDA and plasma MDA (except in the D+VS group) levels and increased the reduced serum insulin level, serum paraoxonase and arylesterase activities, GSH-Px activity and SOD activity (except in the D+VS group). The findings of the present study suggest that VS and taurine exert beneficial effects on the blood glucose and lipid levels in STZ-NA diabetic rats. However, VS might exert prooxidative or antioxidative effects in various components of the body and taurine and VS combination might be an alternative for sole VS administration.

  11. Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants.

    Science.gov (United States)

    Kaneria, Mital; Kanani, Bhavana; Chanda, Sumitra

    2012-03-01

    To assess the effects of extraction methods on antioxidant activities of selected Indian medicinal flora. Different parts of plants were extracted by hydroalcoholic and decoction methods using water and various concentrations of methanol (ME) viz. 75%, 50% and 25% ME. The antioxidant activity of all the different extracts was evaluated using two different antioxidant assays viz. 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging assay and superoxide anion radical scavenging assay. Total phenol and flavonoid content was also estimated. The results showed that the extracting solvent significantly altered the antioxidant property estimations of screened plants. High correlations between phenolic compositions and antioxidant activities of extracts were observed. High levels of antioxidant activities were detected in Manilkara zapota (M. zapota) as compared with other screened plants. The results obtained appear to confirm the effect of different methods on extraction of antioxidants and antioxidant property of M. zapota.

  12. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

    Science.gov (United States)

    Chen, Hainan; Li, Xiaoyan; Epstein, Paul N

    2005-05-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.

  13. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity.

    Science.gov (United States)

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; Khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect.

  14. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  15. Effect of 1-methylcyclopropene (1- MCP) treatment on antioxidant ...

    African Journals Online (AJOL)

    ajl2

    2013-02-13

    Feb 13, 2013 ... antioxidant enzymes of postharvest Japanese apricot. Ting Shi1, Zhiqiang Li2 ... ethylene in plants, increased the post-harvest life of fruits ... raw material processing. .... period. Interestingly, the activity of the treated group rose.

  16. Antioxidant and free radical scavenging activities of edible weeds ...

    African Journals Online (AJOL)

    Antioxidant-based drugs/formulations for the prevention and treatment of complex diseases like atherosclerosis, stroke, diabetes, Alzheimer's disease, and cancer have appeared during the last three decades. This has attracted a great deal of research interest in natural antioxidants. Flavonoids and phenolic compounds ...

  17. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation.

    Science.gov (United States)

    Mo, Jiao; Yang, Renhua; Li, Fan; Zhang, Xiaochao; He, Bo; Zhang, Yue; Chen, Peng; Shen, Zhiqiang

    2018-03-15

    Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H 2 O 2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H 2 O 2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the

  18. Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase.

    Science.gov (United States)

    Neubauer, Oliver; Reichhold, Stefanie; Nics, Lukas; Hoelzl, Christine; Valentini, Judit; Stadlmayr, Barbara; Knasmüller, Siegfried; Wagner, Karl-Heinz

    2010-10-01

    Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

  19. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction.

    Directory of Open Access Journals (Sweden)

    Denise M Inman

    Full Text Available Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively, we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.

  20. Oral antioxidant therapy for marginal dry eye.

    Science.gov (United States)

    Blades, K J; Patel, S; Aidoo, K E

    2001-07-01

    To assess the efficacy of an orally administered antioxidant dietary supplement for managing marginal dry eye. A prospective, randomised, placebo controlled trial with cross-over. Eye Clinic, Department of Vision Sciences, Glasgow Caledonian University. Forty marginal dry eye sufferers composed of 30 females and 10 males (median age 53 y; range 38-69 y). Baseline assessments were made of tear volume sufficiency (thread test), tear quality (stability), ocular surface status (conjunctival impression cytology) and dry eye symptoms (questionnaire). Each subject was administered courses of active treatment, placebo and no treatment, in random order for 1 month each and results compared to baseline. Tear stability and ocular surface status were significantly improved following active treatment (Ptreatment (P>0.05). Absolute increase in tear stability correlated with absolute change in goblet cell population density. Tear volume was not improved following any treatment period and dry eye symptom responses were subject to placebo effect. Oral antioxidants improved both tear stability and conjunctival health, although it is not yet understood whether increased ocular surface health mediates increased tear stability or vice versa. This study was supported by a PhD scholarship funded by the Department of Vision Sciences, Glasgow Caledonian University, Scotland. Antioxidant supplements and placebos were kindly donated by Vitabiotics.

  1. Effect of compost on antioxidant components and fruit quality of sweet pepper (capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Mohammad AMINIFARD

    2013-06-01

    Full Text Available In order to determine the effect of compost (CO on antioxidant compounds and fruit quality of sweet pepper (Capsicum annum L., an experiment was conducted in open field. Treatments consisted of four levels of compost (0, 5, 10 and 15 ton ha-1.The experiment was designed in randomized block design with three replications. Compost treatments positively affected fruit antioxidant compounds of pepper (antioxidant activity, total phenolic and carbohydrate content.But, no significant difference was found in total flavonoid content between compost and control treatments. The highest antioxidant activity and carbohydrate content were obtained in plants treated with10 ton ha-1 of compost. Fruit quality factors (pH, total soluble solids, titratable acidity, ascorbic acid and fruit firmness were influenced by compost treatments. Total soluble solids, and fruit firmness significantly increased in response to compost treatments and the highest values were obtained from the most level of compost treatment (15 t ha-1. Thus, these results showed that compost has strong impact on fruit quality and antioxidant compounds of pepper plants under field conditions.

  2. Alteration In Physiological And Biochemical Aspects Of GAMMA Irradiated Cotton Leaf Worm Separated Littorals (Boise.)

    International Nuclear Information System (INIS)

    EL-SHALL, S.S.A.; HAZAA, M.A.M.; ALM EL-DIN, M.M.S.

    2009-01-01

    This investigation was conducted on F 1 progeny of Spodoptera littoralis to determine the harmful effects of gamma irradiation on some biochemical variables in its larvae and adult tissues. Also, alterations in the antioxidant status, lipid peroxide levels and lipid profile were studied.The results obtained revealed that the doses of gamma irradiation (100 and 200 Gy), the insect stages (larvae, adults) and the sex effects on both sexes significantly decreased the levels of antioxidant enzymes (GSH, GPx, SOD).On the other hand, these factors elevated the levels of lipid peroxides and lipid profile (MDA, Chol, NEFA and Phospholipids). The interaction between the gamma dose, sex and insect stages gave the same previous trend for either antioxidant enzymes or lipid profile. The relationship between the alteration of biochemical variables that induced in irradiated insects and the activity of insects were discussed.

  3. Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Protective role of vitamin E

    Science.gov (United States)

    Subbaiah, Kadiam C. Venkata; Raniprameela, D.; Visweswari, Gopalareddygari; Rajendra, Wudayagiri; Lokanatha, Valluru

    2011-12-01

    The aim of the present study was to investigate the effect of vitamin E on pro/anti-oxidant status in the liver, brain and heart of Newcastle disease virus (NDV) infected chickens. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- S-transferase (GST) and the levels of reduced glutathione and malonaldehyde were estimated in selected tissues of uninfected, NDV-infected and NDV + vit. E-treated chickens. A significant increase in MDA levels in brain and liver ( p neuronal necrosis and degeneration of Purkinje cells were observed in brain and moderate infiltration of inflammatory cells was observed in heart. However such histological alterations were not observed in NDV + vit. E-treated animals. The results of the present study, thus demonstrated that antioxidant defense mechanism is impaired after the induction of NDV, suggesting its critical role in cellular injury in brain and liver. Further, the results also suggest that vitamin E treatment will ameliorate the antioxidant status in the infected animals. The findings could be beneficial to understand the role of oxidative stress in the pathogenesis of NDV and therapeutic interventions of antioxidants.

  4. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Entaz Bahar

    2017-01-01

    Full Text Available Manganese (Mn is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and reducing power capacity (RPC assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.

  5. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  6. Antioxidant activity of Rafflesia kerrii flower extract.

    Science.gov (United States)

    Puttipan, Rinrampai; Okonogi, Siriporn

    2014-02-01

    Rafflesia kerrii has been used in Thai traditional remedies for treatment of several diseases. However, scientific data particularly on biological activities of this plant is very rare. The present study explores an antioxidant activity of R. kerrii flower (RKF). Extracting solvent and extraction procedure were found to play an important role on the activity of RKF extract. The extract obtained from water-ethanol system showed higher antioxidant activity than that from water-propylene glycol system. Fractionated extraction using different solvents revealed that methanol fractionated extract (RM) possessed the highest antioxidant activity with Trolox equivalent antioxidant capacity (TEAC) and inhibitory concentration of 50% inhibition (IC50) values of approximately 39 mM/mg and 3 μg/mL, respectively. Phytochemical assays demonstrated that RM contained extremely high quantity of phenolic content with gallic antioxidant equivalent (GAE) and quercetin equivalent (QE) values of approximately 312 mg/g and 16 mg/g, respectively. Ultraviolet-visible spectroscopy (UV- VIS) and high-pressure liquid chromatography (HPLC) indicated that gallic acid was a major component. RM which was stored at 40°C, 75% RH for 4 months showed slightly significant change (p antioxidant activity with zero order degradation. The results of this study could be concluded that R. kerrii flower was a promising natural source of strong antioxidant compounds.

  7. Antioxidant Efficacies of Rutin and Rutin Esters in Bulk Oil and Oil-in-Water Emulsion

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Sørensen, Ann-Dorit Moltke; Jacobsen, Charlotte

    2017-01-01

    concentrations (25 and 200 µM) was assessed in bulk oil and in an o/w emulsion system without and with iron addition. All evaluated compounds revealed antioxidant effects. However, rutin and BHT were the most efficient antioxidants in bulk oil followed by rutin palmitate, whereas rutin laurate acted as either......The use of flavonoids as antioxidants in food formulations is limited due to their solubility and thereby their localization in the food products. However, enzymatic alkylation of flavonoids with lipophilic moieties alters their lipophilicity and thereby partitioning within different phases...... in a food product. This study aimed to evaluate the antioxidative efficiency of two derivatives of rutin, namely rutin laurate (C12:0) and rutin palmitate (C16:0) compared with their parent compound rutin and with butylated hydroxytoluene (BHT). Their efficiency as antioxidants at two different...

  8. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    Science.gov (United States)

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    Science.gov (United States)

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  10. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    Energy Technology Data Exchange (ETDEWEB)

    Muizzuddin, N.; Shakoori, A.R. [Univ. of the Punjab, Dept. of Zoology, Cell and Molecular Biology Lab., Lahore (Pakistan); Marenus, K.D. [SUNY at Stonybrook, Stonybrook, NY (United States)

    1998-11-01

    treatment, respectively. Conclusion: Data from these studies suggest that low level chronic exposures to UV can lead to alteration of the skin, like epidermal thickening and appearance of sunburn cells. The data also indicates that a mix of common antioxidants and free radical scavengers are photoprotective against chronic skin damage in the hairless mouse skin model. (au)

  11. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    International Nuclear Information System (INIS)

    Muizzuddin, N.; Shakoori, A.R.; Marenus, K.D.

    1998-01-01

    treatment, respectively. Conclusion: Data from these studies suggest that low level chronic exposures to UV can lead to alteration of the skin, like epidermal thickening and appearance of sunburn cells. The data also indicates that a mix of common antioxidants and free radical scavengers are photoprotective against chronic skin damage in the hairless mouse skin model. (au)

  12. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  13. Renoprotective effect of the antioxidant curcumin: Recent findings☆

    Science.gov (United States)

    Trujillo, Joyce; Chirino, Yolanda Irasema; Molina-Jijón, Eduardo; Andérica-Romero, Ana Cristina; Tapia, Edilia; Pedraza-Chaverrí, José

    2013-01-01

    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. PMID:24191240

  14. Renoprotective effect of the antioxidant curcumin: Recent findings

    Directory of Open Access Journals (Sweden)

    Joyce Trujillo

    2013-01-01

    Full Text Available For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2, inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury.

  15. Study of antioxidant enzymes superoxide dismutase and glutathione peroxidase levels in tobacco chewers and smokers: A pilot study

    Directory of Open Access Journals (Sweden)

    Chundru Venkata Naga Sirisha

    2013-01-01

    Conclusions: The present study gave us an insight about the relationship between antioxidant enzyme activity, oxidative stress and tobacco. The altered antioxidant enzyme levels observed in this study will act as a predictor for pre potentially malignant lesions. Therefore an early intervention of tobacco habit and its related oxidative stress would prevent the development of tobacco induced lesions.

  16. Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L. in vitro: Possible role in prevention of diabetic complications

    Directory of Open Access Journals (Sweden)

    Packirisamy Meenatchi

    2017-01-01

    Full Text Available In an attempt to develop Complementary and Alternative Medicine (CAM for the treatment of diabetes and related complications, the antidiabetic potential of the mature unripe fruits of Coccinia grandis (CGF was evaluated. Oxidative stress and glycation plays an important role in manifesting of diabetes and vascular complications. Agents with antioxidant and antiglycation properties may retard these pathological alterations. In this study, the edible plant Coccinia grandis was assessed for in vitro estimation of antioxidant and antiglycation potential and its insulinotrophic properties in RINm5F cells. Antioxidant activity was evaluated as DPPH (1,1-diphenyl-2-picrylhydrazyl, hydrogen peroxide and superoxide anion scavenging activities, whereas the protein glycation inhibitory potential was evaluated using in vitro albumin-fructose glycation model. Glycation inhibition was estimated by different biochemical parameters viz. fructosamine, protein carbonyl group and protein aggregation using thioflavin T fluorescence. C. grandis extract exerted a dose dependent radical scavenging activity and exhibited a significant antiglycation potential. The extract also showed a significant insulinotrophic property with 1.28 and 1.71-fold increase in insulin release when compared to control at 0.25 and 0.50 mg/mL, respectively. These data suggest the possible antidiabetic role of CGF extract, presumably by its antioxidant, antiglycation and insulin secretory effects. Present findings provide experimental evidence that the fruits of C. grandis have potential antidiabetic activity which might be used as a functional food and safe remedy for the treatment of diabetes and associated complications. This study also revealed that the plant can be a promising source for development of natural antiglycating agents and novel insulin secretagogues.

  17. Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats.

    Science.gov (United States)

    Kovačević, Sanja; Nestorov, Jelena; Matić, Gordana; Elaković, Ivana

    2017-02-01

    The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser 307 . Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.

  18. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  19. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Science.gov (United States)

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  20. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Directory of Open Access Journals (Sweden)

    L'ubomíra Tóthová

    2017-12-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.

  1. The study of antioxidants in grapevine seeds

    Directory of Open Access Journals (Sweden)

    Lenka Tomášková

    2017-01-01

    Full Text Available Grapevine seeds contain a large amount of antioxidant components, and are therefore recommended in the prevention and treatment of many diseases. For this research, we studied the antioxidant properties of grapevine seeds from the Marlen variety, as evidence suggests that these types have higher resistance against fungal diseases. Through high-performance liquid chromatography with UV/VIS detection, a total of 10 antioxidant components were selected for further investigation, specifically: catechin, epicatechin, rutin, quercitrin, quercetin, caftaric acid, caffeic acid, p-coumaric acid, ferulic acid, and gallic acid. The antioxidant activity was determinated spectrophotometrically through the adoption of three fundamentally different methods (the DPPH assay, the ABTS method, and the FRAP method. Using the Folin-Ciocalteu method, it was possible to determine the content of all the polyphenolic compounds. The results of the assessment antioxidant activity and the content of polyphenolic compounds were recalculated to gallic acid equivalents (GAE. The values of the antioxidant activity as determinated by the DPPH test were 6643 (±154 mg of GAE; 1984 (±88 mg of GAE when using the FRAP method; and 812 (±31 mg of GAE when the ABTS method was utilised. The content of the total polyphenolic compounds came to 6982 (±221 mg of GAE. The most abundant antioxidant was catechin, with a content of 115 mg.L-1, whilst the least represented compound was ferulic acid (0.139 mg.L-1. Overall, this study showed a high antioxidant potential of grapevine seeds. 

  2. Improvement of the Antioxidant Properties and Postharvest Life of Three Exotic Andean Fruits by UV-C Treatment

    Directory of Open Access Journals (Sweden)

    María J. Andrade-Cuvi

    2017-01-01

    Full Text Available Three Andean fruits naranjilla (Solanum quitoense Lam., uvilla (Physalis peruviana L., and mortiño (Vaccinium floribundum Kunth were subjected to prestorage UV-C treatments (0, 8, or 12.5 kJ m−2 and evaluated weekly to select the most suitable dose for fruit quality maintenance during storage (21 days at 6°C. The highest dose retains quality through lower deterioration index for all three fruits and was selected to further analyze the effects on physicochemical and antioxidant properties during storage. UV-C exposure delayed softening in naranjilla and increased soluble solid content in uvilla. UV-C also improved the maintenance of antioxidant capacity (AC in mortiño and uvilla. Overall, results indicate that short prestorage UV-C exposure may be an effective nonchemical approach to supplement low temperature storage, maintain quality, and extend the postharvest life of Andean naranjilla, uvilla, and mortiño fruit.

  3. Changes in Salicylic Acid and Antioxidants during Induced Thermotolerance in Mustard Seedlings

    Science.gov (United States)

    Dat, James F.; Foyer, Christine H.; Scott, Ian M.

    1998-01-01

    Heat-acclimation or salicylic acid (SA) treatments were previously shown to induce thermotolerance in mustard (Sinapis alba L.) seedlings from 1.5 to 4 h after treatment. In the present study we investigated changes in endogenous SA and antioxidants in relation to induced thermotolerance. Thirty minutes into a 1-h heat-acclimation treatment glucosylated SA had increased 5.5-fold and then declined during the next 6 h. Increases in free SA were smaller (2-fold) but significant. Changes in antioxidants showed the following similarities after either heat-acclimation or SA treatment. The reduced-to-oxidized ascorbate ratio was 5-fold lower than the controls 1 h after treatment but recovered by 2 h. The glutathione pool became slightly more oxidized from 2 h after treatment. Glutathione reductase activity was more than 50% higher during the first 2 h. Activities of dehydroascorbate reductase and monodehydroascorbate reductase decreased by at least 25% during the first 2 h but were 20% to 60% higher than the control levels after 3 to 6 h. One hour after heat acclimation ascorbate peroxidase activity was increased by 30%. Young leaves appeared to be better protected by antioxidant enzymes following heat acclimation than the cotyledons or stem. Changes in endogenous SA and antioxidants may be involved in heat acclimation. PMID:9847121

  4. Effects of high-pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life.

    Science.gov (United States)

    Wu, Zhi-shuang; Zhang, Min; Wang, Shao-jin

    2012-08-30

    High-pressure (HP) inert gas processing causes inert gas and water molecules to form clathrate hydrates that restrict intracellular water activity and enzymatic reactions. This technique can be used to preserve fruits and vegetables. In this study, minimally processed (MP) pineapples were treated with HP (∼10 MPa) argon (Ar) and nitrogen (N) for 20 min. The effects of these treatments on respiration, browning and antioxidant potential of MP pineapples were investigated after cutting and during 20 days of storage at 4 °C. Lower respiration rate and ethylene production were found in HP Ar- and HP N-treated samples compared with control samples. HP Ar and HP N treatments effectively reduced browning and loss of total phenols and ascorbic acid and maintained antioxidant capacity of MP pineapples. They did not cause a significant decline in tissue firmness or increase in juice leakage. HP Ar treatments had greater effects than HP N treatments on reduction of respiration rate and ethylene production and maintenance of phenolic compounds and DPPH(•) and ABTS(•+) radical-scavenging activities. Both HP Ar and HP N processing had beneficial effects on MP pineapples throughout 20 days of storage at 4 °C. Copyright © 2012 Society of Chemical Industry.

  5. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  6. 27 CFR 4.22 - Blends, cellar treatment, alteration of class or type.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Blends, cellar treatment, alteration of class or type. 4.22 Section 4.22 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Standards of...

  7. Alterations in Gene Expression in Depression: Prospects for Personalize Patient Treatment.

    Science.gov (United States)

    Donev, Rossen; Alawam, Khaled

    2015-01-01

    The number of people around the world suffering from depression has dramatically increased in last few decades. It has been predicted that by 2020 depression will become the second most common cause of disability. Furthermore, depression is often misdiagnosed and confused with other psychiatric disorders showing similar symptoms, i.e., anxiety and bipolar disorder, due to the fact that diagnosing is often carried out by medical workers who are not psychiatrically trained. These facts prompt us to prepare this review which focuses on alterations in gene expression in depression. We believe that an in-depth knowledge of molecular bases of behavior in depression and other mood disorders would be of a great benefit for the correct diagnosing of these disorders, as well as for prescribing a treatment that best suits each individual depending on expression alterations in depression-related genes. Therefore, the main aim of this review is to promote further translational research on the biochemistry of mood disorders and take the results further for the design of new targeted therapeutics that can be used for personalized treatment with minimal adverse effects. © 2015 Elsevier Inc. All rights reserved.

  8. Survey of Policies and Guidelines on Antioxidant Use for Cancer Prevention, Treatment, and Survivorship in North American Cancer Centers: What Do Institutions Perceive as Evidence?

    Science.gov (United States)

    Hong, Gyeongyeon; White, Jennifer; Zhong, Lihong; Carlson, Linda E

    2015-07-01

    Health care policies and guidelines that are clear and consistent with research evidence are important for maximizing clinical outcomes. To determine whether cancer centers in Canada and the United States had policies and/or guidelines about antioxidant use, and whether policies were aligned with the evidence base, we reviewed current research evidence in the field, and we undertook a survey of the policies and guidelines on antioxidant use at cancer institutions across North America. A survey of policies and guidelines on antioxidant use and the development and communication of the policies and guidelines was conducted by contacting cancer institutions in North America. We also conducted a Website search for each institution to explore any online resources. Policies and guidelines on antioxidant use were collected from 78 cancer institutions. Few cancer institutions had policies (5%) but most provided guidelines (69%). Antioxidants from diet were generally encouraged at cancer institutions, consistent with the current research evidence. In contrast, specific antioxidant supplements were generally not recommended at cancer institutions. Policies and guidelines were developed using evidence-based methods (53%), by consulting another source (35%), or through discussions/conference (26%), and communicated mainly through online resources (65%) or written handouts (42%). For cancer institutions that had no policy or guideline on antioxidants, lack of information and lack of time were the most frequently cited reasons. Policies and guidelines on antioxidants from diet were largely consistent with the research evidence. Policies and guidelines on antioxidant supplements during treatment were generally more restrictive than the research evidence might suggest, perhaps due to the specificity of results and the inability to generalize findings across antioxidants, adding to the complexity of their optimal and safe use. Improved communication of comprehensive research

  9. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia

    Directory of Open Access Journals (Sweden)

    Ahmad Majzoub

    2017-01-01

    Conclusion: Additional randomized controlled studies are required to confirm the efficacy and safety of antioxidant supplementation in the medical treatment of idiopathic male infertility as well as the dosage required to improve semen parameters, fertilization rates, and pregnancy outcomes in iOAT.

  10. Strain Differences in Antioxidants in Rat Models of Cardiovascular Disease Exposed to Ozone

    Science.gov (United States)

    We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to 03 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH ...

  11. Antioxidant activity of fermented broccoli and spinach by Kombucha culture

    Science.gov (United States)

    Artanti, Nina; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi Narrij; Maryati, Yati

    2017-11-01

    Broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) are vegetables that known to have many benefit for health. Previous studies on the fermentation of those vegetables using kombucha cultured showed increase in bioactive components such as total polyphenol content. The current studies was performed to evaluate the antioxidant activity of fermented spinach and broccoli before (feed) and after treatment with filtration (retentate and permeate). Filtration was conducted using Stirred Ultrafiltration Cell (SUFC) with UF membrane 100,000 MWCO mode at fixed condition (stirred rotation 300 rpm, room temperature, pressure 40 psia). Antioxidant evaluation was conducted using 2,2-diphenyl-1-picril hydrazyl (DPPH) free radical scavenging activity assay. The results showed that all samples from fermented broccoli showed antioxidant activity (feed 15.82% inhibition and retentate 15.29% inhibition), with the best antioxidant activity was obtained from permeate (75.98% inhibition). Whereas from fermented spinach only permeate showed antioxidant activity (21.84% inhibition) and it significantly lower than broccoli permeate. The mass spectrum of LCMS analysis on broccoli samples showed the present of several mass spectrum with (M+H) range from 148.1 to 442.5 in feed, retentate and permeate. In those samples (M+H) 360.4 always has the highest relative intensity. These results suggest that fermented broccoli has potential for development as functional drink for the source of antioxidant and the permeate obtained from filtration treatment significantly increased the antioxidant activity.

  12. Emerging Role of Antioxidants in the Protection of Uveitis Complications

    Science.gov (United States)

    Yadav, Umesh C S; Kalariya, Nilesh M; Ramana, Kota V

    2011-01-01

    Current understanding of the role of oxidative stress in ocular inflammatory diseases indicates that antioxidant therapy may be important to optimize the treatment. Recently investigated antioxidant therapies for ocular inflammatory diseases include various vitamins, plant products and reactive oxygen species scavengers. Oxidative stress plays a causative role in both non-infectious and infectious uveitis complications, and novel strategies to diminish tissue damage and dysfunction with antioxidant therapy may ameliorate visual complications. Preclinical studies with experimental animals and cell culture demonstrate significance of anti-inflammatory effects of a number of promising antioxidant agents. Many of these antioxidants are under clinical trial for various inflammatory diseases other than uveitis such as cardiovascular, rheumatoid arthritis and cancer. Well planned interventional clinical studies of the ocular inflammation will be necessary to sufficiently investigate the potential medical benefits of antioxidant therapies for uveitis. This review summarizes the recent investigation of novel antioxidant agents for ocular inflammation, with selected studies focused on uveitis. PMID:21182473

  13. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  14. Elimination of seaweed odour and its effect on antioxidant activity

    Science.gov (United States)

    Keyimu, Xiren Guli; Abdullah, Aminah

    2014-09-01

    The objectives of this study were to determine the most effective method to remove odour from Sargassum muticum seaweeds and studied their antioxidant properties. Ten grams of wet seaweeds (10 grams dried seaweeds soaked in 100 ml water for 2 hours) were soaked in 100 mL of 1%, 3% and 5% of gum Arabic, rice flour, lemon juice, respectively, and 1% of vinegar. There effect of each treatment on antioxidant level were determined by using the total phenolic content (TPC), free radical scavenging ability expressed as a DPPH value, and oxygen radical absorbance capacity (ORAC) and compared to control seaweeds sample (soaked in water only). For sensory attribute, seven trained panellists were asked to evaluate the fishy odour of 11 treated seaweed samples. The fishy odour characteristics and antioxidant activity of treated seaweeds were compared against the control sample (soaked seaweeds), and subjected to statistical analysis. Results showed that 3% and 5% lemon juice and 5% rice flour were able to eliminate the fishy odour of seaweed. However, the antioxidant activity was significantly higher (Plemon juice compared to other treatments. Therefore, 5% of lemon juice-treated seaweeds contained the least fishy odour and retained the highest antioxidant activity.

  15. Antioxidative Defense Responses to lead-induced Oxidative Stress in Glycine max L. CV. Merrill grown in Different pH Gradient

    Directory of Open Access Journals (Sweden)

    Mishra, Pankaj Kishor

    2013-04-01

    Full Text Available Physiological and biochemical changes as well as the activities of anti-oxidative enzymes under lead (Pb2+ phytotoxicity were investigated in 20 days old soybean (Glycine max L. seedlings grown hydroponically in the laboratory under different pH conditions. The rapid uptake of Pb 2+ was observed immediately after the start of treatment. The quantity of accumulation of Pb2+ was much higher in roots than in shoots, its level rising with increasing pH from 3.0 to 8.0 . Not only that, an oxidative stress conditions were observed due to increased level of superoxide anion radical and hydrogen peroxide in shoots and root cells of 20 days old seedlings when treated with Pb(NO32 at a concentration of 0, 500, 1000 and 2000 μM. Spectrometric assays of seedlings showed increased level of activities of antioxidant enzymes like catalase, peroxidase and glutathione reductase. The presence of thiobarbituric acid reacting substances (TBARS indicates the enhanced lipid peroxidation compared to controls. The alteration in the activities of the antioxidant enzymes and the induction of lipid peroxidation reflects the presence of Pb2+, which may cause oxidative stress.

  16. Efficacy and safety evaluation of pentoxifylline associated with other antioxidants in medical treatment of Peyronie's disease: a case-control study

    Directory of Open Access Journals (Sweden)

    Paulis G

    2015-12-01

    Full Text Available Gianni Paulis,1,2 Davide Barletta,3 Paolo Turchi,4 Antonio Vitarelli,5 Giuseppe Dachille,6 Andrea Fabiani,7 Romano Gennaro8 1Regina Apostolorum Hospital, Andrology Center, Albano L, 2Castelfidardo Medical Team, Peyronie's Disease Care Center, Rome, 3Department of Urology, Andrology Center, San Matteo Hospital, Pavia, 4Azienda ASL 4 Prato – Andrology Service, Prato, 5Department of Urology, University of Bari, 6Department of Urology, S Giacomo Hospital, Monopoli, Bari, 7Department of Surgery, Section of Urology and Andrology, Macerata, 8Department of Urologic Oncology, Section of Avellino, Italian League Against Cancer, Avellino, Italy Abstract: Peyronie's disease (PD is a chronic disorder involving the tunica albuginea surrounding the corpora cavernosa of the penis. A conservative treatment is indicated in the first stage of disease. The aim of this study was to assess the therapeutic impact and possible side effects of treatment with pentoxifylline (PTX in combination with other antioxidants in 307 patients with early-stage PD. Patients were subdivided into three groups: A, B, and C. Both groups, A and B, comprising of 206 patients, underwent treatment, whereas Group C was the control group (n=101. Treatment lasted 6 months and included the following: Group A: PTX 400 mg twice a day + propolis 600 mg/d + blueberry 160 mg/d + vitamin E 600 mg/d + diclofenac 4% gel twice/a day + PTX 100 mg via perilesional penile injection/every other week (12 injections in all; Group B: the same treatment as Group A except for the penile PTX injections. After the 6-month treatment course, we obtained the following results: actual mean decrease in plaque volume -46.9% and -24.8% in Group A and B, respectively (P<0.0001; mean curvature reduction -10.1° and -4.8°, respectively (P<0.0001; resolution of pain in 67.6% and 67.2% of cases, respectively (P=0.961; recovery of normal penile rigidity in 56.09% and 23.5% of cases, respectively (P=0.005. After 6 months

  17. EVALUATION OF SOME ANTIOXIDANTS TREATMENT ON KIDNEY FUNCTION AND LIPID PEROXIDATION STATUS IN HYPERTENSIVE RATS INDUCED WITH L-NAME

    International Nuclear Information System (INIS)

    MATTA, T.F.

    2008-01-01

    Hypertension, the disease known as the s ilent killer , is a common problem facing peoples today with million new cases being diagnosed each year. Although a great amount of money is spent annually for the treatment and detection of this disease and its complications, current conventional treatment have done little to reduce the number of patients with hypertension. Research has found a variety of alternative therapies to be successful in reducing high blood pressure including diet, exercise, stress management, supplements and herbs.In this study, the changes in some selected biochemical blood variables, which are thought to represent risk factors coincident with hypertension and kidney function, were compared between a group of normotensive male albino rats and other group suffered from hypertension induced artificially by N-nitro-L-arginine methyl ester (L-NAME). Also, this study investigated the effects of daily administration of some antioxidants nutrients for two weeks namely carnitine, coenzyme Q 1 0 , garlic oil and their mixture on the same variables in order to show to what extent these nutrients are valid to control the levels of these variables without any deleterious effects after treatment. Fifty mg of coenzyme Q 10 and 50 mg of carnitine were daily injected intraperitoneally for two weeks in two groups of hypertensive rats while 200 mg/kg b.wt was given to another group of hypertensive rats by oral intubation. A combination of all the above mentioned nutrients was given to the fourth group. Another hypertensive group was left without any treatment and served as a recovery group. Fasting blood samples were drawn and kidney tissues were taken at the terminal of treatments.The obtained results revealed that induced hypertension caused significant (P<0.05) increase of thiobarbeturic acid reactive substances (TBARs), malondialdehyde (MAD), parathormone (PTH), renin, blood urea, creatinine, phosphorus, sodium and potassium while glutathione (GSH), calcium

  18. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    Science.gov (United States)

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants.

  19. Global DNA methylation is altered by neoadjuvant chemoradiotherapy in rectal cancer and may predict response to treatment - A pilot study.

    LENUS (Irish Health Repository)

    Tsang, J S

    2014-07-28

    In rectal cancer, not all tumours display a response to neoadjuvant treatment. An accurate predictor of response does not exist to guide patient-specific treatment. DNA methylation is a distinctive molecular pathway in colorectal carcinogenesis. Whether DNA methylation is altered by neoadjuvant treatment and a potential response predictor is unknown. We aimed to determine whether DNA methylation is altered by neoadjuvant chemoradiotherapy (CRT) and to determine its role in predicting response to treatment.

  20. Potential of the Dietary Antioxidants Resveratrol and Curcumin in Prevention and Treatment of Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Marc Diederich

    2010-10-01

    Full Text Available Despite considerable improvements in the tolerance and efficacy of novel chemotherapeutic agents, the mortality of hematological malignancies is still high due to therapy relapse, which is associated with bad prognosis. Dietary polyphenolic compounds are of growing interest as an alternative approach, especially in cancer treatment, as they have been proven to be safe and display strong antioxidant properties. Here, we provide evidence that both resveratrol and curcumin possess huge potential for application as both chemopreventive agents and anticancer drugs and might represent promising candidates for future treatment of leukemia. Both polyphenols are currently being tested in clinical trials. We describe the underlying mechanisms, but also focus on possible limitations and how they might be overcome in future clinical use – either by chemically synthesized derivatives or special formulations that improve bioavailability and pharmacokinetics.

  1. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    Directory of Open Access Journals (Sweden)

    Ariela Burg

    2015-10-01

    Full Text Available Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  2. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    Science.gov (United States)

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  3. Antioxidant activity of the microalga Spirulina maxima

    Directory of Open Access Journals (Sweden)

    M.S. Miranda

    1998-08-01

    Full Text Available Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated with and without the extract at 37oC. The IC50 (concentration which causes a 50% reduction of oxidation of the extract in this system was 0.18 mg/ml. The in vivo antioxidant capacity was evaluated in plasma and liver of animals receiving a daily dose of 5 mg for 2 and 7 weeks. Plasma antioxidant capacity was measured in brain homogenate incubated for 1 h at 37oC. The production of oxidized compounds in liver after 2 h of incubation at 37oC was measured in terms of thiobarbituric acid reactant substances (TBARS in control and experimental groups. Upon treatment, the antioxidant capacity of plasma was 71% for the experimental group and 54% for the control group. Data from liver spontaneous peroxidation studies were not significantly different between groups. The amounts of phenolic acids, a-tocopherol and ß-carotene were determined in Spirulina extracts. The results obtained indicate that Spirulina provides some antioxidant protection for both in vitro and in vivo systems.

  4. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  5. Anti-Inflammatory and Antioxidative Stress Effects of Oryzanol in Glaucomatous Rabbits

    Directory of Open Access Journals (Sweden)

    Shital S. Panchal

    2017-01-01

    Full Text Available Purpose. γ-Oryzanol works by anti-inflammatory and radical scavenging activity as a neuroprotective, anticancer, antiulcer, and immunosuppressive agent. The present study was conducted to investigate effect of oryzanol in acute and chronic experimental glaucoma in rabbits. Methods. Effect of oryzanol was evaluated in 5% dextrose induced acute model of ocular hypertension in rabbit eye. Chronic model of glaucoma was induced with subconjunctival injection of 5% of 0.3 ml phenol. Treatment with oryzanol was given for next two weeks after induction of glaucoma. From anterior chamber of rabbit eye aqueous humor was collected to assess various oxidative stress parameters like malondialdehyde, superoxide dismutase, glutathione peroxidase, catalase, nitric oxide, and inflammatory parameters like TNF-α and IL-6. Structural damage in eye was examined by histopathological studies. Results. In acute model of ocular hypertension oryzanol did not alter raised intraocular pressure. In chronic model of glaucoma oryzanol exhibited significant reduction in oxidative stress followed by reduction in intraocular pressure. Oryzanol treatment reduced level of TNF-α and IL-6. Histopathological studies revealed decreased structural damage of trabecular meshwork, lamina cribrosa, and retina with oryzanol treatment. Conclusions. Oryzanol showed protective effect against glaucoma by its antioxidative stress and anti-inflammatory property. Treatment with oryzanol can reduce optic nerve damage.

  6. Effect of blanching treatments on antioxidant activity of frozen green capsicum (Capsicum annuum L. var bell pepper) using radical scavenging activity (DPPH) assay

    Science.gov (United States)

    Azizzuddin, Norafida; Abdullah, Aminah

    2016-11-01

    Blanching treatments are needed to deactivate enzymes in frozen vegetables. Antioxidant activity using DPPH radical scavenging activity assay were evaluated in steaming, boiling water, and microwave blanching at different temperature, time and microwave power level on frozen green capsicum. Green capsicum was chosen for frozen treatment compared to other capsicum with different maturity index because of the firm texture. The objective of this study was to compare the antioxidant activity of frozen green capsicum between conventional and Oxi Count Kit® assay for DPPH radical scavenging activity. Results showed frozen green capsicum blanched using microwave at high level/90 seconds (sample J) contained higher level of DPPH in both conventional method and Oxi Count Kit® compared to other treatments. However, there were no significant differences between sample J and fresh sample (sample A). Overall, the sequences from highest to lowest in blanching treatments for both DPPH conventional method, and DPPH Oxi Count Kit® were J (microwave high level/90 seconds) > A (Fresh) > H (Microwave Medium Level/120 seconds) > D (Boiling Water 80°C/150 seconds) > K (Microwave High Level/120 seconds) > I (Microwave Medium Level/150 seconds) > F (Microwave Low Level/150 seconds)> B (Steam 100°C/150 seconds) > E (Boiling Water 100°C /120 seconds) > G (Microwave Low Level /180 seconds)> C (Steam 100°C/180 seconds). Almost all frozen green capsicum samples showed no significant differences for comparison between test using DPPH conventional method and Oxi Count Kit®. Frozen storage for 0, and 3rd months showed no significant differences which indicate no changes on antioxidant activity during frozen storage at -18°C.

  7. Pomegranate (Punica granatum Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Badriah Alkathiri

    2017-12-01

    Full Text Available Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major-infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum, but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  8. Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice.

    Science.gov (United States)

    Alkathiri, Badriah; El-Khadragy, Manal F; Metwally, Dina M; Al-Olayan, Ebtesam M; Bakhrebah, Muhammed A; Abdel Moneim, Ahmed E

    2017-12-18

    Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum ) have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major -infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum , but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  9. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  10. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  11. Nanocarriers for skin delivery of cosmetic antioxidants

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2014-08-01

    Full Text Available The demand of natural skin care products is steadily growing since consumers perceive them as safe. Currently, cosmetic manufacturers are focusing their efforts on developing innovative natural products to address skin-aging signs, thus meeting consumers’ needs of healthy appearance and well-being. To prevent or treat skin aging, topical supplementation with antioxidant is regarded as one of the most promising strategies. However, most antioxidants presently used in skin care formulations show unfavorable physicochemical properties such as excessive lipophilicity or hydrophilicity, chemical instability and poor skin penetration that actively limit their effectiveness after topical application. Therefore, nanocarriers such as liposomes, niosomes, microemulsions and nanoparticles have been widely investigated as delivery systems for antioxidants to improve their beneficial effects in the treatment of skin aging. In this article, the antioxidants most commonly used in anti-aging cosmetic products will be reviewed along with the nanocarriers designed to improve their safety and effectiveness.

  12. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  13. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    OpenAIRE

    Onaolapo, J. Olakunle; Onaolapo, Y. Adejoke; Akanmu, A. Moses; Olayiwola, Gbola

    2016-01-01

    Objectives: Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. Methods: Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (...

  14. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain.

    Directory of Open Access Journals (Sweden)

    Barry E Kennedy

    Full Text Available Niemann-Pick Type C (NPC disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 (-/- mice at pre-symptomatic, early symptomatic and late stage disease by (1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 (-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 (-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.

  15. Impact of haloperidol and quetiapine on the expression of genes encoding antioxidant enzymes in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip

    2009-05-01

    Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.

  16. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Dal-Pont, Gustavo; Sangaletti-Pereira, Heron; Gava, Fernanda F; Peterle, Bruna R; Carvalho, André F; Varela, Roger B; Dal-Pizzol, Felipe; Quevedo, João

    2017-06-01

    The goal of the present study was to investigate the effects of lithium administration on behavior, oxidative stress parameters and cytokine levels in the periphery and brain of mice subjected to an animal model of mania induced by paradoxical sleep deprivation (PSD). Male C57 mice were treated with saline or lithium for 7 days. The sleep deprivation protocol started on the 5th day during for the last 36 hours of the treatment period. Immediately after the sleep deprivation protocol, animals locomotor activity was evaluated and serum and brain samples was extracted to evaluation of corticosterone and adrenocorticotropic hormone circulating levels, oxidative stress parameters and citokynes levels. The results showed that PSD induced hyperactivity in mice, which is considered a mania-like behavior. PSD increased lipid peroxidation and oxidative damage to DNA, as well as causing alterations to antioxidant enzymes in the frontal cortex, hippocampus and serum of mice. In addition, PSD increased the levels of cytokines in the brains of mice. Treatment with lithium prevented the mania-like behavior, oxidative damage and cytokine alterations induced by PSD. Improving our understanding of oxidative damage in biomolecules, antioxidant mechanisms and the inflammatory system - alterations presented in the animal models of mania - is important in helping us to improve our knowledge concerning the pathophysiology of BD, and the mechanisms of action employed by mood stabilizers. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    Science.gov (United States)

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements. © The Author(s) 2015.

  18. Antioxidants for Preventing Preeclampsia: A Systematic Review

    Science.gov (United States)

    Salles, Adriana Magalhaes Ribeiro; Galvao, Tais Freire; Silva, Marcus Tolentino; Motta, Lucilia Casulari Domingues; Pereira, Mauricio Gomes

    2012-01-01

    Objective. To investigate the efficacy of antioxidants for preventing preeclampsia and other maternal and fetal complications among pregnant women with low, moderate, or high risk of preeclampsia. Methods. We searched MEDLINE, Embase, CENTRAL, mRCT, and other databases, with no language or publication restrictions. Two independent reviewers selected randomized controlled trials that evaluated the use of antioxidants versus placebo and extracted the relevant data. Relative risks (RRs) and 95% confidence intervals (95% CIs) were calculated. The data were compiled through the random effects model. Main Results. Fifteen studies were included (21,012 women and 21,647 fetuses). No statistically significant difference was found between women who received antioxidant treatment and women who received placebo for preeclampsia (RR  = 0.92; 95% CI: 0.82–1.04), severe preeclampsia (RR  = 1.03; 95% CI: 0.87–1.22), preterm birth (RR  = 1.03; 95% CI: 0.94–1.14), and small for gestational age antioxidants group compared to placebo, but without significant statistical difference (RR  = 1.24; 95% CI: 0.85–1.80). Conclusions. The available evidence reviewed does not support the use of antioxidants during pregnancy for the prevention of preeclampsia and other outcomes. PMID:22593668

  19. Effect of in vivo heart irradiation on the development of antioxidant defenses and cardiac functions in the rat

    International Nuclear Information System (INIS)

    Benderitter, M.; Assem, M.; Maupoil, V.

    1995-01-01

    During radiotherapy of thoracic tumors, the heart is often included in the primary treatment volume, and chronic impairment of myocardial function occurs. The cellular biomolecules are altered directly by radiation or damaged indirectly by free radical production. The purpose of this investigation was to evaluate the biochemical and functional response of the rat heart to a single high dose of radiation. The effect of 20 Gy local X irradiation was determined in the heart of Wistar rats under general anesthesia. Mechanical performances were measured in vitro using an isolated perfused working heart model, and cardiac antioxidant defenses were also evaluated. Hearts were studied at 1 and 4 months after irradiation. This single dose of radiation induced a marked drop in the mechanical activity of the rat heart: aortic output was significantly reduced (18% less than control values) at 1 month postirradiation and remained depressed for the rest of the experimental period (21% less than control 4 months after treatment). This suggests the development of myocardial failure after irradiation. The decline of functional parameters was associated with changes in antioxidant defenses. The decrease in cardiac levels of vitamin E (-30%) was associated with an increase in the levels of Mn-SOD and glustathione peroxidase (+45.5% and +32%, respectively, at 4 months postirradiation). However, cardiac vitamin C and catalase levels remained constant. Since these antioxidant defenses were activated relatively long after irradiation, it is suggested that this was probable due to the production of free radical species associated with the development of inflammation. 49 refs., 8 figs., 1 tab

  20. Antioxidant Treatment and Induction of Autophagy Cooperate to Reduce Desmin Aggregation in a Cellular Model of Desminopathy.

    Directory of Open Access Journals (Sweden)

    Eva Cabet

    Full Text Available Desminopathies, a subgroup of myofibrillar myopathies (MFMs, the progressive muscular diseases characterized by the accumulation of granulofilamentous desmin-positive aggregates, result from mutations in the desmin gene (DES, encoding a muscle-specific intermediate filament. Desminopathies often lead to severe disability and premature death from cardiac and/or respiratory failure; no specific treatment is currently available. To identify drug-targetable pathophysiological pathways, we performed pharmacological studies in C2C12 myoblastic cells expressing mutant DES. We found that inhibition of the Rac1 pathway (a G protein signaling pathway involved in diverse cellular processes, antioxidant treatment, and stimulation of macroautophagy reduced protein aggregation by up to 75% in this model. Further, a combination of two or three of these treatments was more effective than any of them alone. These results pave the way towards the development of the first treatments for desminopathies and are potentially applicable to other muscle or brain diseases associated with abnormal protein aggregation.

  1. Piper species protect cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters.

    Science.gov (United States)

    Agbor, Gabriel A; Akinfiresoye, Luli; Sortino, Julianne; Johnson, Robert; Vinson, Joe A

    2012-10-01

    Pre-clinical and clinical studies points to the use of antioxidants as an effective measure to reduce the progression of oxidative stress related disorders. The present study evaluate the effect of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) for the protection of cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters. Hamsters were classified into eight groups: a normal control, atherogenic control and six other experimental groups (fed atherogenic diet supplemented with different doses of P. nigrum, P. guineense and P. umbellatum (1 and 0.25 g/kg) for 12 weeks. At the end of the feeding period the heart, liver and kidney from each group were analyzed for lipid profile and antioxidant enzymes activities. Atherogenic diet induced a significant (PPiper species significantly inhibited the alteration effect of atherogenic diet on the lipid profile and antioxidant enzymes activities. The Piper extracts may possess an antioxidant protective role against atherogenic diet induced oxidative stress in cardiac, hepatic and renal tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  3. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  4. Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome

    DEFF Research Database (Denmark)

    Jepsen, S; Herlevsen, P; Knudsen, P

    1992-01-01

    OBJECTIVE: To examine whether the antioxidant N-acetylcysteine could ameliorate the course of the adult respiratory distress syndrome (ARDS) in man. DESIGN: Randomized, double-blind, placebo-controlled study. SETTING: Medical and surgical ICU in a regional hospital. PATIENTS: Sixty-six ICU patients...

  5. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  6. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases

    Directory of Open Access Journals (Sweden)

    Zhong-Wei Zhang

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a crucial role in the inflammatory response and cytokine outbreak, such as during virus infections, diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. Therefore, antioxidant is an important medicine to ROS-related diseases. For example, ascorbic acid (vitamin C, VC was suggested as the candidate antioxidant to treat multiple diseases. However, long-term use of high-dose VC causes many side effects. In this review, we compare and analyze all kinds of mitochondrion-permeable antioxidants, including edaravone, idebenone, α-Lipoic acid, carotenoids, vitamin E, and coenzyme Q10, and mitochondria-targeted antioxidants MitoQ and SkQ and propose astaxanthin (a special carotenoid to be the best antioxidant for ROS-burst-mediated acute diseases, like avian influenza infection and ischemia-reperfusion. Nevertheless, astaxanthins are so unstable that most of them are inactivated after oral administration. Therefore, astaxanthin injection is suggested hypothetically. The drawbacks of the antioxidants are also reviewed, which limit the use of antioxidants as coadjuvants in the treatment of ROS-associated disorders.

  7. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant.

    Science.gov (United States)

    Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.

  8. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    Science.gov (United States)

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  9. The influence of gamma-irradiation on the formation of free radicals and antioxidant status of oregano (Origanum vulgare L.)

    Energy Technology Data Exchange (ETDEWEB)

    Horváthov Á, J.; Suhaj, M.; Polovka, M.; Šimko, P. [Food Research Institute, Bratislava (Slovakia); Brezov á, V. [Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava (Slovakia)

    2007-05-15

    The influence of various gamma-radiation dose absorptions on oregano samples was monitored by means of electron paramagnetic resonance (EPR) spectroscopy. Further, the antioxidant activity of oregano methanol/water extracts was characterised using 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH), thiobarbituric acid reactive substances (TBARS), ferric reducing power (FRP), and total content of phenolic compounds (TPC) assays. EPR spectroscopy was used for the investigation of the influence of the absorbed dose on the character of the paramagnetic structures formed, as well as for their thermal stability and life-time characterisation. Paramagnetic structures of different origin (mostly of cellulose and carbohydrate), possessing diverse thermal stability and life-time, were identified in the gamma-irradiated samples. Immediately after irradiation, a statistically significant increase of the TBARS values and the total content of phenolic compounds in methanol/water oregano extract was observed. The alterations of the antioxidant properties of oregano extracts with the time after the radiation treatment were also monitored. A substantial time-dependent decrease of antioxidant activity was observed, probably as a result of storage, with both irradiated and non-irradiated oregano samples, as obvious from the ferric reducing power test and the content of total phenolic substances. The influence of irradiation and subsequent storage on the DPPH radical-scavenging ability was negligible.

  10. Effect of Different Stages of Chronic Kidney Disease and Renal Replacement Therapies on Oxidant-Antioxidant Balance in Uremic Patients

    Directory of Open Access Journals (Sweden)

    Hadja Fatima Tbahriti

    2013-01-01

    Full Text Available Oxidative stress seems to be involved in the path physiology of cardiovascular complications of chronic kidney disease (CKD. In this study, we determined the effect of different stages of CKD and substitutive therapies on oxidative stress. One hundred sixty-seven patients (age: 44±06 years; male/female: 76/91 with CKD were divided into 6 groups according to the National Kidney Foundation classification. Prooxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamin E, Iron, and bilirubin. TBARS and LPO were higher in HD patients compared to other groups (P<0.001, while protein carbonyls were more increased in PD patients. The antioxidant enzymes were declined already at severe stage of CKD and they were declined notably in HD patients (P<0.001. Similar observation was found for vitamin E, Fe, and bilirubin where we observed a significant decrease in the majority of study groups, especially in HD patients (P<0.001. The evolution of CKD was associated with elevated OS. HD accentuates lipid, while PD aggravates protein oxidation. However, the activity of antioxidant enzymes was altered by impaired renal function and by both dialysis treatments.

  11. Antioxidant Capacities and Total Phenolic Contents Enhancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2014-07-01

    Full Text Available The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC and gas chromatography (GC analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH, ferric reduction, antioxidant power (FRAP, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.

  12. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus

    Science.gov (United States)

    Larcombe, Stephen D.; Mullen, William; Alexander, Lucille; Arnold, Kathryn E.

    2010-10-01

    Carotenoid pigments are responsible for many of the red, yellow and orange plumage and integument traits seen in birds. One idea suggests that since carotenoids can act as antioxidants, carotenoid-mediated colouration may reveal an individual's ability to resist oxidative damage. In fact, there is currently very little information on the effects of most dietary-acquired antioxidants on oxidative stress in wild birds. Here, we assessed the impacts on oxidative damage, plasma antioxidants, growth and plumage colouration after supplementing nestling blue tits Cyanistes caeruleus with one of three diets; control, carotenoid treatment or α-tocopherol treatment. Oxidative damage was assessed by HPLC analysis of plasma levels of malondialdehyde (MDA), a by-product of lipid peroxidation. Contrary to predictions, we found no differences in oxidative damage, plumage colouration or growth rate between treatment groups. Although plasma lutein concentrations were significantly raised in carotenoid-fed chicks, α-tocopherol treatment had no effect on concentrations of plasma α-tocopherol compared with controls. Interestingly, we found that faster growing chicks had higher levels of oxidative damage than slower growing birds, independent of treatment, body mass and condition at fledging. Moreover, the chromatic signal of the chest plumage of birds was positively correlated with levels of MDA but not plasma antioxidant concentrations: more colourful nestlings had higher oxidative damage than less colourful individuals. Thus, increased carotenoid-mediated plumage does not reveal resistance to oxidative damage for nestling blue tits, but may indicate costs paid, in terms of oxidative damage. Our results indicate that the trade-offs between competing physiological systems for dietary antioxidants are likely to be complex in rapidly developing birds. Moreover, interpreting the biological relevance of different biomarkers of antioxidant status represents a challenge for evolutionary

  13. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  14. The curative and antioxidative efficiency of ivermectin and ivermectin + vitamin E-selenium treatment on canine Sarcoptes scabiei infestation.

    Science.gov (United States)

    Behera, Suvendu Kumar; Dimri, Umesh; Singh, Shanker Kumar; Mohanta, Ranjan Kumar

    2011-04-01

    The objective of the present study was to investigate the curative and antioxidative efficacy of ivermectin and ivermectin + vitamin E-selenium, and the influence of these agents on oxidative stress parameters in canines infested by Sarcoptes scabiei. Twenty two sarcoptic mites infested dogs and nine healthy dogs of 6 months to 2 years of age were divided into three groups. Group I comprised of healthy dogs (n=9) whereas animals in group II (n=11) and III (n=11) were positive for scabies. Group II animals were treated with only 1% ivermectin @ 0.2 mg/kg SC whereas group III were additionally treated with Vitamin E and selenium (tocopherol 50 mg + Se 1.5 mg/ml) @ 0.5 ml/20 kg IM at weekly intervals for three times. Blood samples were collected on day 0 and 28 post therapy. The values for hemato-biochemical parameters and activities of antioxidant enzymes were significantly decreased (Pdogs in comparison to the healthy dogs on day 0 which approached normalcy by day 28 post therapy. The dogs of group III showed better clinical recovery in comparison to group II at the end of therapy. Thus, administration of vitamin E and selenium in addition to standard therapy can alleviate these alterations hastening the clinical recovery of diseased dogs and can be recommended as an adjunct therapy with miticides for canine sarcoptic mange. © Springer Science+Business Media B.V. 2011

  15. Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression.

    Science.gov (United States)

    Gentile, C; Tesoriere, L; Allegra, M; Livrea, M A; D'Alessio, P

    2004-12-01

    It has been suggested that some pigments would have antioxidant properties and that their presence in dietary constituents would contribute to reduce the risk of oxidative stress-correlated diseases. Among others, inflammatory response depends on redox status and may implicate oxidative stress. Vascular endothelial cells are a direct target of oxidative stress in inflammation. We have tested the impact of the free radical scavenger and antioxidant properties of betalains from the prickle pear in an in vitro model of endothelial cells. Here we show the capacity of betalains to protect endothelium from cytokine-induced redox state alteration, through ICAM-1 inhibition.

  16. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain.

    Science.gov (United States)

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-19

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

  17. Oxidative stress in bone remodeling: role of antioxidants.

    Science.gov (United States)

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.

  18. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  19. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  20. Prevention of shockwave induced functional and morphological alterations: an overview.

    Science.gov (United States)

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  1. The prooxidant-antioxidant homeostasis in Guinea pigs after exposure to fractionated low-low X-radiation and correction of its disturbances with antioxidant complex treatment

    International Nuclear Information System (INIS)

    Baraboj, V.A.; Olejnik, S.A.; Blyum, I.A.; Khmelevskij, Yu.V.

    1994-01-01

    The state of prooxidant-antioxidant homeostasis in Guinea pigs exposed to whole-body fractionated X-irradiation (5 fractions of 0.2 Gy at a 24 hr interval, up to total dose of 1.0 Gy, at a dose rate of 0.425 R/min) and a possibility of its disturbance correction with the complex of vitamins C, E and P was studied. Accumulation of primary and secondary lipid peroxidation products, decrease of the ascorbic acid content, increase of the content of its oxidized forms (dehydroascorbic acid and diketogulonic acid) in radiosensitive and radioresistant organs were found. Antioxidant complex administration reduced the disturbances of prooxidant-antioxidant homeostasis, but did not provide complete normalization

  2. Effect of natural antioxidant mixtures on margarine stability

    International Nuclear Information System (INIS)

    Azizkhani, M.; Zandi, P.

    2010-01-01

    In spite of their efficiency, the use of synthetic antioxidants such as tert-butyl hydroquinone (TBHQ) has been questioned because of their possible carcinogenic effects. The purpose of this study was to establish a mixture of natural antioxidants that provides the optimum oxidative stability for margarine. Antioxidant treatments included 10 various mixtures (F1- F10) containing 100-500 ppm tocopherol mixture (Toc), 100-200 ppm ascorbyl palmitate (AP), 100-200 ppm rosemary extract (Ros) and 1000 ppm lecithin(Lec) along with a control or F0 (with no antioxidant) and F11 containing 120 ppm TBHQ. The effect of antioxidant mixtures on the stability of margarine samples during an oven test (60 +-1 deg. C), rancimat test at 110 deg. C and storage at 4 deg. C was evaluated. The final ranking of the natural antioxidant mixtures was as follows: F2, F10>F5, F9>F8>F1, F3, F4>F6, F7. Considering the results of this research and ranking criteria, F2 (200 ppmAp + 200 ppmRos) and F10 (200 ppmRos + 200 ppm Toc + 1000 ppm Lec) were recommended as substitutes for TBHQ to maintain the quality and increase the shelf-life of margarine. (author)

  3. Effect of pre-treatment and extraction conditions on the antioxidant properties of persimmon (Diospyros kaki) leaves.

    Science.gov (United States)

    Hossain, Abul; Moon, Hey Kyung; Kim, Jong-Kuk

    2017-11-01

    Persimmon is a very delicious fruit and the leaves of this tree are used as a traditional drug. This study aimed to investigate the effects of drying method (hot air and freeze-drying), extraction temperature (80, 90 and 100 °C) and extraction time (10, 30, 60 and 120 min) and harvest stage (flowering and fruiting) on the antioxidant contents and antioxidant activity of persimmon leaves. The results showed that the highest antioxidants were obtained in both methods of drying. Also, 100 °C for 120 min of extraction gave the highest antioxidant contents, but with no significant difference compared to 90 °C for 60 min of extraction. Persimmon leaves collected during flowering stage had the maximum amount of antioxidants compared to the fruiting stage. Finally, it can be said that persimmon leaves harvested during flowering stage and treated by hot air drying with these extraction conditions (90 °C for 60 min) are richer in bioactive compounds.

  4. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review

    Science.gov (United States)

    Karunaratne, Veranja

    2017-01-01

    The advancement in the knowledge of potent antioxidants has uncovered the way for greater insight in the treatment of diabetic complications. Lichens are a rich resource of novel bioactive compounds and their antioxidant potential is well documented. Herein we review the antidiabetic potential of lichens which have received considerable attention, in the recent past. We have correlated the antidiabetic and the antioxidant potential of lichen compounds. The study shows a good accordance between antioxidant and antidiabetic activity of lichens and points out the need to look into gathering the scarce and scattered data on biological activities for effective utilization. The review establishes that the lichen extracts, especially of Parmotrema sp. and Ramalina sp. have shown promising potential in both antidiabetic and antioxidant assays. Ubiquitous compounds, namely, zeorin, methylorsellinate, methyl-β-orcinol carboxylate, methyl haematommate, lecanoric acid, salazinic acid, sekikaic acid, usnic acid, gyrophoric acid, and lobaric acid have shown promising potential in both antidiabetic as well as antioxidant assays highlighting their potential for effective treatment of diabetic mellitus and its associated complications. The available compilation of this data provides the future perspectives and highlight the need for further studies of this potent herbal source to harvest more beneficial therapeutic antidiabetic drugs. PMID:28491237

  5. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  6. MILK QUALITY OF DAIRY GOAT BY GIVING FEED SUPPLEMENT AS ANTIOXIDANT SOURCE

    Directory of Open Access Journals (Sweden)

    M. Mardalena

    2014-10-01

    Full Text Available Free radical levels can be higher than the level of endogenous antioxidants in the body so thatuncomfortable conditions in the body of dairy goats could happen. To anticipate this uncomfortableconditions will be given feed supplement (FS as source of antioxidants (AOX. FS contain mixturepineapple rind meal and antioxidant minerals (AOXM each 25 ppm Zn and 10 ppm Cu. Thisexperiment was carried out to investigate the effect of feed supplements as antioxidant source on milkquality of dairy goats. Sixteen Etawah dairy goats in the second lactation were used in the experimentthat conducted using randomized block design with 4 treatments and 4 replicates. The treatments wereR0 (grass + concentrate, R1 (R0 + FS containing 0.04 % AOX, R2 (R0 + FS containing 0.06% AOX,R3 (R0 + FS containing 0.08 % AOX. The data collected were analyzed using Anova. The result ofphytochemicals analysis indicated that feed supplement contained flavonoid, polyphenols, sesqiuterpen,mopnoterpen, steroids, quinones and saponins. The results of study showed that there were difference(p<0.05 among treatments on blood and milk cholesterol and milk lactose, but there were no difference(P>0.05 on milk yield, milk fat, milk protein and milk antioxidant. The conclusion of this study was thefeed supplements containing 0.08 AOX produced the best response to milk quality of dairy goats.

  7. Consumo de antioxidantes durante tratamento quimioterápico Antioxidants consumption during chemotherapy treatment

    Directory of Open Access Journals (Sweden)

    Caroline Cavali Rohenkohl

    2011-06-01

    inadequate diet. The stages of initiation, promotion and progression of carcinogenesis have often been related to oxidative stress. AIM: To assess the consumption of antioxidants in cancer patients during the different cycles of chemotherapy. METHODS: A descriptive exploratory study, including patients undergoing outpatient chemotherapy. To investigate the consumption of antioxidants, was prepared a semi-quantitative food frequency questionnaire (sqFFQ and an anamnesis clinic-nutrition chart. RESULTS: The sample consisted of 30 patients with mean age of 56.4 ± 2.3 years. According to the daily consumption represented by cycles, there was an adequate intake of vitamin C, vitamin E and zinc and inadequate intake of vitamin A and selenium. By dividing the study in the four quartiles of intake of antioxidants, there was adequate intake of vitamin A with 25% and inadequate amounts of vitamin C, vitamin E, Zinc in 25% of the sample and also selenium in all quartiles. Among the studied food sources considered rich in antioxidants, the most used were carrot, spinach, papaya, orange, soybean oil, sunflower oil, red meat, cheese and chicken. CONCLUSION: The studied population reached the recommended daily intake for antioxidants when it was analyzed in cycles of treatment, but there was high percentage of inadequate intake when divided into quartiles. Thus, the nutritional advice is an indispensable factor to help prevent and control cancer.

  8. Succinobucol’s New Coat — Conjugation with Steroids to Alter Its Drug Effect and Bioavailability

    Directory of Open Access Journals (Sweden)

    Satu Ikonen

    2011-11-01

    Full Text Available Synthesis, detailed structural characterization (X-ray, NMR, MS, IR, elemental analysis, and studies of toxicity, antioxidant activity and bioavailability of unique potent anti-atherosclerotic succinobucol-steroid conjugates are reported. The conjugates consist of, on one side, the therapeutically important drug succinobucol ([4-{2,6-di-tert-butyl-4-[(1-{[3-tert-butyl-4-hydroxy-5-(propan-2-ylphenyl]sulfanyl}ethylsulfanyl]phenoxy}-4-oxo-butanoic acid] possessing an antioxidant and anti-inflammatory activity, and on the other side, plant stanol/sterols (stigmastanol, β-sitosterol and stigmasterol possessing an ability to lower the blood cholesterol level. A cholesterol-succinobucol prodrug was also prepared in order to enhance the absorption of succinobucol through the intestinal membrane into the organism and to target the drug into the place of lipid metabolism—The enterohepatic circulation system. Their low toxicity towards mice fibroblasts at maximal concentrations, their antioxidant activity, comparable or even higher than that of ascorbic acid as determined by direct quenching of the DPPH radical, and their potential for significantly altering total and LDL cholesterol levels, suggest that these conjugates merit further studies in the treatment of cardiovascular or other related diseases. A brief discussion of succinobucol’s ability to quench the radicals, supported with a computational model of the electrostatic potential mapped on the electron density surface of the drug, is also presented.

  9. Peroxiredoxin Expression of Human Osteosarcoma Cells Is Influenced by Cold Atmospheric Plasma Treatment.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Napp, Matthias; Daeschlein, Georg; Kramer, Axel; Sckell, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2017-03-01

    To evaluate the potential involvement of redox-specific signalling pathways in cold atmospheric plasma (CAP)-induced apoptosis on human osteosarcoma cells. Osteosarcoma cell lines were treated with CAP with or without antioxidative agents and seeded in cell culture plates. Cell proliferation was determined by counting viable cells. Carrier gas-treated cells served as control. Peroxiredoxin (PRX) 1-3 expression and secretion were assessed. CAP treatment exhibited strongly attenuated proliferation rates. This effect was significantly attenuated by the addition of N-acetylcysteine (NAC). CAP-treated cells exhibited an increase of PRX 1 and 2 10 sec after treatment. The ratio of oxidized to reduced PRX1 and PRX2 was significantly altered with increasing cellular concentration of the oxidized dimer. Antioxidant supplementation with NAC increases proliferation of CAP-treated osteosarcoma cells, implicating an involvement of redox signalling. Activation of PRX1 and -2 indicate CAP affects redox homeostasis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin e for treatment of mild to moderately photodamaged skin.

    Science.gov (United States)

    Farris, Patricia; Yatskayer, Margarita; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2014-12-01

    Resveratrol is an effective anti-aging molecule with diverse biologic activity. It functions as a dual antioxidant that can neutralize free radicals and increase intrinsic antioxidant capacity. Additionally resveratrol increases mitochondrial biogenesis and has anti-inflammatory, anti-diabetic, and anti-cancer activity. In this paper we will focus on the use of topically applied resveratrol using a proprietary blend containing 1% resveratrol, 0.5% baicalin, and 1% vitamin E. This stabilized high concentration formulation demonstrates percutaneous absorption and alterations in gene expression such as hemoxygenase-1 (HO-1), vascular endothelial growth factor (VEGFA), and collagen 3 (COL3A1). Clinical assessment showed a statistically significant improvement in fine lines and wrinkles, skin firmness, skin elasticity, skin laxity, hyperpigmentation, radiance, and skin roughness over baseline in 12 weeks. Ultrasound measurements in the periorbital area showed an average improvement of 18.9% in dermal thickness suggesting significant dermal remodeling. These studies confirm that topical resveratrol, baicalin, and vitamin E are valuable ingredient that can be used for skin rejuvenation.

  11. Effects of Pre-germination Treatment on the Phytate and Phenolic Contents of Almond Nuts

    Directory of Open Access Journals (Sweden)

    Liang Lin Lin

    2017-05-01

    Full Text Available This study examined if pre-germination altered the water content and water activity, contents of phytate, total phenolic, (±-catechin, quercetin and total antioxidant capacity of almond  (Prunus dulciskernel. Raw almond kernels were submerged for 15 hours in water, 0.02 mol dm-3 phosphate buffer solution (pH 5.0 and 0.02 mol dm-3 phosphate buffer solution (pH 7.0 at 25 and 40ºC, respectively. The content and activity of water in the kernels before and after the pre-germination treatments were measured by oven drying and dew point water analysis, respectively. The total phenolic and phytic acid contents of the kernels were quantified by using Folin-Ciocalteu and a published spectrophotometric assay, respectively. (±-Catechin and quercetin contents in the almond kernels were determined using gas-chromatography mass spectrometry. The total antioxidant capacity of the kernels were measured by 2,2’-diphenyl-1- picrylhydrazyl assay. Treatment with water, PBS pH 5 and PBS pH 7 significantly increased the water, total phenolic, (±-catechin contents and total antioxidant capacity of the almond kernels regardless of the treatment temperatures (25 or 40°C. The phytic acid and quercetin contents were significantly elevated after the  three treatments at 40°C. The total phenolic, (±-catechin, quercetin and phytate contents in the almond kernels contributed significantly to its antioxidant property. Our results suggested that the phytochemical compositions of the almond kernels changed during pre-germination. The temperature and pH of the medium exert differential influence on the phytochemical compositions of the pre-germinated almond kernels.

  12. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  13. Synthetic lipophilic antioxidant BO-653 suppresses HCV replication.

    Science.gov (United States)

    Yasui, Fumihiko; Sudoh, Masayuki; Arai, Masaaki; Kohara, Michinori

    2013-02-01

    The influence of the intracellular redox state on the hepatitis C virus (HCV) life cycle is poorly understood. This study demonstrated the anti-HCV activity of 2,3-dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran (BO-653), a synthetic lipophilic antioxidant, and examined whether BO-653's antioxidant activity is integral to its anti-HCV activity. The anti-HCV activity of BO-653 was investigated in HuH-7 cells bearing an HCV subgenomic replicon (FLR3-1 cells) and in HuH-7 cells infected persistently with HCV (RMT-tri cells). BO-653 inhibition of HCV replication was also compared with that of several hydrophilic and lipophilic antioxidants. BO-653 suppressed HCV replication in FLR3-1 and RMT-tri cells in a concentration-dependent manner. The lipophilic antioxidants had stronger anti-HCV activities than the hydrophilic antioxidants, and BO-653 displayed the strongest anti-HCV activity of all the antioxidants examined. Therefore, the anti-HCV activity of BO-653 was examined in chimeric mice harboring human hepatocytes infected with HCV. The combination treatment of BO-653 and polyethylene glycol-conjugated interferon-α (PEG-IFN) decreased serum HCV RNA titer more than that seen with PEG-IFN alone. These findings suggest that both the lipophilic property and the antioxidant activity of BO-653 play an important role in the inhibition of HCV replication. Copyright © 2012 Wiley Periodicals, Inc.

  14. Levamisole and antioxidants in the management of oral submucous fibrosis: A comparative study

    Directory of Open Access Journals (Sweden)

    Vasanti Jirge

    2008-01-01

    Full Text Available Background and Objectives: Oral submucous fibrosis (OSMF is a chronic condition of the oral cavity which results in permanent disability. The pathogenesis is poorly understood and the disease is difficult to treat. OSMF is associated with immunological changes (altered levels of serum immunoglobulins and the effect of treatment (especially antioxidants and levamisole on serum immunoglobulins (Ig is not known. This study was carried out to evaluate the clinical effects of levamisole (VERMISOL, and antioxidants (ANTOXID and its effect on serum immunoglobulins IgG, IgA and IgM. Meterials and Methods: Forty-five study subjects were included in the study. Patients were randomly assigned into three groups. There were 15 patients in each group; group I patients received levamisole, 50 mg three times daily for three alternate weeks, group II patients received 2 capsules of antoxid daily for six weeks, group III patients received levamisole and antoxid. The results were analyzed with paired ′t′ test and unpaired ′t′ test. Results: The results indicated that levamisole, antoxid and the combination of levamisole and antoxid showed significant improvement in mouth opening and reduction in burning sensation. Significant reduction of serum IgG, IgA and IgM was seen in the levamisole group and combination group whereas in the antoxid group significant reduction was observed only in serum IgA and IgM. Interpretation and Conclusion: Levamisole can bring about clinical improvement and is better than antoxid and the combination regimen. The addition of antoxid to the treatment regimen does not seem to have an added advantage over levamisole alone.

  15. The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Zorana Oreščanin-Dušić

    2018-01-01

    Full Text Available Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.

  16. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    Science.gov (United States)

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  18. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Girardello, Francine, E-mail: fgirardello@yahoo.com.br [Institute of Biotechnology, University of Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS (Brazil); Leite, Camila Custódio; Branco, Catia Santos; Roesch-Ely, Mariana [Institute of Biotechnology, University of Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS (Brazil); Fernandes, Andreia Neves [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Salvador, Mirian [Institute of Biotechnology, University of Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS (Brazil); Henriques, João Antonio Pêgas [Institute of Biotechnology, University of Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS (Brazil); Department of Biophysics/Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Campus do Vale Setor 4, Box 43422, 91501-970 Porto Alegre, RS (Brazil); InnVitro Research and Development, Rua Mariante 180, Sala 902, 90430-180 Porto Alegre, RS (Brazil)

    2016-07-15

    Highlights: • TiO{sub 2}-NP was internalized by Limnoperna fortunei cells. • TiO{sub 2}-NP can promote alterations in haemocytes membrane of golden mussel. • Antioxidant activity of Sod and Cat decreased after 2 h TiO{sub 2}-NP exposure. • The protein sulfhydryl content decreased after 2 h TiO{sub 2}-NP exposure. • The antioxidants activities were restored after 4 h TiO{sub 2}-NP exposure. - Abstract: TiO{sub 2} nanoparticles (TiO{sub 2}-NP) have been incorporated into a large range of materials for different applications in the last decades and are very likely to appear in wastewater and effluents, eventually reaching the aquatic environment. Therefore, the assessment of the biological impact of TiO{sub 2}-NP on aquatic ecosystem is of a major concern. The mussels represent a target group for TiO{sub 2}-NP toxicity, as they are filter feeders and are capable of bioaccumulating toxic compounds. Furthermore, the exotic organism Limnoperna fortunei, golden mussel, is a freshwater bivalve that has been used in biomonitoring environmental conditions. In this work, the TiO{sub 2}-NP’s ability to interact with haemocytes of golden mussel was assessed by transmission electron microscopy. The enzymatic and non-enzymatic antioxidant defenses were evaluated by superoxide dismutase (Sod) and catalase (Cat) activities and protein sulfhydryl content, which were measured after the golden mussel was exposed to TiO{sub 2}-NP (1, 5, 10 and 50 μg mL{sup −1}). Results demonstrate that TiO{sub 2}-NP was internalized by cells, causing alterations in haemocytes membrane. Antioxidant activity of Sod and Cat decreased after 2 h TiO{sub 2}-NP exposure. After 4 h exposure, the enzymatic antioxidant activity was restored. Notably, the protein sulfhydryl content decreased after 2 h to all the TiO{sub 2}-NP concentrations and no alterations were observed after 4 h of TiO{sub 2}-NP exposure. These results demonstrate the potential of golden mussel as sentinel organism to Ti

  19. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  20. Antioxidant activity of Dianthus chinensis L. flowers processed by ionizing radiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Villavicencio, Anna L.C.H.; Barros, Lillian; Antonio, Amilcar L.; Ferreira, Isabel C.F.R.

    2017-01-01

    Edible flowers are increasingly used in culinary preparations, which require new approaches to improve their conservation and safety. Irradiation treatment is safe and an effective alternative for food conservation, guaranteeing food quality, increasing shelf-life and disinfestation. This technology offers a versatile way to get good quality food while reducing post-harvest losses. Dianthus chinensis L. flowers, popularly known as Chinese pink, are widely used in culinary preparations, being also acknowledged for their bioactive components and antioxidant properties. The purpose of this study was to evaluate the antioxidant activity of D. chinensis flowers submitted to electron beam and gamma irradiation at 0, 0.5, 0.8 and 1 kGy. The antioxidant properties were evaluated through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and β-carotene bleaching inhibition assays. Total phenolics were determined by the Folin-Ciocalteu assay. The antioxidant activity was higher for irradiated samples, especially those treated with 0.5 and 0.8 kGy, independently of the radiation source, which showed the highest capacity to inhibit β-carotene bleaching inhibition. Accordingly, the applied irradiation treatments seemed to represent feasible technology to preserve the quality of edible flower petals, being able to improve the antioxidant activity. (author)

  1. Antioxidant activity of Dianthus chinensis L. flowers processed by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Villavicencio, Anna L.C.H., E-mail: amandaramos@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil); Barros, Lillian; Antonio, Amilcar L.; Ferreira, Isabel C.F.R., E-mail: iferreira@ipb.pt [Centro de Investigação de Montanha (CIMO) - ESA, Instituto Politécnico de Bragança (Portugal)

    2017-07-01

    Edible flowers are increasingly used in culinary preparations, which require new approaches to improve their conservation and safety. Irradiation treatment is safe and an effective alternative for food conservation, guaranteeing food quality, increasing shelf-life and disinfestation. This technology offers a versatile way to get good quality food while reducing post-harvest losses. Dianthus chinensis L. flowers, popularly known as Chinese pink, are widely used in culinary preparations, being also acknowledged for their bioactive components and antioxidant properties. The purpose of this study was to evaluate the antioxidant activity of D. chinensis flowers submitted to electron beam and gamma irradiation at 0, 0.5, 0.8 and 1 kGy. The antioxidant properties were evaluated through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and β-carotene bleaching inhibition assays. Total phenolics were determined by the Folin-Ciocalteu assay. The antioxidant activity was higher for irradiated samples, especially those treated with 0.5 and 0.8 kGy, independently of the radiation source, which showed the highest capacity to inhibit β-carotene bleaching inhibition. Accordingly, the applied irradiation treatments seemed to represent feasible technology to preserve the quality of edible flower petals, being able to improve the antioxidant activity. (author)

  2. Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats.

    Science.gov (United States)

    Kalpana, Kalaivanan; Pugalendi, Kodukkur Viswanathan

    2011-06-17

    The present study was designed to examine the antioxidative potential and antihyperlipidemic activity of Swietenia macrophylla in streptozotocin diabetic rats. The experimental groups were rendered diabetic by intraperitoneal injection of a single dose of streptozotocin (STZ; 40 mg/kg body weight, BW). Rats with glucose levels >200 mg/dL were considered diabetic and were divided into five groups. Three groups of diabetic animals were orally administered daily with seed extract (SME) at a dosage of 50, 100 and 200 mg/kg BW. One group of STZ rats was treated as diabetic control and another group orally administered 600 μg/kg BW glibenclamide daily. Repeated daily oral administration of S. macrophylla significantly reduced blood glucose levels after 45 days of treatment. The lipid peroxidation products such as thiobarbituric acid reactive substances and lipid hydroperoxides of SME treated rats decreased in the plasma, liver and kidney. Glutathione peroxidase, superoxide dismutase and catalase activity were significantly increased in SME treated rats. Antioxidants such as reduced glutathione level in the plasma, liver and kidney and vitamins C and E levels in the plasma increased in SME treated rats. Total cholesterol, triglycerides, phospholipids and free fatty acids and lipoproteins levels increased. Altered lipid profile of treated rats lead to normality with treatment of S. macrophylla. Thus, our results indicate that the administration of 100 mg/kg BW SME restores near normal blood glucose, redox status and lipid profile in STZ-diabetic rats.

  3. Radiation recall dermatitis after docetaxel chemotherapy. Treatment by antioxidant ointment

    Energy Technology Data Exchange (ETDEWEB)

    Duncker-Rohr, Viola; Freund, Ulrich; Momm, Felix [Ortenau-Klinikum Offenburg-Gengenbach Lehrkrankenhaus der Albert-Ludwigs-Universitaet Freiburg i. Br., Radio-Onkologie, Offenburg (Germany)

    2014-05-15

    Radiation recall dermatitis (RRD) is an acute skin toxicity caused by different anticancer or antibiotic drugs within a former completely healed irradiation field. Predictive factors for RRD are not known and its mechanisms are not completely understood. A case of RRD induced by docetaxel and successfully treated by an antioxidant ointment (Mapisal {sup registered}) is presented here. Such an ointment might be useful not only in RRD therapy, but also in the treatment of high-grade dermatitis induced by radiotherapy and thus may contribute to the improvement of patients' quality of life and to the scheduled completion of cancer therapies. (orig.) [German] Die Strahlen-Recall-Dermatitis (RRD) ist eine akute Hauttoxizitaet, die durch verschiedene Chemotherapeutika oder Antibiotika innerhalb eines frueheren, komplett abgeheilten Bestrahlungsfelds hervorgerufen wird. Praediktive Faktoren fuer die RRD sind nicht bekannt und ihr Mechanismus ist nicht vollstaendig geklaert. Es wird ein Fallbericht einer durch Docetaxel induzierten RRD dargestellt, die erfolgreich mit einer antioxidativen Salbe (Mapisal {sup registered}) behandelt wurde. Solche Salben koennten nicht nur zur Therapie der RRD, sondern auch bei der Behandlung einer akuten Dermatitis waehrend der Strahlentherapie nuetzlich sein und damit zur Verbesserung der Lebensqualitaet der Patienten und zur planmaessigen Durchfuehrung der Tumortherapie beitragen. (orig.)

  4. Long-term soft drink and aspartame intake induces hepatic damage via dysregulation of adipocytokines and alteration of the lipid profile and antioxidant status.

    Science.gov (United States)

    Lebda, Mohamed A; Tohamy, Hossam G; El-Sayed, Yasser S

    2017-05-01

    Dietary intake of fructose corn syrup in sweetened beverages is associated with the development of metabolic syndrome and obesity. We hypothesized that inflammatory cytokines play a role in lipid storage and induction of liver injury. Therefore, this study intended to explore the expression of adipocytokines and its link to hepatic damage. Rats were assigned to drink water, cola soft drink (free access) and aspartame (240 mg/kg body weight/day orally) for 2 months. The lipid profiles, liver antioxidants and pathology, and mRNA expression of adipogenic cytokines were evaluated. Subchronic intake of soft drink or aspartame substantially induced hyperglycemia and hypertriacylglycerolemia, as represented by increased serum glucose, triacylglycerol, low-density lipoprotein and very low-density lipoprotein cholesterol, with obvious visceral fatty deposition. These metabolic syndromes were associated with the up-regulation of leptin and down-regulation of adiponectin and peroxisome proliferator activated receptor-γ (PPAR-γ) expression. Moreover, alterations in serum transaminases accompanied by hepatic oxidative stress involving induction of malondialdehyde and reduction of superoxide dismutase, catalase, and glutathione peroxidase and glutathione levels are indicative of oxidative hepatic damage. Several cytoarchitecture alterations were detected in the liver, including degeneration, infiltration, necrosis, and fibrosis, predominantly with aspartame. These data suggest that long-term intake of soft drink or aspartame-induced hepatic damage may be mediated by the induction of hyperglycemia, lipid accumulation, and oxidative stress with the involvement of adipocytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Is the use of antioxidants mixture ameliorating the double stress effect of radiation and hyperlipidaemia?

    International Nuclear Information System (INIS)

    Michael, M.I.; Amer, M.M.

    2010-01-01

    Radiation hazards, due to free radical generation, present an enormous challenge for biological and medical safety. In the same time, hyperlipidaemia represents one of the most important and recognized risk factor for atherosclerosis development as an event of accumulation of cells containing excess lipids within the arterial wall. Under normal physiological conditions, there is a critical balance in the generation of oxygen free radicals and antioxidant defense systems. In this study, we assumed that a subject encountered to both radiation and hyperlipidaemia oxidative stress and inquired if a mixture of three well known antioxidants can ameliorate this dramatically disorder. To answer the question, four groups of adult male albino rats were used; the control group (A) fed and drank ad libitum normal laboratory diet, the second group (B) fed normally and exposed to 5 Gy gamma radiation, the third group (C) fed high-fat diet (HFD) for two months then exposed to the same dose of radiation and the fourth group (D) subjected to the same treatment as group (C) and administrated a mixture of tryptophan (100 mg/kg b.w.), hawthorn extract (50 mg/100 g b.w.) and coenzyme Q10 (50 mg/kg b.w.) for one month. Body weight was recorded twice a week during the experimental period then all the animals were decapitated after one month and sera were collected to estimate total lipids, triglycerides, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), T3, T4, testosterone and corticosterone hormones besides glutathione. The results declared that radiation-hyperlipidaemia double stressors inadequately distorted the lipogram, hormonal and antioxidant status and the antioxidants mixture administrated could ameliorate these alterations and successfully brought back all the parameters investigated nearly to the control level.

  6. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats

    Directory of Open Access Journals (Sweden)

    Elham Ghanbari

    2016-08-01

    Full Text Available Background: Diabetes is the most common endocrine disease. It has adverse effects on male reproductive function. Royal Jelly (RJ has antioxidant and anti-diabetic effects and show protective effects against diabetes. Objective: This study was conducted to evaluate the effect of RJ on histopathological alterations of the testicular tissue in streptozotocin (STZ-induced diabetic rats. Materials and Methods: In this experimental study, 28 adult Wistar rats were randomly divided into control (C, royal jelly (R, diabetic (D and RJ-treated diabetic (D+R groups. Diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg body weight (BW. The rats from the R and D+R groups received daily RJ (100 mg/kg BW for 6 wks orally. Hematoxylin-Eosin staining was used to analyze histopathological changes including: tunica albuginea thickness (TAT, seminiferous tubules diameter (STsD, Johnsen’s score, tubular differentiation index (TDI, spermiogenesis index (SPI, Sertoli cell index (SCI, meiotic index (MI, and mononuclear immune cells (MICs in testes. The antioxidant status was examined by evaluating testicular levels of ferric reducing antioxidant power (FRAP and catalase (CAT activity. Results: Histological results of the testis from diabetic rats showed significant decrease in STsD, Johnsen’s score, TDI, SPI, SCI and MI, and significant increase in TAT and MICs, while administration of RJ significantly reverted these changes (p<0.05. RJ treatment markedly increased activity of CAT and FRAP. There were significant differences in FRAP levels among C (13.0±0.5, RJ (13.4±0.3, D (7.8±0.6 and D+R (12.4±0.7 groups (p<0.05. Conclusion: RJ improved diabetes-induced impairment in testis, probably through its antioxidant property.

  7. Site-Specific Antioxidative Therapy for Prevention of Atherosclerosis and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Hajime Otani

    2013-01-01

    Full Text Available Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.

  8. The effect of Chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Sima Salimgandomi

    2016-09-01

    Full Text Available Plants are almost reach sources of phenolic compounds such as flavonoids which are the most important natural antioxidants. Antioxidant compounds are essential for protecting human body against oxidative stress. However use elicitors could increase the antioxidant activity of plant. The purpose of this study was to evaluate the effects of Chitosan on the content of phenolic and flavonoid compounds and also antioxidant activity Mentha piperita L.In this study, firstly the Mentha piperita L. were grown up for 6-week period at greenhouse conditions and then were treated with 50-100 μm of chitosan, then total phenolic and flavonoid contents were determined using spectrophotometry and finally antioxidant activities of extracts were evaluated with 2,2-diphenyl-1-picryl hydrazyl (DPPH method and the results were analyzed with Excel software and Variance analysis testing method with SPSS software. The results showed the content of phenolic compounds in the methanol extract based on sample mg of Gallic acid /g for control with water, 50μm and 100μm treatments respectively were 146.8,233.1,339.1. Meanwhile the total volume of flavonoid content of the methanol extract per mg of Rutin/g respectively were 9.88,12.11,14.06 and concentration of the said extracts respectively were 196.3,147.7,128.62. In regard to the above results it can be concluded that due to having phenolic and flavonoid contents, Mentha piperita L showed that antioxidant activity could be stimulated upon Chitosan treatment moreover, antioxidant activity increased by increasing Chitosan treatment content. Therefore, this method can be used to increase antioxidant effect of plant as a natural antioxidant and all the phenolic and flavonoid contents.

  9. ANTIOXIDANT EFFECTS OF L-SERINE AGAINST FATTY STREAK FORMATION IN HYPERCHOLESTEROLEMIC ANIMALS

    Directory of Open Access Journals (Sweden)

    Ahmad Movahedian

    2010-12-01

    Full Text Available   Abstract INTRODUCTION: Peroxidation of blood lipoproteins is regarded as a key event in the development of atherosclerosis. Evidence suggests that oxidative modification of amino acids in low-density lipoprotein (LDL particles leads to its convert into an atherogenic form, which is taken up by macrophages. Therefore the reduction of oxidative modification of lipoproteins by increasing plasma antioxidant capacity may prevent cardiovascular disease. methods: In this study, the antioxidant and anti-fatty streak effects of L-serine were investigated in hypercholesterolemic rabbits. Rabbits were randomly divided into three groups which were fed high-cholesterol diet (hypercholesterolemic control group, high-cholesterol + L-serine diet (treatment group, and normal diet (control for twelve weeks and then blood samples were obtained to measure plasma cholesterol, triglyceride (TG, high-density lipoprotein (HDL, low-density lipoprotein (LDL, antioxidant capacity (AC, malondialdehyde (MDA, and conjugated dienes (CDS. Right and left coronary arteries were also obtained for histological evaluation. results: No significant difference was observed in plasma cholesterol, TG, HDL, LDL and CDS levels between treatment and hypercholesterolemic control groups (P>0.05. The levels of plasma MDA and AC were 0.29‌ µM and 56%, respectively in the treatment group which showed a significant change in comparison with hypercholesterolemic control groups (P<0.05. The mean size of produced fatty streak also showed significant reduction in the treatment group compared to the hypercholesterolemic group (P<0.05. CONCLUSIONS: The results showed that L-serine has antioxidant and anti-fatty streak effects without any influence on plasma lipid levels in hypercholesterolemic rabbits.     Keywords: Atherosclerosis, cholesterol, L-serine, antioxidant, lipids, fatty streak.

  10. Usefulness of antioxidant drugs in bronchial asthma

    International Nuclear Information System (INIS)

    Jawad, F.H.; Atabee, H.G.A.; Sahib, A.S.

    2010-01-01

    Bronchial asthma is a clinical syndrome with possible correlation to oxidative stress, therefore the effectiveness of some antioxidant drugs has been studied in management of chronic bronchial asthma. Methods: This study was carried out in the Al- Kadhimia Teaching Hospital between December 2008 to May 2009 on 56 patients of both sexes who were randomly allocated to 7 groups, plus 10 healthy volunteers as control group. Each group was given one of the following drugs: vitamin E, vitamin C, combination of vitamin E and C, selenium, zinc, allopurinol and garlic oil, in addition to their classical treatment of asthma and their pulmonary function tests were conducted as well as measuring the levels of serum zinc, calcium, and malondialdehyde (MDA) before and after treatment. Results: All asthmatic patients were suffering from oxidative stress and this was detected by measuring the level of serum MDA which was 2-3 folds more than the control group, and all antioxidants except allopurinol showed a beneficial effect of different degrees in the pulmonary function tests accompanied with clinical improvement of patients' condition and marked decrease in the number of daily attacks. Antioxidants can compensate the oxidative stress that correlates with asthma, can reduce the symptoms of asthma, and improve pulmonary functions. (author)

  11. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity.

    Science.gov (United States)

    Gibson, Kyle R; Neilson, Ilene L; Barrett, Fiona; Winterburn, Tim J; Sharma, Sushma; MacRury, Sandra M; Megson, Ian L

    2009-10-01

    N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.

  12. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  13. Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice.

    Science.gov (United States)

    Suárez-Jacobo, Angela; Rüfer, Corinna E; Gervilla, Ramón; Guamis, Buenaventura; Roig-Sagués, Artur X; Saldo, Jordi

    2011-07-15

    Ultra-high pressure homogenisation (UHPH) is a recently developed technology and is still under study to evaluate its effect on different aspects of its application to food products. The aim of this research work was to evaluate the effect of UHPH treatments on quality characteristics of apple juice such as antioxidant capacity, polyphenol composition, vitamin C and provitamin A contents, in comparison with raw (R) and pasteurised (PA) apple juice. Several UHPH treatments that include combinations of pressure (100, 200 and 300MPa) and inlet temperatures (4 and 20°C) were assayed. Apple juice was pasteurised at 90°C for 4min. Antioxidant capacity was analysed using the oxygen radical antioxidant capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) assay while total phenolic content was determined by the Folin-Ciocalteau assay. According to the FRAP and DPPH assays, UHPH processing did not change apple juice antioxidant capacity. However, significant differences were detected between samples analysed by TEAC and ORAC assays. In spite of these differences, high correlation values were found between the four antioxidant capacity assays, and also with total polyphenol content. The analysis and quantification of individual phenols by HPLC/DAD analytical technique reflects that UHPH-treatment prevented degradation of these compounds. Vitamin C concentrations did not change in UHPH treated samples, retaining the same value as in raw juice. However, significant losses were observed for provitamin A content, but lower than in PA samples. UHPH-treatments at 300MPa can be an alternative to thermal treatment in order to preserve apple juice quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties. PMID:27057279

  15. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns.

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  16. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2016-01-01

    Full Text Available The aim of this study was to examine whether mesenchymal stem cells (MSCs and/or corneal limbal epithelial stem cells (LSCs influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs, with adipose tissue MSCs (Ad-MSCs, or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9, inducible nitric oxide synthase (iNOS, α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1, and vascular endothelial factor (VEGF were low. The central corneal thickness (taken as an index of corneal hydration increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  17. Vitamin E and N-Acetylcysteine as Antioxidant Adjuvant Therapy in Children with Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Youssef Al-Tonbary

    2009-01-01

    Full Text Available Although cancer therapies have experienced great success nowadays, yet the associated toxic response and free radicals formation have resulted in significant number of treatment-induced deaths rather than disease-induced fatalities. Complications of chemotherapy have forced physicians to study antioxidant use as adjunctive treatment in cancer. This study aimed to evaluate the antioxidant role of vitamin E and N-acetyl cysteine (NAC in overcoming treatment-induced toxicity in acute lymphoblastic leukaemia (ALL during the intensive period of chemo-/radiotherapy, almost the first two months of treatment. Forty children newly diagnosed with ALL were enrolled in this study. Twenty children (group I have taken vitamin E and NAC supplementations with chemotherapy and the other twenty children (group II have not taken any adjuvant antioxidant therapy. They were evaluated clinically for the occurrence of complications and by the laboratory parameters (blood levels of glutathione peroxidase (Glu.PX antioxidant enzyme, malondialdehyde (MDA, tumor necrosis factor- (TNF-, liver enzymes, and bone marrow picture. Results revealed reduced chemotherapy and radiotherapy toxicity as evidenced by decreasing level of MDA, increasing level of Glu.Px and decreased occurrence of toxic hepatitis, haematological complications, and need for blood and platelet transfusions in group I compared to group II. We can conclude that vitamin E and NAC have been shown to be effective as antioxidant adjuvant therapy in children with ALL to reduce chemo-/radiotherapy-related toxicities during the initial period of treatment.

  18. Vitamin E and N-Acetylcysteine as Antioxidant Adjuvant Therapy in Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Al-Tonbary, Youssef; Al-Haggar, Mohammad; EL-Ashry, Rasha; EL-Dakroory, Sahar; Azzam, Hanan; Fouda, Ashraf

    2009-01-01

    Although cancer therapies have experienced great success nowadays, yet the associated toxic response and free radicals formation have resulted in significant number of treatment-induced deaths rather than disease-induced fatalities. Complications of chemotherapy have forced physicians to study antioxidant use as adjunctive treatment in cancer. This study aimed to evaluate the antioxidant role of vitamin E and N-acetyl cysteine (NAC) in overcoming treatment-induced toxicity in acute lymphoblastic leukaemia (ALL) during the intensive period of chemo-/radiotherapy, almost the first two months of treatment. Forty children newly diagnosed with ALL were enrolled in this study. Twenty children (group I) have taken vitamin E and NAC supplementations with chemotherapy and the other twenty children (group II) have not taken any adjuvant antioxidant therapy. They were evaluated clinically for the occurrence of complications and by the laboratory parameters (blood levels of glutathione peroxidase (Glu.PX) antioxidant enzyme, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), liver enzymes, and bone marrow picture). Results revealed reduced chemotherapy and radiotherapy toxicity as evidenced by decreasing level of MDA, increasing level of Glu.Px and decreased occurrence of toxic hepatitis, haematological complications, and need for blood and platelet transfusions in group I compared to group II. We can conclude that vitamin E and NAC have been shown to be effective as antioxidant adjuvant therapy in children with ALL to reduce chemo-/radiotherapy-related toxicities during the initial period of treatment. PMID:19960046

  19. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes.

    Science.gov (United States)

    La Marca, Margherita; Beffy, Pascale; Pugliese, Annalisa; Longo, Vincenzo

    2013-01-01

    Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.

  20. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05.  Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.  

  1. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05. Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.

  2. Antioxidants for Preventing Preeclampsia: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Adriana Magalhaes Ribeiro Salles

    2012-01-01

    Full Text Available Objective. To investigate the efficacy of antioxidants for preventing preeclampsia and other maternal and fetal complications among pregnant women with low, moderate, or high risk of preeclampsia. Methods. We searched MEDLINE, Embase, CENTRAL, mRCT, and other databases, with no language or publication restrictions. Two independent reviewers selected randomized controlled trials that evaluated the use of antioxidants versus placebo and extracted the relevant data. Relative risks (RRs and 95% confidence intervals (95% CIs were calculated. The data were compiled through the random effects model. Main Results. Fifteen studies were included (21,012 women and 21,647 fetuses. No statistically significant difference was found between women who received antioxidant treatment and women who received placebo for preeclampsia (RR =0.92; 95% CI: 0.82–1.04, severe preeclampsia (RR =1.03; 95% CI: 0.87–1.22, preterm birth (RR =1.03; 95% CI: 0.94–1.14, and small for gestational age <10th centile (RR =0.92; 95% CI: 0.80–1.05. Side effects were numerically more frequent in the antioxidants group compared to placebo, but without significant statistical difference (RR =1.24; 95% CI: 0.85–1.80. Conclusions. The available evidence reviewed does not support the use of antioxidants during pregnancy for the prevention of preeclampsia and other outcomes.

  3. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  4. Effect of antioxidants treatments to control hazard of radiation exposure and food aflatoxin contamination

    International Nuclear Information System (INIS)

    Abdel Rahman, N.A

    2008-01-01

    The objective of this study was to evaluate the protective role of diadezin and/or lycopene (prolonged administration) against biochemical and histopathological changes in male rats exposed to gamma radiation and / or aflatoxin B1.Irradiated rats were whole body exposed to fractionated 8 Gy γradiations (4 x 2 Gy, every other day). Aflatoxin B1 (AFB1)exposed rats were received 10μg/kg body weight for 7 consecutive days. Daidzein delivered to rats via stomach tube at a concentration of 63 mg/kg body weight/day. Whereas lycopene was ingested at a concentration of 10 mg/kg body weight/day. Animals were sacrificed on the 1 st day post the last irradiation dose. The results obtained showed that irradiation and/or AFB1 induced significant change in blood enzymes (alanine aminotransferase; ALT and aspartate aminotransferase; AST) activity as well as in the level of serum cholesterol. triglycerides, phospholipids, uric acid, urea, creatinine, total proteins and albumin. These changes were accompanied with a significant alteration in the antioxidant status (superoxide dismutase; SOD, catalase; CAT activity and glutathione concentration; GSH) and a significant increase in the peroxidation processes (TBARS). In addition , the histological investigation displayed remarkable changes in liver photomicrographs compared to the sections of liver in control rats.

  5. Redox Control of Antioxidant and Antihepatotoxic Activities of Cassia surattensis Seed Extract against Paracetamol Intoxication in Mice: In Vitro and In Vivo Studies of Herbal Green Antioxidant

    Directory of Open Access Journals (Sweden)

    U. Seeta Uthaya Kumar

    2016-01-01

    Full Text Available The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r>0.9 between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p<0.05 reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p<0.05 enhanced the antioxidant enzymes and glutathione (GSH contents in the liver tissues, which led to decrease of malondialdehyde (MDA level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.

  6. Production of starch with antioxidative activity by baking starch with organic acids.

    Science.gov (United States)

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  7. Fractionation and determination of total antioxidant capacity, total ...

    African Journals Online (AJOL)

    DEYAKS PLC

    2014-01-29

    Jan 29, 2014 ... the treatment of stomach and rheumatic pains, inflamma- tory disorders ... reagent and expressed as gallic acid equivalent (GAE). Exactly. 0.25 ml .... anthocyanins and antioxidant activity following simulated gastro- intestinal ...

  8. Structure, health benefits, antioxidant property and processing and ...

    African Journals Online (AJOL)

    Structure, health benefits, antioxidant property and processing and storage of carotenoids. ... It is sensitive to heat, light and oxygen. Enzymatic ... Thermal treatment and freezing increases the extractability of b-carotene from the food matrices.

  9. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress

    Directory of Open Access Journals (Sweden)

    Alexander V. Vavaev

    2012-02-01

    Full Text Available The focus in antioxidant research is on enzyme derivative investigations. Extracellular superoxide dismutase (EC-SOD is of particular interest, as it demonstrates in vivo the protective action against development of atherosclerosis, hypertension, heart failure, diabetes mellitus. The reliable association of coronary artery disease with decreased level of heparin-released EC-SOD was established in clinical research. To create a base for and to develop antioxidant therapy, various SOD isozymes, catalase (CAT, methods of gene therapy, and combined applications of enzymes are used. Covalent bienzyme SOD-CHS-CAT conjugate (CHS, chondroitin sulphate showed high efficacy and safety as the drug candidate. There is an evident trend to use the components of glycocalyx and extracellular matrix for target delivery of medical substances. Development of new enzyme antioxidants for therapeutic application is closely connected with progress in medical biotechnology, pharmaceutical industry, and bioeconomy.

  10. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis.

    Science.gov (United States)

    Jiménez-Fernández, Sara; Gurpegui, Manuel; Díaz-Atienza, Francisco; Pérez-Costillas, Lucía; Gerstenberg, Miriam; Correll, Christoph U

    2015-12-01

    To investigate the role of oxidative stress and antioxidants in depression. We searched the literature without language restrictions through MEDLINE/PubMed, Cochrane Library, Fisterra, and Galenicom from database inception until December 31, 2013, supplemented by a hand search of relevant articles. Search terms included (1) oxidative stress, antioxidant*, nitrosative stress, nitrative stress, nitro-oxidative stress, free radical*, and names of individual oxidative stress markers/antioxidants and (2) depression and related disorders and antidepressant. Included were studies in patients with depression comparing antioxidant or oxidative stress markers with those in healthy controls before and after antidepressant treatment. Two authors independently extracted the data for antioxidant or oxidative stress markers. Standardized mean differences (SMDs) ± 95% confidence intervals (CIs) for results from ≥ 3 studies were calculated. Altogether, 29 studies (N = 3,961; patients with depression = 2,477, healthy controls = 1,484) reported on the oxidative stress marker malondialdehyde (MDA) and total nitrites, the antioxidants uric acid and zinc, or the antioxidant-enhancing enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). When patients with depression were compared with healthy controls, depression was associated with higher oxidative stress MDA levels (8 studies; n = 916; SMD = 1.34; 95% CI, 0.57 to 2.11; P Depression Rating Scale scores (24.6 ± 0.7 to 16.2 ± 1.6; SMD = 2.65; 95% CI, 1.13 to 4.15; P = .00065), reduced MDA (4 studies; n = 194; SMD = -1.45; 95% CI, -2.43 to -0.47; P = .004) and increased uric acid (3 studies; n = 212; SMD = 0.76; 95% CI, 0.03 to 1.49; P = .040) and zinc levels (3 studies; n = 65; SMD = 1.22; 95% CI, 0.40 to 2.04, P = .004), without differences in MDA (P = .60), uric acid (P = .10), and zinc (P = .163) levels compared to healthy controls. Results suggest that oxidative stress plays a role in depression

  11. Antioxidant supplementation for lung disease in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Lykkesfeldt, Jens

    2014-01-01

    BACKGROUND: Airway infection leads to progressive damage of the lungs in cystic fibrosis and oxidative stress has been implicated in the etiology. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, ß-carotene and selenium) or glutathione may therefore potentially help maintain...... COLLECTION AND ANALYSIS: Two authors independently selected studies, extracted data and assessed the risk of bias in the included studies. We contacted trial investigators to obtain missing information. Primary outcomes are lung function and quality of life; secondary outcomes are oxidative stress...... or by inhalation) appears to improve lung function in some cases and decrease oxidative stress; however, due to the very intensive antibiotic treatment and other treatments that cystic fibrosis patients receive, the beneficial effect of antioxidants is very difficult to assess in patients with chronic infection...

  12. Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder.

    Science.gov (United States)

    Yui, Kunio; Tanuma, Nasoyuki; Yamada, Hiroshi; Kawasaki, Yohei

    2017-08-01

    Individuals with autism spectrum disorders (ASD) have impaired detoxification capacity. Investigating the neurobiological bases of impaired antioxidant capacity is thus a research priority in the pathophysiology of ASD. We measured the urinary levels of hexanoyl-lysine (HEL) which is a new oxidative stress biomarker, total antioxidant power (TAP) and DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the plasma levels of superoxide dismutase (SOD), which is a major antioxidant enzyme. We examined whether the urinary levels of these enzymes and biomarkers may be related to symptoms of social impairment in 20 individuals with ASD (meanage,11.1±5.2years) and 12 age- and gender-matched healthy controls (meanage,14.3±6.2years). Symptoms of social impairment were assessed using the Social Responsiveness Scale (SRS). The dietary TAP of the fruit juice, chocolate, cookies, biscuits, jam and marmalade were significantly higher in the ASD group than in the control group, although the intake of nutrients was not significantly different between the groups. The urinary TAP levels were significantly lower in the ASD group than in the control group. There were no significantly differences in urinary HEL and 8-OHdG levels between the ASD and control groups. The SRS scores were significantly higher in the ASD group than in the control group. Stepwise regression analysis revealed that urinary TAP levels and plasma SOD levels can differences in the biomarkers and the SRS scores between the ASD group and the control group. The endogenous antioxidant capacity may be deficient without altered urinary HEL and 8-OHdG levels in individuals with ASD. The plasma SOD levels may be related to reduced endogenous antioxidant capacity. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Goricar, Katja; Gazic, Barbara; Dolzan, Vita; Jazbec, Janez

    2016-01-01

    Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and the lifelong follow up of these patients is of utmost

  14. Effect of Iranian Propolis on Salivary Total Antioxidant Capacity in Gamma-irradiated Rats

    Directory of Open Access Journals (Sweden)

    Sara Aghel

    2014-12-01

    Full Text Available Background and aims. The antioxidant and anti-inflammatory properties of propolis were studied. Since saliva contains antioxidants and radiotherapy of the head and neck mainly affects the saliva, salivary antioxidant defensive mechanism is compromised with oxidative stress produced by radiation therapy. Therefore, the aim of the present study was to investigate the effect of propolis on salivary total antioxidant capacity in irradiated rats. Materials and methods. The study was conducted on 28 rats, 7‒11 weeks of age (160±20 g, divided into four groups: saline with no radiation (S, saline and radiation (SR, propolis with no radiation (P [400 mg/kg IP], propolis and radiation (PR [400 mg/kg IP]. SP and PR were exposed to 15 Gy of gamma irradiation for 7 minutes and 39 seconds. The rats received intraperitoneal injections each day for 10 days, and their tongues and lips were daily examined for mucositis; saliva sample were also taken three times on days 0, 6, and 10. Results. Mucositis incidence appeared to be delayed in the PR compared to the SR, and the severity was significantly higher in the SR compared to the PR. No significant alterations were observed in salivary antioxidant levels during the experiment, except the SR group in which a significant reduction was found. Conclusion. Propolis might reduce and delay radiation-induced mucositis in animal models; it might be able to prevent the reduction in salivary antioxidant levels in irradiated rats as well.

  15. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods.

    Science.gov (United States)

    Çelik, Ecem Evrim; Gökmen, Vural; Fogliano, Vincenzo

    2013-10-30

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of the insoluble fraction was measured by the QUENCHER procedure using ABTS(•+) or DPPH(•) radicals. After measurement, the insoluble residue was washed out to remove the excess of radicals and treated with pure antioxidant solution or antioxidant-rich beverage to regenerate depleted antioxidants on the fiber. Results revealed that the antioxidant capacity of compounds chemically bound to the insoluble moiety could be reconstituted in the presence of other hydrogen-donating substances in the liquid phase. Regeneration efficiency was found to range between 21.5 and 154.3% depending on the type of insoluble food matrix and regeneration agent. Among the food matrices studied, cereal products were found to have slightly higher regeneration efficiency, whereas antioxidant-rich beverages were more effective than pure antioxidants as regeneration agents. Taking wheat bran as reference insoluble material, the regeneration abilities of beverages were in the following order: green tea > espresso coffee > black tea > instant coffee > orange juice > red wine. These results highlighted the possible physiological relevance of antioxidants bound to the insoluble food material in the gastrointestinal tract. During the digestion process they could react with the free radicals and at the same time they can be regenerated by other soluble antioxidant compounds present in the meal.

  16. Effect of Thermal Processing and Maceration on the Antioxidant Activity of White Beans

    Science.gov (United States)

    Huber, Karina; Brigide, Priscila; Bretas, Eloá Bolis; Canniatti-Brazaca, Solange Guidolin

    2014-01-01

    Phenolic compounds, which naturally occur in beans, are known to have antioxidant activity, which may be partially lost during the processing of this legume. This study evaluated the effect of thermal processing and maceration on the phenolic acid and flavonoids profile and content and on the antioxidant activity of white beans. According to the results obtained from the 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method, there were no significant differences among treatment groups analysed. When was using 1,1-diphenyl-2-pycrylhydrazyl method (DPPH), beans cooked without maceration present the higher antioxidant activity, and raw beans the lower. The phenolic acids found in greater amounts were gallic acid and chlorogenic acid. Kaempferol was only detected in the soaked and cooked samples; catechin and kaempferol-3-rutinoside were found in the highest concentrations. Quercetin and kaempferol-3-glucoside were not affected by the cooking process, either with or without maceration. In general, the heat treatment increased the antioxidant activity. PMID:24991931

  17. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  18. Yields, Phenolic Profiles and Antioxidant Activities of Ziziphus jujube Mill. in Response to Different Fertilization Treatments

    Directory of Open Access Journals (Sweden)

    Min Wang

    2013-09-01

    Full Text Available Increasing demand for more jujube (Ziziphus jujube Mill. production requires understanding the specific fertilization needs of jujube trees. This study was conducted to compare fruit yields, phenolic profiles and antioxidant activity of jujube in response to different fertilizers. Application of organic fertilizer appeared to enhance the phenolics and antioxidant activity accumulation of jujubes, compared to conventional fertilized jujubes. Amongst inorganic fertilizers, supplemental potassium as an individual nutrient improved the accumulation of phenolics in jujubes. Our results demonstrate that phenolics levels and antioxidant activity of jujube can be manipulated through fertilizer management and tracked by following proanthocyanidin concentrations. In a practical production context, the combination of organic fertilizers and inorganic fertilizers such as more supplemental individual potassium, and less supplemental individual nitrogen and phosphorus, might be the best management combination for achieving higher phenolic concentration, stronger antioxidant activity and a good harvest.

  19. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  20. MILK QUALITY OF DAIRY GOAT BY GIVING FEED SUPPLEMENT AS ANTIOXIDANT SOURCE

    Directory of Open Access Journals (Sweden)

    Mardalena

    2011-09-01

    Full Text Available Free radical levels can be higher than the level of endogenous antioxidants in the body so that uncomfortable conditions in the body of dairy goats could happen. To anticipate this uncomfortable conditions will be given feed supplement (FS as source of antioxidants (AOX. FS contain mixture pineapple rind meal and antioxidant minerals (AOXM each 25 ppm Zn and 10 ppm Cu. This experiment was carried out to investigate the effect of feed supplements as antioxidant source on milk quality of dairy goats. Sixteen Etawah dairy goats in the second lactation were used in the experiment that conducted using randomized block design with 4 treatments and 4 replicates. The treatments were R0 (grass + concentrate, R1 (R0 + FS containing 0.04 % AOX, R2 (R0 + FS containing 0.06% AOX, R3 (R0 + FS containing 0.08 % AOX. The data collected were analyzed using Anova. The result of phytochemicals analysis indicated that feed supplement contained flavonoid, polyphenols, sesqiuterpen, mopnoterpen, steroids, quinones and saponins. The results of study showed that there were difference (p0.05 on milk yield, milk fat, milk protein and milk antioxidant. The conclusion of this study was the feed supplements containing 0.08 AOX produced the best response to milk quality of dairy goats.

  1. Effects of antioxidant and package materials on the quality of irradiated rugao ham

    International Nuclear Information System (INIS)

    Cao Hong; Chen Xiulan; Bao Jianzhong; Han Yan; Jiang Yunsheng; Wang Zhijun; Dong Jie; Yang Hairong; Xi Jun

    2008-01-01

    Irradiation could extend the shelf life of ham, but irradiation also facilitates the oxidation of fat. Different packaging materials and combination of antioxidants were used to deal with Rugao ham in order to lower the level of antioxidation caused by irradiation treatment. The peroxide value of fat was detected as the reference index. The results were indicated that the fat peroxide value of all samples increased within the storage of 100d, and then decreased. Aluminum film compound packaging showed a better effect than polyethylene plastic bag. The antioxideant combination of 0.5% tea-polyphenol, 0.5% Vc, 0.5% citric acid, 5% sodium alginate, applied on 4 kGy irradiated samples was measured the lowest peroxide value of fat among all the treatments. (authors)

  2. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer.

    Science.gov (United States)

    Patel, Jayendrakumar B; Shah, Franky D; Shukla, Shilin N; Shah, Pankaj M; Patel, Prabhudas S

    2009-01-01

    Oral cancer is the leading malignancy in India. Nitric oxide and antioxidant enzymes play an important role in etiology of oral cancer. Therefore, the present study evaluates nitric oxide and antioxidant enzyme levels in healthy individual without tobacco habits (NHT, N=30) and healthy individuals with tobacco habits (WHT, n=90), patients with oral precancers (OPC, n=15) and oral cancer patients (n=126). Blood samples were collected from the subjects. NO2 + NO3 (nitrite+nitrate), superoxide dismutase (SOD) and catalase levels were estimated using highly specific spectrophotometeric methods. Statistical analysis was done by SPSS statistical software version 10. Mean plasma NO2 + NO3 levels were elevated in patients with OPC and oral cancer patients as compared to the controls. Mean activities of erythrocyte SOD and catalase were higher in WHT than NHT. Erythrocyte SOD and catalase levels were higher in WHT and patients with OPC as compared to NHT. The erythrocyte SOD and catalase activities were lower in oral cancer patients than patients with OPC. The erythrocyte SOD activity was higher in advanced oral cancer than the early disease. Erythrocyte catalase activity was lower in poorly differentiated tumors than well and moderately differentiated tumors. Pearson's correlation analysis revealed that alterations in plasma NO2 + NO3 levels were negatively associated with changes in erythrocyte SOD activities. The data revealed that the alterations in antioxidant activities were associated with production of nitric oxide in oral cancer, which may have significant role in oral carcinogenesis.

  3. High-performance thin-layer chromatographic methods in the evaluation of the antioxidant and anti-hyperglycemic activity of Myrmecodia platytyrea as a promising opportunity in diabetes treatment.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Morton, D W; Adam, A; Mizaton, H H; Zakaria, H

    2017-12-29

    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    Science.gov (United States)

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  5. Effects of thiol antioxidants on the atropselective oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) by rat liver microsomes.

    Science.gov (United States)

    Wu, Xianai; Lehmler, Hans-Joachim

    2016-02-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0-10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol), 4-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol), and 4,5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136, and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo.

  6. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking.

    Science.gov (United States)

    Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol

    2014-12-01

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD

    Directory of Open Access Journals (Sweden)

    Laila Y. AL-Ayadhi

    2013-01-01

    Full Text Available Extensive studies have demonstrated that oxidative stress plays a vital role in the pathology of several neurological diseases, including autism spectrum disorder (ASD; those studies proposed that GSH and antioxidant enzymes have a pathophysiological role in autism. Furthermore, camel milk has emerged to have potential therapeutic effects in autism. The aim of the current study was to evaluate the effect of camel milk consumption on oxidative stress biomarkers in autistic children, by measuring the plasma levels of glutathione, superoxide dismutase, and myeloperoxidase before and 2 weeks after camel milk consumption, using the ELISA technique. All measured parameters exhibited significant increase after camel milk consumption (. These findings suggest that camel milk could play an important role in decreasing oxidative stress by alteration of antioxidant enzymes and nonenzymatic antioxidant molecules levels, as well as the improvement of autistic behaviour as demonstrated by the improved Childhood Autism Rating Scale (CARS.

  8. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  9. Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model.

    Science.gov (United States)

    Salafzoon, Samaneh; Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh

    2017-10-21

    Background Abnormal metabolism is a common event in cancerous cells. For example, the increase of reactive oxygen species (ROS) production, particularly due to aerobic respiration during invasive stage, results in cancer progression. Herein, the impact of kombucha tea prepared from ginger on the alteration of antioxidant agents was assessed in the breast cancer animal model. Methods Two types of kombucha tea with or without ginger were administered to BALB/c mice before and after tumor challenge. Superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) were evaluated in tumor, liver and kidney. Results Administration of kombucha ginger tea significantly decreased catalase activity as well as GSH and MDA level in tumor homogenate (pkombucha ginger tea (pkombucha prepared from ginger could exert minor antioxidant impacts by balancing multi antioxidant factors in different tissues in the breast cancer models.

  10. Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients.

    Science.gov (United States)

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Q; Zafar, Atif; Fatima, Naureen; Shahzad, Sumayya

    2017-06-14

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Reactive oxygen species (ROS) are involved in the pathophysiology of RA. Moderate intensity exercises have been reported to have anti-oxidant and anti-inflammatory effects. The aim of this study was to evaluate the effect of hydrotherapy on oxidant-antioxidant status in RA patients. Forty RA patients and 30 age- and sex-matched healthy controls were included in this study. RA patients were subdivided into two groups: the first group (n = 20) received treatment with conventional RA drugs, while the second group (n = 20) received hydrotherapy along with the conventional drugs for a period of 12 weeks. Disease Activity Score of 28 joints (DAS-28), ROS level, protein oxidation, lipid peroxidation, DNA damage and the activities of antioxidant enzymes were evaluated before and after 12 weeks of treatment. RA patients showed a significant change in the oxidative stress biomarkers (ROS, P hydrotherapy has decreased protein, lipid and DNA oxidation by increasing the activities of antioxidant enzymes (SOD and GPx). Our results indicate that hydrotherapy along with drugs has reduced the severity of disease (DAS-28) by ameliorating the oxidant-antioxidant status in RA patients. Thus, in addition to conventional drugs, RA patients should be advised to have hydrotherapy (moderate intensity exercise) in their treatment regimen. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  11. Antioxidant Activities of Basella alba Aqueous Leave Extract In Blood, Pancreas, and Gonadal Tissues of Diabetic Male Wistar Rats.

    Science.gov (United States)

    Arokoyo, Dennis Seyi; Oyeyipo, Ibukun Peter; Du Plessis, Stefan Simon; Aboua, Yapo Guillaume

    2018-01-01

    Oxidative stress is frequently identified as a key element in the pathophysiology of many complications of diabetes mellitus, including reproductive complications. The antioxidant potential of medicinal plants have been suggested for therapeutic focus of diseases in recent reports. To investigate the effect of Basella alba (Ba) aqueous leave extract on diabetes-induced oxidative stress. Forty male Wistar rats (8-10 weeks) were randomly divided into four groups ( n = 10) and treated as follows; Control (C + Ns) and Diabetic (D + Ns) animals received oral normal saline 0.5 ml/100 g body weight daily, while Healthy Treatment (H + Ba) and Diabetic Treatment (D + Ba) rats were given Ba extract at an oral dose of 200 mg/kg body weight daily. Treatment was by gavage and lasted 4 weeks in all groups. Diabetes was induced in D + Ns and D + Ba rats by single intraperitoneal injection of streptozotocin (55 mg/kg) and fasting blood sugar (FBS) recorded weekly in all rats afterwards. Animals were euthanized at the end of the experiment and blood samples, pancreas, testes, and epididymis were preserved for analysis of oxidative stress biomarkers. Oral administration of aqueous leave extract of Ba significantly ( P antioxidant power, but lower serum concentration of conjugated dienes and thiobarbituric acid reactive substances in D + Ba compared to D + Ns rats ( P antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Oral treatment of diabetic rats with aqueous leave extract of Basella alba exerts antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Abbreviations Used: AP - Antioxidant parameters, Ba - Basella alba , CAT - Catalase, CDs - Conjugated dienes, DM - Diabetes mellitus, FBS - Fasting blood sugar, FRAP - Ferric reducing antioxidant power, GSH - reduced glutathione, Ns - Normal saline, ORAC - oxygen radical

  12. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.

    Science.gov (United States)

    Colle, Dirleise; Arantes, Leticia Priscilla; Gubert, Priscila; da Luz, Sônia Cristina Almeida; Athayde, Margareth Linde; Teixeira Rocha, João Batista; Soares, Félix Alexandre Antunes

    2012-06-01

    Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.

  13. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  14. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  15. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    Science.gov (United States)

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  16. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    Science.gov (United States)

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.

  17. Antioxidant plants and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hamid Nasri

    2015-01-01

    Full Text Available The incidence of diabetes mellitus (DM is increasing rapidly and it is expected to increase by 2030. Other than currently available therapeutic options, there are a lot of herbal medicines, which have been recommended for its treatment. Herbal medicines have long been used for the treatment of DM because of the advantage usually having no or less side-effects. Most of these plants have antioxidant activities and hence, prevent or treat hard curable diseases, other than having the property of combating the toxicity of toxic or other drugs. In this review other than presenting new findings of DM, the plants, which are used and have been evaluated scientifically for the treatment of DM are introduced.

  18. The antioxidant activity test by using DPPH method from the white tea using different solvents

    Science.gov (United States)

    Darmajana, Doddy A.; Hadiansyah, Firman; Desnilasari, Dewi

    2017-11-01

    The solvents used in this study are: aquades, ethanol and glacial acetic acid. The raw material as the source of antioxidants is white tea. Pure Quercetin is used as a comparing antioxidant. The treatment design was the solvent type for extraction, while the antioxidant activity was tested using DPPH method, with IC50 as the reference of antioxidant activity value. The results of antioxidant activity tests with three different solvent types are IC50 of 22,499 µg/mL for aquades, IC50 of 13,317 µg/mL for Ethanol and IC50 of 60,555 µg/mL for Glacial Acetic Acid. As a control of the standard antioxidant activity value of Quercetin is 4,313 µg/mL.

  19. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation.

    Science.gov (United States)

    Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara

    2016-04-01

    Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis.

    Science.gov (United States)

    Abdel-Wahhab, M A; Aly, S E

    2005-01-01

    Aflatoxins, a group of closely related, extremely toxic mycotoxins produced by Aspergillus flavus and A. parasiticus, can occur as natural contaminants of foods and feeds. Aflatoxins have been shown to be hepatotoxic, carcinogenic, mutagenic and teratogenic to different animal species. Nigella sativa (black cumin) and Syzygium aromaticum (clove) oil are used for the treatment of inflammatory diseases and have antioxidant properties. The aim of this study was to investigate the ability of these volatile oils to scavenge free radicals generated during aflatoxicosis. Sixty male rats were divided into six treatment groups, including a control group, and the groups were treated for 30 days with Nigella sativa and Syzygium aromaticum oils with or without aflatoxin. Blood samples were collected at the end of the experimental period for haematological and biochemical analysis. The results indicated that exposure to aflatoxins resulted in haematological and biochemical changes typical for aflatoxicosis. Treatment with Nigella sativa and Syzygium aromaticum oil of rats fed an aflatoxin-contaminated diet resulted in significant protection against aflatoxicosis. Moreover, Nigella sativa oil was found to be more effective than Syzygium aromaticum oil in restoring the parameters that were altered by aflatoxin in rats. Copyright 2005 John Wiley & Sons, Ltd

  1. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers.

    Science.gov (United States)

    Brockus, K E; Hart, C G; Gilfeather, C L; Fleming, B O; Lemley, C O

    2016-04-01

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Polyphenol composition, antioxidant activity and cytotoxicity of seeds from two underexploited wild Licania species

    NARCIS (Netherlands)

    Pessoa, Igor Parra; Neto, José Joaquim Lopes; Almeida, De Thiago Silva; Farias, Davi Felipe; Vieira, Leonardo Rogério; Medeiros, De Jackeline Lima; Boligon, Aline Augusti; Peijnenburg, Ad; Castelar, Ivan; Carvalho, Ana Fontenele Urano

    2016-01-01

    Studies have shown the benefit of antioxidants in the prevention or treatment of human diseases and promoted a growing interest in new sources of plant antioxidants for pharmacological use. This study aimed to add value to two underexploited wild plant species (Licania rigida) and L. tomentosa) from

  3. The effect of balneotherapy on antioxidant, inflammatory, and metabolic indices in patients with cardiovascular risk factors (hypertension and obesity)--a randomised, controlled, follow-up study.

    Science.gov (United States)

    Oláh, Mihály; Koncz, Ágnes; Fehér, Judit; Kálmánczhey, Judit; Oláh, Csaba; Nagy, György; Bender, Tamás

    2011-11-01

    The primary objective of our study was to explore the changes of antioxidant, inflammatory, and metabolic parameters in obese and hypertension people patients during balneotherapy and to evaluate the safety of balneotherapy in these participants. Following randomisation, 22 obese and 20 hypertensive patients underwent balneotherapy with thermal water of 38°C temperature, in 15 sessions of 30 minutes. An additional 22 obese and 20 hypertensive patients served as controls. Antioxidant, inflammatory, and metabolic parameters were determined at baseline, as well as post-treatment and at the end of follow-up (at 15 weeks). As regards changes observed in hypertensive patients subjected to balneotherapy, differences could be detected between baseline and post-treatment albumin and haemoglobin A(1c) levels only; however, these were no longer significant after 3 months. Although the difference between transferrin levels determined at the end of balneotherapy and 3 months later was significant, it remained within the physiological range, as well as it was accompanied by normal serum iron level and therefore, it was considered irrelevant. C-reactive protein levels of balneotherapy patients decreased significantly after treatment. In obese patients, haemoglobin A(1c) level decreased after balneotherapy, but this difference was not observed either after 3 months. Similarly, both transferrin and C-reactive protein levels changed from baseline, but not between groups. This study contributes important information regarding the safety of balneotherapy in hypertensive and obese diabetics by showing no alterations of antioxidant, inflammatory, or metabolic indices. The findings of this study confirm that balneotherapy is not contraindicated for hypertensive or obese patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  5. Combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice

    International Nuclear Information System (INIS)

    Etani, Reo; Kataoka, Takahiro; Nishiyama, Yuichi; Takata, Yuji; Yamaoka, Kiyonori

    2015-01-01

    It has been reported that radon inhalation activates antioxidative functions in liver and has an antioxidative effect against hepatopathy similar to that of the antioxidative effects of ascorbic acid (VC) or α-tocopherol (VE). In this study, we examined the combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice. ICR mice were subjected to intraperitoneal (i.p.) administration of alcohol after pretreating with air only (sham) or radon at a concentration of approximately 2000 Bq/m 3 for 24 hours and i.p. administration of VC (300 mg/kg body weight) or VE (300 mg/kg body weight). In mice injected with alcohol, the combined radon and antioxidant vitamins treatment significantly decreased the activities of glutamic oxaloacetic transaminase in serum compared to not only the alcohol-administered group (sham group), but also the radon inhalation with alcohol administration group or the vitamin and alcohol administration group. In addition, radon inhalation significantly increased the antioxidant level, in such as the catalase activity and the total glutathione content in liver compared to the sham group. These results suggested that the combined radon and antioxidant vitamin treatment could effectively inhibit alcohol-induced hepatopathy in mice without any antagonizing action. (author)

  6. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III

    Directory of Open Access Journals (Sweden)

    Kin Weng Kong

    2016-08-01

    Full Text Available Background Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking. Methods In this study, the effect of the antioxidant-rich BLE on gene expression in HepG2 cells was investigated using microarray analysis in order to shed more light on the molecular mechanism associated with the medicinal properties of the plant. Results Microarray analysis showed that a total of 138 genes were significantly altered in response to BLE treatment (p < 0.05 with a fold change difference of at least 1.5. SERPINE1 was the most significantly up-regulated gene at 2.8-fold while HAMP was the most significantly down-regulated gene at 6.5-fold. Ingenuity Pathways Analysis (IPA revealed that “Cancer, cell death and survival, cellular movement” was the top network affected by the BLE with a score of 44. The top five canonical pathways associated with BLE were Methylglyoxal Degradation III followed by VDR/RXR activation, TR/RXR activation, PXR/RXR activation and gluconeogenesis. The expression of genes that encode for enzymes involved in methylglyoxal degradation (ADH4, AKR1B10 and AKR1C2 and glycolytic process (ENO3, ALDOC and SLC2A1 was significantly regulated. Owing to the Warburg effect, aerobic glycolysis in cancer cells may increase the level of methylglyoxal, a cytotoxic compound. Conclusions BLE has the potential to be developed into a novel chemopreventive agent provided that the cytotoxic effects related to methylglyoxal accumulation are minimized in normal cells that rely on aerobic glycolysis for energy supply.

  7. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  8. Oral Supplementation of Melatonin Protects against Fibromyalgia-Related Skeletal Muscle Alterations in Reserpine-Induced Myalgia Rats.

    Science.gov (United States)

    Favero, Gaia; Trapletti, Valentina; Bonomini, Francesca; Stacchiotti, Alessandra; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita

    2017-06-29

    Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.

  9. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  10. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Science.gov (United States)

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    Science.gov (United States)

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Phytochemical Composition and Antioxidant Potential of Ruta graveolens L. In Vitro Culture Lines

    Directory of Open Access Journals (Sweden)

    Renuka Diwan

    2012-01-01

    Full Text Available Ruta graveolens L. is a medicinal plant used in traditional systems of medicine for treatment of psoriasis, vitiligo, leucoderma, and lymphomas with well-known anti-inflammatory and anticancer properties. Therefore antioxidant potential of R. graveolens (in planta and in vitro was investigated. As antioxidants present in plant extracts are multifunctional, their activity and mechanism depends on the composition and conditions of the test system. Therefore, the total antioxidant capacity was evaluated using assays that detect different antioxidants: free radical scavenging (DPPH and ABTS, transition metal ion reduction (phosphomolybdenum assay, reducing power, and nitric oxide reduction. Content of furanocoumarin-bergapten in the extracts showed good corelation with free radical scavenging, transition metal reduction and reducing power, while total phenolic content showed good corelation with nitric oxide reduction potential. Antioxidant activity of in vitro cultures was significantly higher compared to in vivo plant material. The present study is the first report on comprehensive study of antioxidant activity of R. graveolens and its in vitro cultures.

  13. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol

    Science.gov (United States)

    Bath, Sundeep

    2015-01-01

    Resveratrol is a phenolic phytochemical, with a stilbene backbone, derived from edible plants such as grape and peanut. It is a bioactive molecule with physiological effects on multiple organ systems. Its effects range from the neuroprotective to the nephroprotective, including cardiovascular, neuronal, and antineoplastic responses as a part of its broad spectrum of action. In this review, we examine the effects of resveratrol on the following organ systems: the central nervous system, including neurological pathology such as Parkinson's and Alzheimer's disease; the cardiovascular system, including disorders such as atherosclerosis, ischemia-reperfusion injury, and cardiomyocyte hypertrophy; the kidneys, including primary and secondary nephropathies and nephrolithiasis; multiple forms of cancer; and metabolic syndromes including diabetes. We emphasize commonalities in extracellular matrix protein alterations and intracellular signal transduction system induction following resveratrol treatment. We summarize the known anti-inflammatory, antioxidative, and cytoprotective effects of resveratrol across disparate organ systems. Additionally, we analyze the available literature regarding the pharmacokinetics of resveratrol formulations used in these studies. Finally, we critically examine select clinical trials documenting a lack of effect following resveratrol treatment. PMID:26180596

  14. Alterations in antioxidant system, mitochondrial biogenesis and autophagy in preeclamptic myometrium

    Directory of Open Access Journals (Sweden)

    Polina A. Vishnyakova

    2017-12-01

    Full Text Available Preeclampsia is a pregnancy complication which causes significant maternal and fetal morbidity and mortality worldwide. Although intensive research has been performed in the last 40 years, the pathology of preeclampsia is still poorly understood. The present work is a comparative study of the myometrium of women with normal pregnancy, and those with late- and early-onset preeclampsia (n = 10 for each group. We observed significant changes in the levels of antioxidant enzymes, markers of mitochondrial biogenesis and autophagy proteins in preeclamptic myometrium. Levels of superoxide dismutase 1 and catalase were lower in both preeclamptic groups than the control group. In late-onset preeclampsia, expression levels of essential mitochondria-related proteins VDAC1, TFAM, hexokinase 1, PGC-1α and PGC-1β, and autophagy marker LC3A, were significantly elevated. In the myometrium of the early-onset preeclampsia group OPA1 and Bcl-2 were up-regulated compared to those of the control (p < 0.05. These findings suggest that crucial molecular changes in the maternal myometrium occur with the development of preeclampsia.

  15. Biochemical effects of lead exposure on oxidative stress and antioxidant status of battery manufacturing workers of Western Maharashtra, India.

    Science.gov (United States)

    Ghanwat, Ganesh Haribhau; Patil, Arun Jalindar; Patil, Jyotsna A; Kshirsagar, Mandakini S; Sontakke, Ajit; Ayachit, Ram Krishna

    2016-03-01

    Lead induces oxidative stress and alters the antioxidant status of population exposed to high lead levels, i.e. battery manufacturing workers. The aim of this study was to know the current scenario of blood lead (PbB) levels and their effect on the oxidative stress parameter, i.e. serum lipid peroxide (LP), and antioxidant parameters, such as red blood cell (RBC)-superoxide dismutase (SOD), RBC-catalase (CAT), plasma ceruloplasmin (CP), and serum nitrite, of battery manufacturing workers. Forty-three battery manufacturing workers from Western Maharashtra, India, with ages between 19 and 42 years, were selected as study group and compared with 38 age-matched, healthy male subjects (control group). From both group subjects, 10 mL of blood sample was drawn by puncturing the antecubital vein, and PbB, serum LP, RBC-SOD, RBC-CAT, plasma CP, and serum nitrite were estimated using standard methods. The PbB levels of the battery manufacturing workers were significantly higher (pworkers as compared with the control subjects. Despite modern techniques used to reduce lead exposure in battery manufacturing workers, PbB levels remain high, inducing oxidative stress and altering the antioxidant status of battery manufacturing workers.

  16. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  17. Antioxidant capacity of broccoli sprouts subjected to gastrointestinal digestion.

    Science.gov (United States)

    Rychlik, Joanna; Olejnik, Anna; Olkowicz, Mariola; Kowalska, Katarzyna; Juzwa, Wojciech; Myszka, Kamila; Dembczyński, Radosław; Moyer, Mary Pat; Grajek, Włodzimierz

    2015-07-01

    Broccoli is a common vegetable recognized as a rich source of antioxidants. To date, research on the antioxidant properties of broccoli, predominantly conducted on extracts, has not considered the lesions of composition and this activity after gastrointestinal digestion. Here the stability of antioxidants during gastrointestinal digestion was evaluated in conjunction with the protective effects of broccoli sprouts (BS) against oxidative stress in human colon cells. The obtained data suggest that, among the biocompounds identified in BS, glucosinolates were mainly degraded under gastrointestinal digestion, while phenolics, particularly hydroxycinnamic acid derivatives, were the most resistant constituents. The antioxidant capacity of BS extract subjected to gastrointestinal digestion was similar to or higher than that determined for non-digested BS. Gastrointestinal digested BS extract exhibited reactive oxygen species (ROS)-inhibitory capacity in NCM460 human colon cells, with 1 mg mL(-1) showing an ROS clearance of 76.59%. A 57.33% reduction in oxidative DNA damage in NCM460 cells due to treatment with digested BS extract was observed. The results lend support to the possible application of BS as a rich source of antioxidants to improve the defensive system against oxidative stress in the human colon mucosa. © 2014 Society of Chemical Industry.

  18. Addition of anacardic acid as antioxidants in broiler chicken mortadella

    Directory of Open Access Journals (Sweden)

    Virgínia Kelly Gonçalves ABREU

    2015-09-01

    Full Text Available AbstractThe effect of anacardic acid on lipid stability and coloration of chicken mortadella was investigated. Antioxidants were added to chicken mortadellas, according to the treatments: no added antioxidant, 100 ppm butylated hydroxytoluene and 50, 100, 150 and 200 ppm anacardic acid. The mortadellas were stored for 90 days at 4 °C, and the analysis of lipid oxidation and color were performed. For TBARS, there was linear reduction with increased anacardic acid. According to the means test, 200 ppm anacardic acid provided the lower TBARS values. The redness decreased during storage, and, as reported by the means test, mortadella containing 200 ppm anacardic acid had lower values. The lightness of mortadellas decreased during storage. Also in accordance with the means test, mortadellas containing antioxidants had same lightness than control. The yellowness of mortadellas increased during storage. Thus, the anacardic acid is a potential natural antioxidant that could be included in chicken mortadella formulations before cooking.

  19. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  20. Soluble Antioxidant Compounds Regenerate the Antioxidants Bound to Insoluble Parts of Foods

    NARCIS (Netherlands)

    Celik, E.E.; Gökmen, V.; Fogliano, V.

    2013-01-01

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of

  1. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  2. Alterations in Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-Induced Diabetic Rats: Effects of Trigonella foenum-graecum Extract and Swimming Training.

    Science.gov (United States)

    Haghani, Karimeh; Bakhtiyari, Salar; Doost Mohammadpour, Jafar

    2016-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by chronic hyperglycemia. Trigonella foenum-graecum (fenugreek) and swimming training have previously been reported to have hypoglycemic and antioxidant effects. We aimed to evaluate the effects of swimming training and fenugreek aqueous extract, alone and in combination, on plasma glucose and cardiac antioxidant enzymes activity of streptozotocin-induced diabetes in rats. We divided 70 male Wistar rats equally into 7 groups: diabetic control (DC), healthy control (HC), swimming (S), fenugreek seed extract (1.74 g/kg) (F1), fenugreek seed extract (0.87 g/kg) (F2), swimming + fenugreek seed extract (1.74 g/kg) (SF1), and swimming + fenugreek seed extract (0.87 g/kg) (SF2). We used streptozotocin for the induction of diabetes. Statistical analyses were performed using the statistical program SPSS. We did not detect any significant differences in body weight in the F1, F2, S, SF1 and SF2 groups compared with the DC group (p>0.05). The results also revealed that the hypoglycemic effect of combined swimming and fenugreek was significantly stronger (pswimming could be useful for the treatment of hyperglycemia and cardiac oxidative stress induced by type 1 diabetes mellitus. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.

    Science.gov (United States)

    UdDin, Islam; Bano, Asghari; Masood, Sajid

    2015-03-01

    Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems

  4. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    Science.gov (United States)

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  5. Antioxidant properties of catechins: Comparison with other antioxidants.

    Science.gov (United States)

    Grzesik, Michalina; Naparło, Katarzyna; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2018-02-15

    Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe 3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of gibberellic acid on total antioxidant activity during Chenopodium rubrum L. ontogenesis invitro

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra

    2009-01-01

    Full Text Available Total antioxidant activity (TAA represents the combined ability of diverse antioxidants present in a sample of plant material to scavenge free radicals. Chenopodium rubrum L. sel. 184 is a qualitatively short-day plant; as an early-flowering species, it is a suitable object for studying ontogenesis in vitro. We investigated the effect of GA3 (5 mg/l on TAA during C. rubrum ontogenesis under two different inductive photoperiodic regimes in vitro. Total antioxidant activ­ity does not change in different phases of C. rubrum ontogenesis under the same photoperiodic treatment. Exposure to continuous irradiation caused an increase of TAA in both C. rubrum plants and collected matured seeds. Gibberellic acid stimulated stem elongation, but did not affect leaf development or the number of matured seeds per plant, regardless of photoperiodic treatment; it induced a decrease of TAA in C. rubrum plants regardless of photoperiodic treatment or the phase of development, while it had no effect on TAA of matured seeds.

  7. A STUDY OF THE ANTIOXIDANT EFFECTS OF IRANIAN CAPTOPRIL ON PATIENTS WITH HYPERTENSION AND HEART FAILURE

    Directory of Open Access Journals (Sweden)

    Sedighe Asgari

    2010-12-01

    Full Text Available Abstract INTRODUCTION: Myocardial ischemia, cerebral ischemia and myocardial infarction are the most important complications of hypertension and atherosclerotic disease in developing countries. Angiotensin converting enzyme (ACE inhibitors are among the drugs used to treat hypertension and heart failure. Captopril is an ACE-inhibitor which also has antioxidant properties. This study was conducted to assess the antioxidant effects of Iranian Captopril on malondialdehyde (MDA, conjugated dienes (CD and serum antioxidant capacity before and after treatment. methods: This interventional prospective single-blind study was conducted on 34 mildly hypertensive individuals and 34 patients with stage I and II heart failure. MDA, CD and serum antioxidant capacity were measured in all samples. The patients were then given 50 mg Captopril tablets 2-3 times daily. The measurements were repeated 1.5 months later. results: Comparison of mean MDA, CD and serum antioxidant capacity in hypertensive patients and patients with heart failure before and after drug administration revealed no significant difference in any of the parameters studied. Discussion: Existing evidence is suggestive of the strong antioxidative properties of Captopril in vitro, although these effects have not been borne out by some studies. In the present study, comparison of MDA, CD and serum antioxidants before and after the period of treatment with Iranian Captopril did not reveal any statistically significant difference.Keywords • Antioxidant • ACE inhibitor • High blood pressure • Heart failure • Clinical trial

  8. Effects of 1-Methylcyclopropene and Modified Atmosphere Packaging on the Antioxidant Capacity in Pepper “Kulai” during Low-Temperature Storage

    Directory of Open Access Journals (Sweden)

    Chung Keat Tan

    2012-01-01

    Full Text Available The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP with or without treatment with 1-methylcyclopropene (1-MCP before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX, glutathione reductase (GR, and catalase (CAT, were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH/oxidised glutathione (GSSG ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits.

  9. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  10. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  11. Antioxidant Activity of Essential Oil and Extracts of Valeriana jatamansi Roots

    Directory of Open Access Journals (Sweden)

    Sakshima Thusoo

    2014-01-01

    Full Text Available Valeriana jatamansi is an indigenous medicinal plant used in the treatment of a number of diseases. In the present study, chemical composition of the essential oil was determined by GC-MS. Seven major components were identified in Valeriana jatamansi essential oil, namely, β-vatirenene, β-patchoulene, dehydroaromadendrene, β-gurjunene, patchoulic alcohol, β-guaiene, and α-muurolene. Methanolic, aqueous, and chloroform extracts of Valeriana jatamansi roots were also prepared and analyzed for their polyphenols and flavonoid content. Antioxidant activity of essential oil and different extracts of Valeriana jatamansi roots was determined by DPPH radical scavenging and chelation power assay. A linear correlation has been obtained by comparing the antioxidant activity and polyphenols and flavonoid content of the extracts. Results indicated that antioxidant activity of methanolic extract could be attributed to the presence of rich amount of polyphenols and flavonoid. Essential oil of Valeriana jatamansi roots showed moderate antioxidant activity.

  12. Antioxidants as recipes for efavirenz-induced liver damage: A study in albino rats

    Directory of Open Access Journals (Sweden)

    Elias Adikwu

    2018-03-01

    Full Text Available Objective: Hepatotoxicity is a clinical challenge associated with the use of efavirenz (EFV. This study investigated the effects of n-acetylcysteine (NAC, vitamins C and E on EFV-induced hepatotoxicity in albino rats. Methods: Rats were divided into groups and administered with NAC (20mg/kg, Vit C (50mg/kg, Vit  E (50mg/kg, Vit C+ E and 60mg/kg of EFV respectively. Rats were also divided into groups and pretreated with NAC, Vit C, E, and combined doses of Vit C+E prior to treatment with EFV for 15 days respectively. After drug administration rats were sacrificed and serum was collected and evaluated for liver function parameters. Rats were dissected, liver was collected weighed and evaluated for alkaline phosphatase (ALP, alanine aminotransferase (AST, aspartate aminotransferase (ALT, gamma glutamyl transferase (GGT, lactate dehydrogenase (LDH, malondialdehyde (MDA, super oxide dismutase (SOD, catalase (CAT, glutathione (GSH, gluthatione peroxidase (GPX levels and pathological damage. Results: Effects were not significant (p>0.05 on body and liver weights, however, the levels of AST, ALT, AST, GGT, LDH, CB, TB and MDA were increased significantly (p<0.05 whereas SOD, CAT, SOD, GSH and GPX were decreased significantly (p<0.05 in EFV-treated rats in comparison to control. The liver of EFV-treated rats showed necrosis of hepatocytes. Nevertheless, EFV-induced alterations in the above parameters were significantly (p<0.05 ameliorated in antioxidants pretreated rats.  The combined doses of Vit C and E produced the best and significant (p<0.05 ameliorative effects in comparison to their individual doses. Conclusion: This study shows the prospects of antioxidants as candidates for the treatments of efavirenz-induced hepatotoxicity.

  13. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life.

    Science.gov (United States)

    Citta, Anna; Folda, Alessandra; Scalcon, Valeria; Scutari, Guido; Bindoli, Alberto; Bellamio, Marco; Feller, Emiliano; Rigobello, Maria Pia

    2017-11-01

    Oxidation processes in milk and yogurt during the shelf life can result in an alteration of protein and lipid constituents. Therefore, the antioxidant properties of yogurt in standard conditions of preservation were evaluated. Total phenols, free radical scavenger activity, degree of lipid peroxidation, and protein oxidation were determined in plain and skim yogurts with or without fruit puree. After production, plain, skim, plain berries, and skim berries yogurts were compared during the shelf life up to 9 weeks. All types of yogurts revealed a basal antioxidant activity that was higher when a fruit puree was present but gradually decreased during the shelf life. However, after 5-8 weeks, antioxidant activity increased again. Both in plain and berries yogurts lipid peroxidation increased until the seventh week of shelf life and after decreased, whereas protein oxidation of all yogurts was similar either in the absence or presence of berries and increased during shelf life. During the shelf life, a different behavior between lipid and protein oxidation takes place and the presence of berries determines a protection only against lipid peroxidation.

  14. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves' ophthalmopathy.

    Science.gov (United States)

    Hondur, Ahmet; Konuk, Onur; Dincel, Aylin Sepici; Bilgihan, Ayse; Unal, Mehmet; Hasanreisoglu, Berati

    2008-05-01

    To investigate the oxidative stress and antioxidant activity in the orbit in Graves' ophthalmopathy (GO). Orbital fibroadipose tissue samples were obtained from 13 cases during orbital fat decompression surgery. All cases demonstrated features of moderate or severe GO according to the European Group on Graves' Orbitopathy classification. The disease activity was evaluated with the Clinical Activity Score, and the clinical features of GO were evaluated with the Ophthalmopathy Index. Orbital fibroadipose tissue samples of 8 patients without any thyroid or autoimmune disease were studied as controls. In the tissue samples, lipid hydroperoxide level was examined to determine the level of oxidative stress; glutathione level to determine antioxidant level; superoxide dismutase, glutathione reductase, and glutathione peroxidase activities to determine antioxidant activity. Lipid hydroperoxide level and all three antioxidant enzyme activities were found to be significantly elevated, while glutathione level significantly diminished in tissue samples from GO cases compared to controls (p < 0.05). Glutathione levels in tissue samples of GO cases showed negative correlation with Ophthalmopathy Index (r = -0.59, p < 0.05). The antioxidant activity in the orbit is enhanced in GO. However, the oxidative stress appears to be severe enough to deplete the tissue antioxidants and leads to oxidative tissue damage. This study may support the possible value of antioxidant treatment in GO.

  15. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    Science.gov (United States)

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  16. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum Cultivars as Influenced by Processing

    Directory of Open Access Journals (Sweden)

    Florence Suma Pushparaj

    2014-02-01

    Full Text Available Research on the effect of processing on the retention of bioactive components with potential antioxidant activity is gaining importance. The objective of this investigation was to evaluate the effect of various processing methods (milling, boiling, pressure cooking, roasting and germination respectively on the antioxidant components as well as the antioxidant activities in the commonly used pearl millet cultivars—Kalukombu (K and Maharashtra Rabi Bajra (MRB. The methanolic extracts of processed pearl millet flours were analyzed for 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity, reducing power assay (RPA and ferric reducing antioxidant power (FRAP assays respectively. The samples were also evaluated for tannin, phytic acid and flavonoid content which was then correlated with the antioxidant activity assayed using three methods. The results indicated that the bran rich fraction showed high antioxidant activity (RPA owing to high tannin, phytic acid and flavonoid levels. Heat treatments exhibited significantly (P ≤ 0.05 higher antioxidant activity (DPPH scavenging activity and RPA reflecting the high flavonoid content. Processing did not have any significant effect on the FRAP activity of pearl millet. The data on the correlation coefficient suggests that DPPH radical scavenging activity and reducing power assay in the K variety was largely due to the presence of flavonoid content, however in MRB, no relationship was found between antioxidant activities and antioxidant components.

  17. Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress

    Science.gov (United States)

    Xia, Hui; Ni, Zhiyou; Pan, Dongming

    2017-11-01

    To investigate the alleviation of exogenous melatonin (MT) in Actinidia seedlings under 100 mM NaCl stress, one-year-old Actinidia deliciosa seedlings were treated with 0.1, 0.5 and 1μM of exogenous melatonin solution, respectively. The results showed that the antioxidant substance (ASA, TPC, TFC and TFAC) contents and antioxidative capacity (DPPH, ABTS and FRAP) of Actinidia seedlings under salt stress were significantly increased compared with the CK. At the same time, the antioxidant substance contents of Actinidia seedlings with MT pretreatment were significantly higher than those of CK and S, then the antioxidative capacity was improved, and the damage of Actinidia seedlings under salt stress was alleviated. And the treatment with 0.1μM MT solution was the most significant.

  18. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk.

    Science.gov (United States)

    Khan, Imran Taj; Nadeem, Muhammad; Imran, Muhammad; Ayaz, Muhammad; Ajmal, Muhammad; Ellahi, Muhammad Yaqoob; Khalique, Anjum

    2017-08-24

    Antioxidant capacity of milk is largely due to vitamins A, E, carotenoids, zinc, selenium, superoxide dismutase, catalase, glutathione peroxidase and enzyme systems. Cow milk has antioxidant capacity while the antioxidant capacity of buffalo milk has been studied in a limited way. The information regarding the effect of pasteurization and boiling on antioxidant capacity of cow and buffalo milk is also scared. Cow and buffalo milk was exposed to two different heat treatments i.e. 65 °C for 30 min and boiling for 1 min. After heat treatments, milk samples were cooled down to 4 °C packaged in transparent 250 ml polyethylene PET bottles and stored at 4 °C for 6 days. Milk composition, total flavonoid content, total antioxidant capacity, reducing power, DPPH free radical scavenging activity, antioxidant activity in linoleic acid, vitamin C, A, E, selenium, Zinc, fatty acid profile, peroxide value and sensory characteristics were studied in raw, pasteurized and boiled cow and buffalo milk at 0, 3 and 6 days of storage period. Total antioxidant capacity (TAC) of raw, pasteurized and boiled milk for cow (42.1, 41.3 and 40.7%) and buffalo (58.4, 57.6 and 56.5%) samples was found, respectively. Reducing power (RP) of raw cow and buffalo milk was 6.74 and 13.7 while pasteurization and boiling did not showed significant effect on RP of both cow and buffalo milk. DPPH activity of raw, pasteurized and boiled milk for cow (24.3, 23.8 and 23.6%) and buffalo (31.8, 31.5 and 30.4%) samples was noted, respectively. Storage period up to 3 days was non-significant while DPPH assay after 6 days of storage period indicated significant decline in antioxidant activity of milk samples. Antioxidant activity in linoleic acid (AALA) of buffalo and cow milk were recorded 11.7 and 17.4%, respectively. Pasteurization and boiling did not showed any impact on antioxidant capacity of cow and buffalo milk. The Loss of vitamin C in pasteurization (40 and 42%) and boiling (82 and 61%) of

  19. High Hydrostatic Pressure-Assisted Enzymatic Treatment Improves Antioxidant and Anti-inflammatory Properties of Phosvitin.

    Science.gov (United States)

    Yoo, Heejoo; Bamdad, Fatemeh; Gujral, Naiyana; Suh, Joo-Won; Sunwoo, Hoon

    2017-01-01

    Phosvitin (PV) is a highly-phosphorylated metal-binding protein in egg yolk. Phosphoserine clusters make PV resistant to enzymatic digestion, which might be nutritionally undesirable. This study was designed to determine the effects of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) on the antioxidant and anti-inflammatory properties of PV hydrolysates (PVHs). PV was hydrolyzed by alcalase, elastase, savinase, thermolysin, and trypsin at 0.1, 50, and 100 MPa pressure levels. PVHs were evaluated for degree of hydrolysis, molecular weight distribution patterns, antioxidant and anti-inflammatory properties in chemical and cellular models. The effect of PVH on gene expression of pro-inflammatory cytokines (TNF-α and IL-1β) was also evaluated using real time-PCR. The hydrolysate with most potent antioxidant and anti-inflammatory properties was subjected to LC-MS/MS analysis to identify the peptide sequence. Hydrolysates produced at 100 MPa exhibited higher degree of hydrolysis and greater reducing power and free radical scavenging activity compared to those obtained at atmospheric pressure. After adjusting the phosphate content, alcalase- and trypsin-digested PVHs showed superior iron chelation capacity (69-73%), regardless of pressure. Both alcalase- and trypsin-digested PVHs significantly inhibited nitric oxide production by RAW264.7 macrophage cells. LPS-stimulated up-regulation of proinflammatory cytokines was also suppressed by alcalase-digested PVH. The HHP-EH method could play a promising role in the production of bioactive peptides from hydrolysis-resistant proteins. HHP-assisted PVH may be useful in preparing a potential pharmaceutical with antioxidant and anti-inflammatory properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Science.gov (United States)

    Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L

    2017-01-01

    Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  1. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil.

    Science.gov (United States)

    Li, Zhan-Jun; Yang, Feng-Jian; Yang, Lei; Zu, Yuan-Gang

    2018-04-04

    In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

  2. Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers.

    Science.gov (United States)

    Ishida, Kyohei; Kishi, Yosuke; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2015-03-01

    Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the availability of two types of winery wastes, winery sediment and grape pomace, as ruminant feeds possessing antioxidant activities. Each wether was assigned to one of the following four treatments: (i) 75 g/kg winery sediment (WS) on a dry matter (DM) basis; (ii) 166 g/kg DM winery grape pomace (WP); (iii) control diet (CD; 17 g/kg DM soybean meal);and (iv) only tall fescue hay (TFH; no additive). Winery sediment and grape pomace had high levels of polyphenols and of radical scavenging activities. Feeding with winery sediment and grape pomace did not negatively affect the intake, but it depressed crude protein (CP) digestibility compared with CD (P = 0.052 and P winery wastes decreased ruminal ammonia production (P = 0.089 and P winery sediment and grape pomace decreased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG; an index of oxidative damages) excretion per day (P winery sediment and grape pomace could alter nitrogen metabolism and/or act as new antioxidants for ruminants. © 2014 Japanese Society of Animal Science.

  3. Developing SyrinOX total antioxidant capacity assay for measuring antioxidants in humans.

    Science.gov (United States)

    Prasetyo, Endry N; Knes, Otto; Nyanhongo, Gibson S; Guebitz, Georg M

    2013-02-01

    Accurate monitoring of the antioxidant status or of oxidative stress in patients is still a big challenge in clinical laboratories. This study investigates the possibility of applying a newly developed total antioxidant capacity assay method based on laccase or peroxidase oxidized syringaldazine [Tetramethoxy azobismethylene quinone (TMAMQ)] which is referred to here as SyrinOX, as a diagnostic tool for monitoring both oxidative stress and antioxidant status in patients. Attempts to adapt the Randox total antioxidant procedure [simultaneous incubation of the radical generating system (metmyoglobin and H(2) O(2) ) and antioxidant sample] for SyrinOX were abandoned after it was discovered that the H(2) O(2) reacted with enzymatically generated TMAMQ and ABTS radicals at a rate of 6.4 × 10(-2) /μM/s and 5.7 × 10(-3) /μM/s respectively. Thus this study for the first time demonstrates the negative effects of H(2) O(2) in the Randox system. This leads to erroneous results because the total antioxidant values obtained are the sum of radicals reduced by antioxidants plus those reacting with the radical generating system. Therefore they should be avoided not only for this particular method but also when using other similar methods. Consequently, SyrinOX is best applied using a three-step approach involving, production of TMAMQ, recovery and purification (free from enzyme and other impurities) and then using TMAMQ for measuring the total antioxidant capacity of samples. Using this approach, the reaction conditions for application of SyrinOX when measuring the total antioxidant capacity of plasma sample were determined to be 50% (v/v) ethanol/50 mM sodium succinate buffer pH 5.5, between 20 and 25 °C for at least 1 h. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  4. HPLC-Analysis of Polyphenolic Compounds in Gardenia jasminoides and Determination of Antioxidant Activity by Using Free Radical Scavenging Assays

    OpenAIRE

    Riaz Uddin; Moni Rani Saha; Nusrat Subhan; Hemayet Hossain; Ismet Ara Jahan; Raushanara Akter; Ashraful Alam

    2014-01-01

    Purpose: Gardenia jasminoides is a traditional medicinal plant rich in anti-inflammatory flavonoids and phenolic compounds and used for the treatment of inflammatory diseases and pain. In this present study, antioxidant potential of Gardenia jasminoides leaves extract was evaluated by using various antioxidant assays. Methods: Various antioxidant assays such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, reducing power and total antioxidant capacity expressed as equival...

  5. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, N-phenyl--naphthylamine (PBN, the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanizate. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate.

  6. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    International Nuclear Information System (INIS)

    Al-Ghonamy, A.I.; El-Wakil, A.A.; Ramadan, M.; El-Wakil, A.A.; Ramadan, M.

    2010-01-01

    Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizations containing the commercial antioxidant, N-phenyl-β-naphthylamine (PBN), the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanization. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanization against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanization.

  7. Natural phenolic antioxidants in human fluids: analytical approaches and antioxidant capacity studies

    International Nuclear Information System (INIS)

    Zhang, K.; Zuo, Y.

    2006-01-01

    Phenolic compounds are the most abundant natural antioxidants in our diet. Epidemiological studies have shown the possible prevention effects of consumption of fruits and vegetables rich in phenolic compounds on degenerative diseases, such as cardiovascular diseases and cancers. However, there is a serious lack of fundamental knowledge on the uptake and metabolism of phenolic compounds in humans. It is clear that phenolic molecules, only absorbed by humans, can exert biological effects. This review presents a current knowledge on the analytical methods, antioxidant capacity measurements, as well as research strategies related to natural phenolic antioxidants on human health. Both GC-MS and LC-MS have proved to be very useful analytical techniques that can be employed to identify and quantitate targeted phenolic antioxidants and their metabolites in biofluids. Free radical quenching tests provide a direct measurement of antioxidant capacity but lack specificity and may oversimplify the in vivo human physiological environment. Research strategies are diverse and mainly focused on positive health effect of antioxidants. In the future studies, multiple potential bioactivities, both positive and negative, should be considered. (author)

  8. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    Science.gov (United States)

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  9. Natural antioxidants in chemoprevention

    Energy Technology Data Exchange (ETDEWEB)

    Dragsted, L.O. [Danish Veterinary and Food Administration, Soeberg (Denmark). Inst. of Toxicology

    1998-12-31

    It is well documented that diets rich in fruits and vegetables can reduce the risk of most common cancers, and that some food items from this class may be protective against heart disease. Several explanations have been offered, one of which relates to the natural presence of potent antioxidants in plant products. Destructive oxidation of lipids, proteins, DNA, and other important biomolecules, often involving radical chain reactions, affect vital cellular structures and their normal functions. Such processes are involved in the development of cancer as well as heart disease, and it seems logical to assume that antioxidants might be preventive. Large human trials with natural antioxidants have not provided a uniform support, however, for the hypothesis that antioxidation per se may prevent cancer or coronary heart disease (CHD). One reason is that other effects, unrelated to antioxidation, may compromise their preventive effects. Another reason may be that many potent antioxidants can also act as pro-oxidants under certain conditions. The interpretation of animal trials is likewise often compromised by the fact that most antioxidants have other physiological effects which might very well explain their protective action or lead to toxic side-effects. (orig.)

  10. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, H.; Van Camp, W.; Van Montagu, M.; Inze, D. [Laboratoire Associe de l`Institut National de la Recherche Agronomique (France); Langebartels, C.; Sandermann, H. Jr. [Universiteit Gent (Belgium)]|[Institut fuer Biochemische Pflanzenpathologie, Oberschleissheim (Germany)

    1994-11-01

    We have studied the expression of antioxidant genes in response to near ambient conditions of O{sub 3}, SO{sub 2}, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O{sub 3}, SO{sub 2}, and UV-B on the antioxidant genes are very similar, although the response to SO{sub 2} is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O{sub 3}, SO{sub 2}, and UV-B in Nicotiana. 57 refs., 4 figs.

  11. Chestnut flowers as functionalizing agents to enhance the antioxidant properties of highly appreciated traditional pastry.

    Science.gov (United States)

    Carocho, Márcio; Barreira, João C M; Bento, Albino; Morales, Patricia; Ferreira, Isabel C F R

    2014-11-01

    Some studies have proven the antioxidant and antimicrobial potency of chestnut flowers both in the raw matrix and after extraction, and the consumption of their decoctions has been related to beneficial effects towards health. In recent years, due to controversy and ambiguous legislation of chemical conservatives, plant extracts have been successfully used as functionalizing agents in different matrixes by displaying their various beneficial effects towards the foodstuff and/or the consumer. In this paper, decoctions of chestnut flowers as well as the dried flower were added to Portuguese traditional cakes that were then stored for 15 and 30 days, after which they were analysed for their antioxidant potential. The results were analysed by means of a 2 way ANOVA and a linear discriminant analysis, concluding that storage time had a slightly higher influence on alteration of the antioxidant activity. DPPH and TBARS were the most improved parameters, regardless of the concentration added.

  12. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  13. Effect of dietary antioxidants on the promotion of hepatocarcinogenesis by PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Glauert, H.; Tharappel, J.; Stemm, D.; Spear, B. [Univ. of Kentucky, Lexington, KY (United States); Lehmler, H.J.; Robertson, L. [Univ. of Iowa, Iowa City, IA (United States)

    2004-09-15

    Mixtures of halogenated biphenyls as well as many individual congeners have been reported to be promoters of carcinogenesis in various liver tumor models. However, their mechanism of action is not known. A number of mechanisms have been investigated, including direct effects on signal transduction pathways, induction of oxidative stress, effects on vitamin A metabolism, and effects on intercellular communication. One mechanism by which PCBs may promote hepatic tumors is by inducing oxidative damage in the liver. Forms of oxidative damage that may be important are the induction of lipid peroxidation, the induction of oxidative DNA damage, and the alteration of gene expression. One possible mechanism for inhibiting the promoting activity of PCBs may be to increase the concentration of antioxidants in the diet. In this study, we examined if dietary selenium or antioxidant phytochemicals could inhibit the hepatic promoting activity of PCBs in rats.

  14. The proper time for antioxidant consumption.

    Science.gov (United States)

    Beaulieu, Michaël; Schaefer, H Martin

    2014-04-10

    Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    International Nuclear Information System (INIS)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-01-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  16. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-07-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  17. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit

    International Nuclear Information System (INIS)

    Kavitha, C.; Kuna, Aparna; Sagar, S.B.; Padmavati, T.V.N.; Supraja, T.; Prabhakar, N.

    2015-01-01

    Effect of gamma irradiation (0.25 to 1.0kGy) on antioxidant properties of ber fruit was studied. Antioxidant properties of ber fruits were determined by scavenging DPPH radical activity, reducing power assay, super oxide anion radical activity, TBARS, total phenolic content and total flavonoid content. Gamma irradiation treatment up to 1.0 kGy elevated the scavenging DPPH radical activity (9 %), super oxide anion radical activity (26 %) and total flavonoid content (208 %) compared to fresh ber fruit. On the other hand it brought down the reducing power activity (65 %) and total phenolic content (18 %) as compared to raw fruit. The TBARS activity statistically increased upon irradiation of ber fruit. It indicated that total antioxidant activity decreased as TBARS value increased. Therefore 0.25 to 0.5kGy is better dose to retain the natural antioxidant in fruit. (author)

  18. The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    2017-01-01

    Full Text Available Sarcopenia represents an increasing public health risk due to the rapid aging of the world’s population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS production and decreased antioxidant (AO defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of “AOs” could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.

  19. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Karaś, Monika; Jakubczyk, Anna; Szymanowska, Urszula; Materska, Małgorzata; Zielińska, Ewelina

    2014-01-01

    Nowadays, legume plants have been considered not only a source of valuable proteins necessary for the proper functioning and growth of the body but also a source of bioactive compounds such as bioactive peptides, that may be beneficial to human health and protect against negative change in food. The aim of this study was to investigate the effect of heat treatment on the release of antioxidant peptides obtained by hydrolysis of the yellow string beans protein. The antioxidant properties of the hydrolysates were evaluated through free radical scavenging activities (DPPH and ABTS) and inhibition of iron activities (chelation of Fe2+). The results show that the heat treatment had influence on both increased peptides content and antioxidant activity after pepsin hydrolysis of string bean protein. The peptides content after protein hydrolysis derived from raw and heat treated beans were noted 2.10 and 2.50 mg·ml-1, respectively. The hydrolysates obtained from raw (PHR) and heat treated (PHT) beans showed better antioxidant properties than protein isolates (PIR and PIT). Moreover, the hydrolysates obtained from heat treated beans showed the higher ability to scavenge DPPH• (46.12%) and ABTS+• (92.32%) than obtained from raw beans (38.02% and 88.24%, correspondingly). The IC50 value for Fe2+ chelating ability for pepsin hydrolysates obtained from raw and heat treatment beans were noted 0.81 and 0.19 mg·ml-1, respectively. In conclusion, the results of this study showed that the heat treatment string beans caused increase in the antioxidant activities of peptide-rich hydrolysates.

  20. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  1. Assessment of changes in plasma total antioxidant status in gamma irradiated rats treated with eugenol

    International Nuclear Information System (INIS)

    Azab, Kh. SH.

    2002-01-01

    Eugenol, a volatile phenolic phyto chemical, is a major constituent of clove oil. The present study was carried out to evaluate the antioxidant effect of eugenol on certain lipid metabolites and variations in the antioxidant status. In vitro study (oxidative susceptibility of lipoprotein) revealed that eugenol elongates the lag phase for the induction of conjugated diene and decreased the rate of lipid peroxidation (production of thiobarbituric reactive substances; TBARS) during the propagation phase. In vivo study on rats revealed a significant increase in plasma total antioxidant status after eugenol regime. Furthermore, eugenol water emulsion delivered to rats by garage in a concentration of 1 g/kg body weight for 15 days before and during exposure to fractionated whole body gamma radiation (1.5 Gy every other day) up to a total dose of 7.5 Gy showed that, administration of eugenol reduces significantly the concentration of plasma TBARS and minimize the decrease in plasma antioxidants. Amelioration in the concentration of reduced glutathione (GSH) in blood and liver and the activities of cytosolic glutathione-S-transferase (GST) in the liver were also observed. Furthermore, the changes in the concentrations of total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol were less pronounced. It could be postulated that by minimizing the decrease in antioxidant status, eugenol could prevents the radiation induce alterations in lipid metabolism

  2. Proliferative and antioxidant activity of Symphytum officinale root extract.

    Science.gov (United States)

    Sowa, Ireneusz; Paduch, Roman; Strzemski, Maciej; Zielińska, Sylwia; Rydzik-Strzemska, Ewelina; Sawicki, Jan; Kocjan, Ryszard; Polkowski, Janusz; Matkowski, Adam; Latalski, Michał; Wójciak-Kosior, Magdalena

    2018-03-01

    The root of Symphytum officinale L. is commonly used in folk medicine to promote the wound healing, reduce the inflammation and in the treatment of broken bones. The objective of our investigation was to analyse the extract from S. officinale in term of its antioxidant activity and the effect on cell viability and proliferation of human skin fibroblast (HSF). Moreover, the quantification of main phenolics and allantoin was conducted using HPLC-DAD method. Five compounds were found: rosmarinic, p-hydroxybenzoic, caffeic, chlorogenic and p-coumaric acid. DPPH, FRAP and TPC assay showed the high antioxidant activity of the extract. MTT test proved the stimulatory effect on cell metabolism and viability of HSF cells. Moreover, no changes in cytoskeleton structure and cells shape were observed. The obtained results indicate that non-toxic extract from S. officinale root has strong antioxidant potential and a beneficial effect on human skin fibroblasts.

  3. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-01-01

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC 50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress

  4. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  5. Silymarin improves the behavioural, biochemical and histoarchitecture alterations in focal ischemic rats: a comparative evaluation with piracetam and protocatachuic acid.

    Science.gov (United States)

    Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Kshirsagar, Ajay D; Naik, Suresh R

    2012-08-01

    Comparative neuroprotective potential of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) was evaluated in focal ischemic rats. Various pharmacological, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite content, brain water content) and behavioural (memory impairment, motor control, neurological score) including infarct size and histopathological alterations were evaluated. Silymarin (200mg/kg) and PCA treatment significantly improved behavioural, biochemical and histopathological changes, and reduced water content and infarct size. However, piracetam only improved behavioural and histopathological changes, reduced water content and infarct size. The findings indicate that silymarin exhibits neuroprotective activity better than PCA and piracetam in focal ischemia/reperfusion reflected by its better restoration of behavioural and antioxidant profile. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine

    Science.gov (United States)

    Downey, Luke A.; Loftis, Jennifer M.

    2014-01-01

    Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894

  7. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki

    2012-01-01

    The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J

  8. Cocaine abstinence following chronic treatment alters cerebral metabolism in dopaminergic reward regions. Bromocriptine enhances recovery

    International Nuclear Information System (INIS)

    Clow, D.W.; Hammer, R.P. Jr.

    1991-01-01

    2-[14C]deoxyglucose autoradiography was used to determine local cerebral glucose utilization (lCGU) in rats following chronic cocaine treatment and subsequent abstinence. lCGU was examined in 43 discrete brain regions in animals which had received daily injections of cocaine for 14 days (10 mg/kg) followed by 3 days of saline or bromocriptine (10 mg/kg) treatment. Cocaine abstinence following chronic treatment significantly reduced lCGU in several regions including mesocorticolimbic structures such as ventral tegmental area, medial prefrontal cortex, and nucleus accumbens (NAc). Within the NAc, however, only the rostral pole showed significant reduction. In contrast, when bromocriptine treatment accompanied abstinence, lCGU was no longer reduced in mesocorticolimbic and most other regions, implying that metabolic recovery was enhanced by bromocriptine treatment during early abstinence following chronic cocaine treatment. These data suggest that cerebral metabolism is decreased during cocaine abstinence following chronic treatment in critical brain regions, and that this alteration can be prevented by treatment with direct-acting dopamine agonists such as bromocriptine

  9. Cocaine abstinence following chronic treatment alters cerebral metabolism in dopaminergic reward regions. Bromocriptine enhances recovery

    Energy Technology Data Exchange (ETDEWEB)

    Clow, D.W.; Hammer, R.P. Jr. (Univ. of Hawaii School of Medicine, Honolulu (USA))

    1991-01-01

    2-(14C)deoxyglucose autoradiography was used to determine local cerebral glucose utilization (lCGU) in rats following chronic cocaine treatment and subsequent abstinence. lCGU was examined in 43 discrete brain regions in animals which had received daily injections of cocaine for 14 days (10 mg/kg) followed by 3 days of saline or bromocriptine (10 mg/kg) treatment. Cocaine abstinence following chronic treatment significantly reduced lCGU in several regions including mesocorticolimbic structures such as ventral tegmental area, medial prefrontal cortex, and nucleus accumbens (NAc). Within the NAc, however, only the rostral pole showed significant reduction. In contrast, when bromocriptine treatment accompanied abstinence, lCGU was no longer reduced in mesocorticolimbic and most other regions, implying that metabolic recovery was enhanced by bromocriptine treatment during early abstinence following chronic cocaine treatment. These data suggest that cerebral metabolism is decreased during cocaine abstinence following chronic treatment in critical brain regions, and that this alteration can be prevented by treatment with direct-acting dopamine agonists such as bromocriptine.

  10. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  11. Rosemary as natural antioxidant to prevent oxidation in chicken burgers

    Directory of Open Access Journals (Sweden)

    Daiane PEREIRA

    Full Text Available Abstract Rosemary (Rosmarinus officinalis is known for their sensory characteristics and antioxidant properties, mainly due to the presence of several phenolic compounds. The aim of this work, was determine the antioxidant activity and apply the Rosemary lyophilized extract (RLE in chicken burger, for assess their ability to reduce the lipid oxidation. Total antioxidant capacity and phenolic compounds profile were analyzed by colorimetric tests and liquid chromatography analysis, respectively. Thiobarbituric acid reactive substances assay was used to evaluate the ability of the RLE to prevent lipid peroxidation in chicken burger stored at 4 °C. Three treatments of chicken burgers were prepared (T1 – control, without addition of synthetic antioxidant BHT: butylated hydroxytoluene or RLE, T2 – with addition of BHT, and T3 – experimental, containing RLE. The high contents of total phenolic compounds (40.91 mg GAE g-1: Gallic Acid Equivalent and total flavonoids (24.26 mg QE g-1: Quercetin Equivalents were found in RLE. Rutin was the major phenolic compound identified in the RLE. The RLE showed strong antioxidant capacity and inhibited 48.29% of lipid oxidation (21 days of storage in comparison to the control (T1, with low production of malonaldehyde, which has potential to be used in chicken burgers.

  12. Evaluation of serum oxidant/antioxidant balance in patients with acute stroke

    International Nuclear Information System (INIS)

    Abdullah, A.; Ssefer, V.; Ertugrul, U.; Osman, E.; Esref, A.; Ugur, C.M.; Adalet, A.; Yavuz, Y.; Faysal, E.; Nebahat, T

    2013-01-01

    Objectives: To investigate the alterations in the oxidant-antioxidant balance in patients with acute ischaemic stroke, and to locate any correlation between oxidant/antioxidant parameters and the National Institute of Health Stroke Scale. Methods: The case-control study was conducted at the Neurology Department of Dicle University Medical Faculty, Diyarbakir, Turkey, from June 2010 to June 2011. Blood samples were obtained from 53 patients with ischaemic stroke and 40 healthy controls without any history of ischaemic stroke or systemic disease. Venous blood was obtained within 24 hour after stroke onset. Serum malondialdehyde , total anti-oxidant capacity, paraoxanase and superoxide dismutase were measured. SPSS 11.5 used for statistical analysis. Results: There was no difference between the cases and the controls regarding age (64.5+-15.8 and 66.3+-13.9 respectively), gender (27 (51%) / 26 (49%), and 19 (48%) / 21 (52%) respectively), obesity (15 (28.3%) and 13 (37.5%), respectively), and hypertension (30 (56.6%) and 23 (57.5%), respectively). The cases had higher concentrations of malondialdehyde (147.3+-59.3 vs. 112.4+-28.5 nmol/gr protein, p<0.001), and superoxide dismutase (4.40+-0.79 vs. 3.35+-0.51, p<0.001) compared to the controls. However, the cases had lower concentrations of paraoxanase (23.2+-23.7 vs 64.7+-52.6, p<0.001), total anti-oxidant capacity (0.77+-0.38 vs. 0.95+-0.30, p<0.015), and nitric oxide (10.8+-7.1 vs. 17.5+-2.4 micro mol/gr protein, p<0.001), compared to the controls. In the stroke group, a significant negative correlation was found between the National Institute of Health Stroke Scale and total anti-oxidant capacity activity (p<0.021, r-0.32). Conclusion: The results support the hypothesis that sufficient anti-oxidant capacity has a beneficial effect on the clinical severity of acute ischaemic stroke. (author)

  13. Antioxidants in bakery products: a review.

    Science.gov (United States)

    Nanditha, B; Prabhasankar, P

    2009-01-01

    Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.

  14. Large-scale downy brome treatments alter plant-soil relationships and promote perennial grasses in salt desert shrublands

    Science.gov (United States)

    The interrelationship between invasive annual grass abundance and soil resource availability varies spatially and temporally within ecosystems and may be altered by land treatments. We evaluated these relationships in two salt desert landscapes where the local abundance of Bromus tectorum L. (downy...

  15. Anti-inflammatory and antioxidant activities of extracts from Musa sapientum peel.

    Science.gov (United States)

    Phuaklee, Pathompong; Ruangnoo, Srisopa; Itharat, Arunporn

    2012-01-01

    Many parts of Musa sapientum Linn. (Musaceae) are used in Thai traditional medicine as drugs, food supplements and cosmetics. The banana peel is used as an astringent in foot care, the unripe fruit is used to treat diarrhea and, the ripe fruit is used as tonic. To evaluate anti-inflammatory and antioxidant activities of banana peel extracts obtained from different extraction methods and to determine their total phenolic content. Four extraction methods were used to extract unripe and ripe peels. Nitric oxide inhibitory and DPPH scavenging assays were used to evaluate anti-inflammatory and antioxidant activities, respectively. Folin-Ciocalteu's reagent was used to determine total phenolic content. The water extract of fresh ripe peel exhibited the most potent NO inhibitory activity (IC50 = 6.68 +/- 0.34 microg/ml), but apparently exhibited no antioxidant activity. The decoction extract of fresh unripe peel exhibited strong antioxidant activity as well as had the highest total phenolic compound. The antioxidant activity exhibited a correlation with the total phenolic content. This study supports the use of Musa sapientum peel in Thai Traditional Medicine for treatment of inflammatory-related diseases.

  16. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant

    Directory of Open Access Journals (Sweden)

    Binyamin O

    2015-11-01

    Full Text Available Orli Binyamin,1,* Liraz Larush,2,* Kati Frid,1 Guy Keller,1 Yael Friedman-Levi,1 Haim Ovadia,1 Oded Abramsky,1 Shlomo Magdassi,2 Ruth Gabizon1 1Department of Neurology, The Agnes Ginges Center of Human Neurogenetics, Hadassah University Hospital, 2Casali Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel *These authors contributed equally to this work Abstract: Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO, denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE, an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. Keywords: nanodrops, PSO, EAE, oxidative stress, neurodegeneration

  17. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications.

    Science.gov (United States)

    Luzi, Francesca; Fortunati, Elena; Giovanale, Geremia; Mazzaglia, Angelo; Torre, Luigi; Balestra, Giorgio Mariano

    2017-11-01

    Kiwi Actinidia deliciosa pruning residues were here used for the first time as precursors for the extraction of high performing cellulose nanocrystals (CNC) by applying a bleaching treatment followed by an acidic hydrolysis. The resultant cellulosic nanostructures, obtained by an optimize extraction procedure (0.7% wt/v two times of sodium chlorite NaClO 2 ) followed by an hydrolysis step, were then used as reinforcements phases in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) based films and also combined, for the first time, with carvacrol used here as active agent. Morphological and optical characteristics, mechanical response, thermal and migration properties, moisture content and antioxidant and antimicrobial assays were conducted. The morphological, optical and colorimetric results underlined that no particular alterations were induced on the transparency and color of PVA and PVA_CH blend by the presence of CNC and carvacrol, while they were able to modulate the mechanical responses, to induce antioxidant activities maintaining the migration levels below the permitted limits and suggesting the possible application in industrial sectors. Finally, inhibitions on bacterial development were detected for multifunctional systems, suggesting their protective function against microorganisms contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    Eybl, Vladislav; Kotyzova, Dana; Koutensky, Jaroslav

    2006-01-01

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  20. Evaluation of Postprandial Total Antioxidant Activity in Normal and Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2016-09-01

    Full Text Available Aim: Postprandial changes acutely alter some mechanisms in body. There are many studies showing blood oxidative status changes after food intake, and supplementation. The aim of the present study was to evaluate the effects of a standardized meal on serum total antioxidant activity (TAA in normal weight and overweight individuals. Material and Method: Fourteen normal weight and twelve overweight individuals were given a standardized meal in the morning after an overnight fast. Serum TAA, glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride concentrations were measured at baseline, 3rd hour, and 6th hour after the meal in both groups.Results: In both normal and overweight groups, the difference between baseline and 3rd hour was significant for TAA. The TAA of the overweight group was also significantly lower than the TAA of the normal weight group at 3rd hour. However, there was no significant correlation between lipid parameters and TAA levels. Discussion: The present study shows that postprandial oxidative damage occurs more prominently in overweight individuals than in normal weight individuals. Postprandial changes acutely induce oxidative stress and impair the natural antioxidant defense mechanism. It should be noted that consuming foods with antioxidants in order to avoid various diseases and complications is useful, particularly in obese subjects.

  1. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices.

    Science.gov (United States)

    Oszmiański, Jan; Wojdyło, Aneta; Kolniak, Joanna

    2011-07-15

    Effects of pomace maceration on yield, turbidity, cloud stability, composition of phenolics, antioxidant activity and colour properties were studied, to evaluate the potential applicability of enzyme preparations in puree-enriched cloudy apple juice production. The yield of mixed juice and puree from pomace obtained in the enzymatic processing of apple ranged from 92.3% to 95.3%, significantly higher than the yield from the control without enzymatic pomace treatment (81.8%). Higher turbidity was obtained upon pomace treatment with Pectinex XXL and Pectinex Ultra SPL enzymes. The total content of phenolic compounds in apple pomace was higher than in raw juices (1520mg/kg and 441mg/L, respectively). The total polyphenol yields were higher in juices treated with Pectinex AFP L-4, Pectinex Yield Mash and Pectinex XXL, as compared to the control treatment. During 6months of storage, a significant change was observed in the content of polyphenols, especially in procyanidin fractions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Nathan, Fatima M; Singh, Vivek A; Dhanoa, Amreeta; Palanisamy, Uma D

    2011-01-01

    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease

  3. Hepatoprotective and antioxidant activities of Tamarix nilotica flowers.

    Science.gov (United States)

    Abouzid, Sameh; Sleem, Amany

    2011-04-01

     Tamarix nilotica (Ehrenb.) Bunge (Tamaricaceae) is used in the Egyptian traditional medicine as an antiseptic agent. This plant has been known since pharaonic times and has been mentioned in medical papyri to expel fever, relieve headache, to draw out inflammation, and as an aphrodisiac. No scientific study is available about the biological effect of this plant.  This study aimed to evaluate the hydro-alcoholic extract (80%) of T. nilotica flowers for hepatoprotective and antioxidant activities.  Hepatoprotective activity was assessed using carbon tetrachloride-induced hepatic injury in rats by monitoring biochemical parameters. Antioxidant activity was evaluated in alloxan-induced diabetic rats. Biochemical markers of hepatic damage such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and tissue glutathione were determined in all groups.  Carbon tetrachloride (5 mL/kg body weight) enhanced the SGOT, SGPT, and ALP levels. There was a marked reduction in tissue glutathione level in diabetic rats. The hydro-alcoholic extract of T. nilotica (100 mg/kg body weight) ameliorated the adverse effects of carbon tetrachloride and returned the altered levels of biochemical markers near to the normal levels.

  4. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  5. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    Science.gov (United States)

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  6. The lipidome, genotoxicity, hematotoxicity and antioxidant properties of andiroba oil from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Susana Suely Rodrigues Milhomem-Paixão

    2016-01-01

    Full Text Available Abstract Andirobeira is an Amazonian tree, the seeds of which produce a commercially valuable oil that is used in folk medicine and in the cosmetic industry. Andiroba oil contains components with anti-inflammatory, cicatrizing and insect-repellant actions. However, virtually nothing is known of the safety of this oil for humans. The aim of this work was therefore to investigate the hematotoxicity, genotoxicity and mutagenicity of andiroba oil using the comet and micronucleus assays, and to assess its antioxidant properties and lipidome as a means of addressing safety issues. For the experiments, andiroba oil was administered by gavage for 14 consecutive days in nulliparous female Swiss mice randomly distributed in four groups: negative control and three doses of oil (500, 1000 and 2000 mg/kg/day. These doses were chosen based on recommendations of the OECD guideline no. 474 (1997. GC/MS was used to investigate the free fatty acid, cholesterol and triterpene content of andiroba oil in a lipidomic analysis. No clinical or behavioral alterations were observed throughout the period of treatment, and exposure to andiroba oil at the doses and conditions used here did not result in hematotoxic, genotoxic or mutagenic effects. Tests in vitro showed that oil sample 3 from southwestern of Brazilian Amazon had a high antioxidant capacity that may protect biological systems from oxidative stress, although this activity remains to be demonstrated in vivo.

  7. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

    Directory of Open Access Journals (Sweden)

    Saradhadevi Varadharaj

    2017-11-01

    Full Text Available In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED occurs secondary to altered function of endothelial nitric oxide synthase (eNOS. A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs. Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases.

  8. Evaluation of the antioxidant effect of a new functional food enriched with Sideritis euboea in healthy subjects.

    Science.gov (United States)

    Skouroliakou, Maria; Kastanidou, Olympia; Stathopoulou, Maria; Vourli, Georgia

    2009-10-01

    Sideritis euboea is a Greek plant that is traditionally consumed as a beverage (mountain tea). From in vitro studies, its extract has shown antioxidant and estrogenic activities. In our study we used S. euboea as an enriching food factor in order to produce a new functional food, a jelly dessert, in order to explore its antioxidant effects if consumed on a daily basis by healthy subjects. In this placebo-controlled clinical trial, 63 subjects were recruited for a 1-month nutritional intervention. Twelve subjects were excluded. The remaining 51 subjects were randomly classified in the intervention group (daily consumption of the jelly containing 0.3 g of S. euboea extract) or the placebo group (daily consumption of the same jelly without the enrichment). Vitamins C, A, and E, glutathione, coenzyme Q10, total nitrites, nitrates, total nitrogen oxide, nitrites/nitrates ratio, and total antioxidant status were measured in blood samples before and after the intervention. After the intervention, free glutathione and coenzyme Q10 increased, and nitrites decreased significantly in both groups. The other antioxidant markers were not altered. No statistical significant differences were observed between the two groups. The daily consumption of the functional food, for 30 days, had no effects on the antioxidant status of healthy volunteers.

  9. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers.

    Science.gov (United States)

    Slavin, Margaret; Lu, Yingjian; Kaplan, Nicholas; Yu, Liangli Lucy

    2013-11-15

    Black soybean is a potential functional food ingredient with high anthocyanin content, but the ability to maintain anthocyanin content under dry heat processing has not been reported. This study investigated the effects of soybean seed coat colour and baking time-temperature combinations on the extractable antioxidant properties of a soy cracker food model. Crackers prepared with black soybeans had significantly higher TPC, total isoflavones, and peroxyl, hydroxyl, and ABTS(+) radical scavenging abilities than their yellow counterparts, at all time-temperature combinations. Cyanidin-3-glucoside (C3G) was detected only in black soybean crackers, and all baking treatments significantly decreased C3G. The greatest losses occurred at the low temperature×long time and high temperature×short time, the smallest loss with moderate temperature×short/medium time. The high temperature treatment altered phenolic acid and isoflavone profiles; however, total isoflavones were unaffected. Overall results suggest that moderate baking temperature at minimal time may best preserve anthocyanin and other phenolics in baked black soybean crackers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cooking does not decrease hydrophilic antioxidant capacity of wild blueberries.

    Science.gov (United States)

    Murphy, Rebecca Ree; Renfroe, Michael H; Brevard, Patricia Bowling; Lee, Robert E; Gloeckner, Janet W

    2009-01-01

    The present study examined the effects of domestic cooking methods on the hydrophilic antioxidant activity (HAA) of wild blueberries. Baked, microwaved, simmered, and pan-fried frozen wild blueberries, and a thawed uncooked control, were analyzed for HAA using an ABTS/H(2)O(2)/HRP decoloration method. All cooking treatments were derived from recipes using wild blueberries, and were performed in triplicate. A randomized block design was used to determine whether there were statistical differences in antioxidant content after cooking and between each of the trials. There were no statistically significant decreases after cooking the thawed berries. On both a fresh weight and a dry weight basis, pan-fried blueberries had significantly higher HAA than baked, simmered, and control blueberries (Pcooked berries retained significant HAA. Cooked wild blueberries can be recommended as a good source of dietary antioxidants.

  11. Study on preparation of new antioxidants for radiation vulcanized natural rubber latex product. Antioxidant from keratin

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Nguyen Van Toan; Vo Tan Thien; Le Hai

    2000-01-01

    The thermo-oxidative aging resistance of radiation vulcanization of natural rubber latex (RVNRL) products should be adequately by using suitable antioxidants or new kind of effective antioxidant. This work presents the results of preparation of natural antioxidant from hair keratin. Characteristics and effectiveness of resultant antioxidant are also presented. The results obtained indicates that antioxidant made from hair keratin is safe and effective for rubber products from RVNRL. (author)

  12. Influence of antioxidants synthesized by plants on physico-chemical and microbiological evolution of Callovo-Oxfordian clay material

    International Nuclear Information System (INIS)

    Ubersfeld, Dimitri

    2016-01-01

    This study is a part of the deep disposal site development for radioactive waste in Meuse-Haute Marne (France), most specifically on the bio-physico-chemical conversion of sedimentary clay rocks (Callovo- Oxfordian, COx), excavated and stored on surface in the form of heap. During the experimental and operational phases, several million cubic meters of argillite will be excavated. Argillite stored in the open air will be exposed to meteoritic alterations, oxidizing conditions of surface and colonized biologically (plants, bacteria, fungi). The aim of the thesis is to study the impact of naturally derived antioxidants from revegetation of heap with antioxidant-producing plants on the physical, chemical or microbial weathering processes of argillite. This work was designed to (i) identify suitable naturally derived antioxidants and the plants to produce them (ii) assess the antioxidant inhibitory effects on weathering and leaching COx metals in the laboratory, (iv) field test selected plants on the heap, (iii) follow in situ physicochemical and microbiological evolution of the argillite heap planted with antioxidant producing plants. In the laboratory, percolating model antioxidants of Lamiaceae (linalool, thymol, carvacrol) through a packed column of argillite showed variable water weathering/leaching rate depending on the metal elements present; very low for aluminum (<1 o/oo), between 1-3% for other metals (Ca, Mg, Fe...) and reach more than 60% for sodium. With thymol at 20 mg/l for 3 months, it was found that there are a decrease in sulfur leached amount and the metal elements from the sulfides (Fe, As) and carbonates (Ca, Sr) and inhibition of bacterial and fungal microflora growths. However, intake of artificial root exudates in columns stimulates microbial growth, improves the availability of aluminum, iron and provides sequestration of calcium. Among the tested plants, lavender and lavandin were selected. Two successive plantation tests were carried out in

  13. Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models

    Directory of Open Access Journals (Sweden)

    Carine Coneglian de Farias

    2014-12-01

    Full Text Available Parkinson's disease (PD is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in vitrostudies and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•, to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+ and evaluation of the ferric reducing antioxidant power (FRAP. This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.

  14. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    International Nuclear Information System (INIS)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R.

    2006-01-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, α-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, γ-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects

  15. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  16. EFFECTS OF THIOL ANTIOXIDANTS ON THE ATROPSELECTIVE OXIDATION OF 2,2′,3,3′,6,6′-HEXACHLOROBIPHENYL (PCB 136) BY RAT LIVER MICROSOMES

    Science.gov (United States)

    Wu, Xianai; Lehmler, Hans-Joachim

    2015-01-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0–10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol), 4-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4-ol) and 4,5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136 and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo. PMID:26155892

  17. Antioxidant activity of aqueous extract of noni in dilutent for ram semen cryopreservation

    Directory of Open Access Journals (Sweden)

    Ana Lauren Costa Nascimento

    2016-03-01

    Full Text Available Noni (Morinda citrifolia L. is a fruit consumed worldwide because of its nutritional and therapeutic properties resulting from the large amount of phenolic compounds, which has aroused interest of the scientific community. In order to identify new natural sources of antioxidants, the objective of this study was to evaluate the performance of noni in diluent for ram semen cryopreservation. A completely randomized design consisting of four treatments and three repetitions per treatment was used. The treatments differed in terms of the concentration of the aqueous extract of noni added to the diluent: control, no addition of the extract, and three concentrations (24, 72, and 120 µg/mL. The physical and chemical variables of the mature fruit were evaluated: total acidity (8.78, pH (4.12, and soluble solids (8.18%. The vitamin C content was 309.42 mg per 100 g fresh matter. The aqueous extract of noni was also evaluated regarding the quantity of total phenolic compounds, antioxidant activity, and lipid peroxidation inhibition capacity. The aqueous extract contained a moderate amount of phenolic compounds (47.96 ± 1.95 mg gallic acid equivalent/100 g extract. The concentrations of the aqueous extract of 72 and 120 µg/mL in diluent used for semen cryopreservation inhibited lipid peroxidation by 21.75% and 51.32%, respectively. There was no positive effect of the lowest concentration (24 µg/mL. The antioxidant activity index of noni was 33.33, corresponding to very strong antioxidant activity. The aqueous extract of noni exhibits very strong antioxidant activity and its addition to the diluent for semen cryopreservation at a concentration of 72 µg/mL is able to inhibit lipid peroxidation.

  18. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association of antioxidant nutraceuticals and acetaminophen (paracetamol: Friend or foe?

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Daim

    2018-04-01

    Full Text Available Acetaminophen (paracetamol or APAP is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT. Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Keywords: Acetaminophen, Antioxidants, Food-drug interaction, Nutraceuticals, Paracetamol

  20. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds

    OpenAIRE

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-01-01

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto?s model after the simulated digestion. T...

  1. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  2. Effects of Pistacia atlantica (subsp. Mutica oil extracts on antioxidant activities during experimentally induced cutaneous wound healing in rats

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hamidi

    2015-01-01

    Full Text Available The fruits of Pistacia atlantica (subsp. mutica have been used traditionally for the treatment of peptic ulcer, as a mouth freshener and have recently been introduced as a source of antioxidant vegetable oils. The aim of this study was to investigate the antioxidant activity of the gel forms, from P. atlantica (subsp. mutica oil extraction on enzymatic antioxidants in experimental wound created in rat. A square-shaped skin defect (2×2 cm was created aseptically by surgical excision at the first thoracic vertebrae. Then animals were randomly allocated in four groups (I, untreated controls; II, topically treated base gel; III, topically treated 5% gel; IV, topically treated 10% gel. Blood sampling was accomplished at 3, 7, 10, 14 and 21 days post-injury. Samples were collected for measuring antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxidase activity in red cells and lipid peroxidation (plasma malondialdehyde. The data analysis generally evidenced that the activities of the main antioxidant enzymes began to decrease significantly at 7 days after the wound was created in control and base gel groups. This remarkable decline became more evident in the period between 10 to 21 days post injury but increased progressively in P. atlantica (subsp. mutica treatment groups, especially in gel 10% treatment group during wound healing. The results of this study suggest that excision of the wound leads to oxidative stress and topical administration of P. atlantica (subsp. mutica gels causes remarkable changes in antioxidant parameter during wound closure (especially gel 10% via pro-oxidative, and antioxidant activity can improve oxidative stress.

  3. Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Lee, Yen-Hsien; Chang, Jung-Jhih; Chien, Chiang-Ting; Yang, Ming-Chien; Chien, Hsiung-Fei

    2012-01-01

    We examined the effects of vitamin C in Pluronic F127 on diabetic wound healing. Full-thickness excision skin wounds were made in normal and diabetic Wistar rats to evaluate the effect of saline, saline plus vitamin C (antioxidant sol), Pluronic F127, or Pluronic F127 plus vitamin C (antioxidant sol-gel). The rate of wound contraction, the levels of epidermal and dermal maturation, collagen synthesis, and apoptosis production in the wound tissue were determined. In vitro data showed that after 6 hours of air exposure, the order of the scavenging abilities for HOCl, H2O2, and O2  − was antioxidant sol-gel > antioxidant saline > Pluronic F127 = saline. After 7 and 14 days of wound injury, the antioxidant sol-gel improved wound healing significantly by accelerated epidermal and dermal maturation, an increase in collagen content, and a decrease in apoptosis formation. However, the wounds of all treatments healed mostly at 3 weeks. Vitamin C in Pluronic F127 hastened cutaneous wound healing by its antioxidant and antiapoptotic mechanisms through a good drug delivery system. This study showed that Pluronic F127 plus vitamin C could potentially be employed as a novel wound-healing enhancer. PMID:22919368

  4. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Directory of Open Access Journals (Sweden)

    Malav S Trivedi

    Full Text Available Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD in young adult humans can influence systemic (plasma-derived redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09 underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's < 0.01. Parallel to the well-recognized fact that sleep deprivation (maintaining wakefulness uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  5. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review

    OpenAIRE

    Joana Aguiar; Berta Nogueiro Estevinho; Lúcia Silveira Santos

    2016-01-01

    Background: Functional foods fortified with antioxidants are gaining more popularity since consumption alone of foods naturally rich in antioxidants is insufficient to reduce oxidative stress associated with various diseases. Despite their beneficial effects, natural antioxidants present in coffee are sensitive to heat, light and oxygen, limiting their application in the food industry. Although microencapsulation is able to protect the antioxidant from degradation, mask its taste and control ...

  6. Antioxidant Profile of Trifolium pratense L.

    Directory of Open Access Journals (Sweden)

    Heidy Schwartsova

    2012-09-01

    Full Text Available In order to examine the antioxidant properties of five different extracts of Trifolium pratense L. (Leguminosae leaves, various assays which measure free radical scavenging ability were carried out: 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, superoxide anion and nitric oxide radical scavenger capacity tests and lipid peroxidation assay. In all of the tests, only the H2O and (to some extent the EtOAc extracts showed a potent antioxidant effect compared with BHT and BHA, well-known synthetic antioxidants. In addition, in vivo experiments were conducted with antioxidant systems (activities of GSHPx, GSHR, Px, CAT, XOD, GSH content and intensity of LPx in liver homogenate and blood of mice after their treatment with extracts of T. pratense leaves, or in combination with CCl4. Besides, in the extracts examined the total phenolic and flavonoid amounts were also determined, together with presence of the selected flavonoids: quercetin, luteolin, apigenin, naringenin and kaempferol, which were studied using a HPLC-DAD technique. HPLC-DAD analysis showed a noticeable content of natural products according to which the examined Trifolium pratense species could well be regarded as a promising new source of bioactive natural compounds, which can be used both as a food supplement and a remedy.

  7. Skin protection against UV light by dietary antioxidants.

    Science.gov (United States)

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.

  8. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  9. Antioxidant and Anti-Inflammatory Properties of Longan (Dimocarpus longan Lour. Pericarp

    Directory of Open Access Journals (Sweden)

    Guan-Jhong Huang

    2012-01-01

    Full Text Available This study examined the antioxidant and anti-inflammatory activities of the water extract of longan pericarp (WLP. The results showed that WLP exhibited radical scavenging, reducing activity and liposome protection activity. In addition, WLP also inhibited lipopolysaccharide (LPS-induced nitric oxide (NO production in macrophages. Further, administration of WLP, in the range of 100–400 mg/kg, showed a concentration-dependent inhibition on paw edema development following carrageenan (Carr treatment in mice. The anti-inflammatory effects of WLP may be related to NO and tumor necrosis factor (TNF-α suppression and associated with the increase in the activities of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, the results showed that WLP might serve as a natural antioxidant and inflammatory inhibitor.

  10. Polyphenol content and antioxidant capacity of fruit and vegetable beverages processed by different technology methods

    Directory of Open Access Journals (Sweden)

    Jiří Mlček

    2016-10-01

    Full Text Available The purpose of the natural drinks production is the preservation of biologically active compounds in maximal amount in prepared drinks. The issue is the loss of these substances due to conventional conservation methods, such as pasteurization. Pascalization, a conservation method using high pressure, performs a new trend in conservation. According to available research, it causes only a minimal loss of bioactive compounds. Influence of conservation technology of fruit and vegetable beverages on the content of bioactive substances - polyphenols, flavonoids and on their antioxidative activity has been investigated. Their content has been compared in fresh juice samples, in samples conserved by pasteurization and after the appliance of high pressure treatment - pascalization (HPP. HPP has a positive effect on total antioxidative capacity of juices - broccoli with apple (increase of the amount from 189.12 mg.100 mL-1 to 217.12 mg.100 mL-1 and beetroot and on total polyphenol content within all samples of beverages except from carrot juice. Decrease of the amounts of flavonoids has been observed within all beverages. For drinks after pasteurization treatment there is evident the decrease of total polyphenols content and total antioxidant activity, besides carrot juice, where the antioxidant capacity value had increased from 37.24 to 43.14 mg.100 mL-1. The flavonoid content of fruit and vegetable juices after heat treatment had increased only in the juice prepared from broccoli with apple (from 40.71 mg.100 mL-1 to 45.14 mg.100 mL-1, the content in other juices had decreased. However, the decrease of the flavonoid content is lower after heat treatment in comparison to HPP, except the samples of cabbage juice with apple. With the exception of flavonoids, HPP has been proved as a gentle conservation technology enabling preserving higher amounts of bioactive substances with antioxidative properties if compared with the heat treatment. For the samples

  11. Antioxidant and Astroprotective Effects of a Pulicaria incisa Infusion

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2012-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, an infusion prepared from the desert plant Pulicaria incisa (Pi was tested for its protective and antioxidant effects on astrocytes subjected to oxidative stress. The Pi infusion attenuated the intracellular accumulation of ROS following treatment with hydrogen peroxide and zinc and prevented the H2O2-induced death of astrocytes. The Pi infusion also exhibited an antioxidant effect in vitro and induced GDNF transcription in astrocytes. It is proposed that this Pi infusion be further evaluated for use as a functional beverage for the prevention and/or treatment of brain injuries and neurodegenerative diseases in which oxidative stress plays a role.

  12. Fatigue and Oxidative Stress in Children Undergoing Leukemia Treatment.

    Science.gov (United States)

    Rodgers, Cheryl; Sanborn, Chelse; Taylor, Olga; Gundy, Patricia; Pasvogel, Alice; Moore, Ida M Ki; Hockenberry, Marilyn J

    2016-10-01

    Fatigue is a frequent and distressing symptom in children undergoing leukemia treatment; however, little is known about factors influencing this symptom. Antioxidants such as glutathione can decrease symptom severity in adult oncology patients, but no study has evaluated antioxidants' effects on symptoms in pediatric oncology patients. This study describes fatigue patterns and associations of fatigue with antioxidants represented by reduced glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio among children receiving leukemia treatment. A repeated measures design assessed fatigue and antioxidants among 38 children from two large U.S. cancer centers. Fatigue was assessed among school-age children and by parent proxy among young children. Antioxidants (GSH and GSH/GSSG ratio) were assessed from cerebrospinal fluid at four phases during leukemia treatment. Young children had a steady decline of fatigue from the end of induction treatment through the continuation phase of treatment, but no significant changes were noted among the school-age children. Mean antioxidant scores varied slightly over time; however, the GSH/GSSG ratios in these children were significantly lower than the normal ratio. Mean GSH/GSSG ratios significantly correlated to fatigue scores of the school-age children during early phases of treatment. Children with low mean GSH/GSSG ratios demonstrated oxidative stress. The low ratios noted early in therapy were significantly correlated with higher fatigue scores during induction and postinduction treatment phases. This finding suggests that increased oxidative stress during the more intensive phases of therapy may explain the experience of fatigue children report. © The Author(s) 2016.

  13. Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii.

    Science.gov (United States)

    Bottari, Nathieli B; Baldissera, Matheus D; Tonin, Alexandre A; Rech, Virginia C; Alves, Catiane B; D'Avila, Fernanda; Thomé, Gustavo R; Guarda, Naiara S; Moresco, Rafael N; Camillo, Giovana; Vogel, Fernanda F; Luchese, Cristiane; Schetinger, Maria Rosa C; Morsch, Vera M; Tochetto, Camila; Fighera, Rafael; Nishihira, Vivian S K; Da Silva, Aleksandro S

    2016-06-01

    This study aimed to investigate the synergistic effects of resveratrol and sulfamethoxazole-trimethoprim (ST) on the treatment of mice experimentally infected by Toxoplasma gondii during the chronic phase of the disease considering infection, behavior, and oxidative/antioxidants profile aspects. For the study, 60 mice were initially divided into two groups: uninfected (n = 24) and infected by T. gondii (n = 36). These two groups were later subdivided into other groups and treated with resveratrol (free and inclusion complex containing resveratrol) alone and co-administered with ST: groups A to D were composed by healthy mice and groups E to J were consisted of animals infected by T. gondii (VEG strain). Treatments began 20 days post-infection for 10 consecutive days with oral doses of 0.5 mg kg(-1) of ST (groups B and F), 100 mg kg(-1) of free resveratrol (groups C and G) and inclusion complex of resveratrol (nanoparticles containing resveratrol) (groups D and H), and lastly an co-administration of both drugs (groups I and J). Behavioral tests (memory, anxiety and locomotion) were performed after treatment. Liver and brain fragments were collected to evaluate pathological changes, brain cysts counts, as well as oxidant and antioxidant levels. A reduction on the number of cysts in the brain of animals treated with both drugs combined was observed; there was also reduced number of lesions on both organs. This drug combined effect was also able to reduce oxidative and increase antioxidant levels in infected mice, which might be interpreted as a resveratrol protective effect. In addition, the combination of ST and resveratrol was able to prevent behavioral changes in infected mice. Therefore, the use of co-administration drugs enhances the therapeutic effect acting on a synergic way, reducing the oxidizing effects of the chemical treatment for toxoplasmosis. In addition, resveratrol in inclusion complex when co-administered with ST showed an improved

  14. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  15. The Influenced of Lactobacillus plantarum Starter Addition and The Length Time of Fermentation Process on The Activity of Seaweed Antioxidant Ulva lactuca from Krakal Beach, Yogyakarta

    Science.gov (United States)

    Ambarsari, N. D.; Rushanti, I. R. P. A.; Setyaji, A.; Ningsih, T. R.; Nurhana, N.; Subekhi, I.; Dewi, E. N.

    2018-02-01

    Seaweed contains phenol compound functioning as antioxidant. Lactobacillus plantarum starter addition in a fermentation process was expected will increase the activity of antioxidant. The purpose of this research was to determine the influence of L. plantarum addition and the length of fermentation on the activity of antioxidant in U. lactuca. The experiment was conducted with factorial design. The first treatment consisted 2 different factors namely without L. plantarum addition and L. plantarum addition. While the second treatment were the different length fermentation time: 0, 12, 24, and 36 hours. Each treatment were done in thriplicate. The data was analyzed using ANOVA and BNJ test was applied if there any differences betweenthe treatments. The results showed that the fresh U. lactuca with L. plantarum addition for 36 hours fermentation had TPC BAL 9,83 CFU/ml, pH 4,26, phenol 231 ppm and antioxidant activity IC501375,12 ppm. Dried U. lactuca with L. plantarum addition that was fermentized for 36 hours had TPC BAL 9,10 CFU/ml, pH 4,75, phenol 166,24 ppm and antioxidant activity IC504070,32 ppm. The fresh U. lactuca with L. plantarum addition for 36 hours fermentation was the best treatment since the antioxidant activity is IC501375,12 ppm. Although the antioxidant activity was categorized as weak but it was still showed an increase compared to the result of antioxidant activity with maceration method using n-hexana dissolver which was 11213,76 ppm, ethyl acetate 9770,285 ppm, and ethanol extact 4921,79 ppm.

  16. Structure-Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel PDE10 Inhibitors with Antioxidant Activities

    Science.gov (United States)

    Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin

    2018-05-01

    Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.

  17. A Comparative Summary on Antioxidant-like Actions of Timolol with Other Antioxidants in Diabetic Cardiomyopathy.

    Science.gov (United States)

    Turan, Belma

    2016-01-01

    Cellular signaling associated with cardiac β-adrenergic receptors (β-AR) is composed of coupled mechanism among β 1-/β2-AR and Gs proteins with contribution of constitutive β3-AR coupling to Gi proteins. However, down-regulation of β-ARs in the heart under pathological conditions is mediated with a signaling G proteins-included mechanism. Additionally, there are serious conflicting data on this field in literature yet. Although some of these conflictions are generally related with either experimental protocols for different approaches or different animal models. To treat cardiovascular disorders, generally, various types of β-blockers are used while their action mechanisms are not fully known yet. Furthermore, although β-blockers are generally used to block the activated β-ARs, they can be used to scavenge free radicals under oxidative stress. Studies, in whole-system, organ or cellular levels, showed that some β-blockers, including timolol, have protective-actions against increased oxidative stress in diseased heart via ROSscavenging. Additionally, it has been mentioned that some β-blockers nicely prevented the development of heart failure in both experimental and clinical studies by restoring sarcoplasmic reticulum (SR) Ca(2+) release channels, RyR2. Since diabetic cardiomyopathy is recognized due to its diminished responsiveness to β1-AR agonist stimulation in the heart with an up-regulation of β 3-AR, inducing a strong negative inotropic effect on left ventricular function, it has been shown that treatment of streptozotocin-diabetic rats with timolol provided a marked cardio-protection. Importantly, it has been also documented that timolol treatment-dependent cardio-protection in diabetic rats includes basically prevention of RyR2- hyperphosphorylation, which, in turn, block Ca(2+)-leakage from SR via scavenging oxidative agents to control redox-state of cardiomyocytes. This action of timolol in diabetic heart is very similar to other known

  18. Performance of Different Natural Antioxidant Compounds in Frying Oil

    Directory of Open Access Journals (Sweden)

    Buket Aydenız

    2016-01-01

    Full Text Available In this study, the natural green tea extract, purified lycopene, purified resveratrol and purified γ-oryzanol were added into peanut oil and their antioxidant performances were evaluated during frying. Moreover, the sensory properties of fried dough were evaluated to determine the consumption feasibility. All natural antioxidants led to significant increase in the stability of the oil samples. The ranges of measurements in the treatment groups were as follows: free acidity 0.1–2.9 g of oleic acid per 100 g of oil, conjugated dienes 0.01–0.40 g per 100 g of oil, total polar material 8.8–73.8 g per 100 g of oil, total phenolics 0.1–4.2 mg of gallic acid equivalents per 100 g of oil, and antioxidant capacity 0.5–11.0 mM of Trolox equivalents per 100 g of oil. The fatty acid and sterol compositions indicated that antioxidant supplementation could slow the oxidative degradation of unsaturated fatty acids and reduce trans-acid formation. Frying oil enriched with purified γ-oryzanol had higher sterol levels than the other enriched oil samples. The obtained quality of oil protection was in descending order: purified γ-oryzanol, green tea extract and purified lycopene.

  19. Effects of irradiation and fumigation on the antioxidative properties of some spices

    International Nuclear Information System (INIS)

    Kuruppu, D.P.; Schmidt, K.; Farkas, J.; Langerak, D.I; Duren, M.D.A. van

    1985-01-01

    The effects of gamma irradiation (5.6 kGy) and ethylene oxide fumigation on the antioxidative activity of marjoram, nutmeg, paprika and black pepper were investigated. Sunflower oil in water emulsion (1:1), dark, at 30 deg C, lard, dark, at 40 deg C, lard, illuminated, at 50 deg C, and lard, dark, at 50 deg C were the substrates utilized for the investigation. Oxidation of the substrates in the presence of 0.2% (by weight) of spices were followed by the determination of peroxide value (PO) and free fatty acide value (FFA). No significant effect of irradiation on the antioxidant activities of spices was revealed. Fumigated marjoram tended to be less antioxidative in lard kept in dark storage at 60 deg C than the non-treated or irradiated spice. Marjoram and nutmeg lost their antioxidant properties in the presence of light. This loss, however, was not influenced by the irradiation or fumigation treatments. (author)

  20. Effects of irradiation and fumigation on the antioxidative properties of some spices

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, D P; Schmidt, K; Farkas, J; Langerak, D I; Duren, M D.A. van

    1985-12-01

    The effects of gamma irradiation (5.6 kGy) and ethylene oxide fumigation on the antioxidative activity of marjoram, nutmeg, paprika and black pepper were investigated. Sunflower oil in water emulsion (1:1), dark, at 30 deg C, lard, dark, at 40 deg C, lard, illuminated, at 50 deg C, and lard, dark, at 50 deg C were the substrates utilized for the investigation. Oxidation of the substrates in the presence of 0.2% (by weight) of spices were followed by the determination of peroxide value (PO) and free fatty acid value (FFA). No significant effect of irradiation on the antioxidant activities of spices was revealed. Fumigated marjoram tended to be less antioxidative in lard kept in dark storage at 60 deg C than the non-treated or irradiated spice. Marjoram and nutmeg lost their antioxidant properties in the presence of light. This loss, however, was not influenced by the irradiation or fumigation treatments. 13 references, 4 figures, 5 tables.

  1. Effects of nutritional supplement of ginger root on antioxidant status in sheep

    Directory of Open Access Journals (Sweden)

    majid fartashvand

    2016-01-01

    Full Text Available Ginger (Zingiber officinale is a medicinal plant and pungent food spice, which has antioxidant properties. The aim of this study was to investigate the effects of ginger on antioxidant status of blood in healthy sheep. In this study, dried ginger root powder was added to the ration of 10 male yearling sheep (treatment group, at the rate of 1g/head/day for a period of 2 months. In the second group (n = 10 sheep, a single dose of vitamin E+selenium injection was administered intramuscularly (positive control group and the control group (n=10 sheep received no medication or special additives. Blood samples were collected regularly at 2 week intervals and enzyme activities of superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT and total antioxidant levels were measured. Ginger increased total antioxidant capacity of serum and blood levels of SOD, GPX and CAT, which was significant compared to the control group (p

  2. Antioxidant capacity of cinnamon extract for palm oil stability.

    Science.gov (United States)

    Shahid, Muhammad Zia; Saima, Hafiza; Yasmin, Adeela; Nadeem, Muhammad Tahir; Imran, Muhammad; Afzaal, Muhammad

    2018-05-16

    Spices and their bioactive components are more promising attractions for their inclusion in diet-based regimes to improve human health. These are sources of natural antioxidants and play an important role in the chemoprevention of diseases and aging. The aim of the current study was to explore the antioxidant potential of cinnamon; a widely used spice throughout the world. The current research was aimed to investigate the antioxidant potential of cinnamon extract. For the purpose, cinnamon sticks were procured from local super market, while palm oil was obtained from local oil industry. The resultant extract was analyzed for its antioxidant activity through total phenolic content (TPC), free radical scavenging activity (DPPH assay), and total antioxidant activity was measured by ferric reducing antioxidant power (FRAP) test. The shelf life of palm oil was checked by adding cinnamon extract in oil at different levels i.e. , 0.05, 0.10, 0.15, 0.20 and 0.25%, to compare the antioxidant potential of the extract whereas, T o acted as control and T BHA @ 0.1% was used as synthetic antioxidant in the oil samples. The oil samples were analyzed for rancidity check during storage (after every seven days for a storage period of four weeks). The results indicated that total phenolic contents (TPC); 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) values of cinnamon extract were as 355.01 ± 8.34 gallic acid equivalent per gram (mg GAE/g), 90.18 ± 2.12 (%) and 132.82 ± 3.12 (μmol/g), respectively. The oxidative parameters for treatments i.e., T o , T BHA , T 1 , T 2 , T 3 , T 4 , T 5 were recorded as peroxide value (2.61 ± 0.07, 2.42 ± 0.08, 2.57 ± 0.05, 2.56 ± 0.03, 2.54 ± 0.02, 2.54 ± 0.01, 2.46 ± 0.06 meq/kg, respectively), free fatty acids (0.601 ± 0.05, 0.522 ± 0.02, 0.580 ± 0.07, 0.572 ± 0.03, 0.56 ± 00.07, 0.552 ± 0.03, 0.536 ± 0.05%, respectively), TBA

  3. Antioxidant activity of olive oil mill wastewater obtained from different thermal treatments

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2012-06-01

    Full Text Available In food industry, Olive Oil Mill Wastewater (OOMWW is considered a by-product because of the presence of biostatic compounds with a high polluting rate, in particular phenols. Moreover, during olive oil processing, a large amount of this by-product constitutes an ecological and economical problem for the producers. To reevaluate this by-product, the reuse of this wastewater to obtain useful compounds appears to be very important. In order to purify the wastewater, the development of operations that modify its organic content seems necessary for obtaining of eventual fertilizing agents and/or to recover substances with a high added value such as phenolic compounds, which are currently recognized scientifically as molecules with a high antioxidant activity. A chromatographic analysis of these compounds was conducted to characterize different concentrations of wastewater and the reducing power of the extracts was measured. The thermal treatment of olive oil mill wastewater in a rotary evaporator and in an oven involved an increase in radical scavenging efficiency. These results could be correlated with the possibility of recovering and reusing this type of waste for its antioxidant properties.

    En la industria alimentaria, el alpechín se considera un subproducto debido a la presencia de compuestos bioestáticos, con una alta tasa de contaminación, particularmente los fenoles. Además, durante el procesado de la aceituna, la generación de una gran cantidad de este subproducto supone un problema ecológico y económico para los productores. Es importante la reutilización de este agua de desecho para obtener compuestos útiles. Para purificar el agua de desecho es necesario el desarrollo de operaciones que modifiquen su contenido orgánico, para poder obtener agentes fertilizantes y/o recuperar sustancias con un alto valor añadido como los compuestos fenólicos, que actualmente están reconocidos científicamente como moléculas con una

  4. Blooming reduces the antioxidant capacity of dark chocolate in rats without lowering its capacity to improve lipid profiles.

    Science.gov (United States)

    Shadwell, Naomi; Villalobos, Fatima; Kern, Mark; Hong, Mee Young

    2013-05-01

    Dark chocolate contains high levels of antioxidants which are linked to a reduced risk of cardiovascular disease. Chocolate blooming occurs after exposure to high temperatures. Although bloomed chocolate is safe for human consumption, it is not known whether or not the biological function of bloomed chocolate is affected. We hypothesized that bloomed chocolate would reduce the antioxidant potential and lipid-lowering properties of chocolate through altered expression of related genes. Thirty Sprague-Dawley rats were divided into 3 groups and fed either the control (CON), regular dark chocolate (RDC), or bloomed dark chocolate (BDC) diet. After 3 weeks, serum lipid levels and antioxidant capacity were measured. Hepatic expression of key genes was determined by real time polymerase chain reaction (PCR). Sensory characteristics of bloomed versus regular chocolate were assessed in 28 semi-trained panelists. Rats fed RDC exhibited greater serum antioxidant capacities compared to the CON (P chocolate compared to bloomed chocolate (P chocolate, these results suggest that bloomed dark chocolate yields similarly beneficial effects on most blood lipid parameters or biomarkers. However, regular dark chocolate may be more beneficial for the improvement of antioxidant status and modulation of gene expression involved in lipid metabolism and promoted greater sensory ratings. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways.

    Science.gov (United States)

    Pandey, Preeti; Bhatt, Prakash Chandra; Rahman, Mahfoozur; Patel, Dinesh Kumar; Anwar, Firoz; Al-Abbasi, Fahad; Verma, Amita; Kumar, Vikas

    2018-02-01

    Prunus amygdalus Batsch (almond) is a classical nutritive traditional Indian medicine. Along with nutritive with anti-oxidant properties, it is, clinically, used in the treatment of various diseases with underlying anti-oxidant mechanism. This study is an effort to scrutinise the renal protective effect of P. amygdalus Batsch or green almond (GA) seed coat extract and its underlying mechanism in animal model of Ferric nitrilotriacetate (Fe-NTA) induced renal cell carcinoma (RCC). RCC was induced in Swiss Albino Wistar rats by intraperitoneal injection of Fe-NTA. The rats were then treated with ethanolic extract of GA (25, 50 and 100 mg/kg per oral) for 22 weeks. Efficacy of GA administration was evaluated by change in biochemical, renal, macroscopical and histopathological parameters and alterations. Additionally, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory mediator including prostaglandin E2 (PGE 2 ), nuclear factor-kappa B (NF-κB) were also observed to explore the possible mechanisms. The oral administration of GA significantly (p Bowman capsules and inflammatory cells. Hence, it can be concluded that GA possesses observable chemo-protective action and effect on Fe-NTA induced RCC via dual inhibition mechanism one by inhibiting free radical generation and second by inhibiting inflammation.

  6. Effect of antioxidant extract from cherries on diabetes.

    Science.gov (United States)

    Lachin, Tahsini

    2014-01-01

    Diabetes is a chronic metabolic disorder in humans constituting a major health concern today whose prevalence has continuously increased worldwide over the past few decades. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in diabetic subjects have been reported. It has been suggested that enhanced production of free radicals and oxidative stress is the central event for the development of diabetic complications. Antioxidants can play an important role in the improvement of diabetes. There are many reports on the effects of antioxidants in the management of diabetes. This study aimed at evaluating the effect of antioxidant extract and purified sweet and sour Cherries on hyperglycemia, microalbumin and creatinine level in alloxan-induced diabetic rats. Thirty six adult Male Wistar rats were divided equally into six groups. Diabetes was induced in the rats by an intraperitoneal injection with 120 mg/kg body weight of alloxan. Oral administration of cherry extract at a concentration of 200 mg/kg body weight for 30 days significantly reduced the levels of blood glucose, and urinary microalbumin. Also an increase in the creatinine secretion level in urine was observed in the diabetic rats treated with the cherry extract as compared to untreated diabetic rats. In this paper, the most recent patent on the identification and treatment of diabetes is used. In conclusion, cherry antioxidant extract proved to have a beneficial effect on the diabetic rats in this study. In light of these advantageous results, it is advisable to broaden the scale of use of sweet and sour cherries extract in a trial to alleviate the adverse effects of diabetes.

  7. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  8. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    Science.gov (United States)

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, Pantioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Beneficial Effects of Coenzyme Q10 in Reduction of Testicular Tissue Alteration Following Induction of Diabetes in Adult Rats

    Directory of Open Access Journals (Sweden)

    Kianifard Davoud

    2015-03-01

    Full Text Available Background and Aims: Various types of infertility are associated with uncontrolled hyperglycemia and diabetes. Development of oxidative stress is one the most important factors in the alteration of spermatogenesis in diabetic conditions. Consequently, the reduction of oxidative stress with antioxidant compounds can be effective in the reduction of tissue alterations. The aim of this study was to evaluate the efficacy of coenzyme Q10 in improvement of spermatogenesis in adult diabetic rats. Material and Methods: 32 adult rats were divided into four groups of control and treatment. Coenzyme Q10 (10 mg/kg body weight - b.w. was administrated to one control and one diabetic (intraperitoneal injection of 45 mg/kg b.w. of Streptozotocin groups. Blood concentrations of FSH, LH and Testosterone were measured. Histology of testicular tissue and sperm analysis were considered for evaluation of spermatogenesis. Results: Administration of Coenzyme Q10 led to increase of pituitary gonadotropins levels in diabetic rats. Testosterone levels were not changed significantly. Testicular morphology, spermatogenic indices and sperm analysis were improved in treated diabetic rats. Conclusions: The results of this study suggest that the use of Coenzyme Q10 has positive effects in reduction of spermatogenic alterations following induction of experimental diabetes in rats.

  10. Evaluation of antioxidant potential of pepper sauce (Capsicum frutescens L.

    Directory of Open Access Journals (Sweden)

    Pamela Freire de Moura Pereira

    2016-12-01

    Full Text Available Functional properties of substances present in in natura foods such as fruits and vegetables are well documented; however, the activity that remains after processing needs more research. The present study aimed to evaluate the antioxidant potential in fruit processed as sauce and quantify the compounds able to contribute to such activity. Three different treatments were developed varying only the concentration of pepper Capsicum frutescens L., with treatment ratios (fruit: water: vinegar: salt being: treatment 1 (0.5: 1: 0.5: 0.33, 2 (1: 1: 0.5: 0.33, and 3 (2: 1: 0.5: 0.33. By the DPPH method, the values found for EC50 (g g DPPH−1 from 3726.9 to 5425.9 for the alcoholic extract were the most significant. The content of total phenols did not vary between the three treatments. While the content of carotenoids found was significantly different in the treatment with lower content of the fruit in natura, when compared to the treatment with higher content (44.02 and 56.09 μg of β-carotene 100 g−1, respectively and the content of ascorbic acid varied between 10.95 and 21.59 mg 100−1 g. Therefore, the pepper sauce was presented as an alternative to the consumption of bioactive compounds that may have antioxidant potential.

  11. Antioxidant therapy for patients with chronic pancreatitis: A systematic review and meta-analysis.

    Science.gov (United States)

    Zhou, Dongkai; Wang, Weilin; Cheng, Xiaofei; Wei, Jianfeng; Zheng, Shusen

    2015-08-01

    Chronic pancreatitis is a progressive, inflammatory disease of pancreas characterized by significant abdominal pain, malabsorption, and diabetes mellitus. Antioxidant therapy has been proposed as an effective treatment for painful chronic pancreatitis. We performed a meta-analysis of trials in which antioxidant therapy was compared with placebo in chronic pancreatitis. We searched six databases to identify relevant trials. Results are expressed as risk ratio (RR) or standardized mean difference (SMD) with accompanying 95% confidence intervals (CI). The meta-analysis was performed with the fixed-effects model or random-effects model according to heterogeneity. Eight studies including 573 patients met the inclusion criteria. A meta-analysis of these studies revealed that the intervention of antioxidants was associated with a significant increase in patients with pain relief (RR, 2.15; 95% CI, 1.72-2.69; P chronic pancreatitis patients (SMD: -0.41; 95% CI: -0.83 to -0.10; P = 0.0005). Additionally, antioxidants may cause some adverse reactions (RR, 4.22; 95% CI: 2.17-8.20; P pathophysiology of chronic pancreatitis, and administration of antioxidants to patients with painful chronic pancreatitis is effective in relieving pain. Antioxidant supplements may be advocated as one medical therapy for chronic pancreatitis patients with low antioxidant capacity in their blood. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Israel Pérez-Torres

    2017-10-01

    Full Text Available Abstract: Reductive stress (RS is the counterpart oxidative stress (OS, and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD+/NADH, NADP+/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer’s disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.

  13. ACE inhibition and antioxidant activity of different part of Channa striata prepared by various cooking method

    Science.gov (United States)

    Chasanah, E.; Budiari, S.; Thenawijaya, M.; Palupi, N. S.

    2018-03-01

    Channa striata (snakehead) extract has been known possessing positive activity, one of which is the ability to inhibit Angiotensin Converting Enzyme (ACE) activity in vitro. Aims of this study were to determine the effect of cooking and parts of C. striata, i.e. meat/fillet, gonad, skin, gill against the ACE inhibition activity and antioxidant activity in vitro. Heat processing methods used were direct boiling and indirect boiling and steamed at 100 °C for 10 min. ACE inhibition activity was analyzed using hippuryl-L-histidyl-L-leucine (HHL) as substrate and antioxidant activity was analyzed using DPPH method. The result shows that the higher the concentration of the extract (5 %, 20 %, 35 % and 50 %), the higher the antioxidant activity. The highest antioxidant activity was shown by gonad followed by meat extract, skin, and gill. Cooking treatment affected antioxidant activity, being the detrimental treatment were steam and direct boiling. The egg/gonad of C. striata showed the highest capability to inhibit ACE activity followed by meat/fillet, gill and skin. In concentration of 10 mg, extract of C. striata gonad was comparable to captopril, a commercial hypertension drug. While uncooked fillet showed the highest ACE inhibition activity followed by indirect boiling, direct boiling and steaming.

  14. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  15. Organophosphate pesticides-induced changes in the redox status of rat tissues and protective effects of antioxidant vitamins.

    Science.gov (United States)

    Mishra, Vibhuti; Srivastava, Nalini

    2015-04-01

    Organophosphates (OPs) pesticides are among the most toxic synthetic chemicals purposefully added in the environment. The common use of OP insecticides in public health and agriculture results in an environmental pollution and a number of acute and chronic poisoning events. Present study was aimed to evaluate the potential of monocrotophos and quinalphos to effect the redox status and glutathione (GSH) homeostasis in rat tissues and find out whether antioxidant vitamins have some protection on the pesticide-induced alterations. The results showed that these pesticides alone or in combination, caused decrease in the levels of GSH and the corresponding increase in the levels of GSSG, decreasing the GSH/GSSG ratio. The results also showed that NADPH/NADP(+) and NADH/NAD(+) ratios were decreased in the liver and brain of rats on exposure with mococrotophos, quinalphos, and their mixture. These pesticides, alone or in combination, caused alterations in the activities of GSH reductase and glucose-6-phosphate dehydrogenase in the rat tissues. However, the expression of the GSH recycling enzymes did not show significant alterations as compared to control. From the results, it can be concluded that these pesticides generate oxidative stress but their effects were not synergistic when given together and prior feeding of antioxidant vitamins tend to reduce the toxicities of these pesticides. Copyright © 2013 Wiley Periodicals, Inc.

  16. Effect of pulsed electric field (PEF) on structures and antioxidant activity of soybean source peptides-SHCMN.

    Science.gov (United States)

    Lin, Songyi; Liang, Rong; Li, Xingfang; Xing, Jie; Yuan, Yuan

    2016-12-15

    Recently, high-intensity pulsed electric field (PEF) has successfully used in improvement of antioxidant activity. Ser-His-Cys-Met-Asn (SHCMN) obtained from soybean protein was chosen to investigate the phenomenon of antioxidant activity improvement. Effects of PEF treatment on antioxidant activity of SHCMN were evaluated by DPPH radical inhibition. Nuclear magnetic resonance (NMR), mid-infrared (MIR), circular dichroism (CD) were used to analyze structures of SHCMN. Two-factor-at-a-time results show that DPPH radical inhibition of SHCMN is significantly (Pfield intensity of 5kV/cm, pulse frequency of 2400Hz, and retention time of 2h. In addition, MIR and NMR spectra show that the basic structure of peptides SHCMN is stable by PEF treatment. But the secondary structures (α-helix, β-turn, and random coil) can be affected and zeta potential of PEF-treated SHCNM was reduced to 0.59±0.03mV. The antioxidant activity improvement of SHCMN might result from the changes of secondary structures and zeta potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine.

    Science.gov (United States)

    Nardini, Mirella; Garaguso, Ivana

    2018-03-09

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1-10 μg) in the standard assays resulted in a significant, positive interference in the Folin-Ciocalteu's assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1-20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25-200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine.

  18. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  19. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  20. Antioxidant responses of chickpea plants subjected to boron toxicity.

    Science.gov (United States)

    Ardic, M; Sekmen, A H; Tokur, S; Ozdemir, F; Turkan, I

    2009-05-01

    This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three-week-old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H(3)BO(3)) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought-tolerant Gökce and decreased in the drought-sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to

  1. Placental dysfunction in Suramin-treated rats: impact of maternal diabetes and effects of antioxidative treatment.

    Science.gov (United States)

    Nash, Peppi; Olovsson, Matts; Eriksson, Ulf J

    2005-04-01

    The aim of the present study was to evaluate a rat model of placental dysfunction/preeclampsia in pregnancies complicated by maternal diabetes. A second objective was to evaluate the effects of vitamin E treatment in this model. Normal and streptozotocin-induced diabetic rats of two different strains (U and H) were given intraperitoneal (IP) injections of the angiogenesis inhibitor Suramin (Sigma Chemical Co, St Louis, MO) or saline in early pregnancy, and fed standard or vitamin E-enriched food. The outcome of pregnancy was evaluated on gestational day 20. In both rat strains Suramin caused fetal growth retardation, decreased placental blood flow, and increased placental concentration of the isoprostane 8-iso-PGF(2alpha). In the U rats Suramin also caused increased fetal resorption rate, increased maternal blood pressure, decreased renal blood flow, and diminished maternal growth. Diabetes caused severe maternal and fetal growth retardation, increased resorption rate, and increased placental 8-iso-PGF(2alpha) concentration independent of Suramin administration. The maternal and fetal effects of Suramin and diabetes were more pronounced in the U strain than in the H strain. Vitamin E treatment improved the status of Suramin-injected diabetic rats: in U rats the blood pressure increase was normalized; and in both U and H rats the decreased placental blood flow was marginally enhanced, and the increase in placental 8-iso-PGF(2alpha) was partly normalized by vitamin E. Suramin injections to pregnant rats cause a state of placental insufficiency, which in U rats resembles human preeclampsia. The induction of this condition is at least partly mediated by oxidative stress, and antagonized by antioxidative treatment. Maternal diabetes involves increased oxidative stress, and causes both maternal and fetal morbidity, which are only marginally affected by additional Suramin treatment.

  2. The anti-oxidant effects of ginger and cinnamon on ...

    African Journals Online (AJOL)

    Ginger and cinnamon are strong anti-oxidants and have been shown to reduce oxidative stress in the long-term treatment of streptozotocin (STZ)-induced diabetes in animal models. The present study examined the influence of combined ginger and cinnamon on spermatogenesis in STZ-induced diabetes in maleWistar rats ...

  3. Antioxidants in Raspberry: On-line analysis links antioxidant activity to a diversity of individual metabolites

    NARCIS (Netherlands)

    Beekwilder, M.J.; Jonker, H.H.; Hall, R.D.; Meer, van der I.M.; Vos, de C.H.

    2005-01-01

    The presence of antioxidant compounds can be considered as a quality parameter for edible fruit. In this paper, we studied the antioxidant compounds in raspberry (Rubus idaeus) fruits by high-performance liquid chromatography (HPLC) coupled to an on-line postcolumn antioxidant detection system. Both

  4. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  5. Antimicrobial and Antioxidant Activities of Rosemary Essential Oil Treated By Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Mohamed, H.G.; Abdel-Khalek, H.H.

    2009-01-01

    The antibacterial and antioxidant activity of the irradiated rosemary essential oil at doses of 0, 5, 10 and 15 kGy were studied. Rosemary essential oil was analyzed by gas chromatography/mass spectrometry (GC/MS). The major components were camphor (20.85%), caryophyllene (18.37%), 1, 8-cineole (14.49%), δ-Cadinene (9.59%) and α-Pinene (8.47%). The antibacterial of the rosemary essential oil as well as the minimum inhibitory dosage (MID) values were recorded. The irradiated rosemary essential oil was generally more effective against bacteria than non-irradiated essential oil. The gram-positive Staphylococcus epidermidis, lactic acid bacteria, Staphylococcus aureus and Bacillus megaterium were more sensitive to non-irradiated and irradiated rosemary essential oil than the gram-negative Escherichia coli, Pseudomonas aeroginosa and Pseudomonas hydrophila. The MID values of tested bacteria to rosemary were in the range of 4-16 μl.ml -1 . The in vitro antioxidant activity was investigated with two methods, 2,2-diphenylpicrylhydrazyl radical (DPPH) scavenging assay and tert-butyl hydroquinone (TBHQ) was employed as positive control. The natural essential oil showed antioxidant and DPPH radical scavenging activities and it displayed the inhibition of lipid peroxidation. Then, 0.1% of irradiated rosemary essential oil was added to sunflower oil as natural antioxidant comparing to 0.02% TBHQ as artificial antioxidant. The results showed that irradiation treatment increased the antioxidant activity of rosemary essential oil

  6. Antioxidant activity of five Brazilian plants used as traditional medicines and food in Brazil.

    Science.gov (United States)

    Santos, Allana K L; Costa, José G M; Menezes, Irwin R A; Cansanção, Isaac F; Santos, Karla K A; Matias, Edinardo F F; Coutinho, Henrique D M

    2010-10-01

    This study evaluates the radical-scavenging activity of five plants used as food and medicines in the northeastern region of Brazil. Spectrophotometric analysis of the plants' ethanol extracts was carried out. The antioxidant activity was determined by the DPPH (2,2-diphenyl-1 picrylhydrazyl) test. The antioxidant capacity was measured using ascorbic acid as a positive control. All tested plant extracts showed an antioxidant activity, but the highest activity was observed with the extracts of Momordica charantia and Eugenia jambolana. Therefore, these species must be studied as a putative source of products for use in the prevention and treatment of diseases in which oxidants or free radicals are implicated.

  7. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  8. The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia.

    Science.gov (United States)

    Bittle, Jada; Stevens, Hanna E

    2018-02-16

    Maternal stress during pregnancy is associated with an increased risk of psychopathology in offspring. Resident immune cells of the brain, microglia, may be mediators of prenatal stress and altered neurodevelopment. Here, we demonstrate that neither the exogenous pro-inflammatory cytokine, interleukin-1β (IL-1β), nor the glucocorticoid hormone, corticosterone, recapitulated the full effects of prenatal stress on the morphology of microglial cells in the cortical plate of embryonic mice; IL-1β effects showed greater similarity to prenatal stress effects on microglia. Unexpectedly, oil vehicle alone, which has antioxidant properties, moderated the effects of prenatal stress on microglia. Microglia changes with prenatal stress were also sensitive to the antioxidant, N-acetylcysteine, suggesting redox dysregulation as a mechanism of prenatal stress.

  9. Antioxidant and Anti-Inflammatory Activities of Pomegranate (Punica granatum on Eimeria papillata-Induced Infection in Mice

    Directory of Open Access Journals (Sweden)

    Omar S. O. Amer

    2015-01-01

    Full Text Available Coccidiosis is the most prevalent disease causing widespread economic loss, especially in poultry farms. Here, we investigated the effects of pomegranate peel extract (PPE on the outcome of coccidiosis caused by Eimeria papillata in mice. The data showed that mice infected with E. papillata and treated with PPE revealed a significant decrease in the output of oocysts in their faeces by day 5 p.i. Infection also induced inflammation and injury of the jejunum. This was evidenced (i as increases in reactive oxygen species, (ii, as increased neutrophils and decreased lymphocytes in blood (ii as increased mRNA levels of inducible nitric oxide synthase (iNOS, Bcl-2 gene, and of the cytokines interferon gamma (IFN-γ, tumour necrosis factor-α (TNF-α, and interleukin-1β (IL-1β, and (iv as downregulation of mucin gene MUC2 mRNA. All these infection-induced parameters were significantly altered during PPE treatment. In particular, PPE counteracted the E. papillata-induced loss of the total antioxidant capacity. Our data indicated that PPE treatment significantly attenuated inflammation and injury of the jejunum induced by E. papillata infections.

  10. Modulation of plasma antioxidant activity in weaned piglets by plant polyphenols

    Directory of Open Access Journals (Sweden)

    Hai J. Zhang

    2014-06-01

    Full Text Available This study was conducted to evaluate the effect of plant polyphenols (PP on antioxidant activity in weaned piglets. First, a uniform design, one optimising an experimental technique that can rationally arrange the concentrations of mixture components, was used to obtain the best PP mixture of apple, grape seed, green tea and olive leaf polyphenols based on in vitro antioxidant capacity and inhibitory action on bacterial growth. Second, the optimised PP mixture was tested in vivo with an efficacy trial on piglets. The optimal effects of the mix were observed in vitro when apple, grape seed, green tea, olive leaf polyphenols and a carrier (silicon dioxide accounted for 16.5, 27.5, 30, 2.5 and 23.5%, respectively, of the mixture. Forty-eight weaned piglets were randomly allocated to two dietary treatments (6 replicates of 4 piglets each per treatment and fed a control diet (CTR or CTR supplemented with 0.1% of the optimised PP mixture. Dietary PP did not affect growth performance compared to the CTR group. Plasma total protein, urea nitrogen and lysozyme content were not affected by dietary treatment. No differences of E. coli or Clostridia counts in the faeces and caecum content between the CTR and PP groups were observed. A reduced malondialdehyde concentration in the PP group was observed on day 21 compared to the CTR group (P=0.02. In conclusion, the prepared PP mixture has the potential to improve plasma antioxidant activity.

  11. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice

    International Nuclear Information System (INIS)

    Koiram, P.R.; Veerapur, V.P.; Mazhuvancherry, U.K.; Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, I.K.

    2007-01-01

    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 mim before γ-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like glutathione (GSH), glutathione-S-transferase (GST), catalase, superoxide dismuatase (SOD), TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals. (author)

  12. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Koiram, P R; Veerapur, V P; Mazhuvancherry, U K [Manipal Coll. of Pharmaceutical Sciences, Manipal (India); Kunwar, A; Mishra, B; Barik, A; Priyadarsini, I K [Bhabha Atomic Research Center, Mumbai (India)

    2007-05-15

    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 mim before {gamma}-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like glutathione (GSH), glutathione-S-transferase (GST), catalase, superoxide dismuatase (SOD), TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals. (author)

  13. Ginsan activated the antioxidant defense systems in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie Young; Son, Soo Jung; Ahn, Ji Yeon; Shim, Ji Young; Han, Young Soo; Jung, In Sung; Yun, Yeon Sook [KIRMS Daegu (Korea, Republic of)

    2003-07-01

    Ginsan, a polysaccharide extracted from Panax ginseng, has hematopoietic activity and is also known as a good biological-response modifier. In this investigation, we studied the effects of ginsan on the {gamma}-radiation induced alterations of some antioxidant systems in spleen of Balb/c mice. There are many data that irradiation induces Reactive Oxygen Species (ROS), which plays an important causative role in radiation damage of cell. The level of ROS in cells is regulated by enzymatic and nonenzymatic antioxidant systems. The most powerful ones among them are superoxide dismutases (SODs) catalyzing the dismutation of superoxide anion radical o{sub 2} to H{sub 2}O{sub 2}, catalase deactivating h-2O{sub 2} and reduced glutathion (GSH) detoxifying H{sub 2}O{sub 2} and other ROS> At the 5{sub th} day after sublethal whole body irradiation, splenocytes of irradiated mice expressed only marginally increased levels of Mn-SOD, however, Cu/Zn-SOD, catalase, thioredoxine reductase (TR) and thioredoxine (TRX) mRNA (135% increase compared to control), however, the combination of irradiation with ginsan increased the SODs and GPX production more effectively. In addition to the above results, we obtained the similar data of protein expression. The enzyme activities of SOD, catalase, and GPX of ginsan-treated and irradiated mice were significantly enhanced by 140, 115, 126% respectively, compared with those of irradiated mice. Based on these results, we propose that the induction of antioxidant enzymes of ginsan is at least in part due to its capacity to protect against radiation.

  14. [Nootropics and antioxidants in the complex therapy of symptomatic posttraumatic epilepsy].

    Science.gov (United States)

    Savenkov, A A; Badalian, O L; Avakian, G N

    2013-01-01

    To study the possibility of application of nootropics and antioxidants in the complex antiepileptic therapy, we examined 75 patients with symptomatic focal posttraumatic epilepsy. A statistically significant reduction in the number of epileptic seizures, improvement of cognitive function and quality of life of the patients as well as a decrease in the severity of depression and epileptic changes in the EEG were identified. The potentiation of antiepileptic activity of basic drugs, normalization of brain's electrical activity and reduction in EEG epileptiform activity, in particular coherent indicators of slow-wave activity, were noted after treatment with the antioxidant mexidol. A trend towards the improvement of neuropsychological performance and quality of life was observed. There was a lack of seizure aggravation typical of many nootropic drugs. Thus, phenotropil and mexidol can be recommended for complex treatment of symptomatic posttraumatic epilepsy.

  15. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status.

    Science.gov (United States)

    Ciftci, Halil; Verit, Ayhan; Savas, Murat; Yeni, Ercan; Erel, Ozcan

    2009-07-01

    To examine whether a beneficial effect of N-acetylcysteine (NAC) on semen parameters and oxidative/antioxidant status in idiopathic male infertility exists. The production of reactive oxygen species is a normal physiologic event in various organs. However, overproduction of reactive oxygen species can be detrimental to sperm and has been associated with male infertility. Our study included 120 patients who had attended our clinic and were diagnosed with idiopathic infertility according to medical history and physical and seminal examination findings, as initial evaluations. The patients were divided randomly into 2 groups. Those in the study group (60 men) were given NAC (600 mg/d orally) for 3 months; the control group (60 men) received a placebo. The oxidative status was determined by measuring the total antioxidant capacity, total peroxide and oxidative stress index in plasma samples. The sperm parameters were evaluated after NAC treatment and were compared with those in the control group. NAC had significant improving effects on the volume, motility, and viscosity of semen. After NAC treatment, the serum total antioxidant capacity was greater and the total peroxide and oxidative stress index were lower in the NAC-treated group compared with the control group. These beneficial effects resulted from reduced reactive oxygen species in the serum and reduced viscosity of the semen. No significant differences were found in the number or morphology of the sperm between the 2 groups. We believe that NAC could improve some semen parameters and the oxidative/antioxidant status in patients with male infertility.

  16. Effects of smokeless dipping tobacco (Naswar) consumption on antioxidant enzymes and lipid profile in its users.

    Science.gov (United States)

    Sajid, Faiza; Bano, Samina

    2015-09-01

    Dipping tobacco, traditionally referred to as moist snuff, is a type of finely ground, moistened smokeless tobacco product. Naswar is stuffed in the floor of the mouth under the lower lip, or inside the cheek, for extended periods of time. Tobacco use causes dyslipidemia and also induces oxidative stress, leading to alteration in levels of antioxidant enzymes. Dyslipidemia and oxidative stress in turn play a vital role in the development of cardiovascular disease (CVD). Studies conducted on smokeless tobacco products reveal contradictory findings regarding its effects on lipid profile and antioxidant enzymes. As use of Naswar is quite common in Pakistan, the current study aimed to evaluate levels of the antioxidant enzymes viz glutathione per oxidase (GPx) and super oxide dismutase (SOD), alongside lipid profile parameters such as total cholesterol, triglycerides, High density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) to assess the risk of adverse cardiovascular events in Naswar users.90 Healthy males aged 16-43 years, who consumed Naswar daily, were selected for the study, alongside 68 age-matched non-tobacco users as controls. Both GPx and SOD levels as well as serum HDL-C were significantly reduced (Pprofile and antioxidant enzymes thereby placing its consumers at an increased risk of cardiovascular disease.

  17. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses.

    Science.gov (United States)

    Schriner, Samuel E; Avanesian, Agnesa; Liu, Yanxia; Luesch, Hendrik; Jafari, Mahtab

    2009-09-01

    Rhodiola rosea root has been long used in traditional medical systems in Europe and Asia as an adaptogen to increase an organism's resistance to physical stress. Recent research has demonstrated its ability to improve mental and physical stamina, to improve mood, and to help alleviate high-altitude sickness. We have also recently found that R. rosea is able to extend the life span of Drosophila melanogaster. The mode of action of R. rosea is currently unknown; it has been suggested by some to act as an antioxidant, whereas others have argued that it may actually be a pro-oxidant and act through a hormetic mechanism. We found that R. rosea supplementation could protect cultured cells against ultraviolet light, paraquat, and H(2)O(2). However, it did not alter the levels of the major antioxidant defenses nor did it markedly activate the antioxidant response element or modulate heme-oxygenase-1 expression levels at relevant concentrations. In addition, R. rosea extract was not able to significantly degrade H(2)O(2) in vitro. These results suggest that in human cultured cells R. rosea does not act as an antioxidant and that its mode of action cannot be sufficiently explained through a pro-oxidant hormetic mechanism.

  18. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study.

    Science.gov (United States)

    Hassani, Shokoufeh; Maqbool, Faheem; Salek-Maghsoudi, Armin; Rahmani, Soheila; Shadboorestan, Amir; Nili-Ahmadabadi, Amir; Amini, Mohsen; Norouzi, Parviz; Abdollahi, Mohammad

    2018-01-01

    In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GP X and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.

  19. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Hans Köhler

    2017-05-01

    Full Text Available Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA. The enzymatic (superoxide dismutase, SOD and total peroxidases, POD and non-enzymatic antioxidant activity (total phenolic increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.

  20. Supplementation with Vitamin E and Vitamin C inversely alters mitochondrial copy number and mitochondrial protein in obese, exercising rats

    Science.gov (United States)

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While obesity alters mitochondrial (MT) function and induces insulin resistance (IR), no data...