WorldWideScience

Sample records for antibody fragments directed

  1. Direct labelling of monomeric antibody fragments Fab' with 99mTc

    International Nuclear Information System (INIS)

    Li Jun; Wang Shizhen; Yang Ziyi

    1994-01-01

    Direct labelling method and conditions of monomeric antibody Fab' with 99m Tc were investigated. Polyclonal antibody IgG was digested with ficin to produce dimeric fragments F(ab') 2 , which was subsequently reduced to monomeric fragments Fab' with 2-mercaptoethylamine. Finally, Fab' was incubated with sodium gluconate (Sn(II)) kit solution and 99m TcO 4 - eluted at room temperature to form 99m Tc-Fab'. The labelling efficiency was 85%-95%. The stability of labelled products was satisfactory and the elimination rate was faster than 99m Tc-IgG

  2. Labeling and stability of radiolabeled antibody fragments by a direct 99mTc-labeling method

    International Nuclear Information System (INIS)

    Pak, K.Y.; Nedelman, M.A.; Tam, S.H.; Wilson, E.; Daddona, P.E.

    1992-01-01

    The in vitro labeling and stability of 99m Tc-labeled antibody Fab' fragments prepared by a direct labeling technique were evaluated. Eight antibody fragments derived from murine IgG1 (N = 5), IgG2a (N = 2) and IgG3 (N = 1) isotypes were labeled with a preformed 99m Tc-D-glucarate complex. No loss of radioactivity incorporation was observed for all the 99m Tc-labeled antibody fragments after 24 h incubation at 37 o C. 99m Tc-labeled antibody fragments (IgG1, N = 2; IgG2a, n = 2; IgG3, N = 1) were stable upon challenge with DTPA, EDTA or acidic pH. Using the affinity chromatography technique, two of the 99m Tc-labeled antibody fragments displayed no loss of immunoreactivity after prolonged incubation in phosphate buffer up to 24 h at 37 o C. Bonding between 99m Tc and antibody fragments was elucidated by challenging with a diamide ditholate (N 2 S 2 ) compound. The Fab' with IgG2a isotype displayed tighter binding to 99m Tc in comparison to Fab' from IgG1 and IgG3 isotype in N 2 S 2 challenge and incubation with human plasma. The in vivo biodistribution of five 99m Tc-labeled fragments were evaluated in normal mice. (Author)

  3. Cloning, bacterial expression and crystallization of Fv antibody fragments

    Science.gov (United States)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  4. Microbials for the production of monoclonal antibodies and antibody fragments.

    Science.gov (United States)

    Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph

    2014-01-01

    Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Recombinant fragment of an antibody tailored for direct radioiodination

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj; Fábry, Milan; Sieglová, Irena; Král, Vlastimil; Uhnáková, Bronislava; Mudra, M.; Kronrád, L.; Sawicka, A.; Mikolajczak, R.; Řezáčová, Pavlína

    2012-01-01

    Roč. 55, č. 1 (2012), s. 52-56 ISSN 0362-4803 R&D Projects: GA MPO 2A-2TP1/076; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50520514 Keywords : I125 labelling * single-chain antibody variable fragment * tyrosine-rich polypeptide segment * fusion protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.240, year: 2012

  6. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction.

    Directory of Open Access Journals (Sweden)

    Takayoshi Matsuda

    Full Text Available Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody-antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab of the anti-EGFR antibody 059-152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR, so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.

  7. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  8. Microbial platform technology for recombinant antibody fragment production: A review.

    Science.gov (United States)

    Gupta, Sanjeev Kumar; Shukla, Pratyoosh

    2017-02-01

    Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.

  9. Refolding Technologies for Antibody Fragments

    Directory of Open Access Journals (Sweden)

    Tsutomu Arakawa

    2014-05-01

    Full Text Available Refolding is one of the production technologies for pharmaceutical grade antibody fragments. Detergents and denaturants are primarily used to solubilize the insoluble proteins. The solubilized and denatured proteins are refolded by reducing the concentration of the denaturants or detergents. Several refolding technologies have been used for antibody fragments, comprising dilution, dialysis, solid phase solvent exchange and size exclusion chromatography, as reviewed here. Aggregation suppressor or folding-assisting agents, including arginine hydrochloride, ionic liquids and detergents or denaturants at low concentrations, are included in the refolding solvent to enhance refolding yield.

  10. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    Science.gov (United States)

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab') 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab') 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  12. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  13. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments

    International Nuclear Information System (INIS)

    Kirley, Terence L.; Greis, Kenneth D.; Norman, Andrew B.

    2016-01-01

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’) 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’) 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be used, simplifying

  14. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P.

    1991-01-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats

  15. A simple and robust approach to immobilization of antibody fragments.

    Science.gov (United States)

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations.

    Science.gov (United States)

    Kholodenko, Roman V; Kalinovsky, Daniel V; Doronin, Igor I; Ponomarev, Eugene D; Kholodenko, Irina V

    2017-08-17

    Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    Quinn, T.P.

    2003-01-01

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99m Tc and 188 Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  18. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  19. Comparative imaging and biodistribution studies with an anti-CEA monoclonal antibody and its F(ab)2 and Fab fragments in mice with colon carcinoma xenografts

    International Nuclear Information System (INIS)

    Andrew, S.M.; Pimm, M.V.; Baldwin, R.W.; Perkins, A.C.

    1986-01-01

    An IgG1 mouse monoclonal antibody directed against CEA has been digested with papain to yield F(ab) 2 and Fab fragments. Following radioiodination, intact antibody and fragments showed specific binding to cells of a CEA-producing tumour, although the immune reactivities of the fragments were lower than that of intact antibody. Gamma scintigraphy of nude mice bearing CEA producing human tumour xenografts and injected with 131 I-labelled fragments showed earlier and superior imaging of tumours than did 131 I-intact antibody, and this was most marked with the Fab fragment. Sequential dissection analyses showed that this was due to earlier and higher tumour-to-blood ratios with fragments than with intact antibody, but in absolute terms the degree of localization of both fragment types was significantly lower than that of intact antibody. (orig.)

  20. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    Monoclonal antibodies (MAbs), with high specificity and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C{sub H}3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering

  1. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C H 3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  2. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...

  3. Monoclonal antibody fragment removal mediated by mixed mode resins.

    Science.gov (United States)

    O'Connor, Ellen; Aspelund, Matthew; Bartnik, Frank; Berge, Mark; Coughlin, Kelly; Kambarami, Mutsa; Spencer, David; Yan, Huiming; Wang, William

    2017-05-26

    Efforts to increase monoclonal antibody expression in cell culture can result in the presence of fragmented species requiring removal in downstream processing. Capto adhere, HEA Hypercel, and PPA Hypercel anion exchange/hydrophobic interaction mixed mode resins were evaluated for their fragment removal capabilities and found to separate large hinge IgG1 antibody fragment (LHF) from monomer. Removal of greater than 75% of LHF population occurred at pH 8 and low conductivity. The mechanism of fragment removal was investigated in two series of experiments. The first experimental series consisted of comparison to chromatographic behavior on corresponding single mode resins. Both single mode anion exchange and hydrophobic interaction resins failed to separate LHF. The second experimental series studied the impact of phase modifiers, ethylene glycol, urea, and arginine on the mixed mode mediated removal. The addition of ethylene glycol decreased LHF removal by half. Further decreases in LHF separation were seen upon incubation with urea and arginine. Therefore, it was discovered that the purification is the result of a mixed mode phenomena dominated by hydrophobic interaction and hydrogen bonding effects. The site of interaction between the LHF and mixed mode resin was determined by chemical labeling of lysine residues with sulfo-NHS acetate. The labeling identified the antibody hinge and light chain regions as mediating the fragment separation. Sequence analysis showed that under separation conditions, a hydrophobic proline patch and hydrogen bonding serine and threonine residues mediate the hinge interaction with the Capto adhere ligand. Additionally, a case study is presented detailing the optimization of fragment removal using Capto adhere resin to achieve purity and yield targets in a manufacturing facility. This study demonstrated that mixed mode resins can be readily integrated into commercial antibody platform processes when additional chromatographic abilities

  4. Chimeric recombinant antibody fragments in cardiac troponin I immunoassay.

    Science.gov (United States)

    Hyytiä, Heidi; Heikkilä, Taina; Brockmann, Eeva-Christine; Kekki, Henna; Hedberg, Pirjo; Puolakanaho, Tarja; Lövgren, Timo; Pettersson, Kim

    2015-03-01

    To introduce a novel nanoparticle-based immunoassay for cardiac troponin I (cTnI) utilizing chimeric antibody fragments and to demonstrate that removal of antibody Fc-part and antibody chimerization decrease matrix related interferences. A sandwich-type immunoassay for cTnI based on recombinant chimeric (mouse variable/human constant) antigen binding (cFab) antibodies and intrinsically fluorescent nanoparticles was developed. To test whether using chimeric antibody fragments helps to avoid matrix related interferences, samples (n=39) with known amounts of triglycerides, bilirubin, rheumatoid factor (RF) or human anti-mouse antibodies (HAMAs) were measured with the novel assay, along with a previously published nanoparticle-based research assay with the same antibody epitopes. The limit of detection (LoD) was 3.30ng/L. Within-laboratory precision for 29ng/L and 2819ng/L cTnI were 13.7% and 15.9%, respectively. Regression analysis with Siemens ADVIA Centaur® yielded a slope (95% confidence intervals) of 0.18 (0.17-1.19) and a y-intercept of 1.94 (-1.28-3.91) ng/L. When compared to a previously published nanoparticle-based assay, the novel assay showed substantially reduced interference in the tested interference prone samples, 15.4 vs. 51.3%. A rheumatoid factor containing sample was decreased from 241ng/L to fragments enabled the development of a sensitive (LoD=3.3ng/L) immunoassay for the detection of cTnI and decreased matrix related interferences, thus resulting in a lower number of falsely elevated cTnI-values. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Direct 99mTc labeling of monoclonal antibodies: radiolabeling and in vitro stability

    International Nuclear Information System (INIS)

    Garron, J.Y.; Moinereau, M.; Pasqualini, R.; Saccavini, J.C.

    1991-01-01

    Direct labeling involves 99m Tc binding to different donor groups on the protein, giving multiple binding sites of various affinities resulting in an in vivo instability. The stability has been considerably improved by activating the antibody using a controlled reduction reaction (using 2-aminoethanethiol). This reaction generates sulfhydryl groups, which are known to strongly bind 99m Tc. The direct 99m Tc antibody labeling method was explored using whole antibodies and fragments. Analytical methods were developed for routine evaluation of radiolabeling yield and in vitro stability. Stable direct antibody labeling with 99m Tc requires the generation of sulfhydryl groups, which show high affinity binding sites for 99m Tc. Such groups are obtained with 2-aminoethanethiol (AET), which induces the reduction of the intrachain or interchain disulfide bond, with no structural deterioration or any loss of immunobiological activity of the antibody. The development of fast, reliable analytical methods has made possible the qualitative and quantitative assessment of technetium species generated by the radiolabeling process. Labeling stability is determined by competition of the 99m Tc-antibody bond with three ligands, Chelex 100 (a metal chelate-type resin), free DTPA solution and 1% HSA solution. Very good 99m Tc-antibody stability is obtained with activated IgG (IgGa) and Fab' fragment, which makes these substances possible candidates for immunoscintigraphy use. (author)

  6. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  7. Escherichia coli F4 fimbriae specific lama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhea

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Hoogendoorn, A.; Zijderveld, van F.G.; Niewold, T.A.; Meulen, van der J.

    2005-01-01

    Oral administration of polyclonal antibodies directed against enterotoxigenic Escherichia coli (ETEC) F4 fimbriae is used to protect against piglet post-weaning diarrhoea. For cost reasons, we aim to replace these polyclonal antibodies by recombinant llama single-domain antibody fragments (VHHs)

  8. Efficient one-step direct labelling of recombinant antibodies with technetium-99m

    International Nuclear Information System (INIS)

    Liberatore, M.; Neri, D.; Neri, G.; Pini, A.; Lurilli, A.P.; Ponzo, F.; Spampinato, G.; Padula, F.; Pala, A.; Colella, A.C.

    1995-01-01

    High-affinity bacterially expressed antibody fragments can nowadays be cloned from established hybridomas or, more conveniently, isolated directly from antibody libraries displayed on filamentous phage. Such antibodies can be tagged with C-terminal peptide tags containing one cysteine residue, which represents a convenient functionalisation site for a number of applications, including technetium-99m labelling. Here we describe a simple one-step method for 99m Tc labelling of cysteine-tagged recombinant antibodies with more than 50% radionuclide incorporation. The labelled antibodies displayed full retention of immuoreactivity and good stability. (orig.)

  9. Efficient one-step direct labelling of recombinant antibodies with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, M. [Dipartimento di Medicina Sperimentale, Sezione di Medicina Nucleare, Policlinico Umberto I, Universita di Roma `La Sapienza` (Italy); Neri, D. [Cambridge Centre for Protein Engineering - MRC Centre (United Kingdom); Neri, G. [Dipartimento di Biologia Molecolare, Universita di Siena (Italy); Pini, A. [Dipartimento di Biologia Molecolare, Universita di Siena (Italy); Lurilli, A.P. [Dipartimento di Medicina Sperimentale, Sezione di Medicina Nucleare, Policlinico Umberto I, Universita di Roma `La Sapienza` (Italy); Ponzo, F. [Dipartimento di Medicina Sperimentale, Sezione di Medicina Nucleare, Policlinico Umberto I, Universita di Roma `La Sapienza` (Italy); Spampinato, G. [Laboratorio di Biochimica degli Ormoni Sessuali, Il Instituto di Clinica Ostetrica e Ginecologica, Universita di Roma `La Sapienza` (Italy); Padula, F. [Laboratorio di Biochimica degli Ormoni Sessuali, Il Instituto di Clinica Ostetrica e Ginecologica, Universita di Roma `La Sapienza` (Italy); Pala, A. [Laboratorio di Biochimica degli Ormoni Sessuali, Il Instituto di Clinica Ostetrica e Ginecologica, Universita di Roma `La Sapienza` (Italy); Colella, A.C. [Dipartimento di Medicina Sperimentale, Sezione di Medicina Nucleare, Policlinico Umberto I, Universita di Roma `La Sapienza` (Italy)

    1995-11-01

    High-affinity bacterially expressed antibody fragments can nowadays be cloned from established hybridomas or, more conveniently, isolated directly from antibody libraries displayed on filamentous phage. Such antibodies can be tagged with C-terminal peptide tags containing one cysteine residue, which represents a convenient functionalisation site for a number of applications, including technetium-99m labelling. Here we describe a simple one-step method for {sup 99m}Tc labelling of cysteine-tagged recombinant antibodies with more than 50% radionuclide incorporation. The labelled antibodies displayed full retention of immuoreactivity and good stability. (orig.)

  10. Composition and method for detecting cancer with technetium labeled antibody fragments

    International Nuclear Information System (INIS)

    Burchiel, S. W.; Crockford, D. R.; Rhodes, B. A.

    1984-01-01

    F(ab') 2 or Fab fragments of antibodies to: (a) human chorionic gonadotropin (hCG), hCG alpha subunit, hCG beta subunit, or an hCG-like material; or (b) other tumor specific or tumor associated molecules, to include carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), human melanoma associated antigens, human sarcoma associated antigens or other antigens, are radiolabeled with technetium-99m (Tc-99m). When the F(ab') 2 or Fab fragments of antibody to such tumor associated antigens are injected intravenously into a patient, the radiolabeled composition accumulates at tumor sites. The accumulation of the cancer seeking radiopharmaceutical at tumor sites permits detection by external gamma scintigraphy. Thus, the composition is useful in the monitoring, localization and detection of cancer in the body. In an alternative composition, a double antibody approach to tumor localization using radiolabeled F(ab') 2 or Fab fragments is utilized. In this approach, a tumor specific antibody in the form of IgG, F(ab') 2 or Fab is first administered to a patient intravenously. Following a sufficient period of time, a second antibody in the form of F(ab') 2 or Fab is administered. The second antibody is radiolabeled with Tc-99m and has the property that it is reactive with the first antibody. This double antibody method has the advantage over a single antibody approach in that smaller tumors can be localized and detected and that the total amount of radioactive trace localized at the cancer site is increased

  11. Properties, production and applications of camelid single-domain antibody fragments

    NARCIS (Netherlands)

    Harmsen, M.M.; Haard, de H.J.

    2007-01-01

    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms

  12. Production and characterization of anti-human IgG F(ab')2 antibody fragment.

    Science.gov (United States)

    Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Esparvarinha, Mojghan; Majidi, Jafar

    2018-04-10

    In present study an optimized protocol for the separation of antibodies into antigen-binding fragments F(ab')2 using pepsin digestion was investigated. The production of these fragments is a consequential step in the development of medical research, treatment and diagnosis. For production of polyclonal antibody rabbit received antigen in four steps. The rabbit serum at 1/128000 dilution showed high absorbance in reaction with human IgG at the designed ELISA method. Rabbit IgG was purified by Ion-Exchange Chromatography (IEC) method. Purity was assessed by SDS-PAGE method. In non-reduced condition only one band was seen in about 150 kDa MW position and in reduced form, two bands were seen in 50 and 25 kDa MW positions. Rabbit IgG was digested by pepsin enzyme. The antibody fragments solution was applied to Gel filtration column to isolate the F(ab')2. Non-reduced SDS-PAGE for determining the purity of F(ab')2 fragment resulted in one band in 100 kDa corresponds to F(ab')2 fragment and a band in 150 kDa MW position corresponds to undigested IgG antibodies. The activities of FITC conjugated F(ab')2 fragment and commercial ones were compared using flowcytometry method. The activity results implied that the FITC conjugated- anti human F(ab')2 fragment worked as efficiently as the commercial one.

  13. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell

  14. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability.

    Science.gov (United States)

    Arimori, Takao; Kitago, Yu; Umitsu, Masataka; Fujii, Yuki; Asaki, Ryoko; Tamura-Kawakami, Keiko; Takagi, Junichi

    2017-10-03

    Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp. Finally, Fv-clasp antibodies showed superior "chaperoning" activity over conventional Fab fragments, and facilitated the structure determination of an ectodomain fragment of integrin α6β1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Use of an anti-platelet monoclonal antibody F (ab')2 fragment for imaging thrombus

    International Nuclear Information System (INIS)

    Loutfi, I.; Stuttle, A.W.J.; Peters, A.M.; George, P.; Lavender, J.P.; Lumley, P.

    1990-01-01

    Ten patients with suspected thrombus have been studied using 111 In-labelled F (ab')2 fragments of P256, a monoclonal antibody which recognizes an epitope on the platelet membrane glycoprotein IIb/IIIa complex. The F (ab')2 fragment was radiolabelled with 111 In via diethylenetri-aminepentamacetic acid to give a specific activity of up to 190 MBq (5mCi) mg - 1 without impairment of immunoreactivity. In vitro platelet aggregation studies showed that the F (ab')2 fragment caused less platelet aggregation than the whole antibody on a molar ratio and was without significant effect upon the sensitivity of platelets to a range of aggregating agents. Platalets were labelled in ten patients by intravenous injection of approximately 100 μg P256 F (ab')2. Of the ten patients studies, six showed localization of activity consistent with platelet accumulation. Localization was clearly seen when associated with thrombus of the lower limbs (three patients: deep vein thrombosis; one patient: aortofemoral graft), and was apparent although less marked in two other cases, one of aortic aneurysm and one of carotid stenosis. Use of radiolabelled P256 F (ab')2 offers a means of non-invasive detection of thrombus which, from in vitro studies, would appear to have less direct effect of platelet behaviour than the whole antibody. (author). 9 refs. 8 figs. 1 tab

  16. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo

    NARCIS (Netherlands)

    Dolk, E.; Vaart, M. van der; Lutje Hulsik, D.; Vriend, G.; Haard, H. de; Spinelli, S.; Cambillau, C.; Frenken, L.; Verrips, T.

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama

  17. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs.

    Science.gov (United States)

    Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge

    2012-01-01

    Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.

  18. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  19. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system.

    Science.gov (United States)

    Mizukami, Makoto; Onishi, Hiromasa; Hanagata, Hiroshi; Miyauchi, Akira; Ito, Yuji; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Tokunaga, Masao

    2018-10-01

    The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    International Nuclear Information System (INIS)

    Miao, H.-Q.; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping

    2006-01-01

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies

  1. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  2. Fragmentation, labeling and biodistribution studies of KS1/4, a monoclonal antibody

    International Nuclear Information System (INIS)

    Mohd, S.B.

    1987-01-01

    In this study, an IgG2a (KS1/4), a monoclonal antibody (MoAb) specific against a human lung adenocarcinoma (UCLA P-3) was successfully fragmented enzymatically to yield F(ab') 2 and Fab by using pepsin and papain, respectively. The kinetic of fragmentation of the MoAb was compared to that of human immunoglobulin G (IgG). A similar pattern of fragmentation was observed with both antibodies with a higher percentage yield of the F(ab') 2 and Fab obtained upon the fragmentation of the IgG by the enzymes. The KS1/4 and the two fragments were labeled with three different radionuclides, namely iodine-131, indium-111 and selenium-75. The radioiodination of the MoAb and the fragments was carried out by using a modified chloramine-T method. Radiometal labeling of the MoAb and the fragments with indium-111 was performed by using DTPA as a bifunctional chelating agent, while intrinsic labeling of the MoAb was done by culturing the hybridoma in the presence of 75 Se-methionine. The biodistribution of the radiolabeled MoAb, F(ab') 2 and Fab fragments were performed by injecting the preparations intravenously into nude mice bearing human lung adenocarcinoma

  3. Application of 99mTc-labeled chimeric Fab fragments of monoclonal antibody A7 for radioimmunoscintigraphy of pancreatic cancer

    International Nuclear Information System (INIS)

    Matsumura, Hiroomi

    1999-01-01

    Pancreatic cancer is one of the most lethal diseases and its prognosis is still poor. To improve the survival rate, it is essential to develop new technologies for early and definitive diagnosis. In this study, chimeric Fab fragments of monoclonal antibody A7 were successfully radio-labeled with 99m Tc, preventing depression of the antigen-binding activity. 99m Tc-labeled monoclonal antibody A7, 99m Tc-labeled chimeric Fab fragments of monoclonal antibody A7, 99m Tc-labeled normal mouse IgG and 99m Tc-labeled Fab fragments of normal mouse IgG were injected intravenously into nude mice bearing human pancreatic cancer xenografts and the radioactivity was subsequently measured. The tumor accumulation was significantly higher with labeled monoclonal antibody A7 than with normal mouse IgG, and higher with chimeric Fab fragments of monoclonal antibody A7 than with Fab fragments of normal mouse IgG. The tumor/blood ratio of radioactivity increased rapidly over time with chimeric Fab fragments of monoclonal antibody A7. These results suggest that chimeric Fab fragments of monoclonal antibody A7 may be useful for diagnosing pancreatic cancer by means of radioimmunoscintigraphy. (author)

  4. Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV

    Directory of Open Access Journals (Sweden)

    Hust Michael

    2008-09-01

    Full Text Available Abstract Background Venezuelan equine encephalitis virus (VEEV belongs to the Alphavirus group. Several species of this family are also pathogenic to humans and are recognized as potential agents of biological warfare and terrorism. The objective of this work was the generation of recombinant antibodies for the detection of VEEV after a potential bioterrorism assault or an natural outbreak of VEEV. Results In this work, human anti-VEEV single chain Fragments variable (scFv were isolated for the first time from a human naïve antibody gene library using optimized selection processes. In total eleven different scFvs were identified and their immunological specificity was assessed. The specific detection of the VEEV strains TC83, H12/93 and 230 by the selected antibody fragments was proved. Active as well as formalin inactivated virus particles were recognized by the selected antibody fragments which could be also used for Western blot analysis of VEEV proteins and immunohistochemistry of VEEV infected cells. The anti-VEEV scFv phage clones did not show any cross-reactivity with Alphavirus species of the Western equine encephalitis virus (WEEV and Eastern equine encephalitis virus (EEEV antigenic complex, nor did they react with Chikungunya virus (CHIKV, if they were used as detection reagent. Conclusion For the first time, this study describes the selection of antibodies against a human pathogenic virus from a human naïve scFv antibody gene library using complete, active virus particles as antigen. The broad and sensitive applicability of scFv-presenting phage for the immunological detection and diagnosis of Alphavirus species was demonstrated. The selected antibody fragments will improve the fast identification of VEEV in case of a biological warfare or terroristic attack or a natural outbreak.

  5. Localization of tumors in vivo by scintigraphic identification of Clostridium butyricum using 131I-labelled antibodies and F(ab')2-antibody fragments

    International Nuclear Information System (INIS)

    Vogt, R.; Mehnert, W.H.; Schmidt, H.E.; Altenbrunn, H.J.; Akademie der Wissenschaften der DDR, Berlin-Buch. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1979-01-01

    Tumor-bearing mice injected with clostridial spores show enrichment and germination of the spores within the tumor. 131 I-labelled anti-Clostridium-antibodies and anti-Clostridium-F(ab') 2 -fragments were used for a possible localization of tumors in vivo by scintiscanning. The application of the antibody revealed increased radioactivity in the tumors of mice pretreated with spores as well as in animals without pretreatment. In using F(ab') 2 -fragments instead of total antibody neither the apparently unspecific increase of radioactivity in not pretreated mice nor the specific fixation of labelled F(ab') 2 -fragments to clostridial rods in the tumors of pretreated animals could be demonstrated. The results are discussed with respect to further investigation

  6. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells

    Czech Academy of Sciences Publication Activity Database

    Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Muehlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchánek, M.; Wozniak-Knopp, G.; Hořejší, Václav; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H.

    2018-01-01

    Roč. 14, č. 1 (2018), s. 123-130 ISSN 1549-9634 Institutional support: RVO:68378050 Keywords : Active targeting * Liposome functionalization * Immunoliposome * Antibody engineering * Recombinant Fab antibody fragment Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.720, year: 2016

  7. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    Science.gov (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  8. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential.

    Science.gov (United States)

    Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela A E; Krauss, Jürgen

    2014-01-01

    The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.

  9. Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori

    NARCIS (Netherlands)

    Joosten, V.; Gouka, R.J.; Hondel, C.A.M.J.J. van den; Verrips, C.T.; Lokman, B.C.

    2005-01-01

    We report the expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Fragments encoding VHHs were cloned in a suitable Aspergillus expression vector and transformants secreting VHH fragments were analysed for integrated gene copy-numbers, mRNA

  10. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis.

    Science.gov (United States)

    Hayhurst, Andrew; Happe, Scott; Mabry, Robert; Koch, Zephyr; Iverson, Brent L; Georgiou, George

    2003-05-01

    Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.

  11. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  12. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    Science.gov (United States)

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  13. Study of the viability of technetium-99m labeling of whole antimyosin antibody and its fragment: development of radiopharmaceutical for cardiac survey

    International Nuclear Information System (INIS)

    Carvalho, Guilherme Luiz de Castro

    2007-01-01

    In the acute myocardium infarction, the myocytes cell membrane loses its integrity, allowing the influx of extracellular macromolecules such as circulating antibody into the damaged cell. The use of the specific antibodies against cardiac myosin labeled with 99m Tc allows to determine the localization and extension of myocardial infarction. The purpose of this work was to study the viability of labeling of the antimyosin monoclonal antibody and its fragment F(ab')2 with 99m Tc. Because of the high cost of antimyosin antibody, others antibodies were used to optimize the methodology and the best condition was used for antimyosin antibody. The intact antibody was cleaved by pepsin to produce F(ab') 2 fragment. The F(ab') 2 and the intact antibody were reduced by treatment with Dithiothreitol (DTT) and 2-Mercaptoethanol (2-ME) and labeled with 99m Tc by direct method. Different concentrations of reductant, mixing conditions and incubation times were studied. In the standard condition, incubation at molar ratio 1:1000 (antibody:reducing agent) at room temperature for 30 minutes with continuous rotation (850 rpm), 13.28 - SH groups were formed per molecule. It was studied the influence of p H, of the concentration of stannous chloride (Sn 2+ ) and incubation time in the labeling condition. The better radiochemical yield (90.06 +- 1.53%) was obtained using 2.5 μg of Sn 2+ in p H 4.5 for 60 minutes. The labeling of the fragment F(ab') 2 did not present satisfactory results because of the low yield of the digestion. After purification by PD-10, the biodistribution study was performed and showed that the intact antimyosin antibody labeled with 99m Tc presented fast kinetic compatible with the biodistribution of an intact antibody labeled with 99m Tc. Scintigraphy image of the animal with myocardial infarction was obtained and compared with the image of a normal animal. The studies allow to conclude that the use of fragment F(ab') 2 are not viable, but the use of the labeled

  14. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K

    1996-01-01

    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...

  15. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen

    NARCIS (Netherlands)

    Dolk, E.; Vliet, C. van; Perez, J.M.J.; Vriend, G.; Darbon, H.; Ferrat, G.; Cambillau, C.; Frenken, L.G.J.; Verrips, T.

    2005-01-01

    In a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90°C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains

  16. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  18. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    International Nuclear Information System (INIS)

    Hadley, S.W.; Wilbur, D.S.

    1990-01-01

    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate

  19. Improved production and function of llama heavy chain antibody fragments by molecular evolution

    NARCIS (Netherlands)

    Linden, van der R.H.; Geus, de B.; Frenken, G.J.; Peters, H.; Verrips, C.T.

    2000-01-01

    The aim of this study was to improve production level of llama heavy chain antibody fragments (V (HH)) in Saccharomyces cerevisiae while retaining functional characteristics. For this purpose, the DNA shuffling technique was used on llama V (HH) fragments specific for the azo-dye reactive red-6. In

  20. The Antitumor Effect of Single-domain Antibodies Directed Towards Membrane-associated Catalase and Superoxide Dismutase.

    Science.gov (United States)

    Bauer, Georg; Motz, Manfred

    2016-11-01

    Neutralizing single-domain antibodies directed towards catalase or superoxide dismutase (SOD) caused efficient reactivation of intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling specifically in human tumor cells. Single-domain antibodies targeted tumor cell-specific membrane-associated SOD and catalase, but not the corresponding intracellular enzymes. They were shown to be about 200-fold more effective than corresponding classical recombinant antigen-binding fragments and more than four log steps more efficient than monoclonal antibodies. Combined addition of single-domain antibodies against catalase and SOD caused a remarkable synergistic effect. Proof-of-concept experiments in immunocompromised mice using human tumor xenografts and single-domain antibodies directed towards SOD showed an inhibition of tumor growth. Neutralizing single-domain antibodies directed to catalase and SOD also caused a very strong synergistic effect with the established chemotherapeutic agent taxol, indicating an overlap of signaling pathways. This effect might also be useful in order to avoid unwanted side-effects and to drastically lower the costs for taxol-based therapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Radioimmunoimaging using F(ab')2 fragment of monoclonal antibodies against human alpha-fetoprotein

    International Nuclear Information System (INIS)

    Sakahara, Harumi; Endo, Keigo; Nakashima, Tetsuo; Koizumi, Mitsuru; Ohta, Hitoya; Torizuka, Kanji; Okada, Kenichiro; Yoshida, Osamu; Nishi, Shinzo.

    1985-01-01

    Using monoclonal antibodies against human α-fetoprotein (AFP), radioiodinated F(ab') 2 fragments were compared with whole IgG as a radiotracer for radioimmunoimaging of cancer. F(ab') 2 fragments were obtained by pepsin digestion of whole IgG (IgGl). IgG and F(ab') 2 were labeled with 125 I or 131 I by the chloramine-T method with almost full retention of antibody activity. F(ab') 2 fragments were cleared more rapidly from the circulation in normal mice with a half life of 6.3 hours than whole IgG with a half life of 5.5 days. Radioactivity of F(ab') 2 in various organs also decreased faster than IgG. In nude mice transplanted with AFP-producing human testicular tumor, F(ab') 2 fragments demonstrated superior scintigrams to whole IgG at 2 days after the injection, because of the fast disappearance of background radioactivity. Although absolute accumulation of 131 I labeled F(ab') 2 in the tumor was less than that of 131 I labeled IgG, tumor to other organ ratios were much higher with F(ab') 2 than those of IgG. The tumor to blood ratio of 131 I labeled F(ab') 2 was 1.04 at day 2, whereas tumor to blood ratio of 131 I labeled IgG was 0.55 at day 2 and 0.92 at day 4, respectively. These results indicated that for the radiolabeling of monoclonal antibodies, F(ab') 2 fragments would be superior to whole IgG in the radioimmunoimaging of cancer. (author)

  2. Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.

    Science.gov (United States)

    Oyen, David; Steyaert, Jan; Barlow, John N

    2014-04-01

    We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.

  3. Optimization of the crystallizability of a single-chain antibody fragment

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Král, Vlastimil; Fábry, Milan; Sedláček, Juraj; Veverka, Václav; Řezáčová, Pavlína

    2014-01-01

    Roč. 70, č. 12 (2014), s. 1701-1706 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : single-chain antibody fragment * Thermofluor assay * differential scanning fluorimetry * crystallizability optimization * oligomerization * crystallization Subject RIV: CE - Biochemistry Impact factor: 0.527, year: 2014

  4. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  5. Anti-coagulation effect of Fc fragment against anti-β2-GP1 antibodies in mouse models with APS.

    Science.gov (United States)

    Xie, Weidong; Zhang, Yaou; Bu, Cunya; Sun, Shijing; Hu, Shaoliang; Cai, Guoping

    2011-01-01

    Anti-beta (2)-glycoprotein I (anti-β2-GP1) is one of the important pathogenesis factors responsible for thrombosis formation in patients with antiphospholipid syndrome (APS). Administration of intravenous immunoglobulin (IVIg) is a common method used to inhibit the abnormal antibody levels and decrease the mortality of APS in emergency situations. We hypothesize that the Fc fragment of IgG is the molecular structure responsible for these effects. The present study investigates the beneficial effects of both recombinant and natural human Fc fragments of heterogeneous IgG against human anti-β2-GP1 antibodies in mouse models with APS. Results showed that both recombinant and natural human Fc fragments moderately but significantly decreased the levels of serum anti-β2-GP1 antibodies and had anti-coagulation effects in human β2-GP1-immunized mice. Furthermore, both recombinant and natural human Fc fragments inhibited thrombosis formation and decreased mortality in mouse models infused intravenously with human anti-β2GP1 antibodies from patients with APS. Findings suggest that the Fc fragment might be one of the active structural units of heterogeneous IgG. Thus, recombinant human Fc fragment administration may be a useful treatment for individuals with APS. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Cross-Reactivity of Polyclonal Antibodies against Canavalia ensiformis (Jack Bean) Urease and Helicobacter pylori Urease Subunit A Fragments.

    Science.gov (United States)

    Kaminski, Zbigniew Jerzy; Relich, Inga; Konieczna, Iwona; Kaca, Wieslaw; Kolesinska, Beata

    2018-01-01

    Overlapping decapeptide fragments of H. pylori urease subunit A (UreA) were synthesized and tested with polyclonal antibodies against Canavalia ensiformis (Jack bean) urease. The linear epitopes of UreA identified using the dot blot method were then examined using epitope mapping. For this purpose, series of overlapping fragments of UreA, frameshifted ± four amino acid residues were synthesized. Most of the UreA epitopes which reacted with the Jack bean urease polyclonal antibodies had been recognized in previous studies by monoclonal antibodies against H. pylori urease. Fragments 11 - 24, 21 - 33, and 31 - 42 were able to interact with the Jack bean urease antibodies, giving stable immunological complexes. However, the lack of recognition by these antibodies of all the components in the peptide map strongly suggests that a non-continuous (nonlinear) epitope is located on the N-terminal domain of UreA. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  7. Cultivation of Pichia pastoris carrying the scFv anti LDL (- antibody fragment. Effect of preculture carbon source

    Directory of Open Access Journals (Sweden)

    Cesar Andres Diaz Arias

    Full Text Available Abstract Antibodies and antibody fragments are nowadays among the most important biotechnological products, and Pichia pastoris is one of the most important vectors to produce them as well as other recombinant proteins. The conditions to effectively cultivate a P. pastoris strain previously genetically modified to produce the single-chain variable fragment anti low density lipoprotein (- under the control of the alcohol oxidase promoter have been investigated in this study. In particular, it was evaluated if, and eventually how, the carbon source (glucose or glycerol used in the preculture preceding cryopreservation in 20% glycerol influences both cell and antibody fragment productions either in flasks or in bioreactor. Although in flasks the volumetric productivity of the antibody fragment secreted by cells precultured, cryopreserved and reactivated in glycerol was 42.9% higher compared with cells precultured in glucose, the use of glycerol in bioreactor led to a remarkable shortening of the lag phase, thereby increasing it by no less than thrice compared to flasks. These results are quite promising in comparison with those reported in the literature for possible future industrial applications of this cultivation, taking into account that the overall process time was reduced by around 8 h.

  8. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155

    Directory of Open Access Journals (Sweden)

    J. Mala

    2017-06-01

    Full Text Available Norfloxacin belongs to the group of fluoroquinolone antibiotics which has been approved for treatment in animals. However, its residues in animal products can pose adverse side effects to consumer. Therefore, detection of the residue in different food matrices must be concerned. In this study, a single chain variable fragment (scFv that recognizes norfloxacin antibiotic was constructed. The cDNA was synthesized from total RNA of hybridoma cells against norfloxacin. Genes encoding VH and VL regions of monoclonal antibody against norfloxacin (Nor155 were amplified and size of VH and VL fragments was 402 bp and 363 bp, respectively. The scFv of Nor155 was constructed by an addition of (Gly4Ser3 as a linker between VH and VL regions and subcloned into pPICZαA, an expression vector of Pichia pastoris. The sequence of scFv Nor155 (GenBank No. AJG06891.1 was confirmed by sequencing analysis. The complementarity determining regions (CDR I, II, and III of VH and VL were specified by Kabat method. The obtained recombinant plasmid will be useful for production of scFv antibody against norfloxacin in P. pastoris and further engineer scFv antibody against fluoroquinolone antibiotics.

  9. Monoclonal antibodies from rats immunized with fragment D of human fibrinogen

    International Nuclear Information System (INIS)

    Kennel, S.J.; Chen, J.P.; Lankford, P.K.; Foote, L.J.

    1981-01-01

    Fischer rats were immunized with fragment D (Fg-D) of human fibrinogen (Fg) to obtain antibody specific for neoantigens unique to this molecule. Absorption of serum with whole Fg indicated that some of the antibody produced reacted preferentially with Fg-D. Hybridoma cultures were prepared by fusion of immune rat spleen cells with mouse myeloma P3-X63-Ag8. Monoclonal antibodies obtained from these cultures fell into two classes: (a) Those reacting equally well with Fg and Fg-D. (b) Those reacting preferentially but not absolutely wth Fg-D. Antibody from hybridoma 104-14, a member of the first group had an affinity for Fg-D of 1.5 x 10 9 M -1 while antibodies from 106-59 and 106-71 (group 2) demonstrated much lower affinities of 1.0 x 10 7 and 4.7 x 10 6 M -1 , respectively. The cross reactivity of antibodies in the second group indicated that they react with protein conformations that are altered during production of Fg-D from Fg

  10. Tumour targeting with monovalent fragments of anti-neuroblastoma antibody chCE7

    International Nuclear Information System (INIS)

    Carrel, F.; Novak-Hofer, I.; Ruch, C.; Zimmermann, K.; Amstutz, H.

    1997-01-01

    The in vitro and in vivo behaviour of the monovalent single chain (scFv) and Fab-fragments derived from anti-neuroblastoma antibody chCE7 is reported. When comparing tumour uptake and -retention of radioactivity of 67 Cu-labelled monovalent chCE7 with divalent chCE7 F(ab') 2 the advantage of the radiocopper label over the radioiodine label was more pronounced with the divalent (internalising) F(ab') 2 fragments. (author) 1 fig., 1 ref

  11. Bivalent fragment of the ior-CEA1 antibody. A challenge to the positive CEA tumors radioimmunotherapy

    International Nuclear Information System (INIS)

    Ravelo, Rolando; Sanchez, Iradia; Pimentel, Gilmara; Oliva, Juan; Perez, Lincidio; Ayala, Marta; Bell, Hansell; Gavilondo, Jorge

    2006-01-01

    The directed radiotherapy of the solid tumors with fragments recombinants of radiolabelled antibodies is a topic of current investigation, so much at preclinical level as clinical. This work describes the preclinical characterization of a new fragment type diabody of the AcMo ior CEA1 that has been labelled with 131 I for their use in the diagnosis and the therapy of CEA positive tumors. The radiolabelling methodology used allows the incorporation of more than 90% of the radio iodine to the molecule without committing the capacity of recognition of its antigen significantly. The combination of the favourable properties pharmacy kinetic and high selective accumulation in the tumor, they make of the diabody anti CEA an appropriate candidate for the radioimmunodiagnosis and the radioimmunotherapy of tumors that expresses CEA (Author)

  12. Radioimmunodetection of human tumor xenografts by monoclonal antibody F(ab')/sub 2/ fragments

    Energy Technology Data Exchange (ETDEWEB)

    Herlyn, D.; Munz, D.L.; Herlyn, M.; Koprowski, H.; Powe, J.; Alavi, A.; Meinken, G.E.; Srivastava, S.C.

    1986-01-01

    Procedures are described for the radiolocalization of human tumors by murine monoclonal antibodies (MAb) in animal model systems. Visualization of tumor xenografts was clearer in nude mice compared to experimentally immunosuppressed mice due to the higher tumor viability. MAb localization in tumor tissue was greatly enhanced when F(ab')/sub 2/ fragments rather than intact antibody molecules were used. Although tumors could be visualized with /sup 131/I-, /sup 123/I-or /sup 111/In-labeled MAb fragments without background subtraction, tumor-to-background ratios of radioactivity were highest for /sup 131/I-labeled fragments. /sup 131/I-labeled F(ab')/sub 2/ fragments of eight MAb against human colorectal carcinoma, melanoma or lung carcinoma localized specifically only in those tumors that bound the MAb in vitro and not in unrelated tumors. Radiolabeled fragments of MAb with other specificities (anti-hepatitis virus MAb) did not localize in tumors. All MAb that inhibited tumor growth in nude mice effectively localized these tumors by ..gamma..-scintigraphy. Some MAb were effective in localizing tumors but ineffective in inhibiting their growth. The ability of the specific radiolabeled F(ab')/sub 2/ fragments to localize in tumor grafts correlated significantly with MAb binding affinity and density of antigenic sites on tumor cells together, but not with either in vitro binding parameter alone.

  13. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments.

    Science.gov (United States)

    Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio

    2014-08-30

    The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  14.  Variable fragments of heavy chain antibodies (VHHs: a new magic bullet molecule of medicine?

    Directory of Open Access Journals (Sweden)

    Dorota Smolarek

    2012-06-01

    Full Text Available  Serum of animals belonging to the Camelidae family (camels and llamas contains fully active antibodies that are naturally devoid of light chains. Variable domains derived from heavy chain antibodies (hcAb called VHHs or nanobodies™ can bind antigens as effectively as full-length antibodies and are easy to clone and express. Because of their potential, VHHs are being intensively studied as potential therapeutic, diagnostic and imaging tools. The paper reviews the molecular background of heavy chain antibodies and describes methods of obtaining recombinant fragments of heavy chain antibodies as well as their therapeutic, diagnostic and other applications.

  15. Radioiodinated iodobenzoyl conjugates of a monoclonal antibody Fab fragment. In vivo comparisons with chloramine-T-labeled Fab

    International Nuclear Information System (INIS)

    Wilbur, D.S.; Hadley, S.W.; Grant, L.M.; Hylarides, M.D.

    1991-01-01

    A comparative investigation of the biodistributions of radioiodinated p- and m-iodobenzoyl conjugates of a monoclonal antibody Fab fragment, NR-LU-10 Fab, and the same antibody Fab fragment radioiodinated by the chloramine-T (ChT) method has been carried out in mice. Coinjected, dual-isotope studies in athymic mice with tumor xenografts have demonstrated that there are only minor differences in the in vivo distributions of the iodobenzoyl-labeled Fabs, except in the excretory organs, kidneys, and intestines, where major differences were observed. Similarly, coinjection of either the p-iodobenzoyl or m-iodobenzoyl conjugate of NR-LU-10 Fab with the Fab radioiodinated with ChT/radioiodide into BALB/c mice provided additional data that indicated that the two iodobenzoyl conjugates distributed similar in a number of selected tissues. The tissue-distribution differences of the regioisomeric iodobenzoyl conjugates in relation to the ChT-radioiodinated Fab were large for the stomach and neck, consistent with previous studies. The most notable difference between the two iodobenzoyl conjugates was the kidney activity, where the m-iodobenzoyl conjugate was similar to the directly labeled Fab, but the p-iodobenzoyl-conjugated Fab was higher by nearly a factor of 2

  16. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    Science.gov (United States)

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants. Copyright © 2015 Elsevier B

  17. Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells.

    Science.gov (United States)

    Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah

    2018-06-09

    Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.

  18. Characterization of crystals of an antibody-recognition fragment of the cancer differentiation antigen mesothelin in complex with the therapeutic antibody MORAb-009

    International Nuclear Information System (INIS)

    Ma, Jichun; Tang, Wai Kwan; Esser, Lothar; Pastan, Ira; Xia, Di

    2012-01-01

    The therapeutic antibody MORAb-009 disrupts the interaction of mesothelin and the ovarian cancer antigen CA-125. Crystals have been grown of the Fab fragment derived from MORAb-009 and of its complex with an N-terminal fragment of mesothelin. The mesothelin-specific monoclonal antibody MORAb-009 is capable of blocking the binding of mesothelin to CA-125 and displays promising anticancer potential. It is currently undergoing clinical trials. In order to understand the basis of the interaction between MORAb-009 and mesothelin at atomic resolution, both the Fab fragment of MORAb-009 and the complex between the Fab and an N-terminal fragment of mesothelin (residues 7–64) were crystallized. The crystals of the Fab diffracted X-rays to 1.75 Å resolution and had the symmetry of space group P4 1 2 1 2, with unit-cell parameters a = b = 140.6, c = 282.0 Å. The crystals of the mesothelin–Fab complex diffracted to 2.6 Å resolution and belonged to the hexagonal space group P6 4 , with unit-cell parameters a = b = 146.2, c = 80.9 Å. Structural analyses of these molecules are in progress

  19. Multifunctional PSCA antibody fragments for PET and optical prostate cancer imaging

    Science.gov (United States)

    2017-10-01

    that recognize PSCA (prostate stem cell antigen), a cell surface protein highly expressed in prostate cancer. These engineered antibody fragments...operatively. Prostate stem cell antigen (PSCA) is a cell - surface marker overexpressed in primary and metastatic cancers1. In vivo administration of...REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT

  20. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.L.; Garg, P.K.; Gard, S. [North Carolina State Univ., Raleigh, NC (United States)]|[Duke Univ. Medical Center, Durham, NC (United States)]|[North Carolina and Norke Radium Hospital, Oslo (Norway)] [and others

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  1. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    International Nuclear Information System (INIS)

    Page, R.L.; Garg, P.K.; Gard, S.

    1994-01-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the 18 F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4'-( 18 F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T 1/2β = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of 18 F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10 -3 % injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of 18 F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs

  2. Aligning physics and physiology: Engineering antibodies for radionuclide delivery.

    Science.gov (United States)

    Tsai, Wen-Ting K; Wu, Anna M

    2018-03-14

    The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  3. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    Science.gov (United States)

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  4. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    Science.gov (United States)

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  5. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library.

    Science.gov (United States)

    Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin

    2018-04-01

    Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7  CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.

  6. Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies.

    Science.gov (United States)

    Perruchini, Claire; Pecorari, Frederic; Bourgeois, Jean-Pierre; Duyckaerts, Charles; Rougeon, François; Lafaye, Pierre

    2009-11-01

    Camelids produce antibodies made of homodimeric heavy chains, and the antigen-binding region being composed of a single domain called VHH. These VHHs are much smaller than complete IgG. They are also more thermostable and more soluble in water; they should, therefore, diffuse more readily in the tissues. VHHs, expressed in bacteria, are easier to produce than conventional monoclonal antibodies. Because of these special characteristics, these antibody fragments could have interesting developments in immunohistochemistry and in the development of biomarkers. To test the possibility of their use in immunohistochemistry (IHC), we selected the glial fibrillary acidic protein (GFAP), a well-known marker of astrocytes. One alpaca (Lama pacos) was immunized against GFAP. Lymphocytes were isolated; the DNA was extracted; the VHH-coding sequences were selectively amplified. Three VHHs with a high affinity for GFAP and their corresponding mRNA were selected by ribosome display. Large quantities of the recombinant VHHs coupled with different tags were harvested from transfected bacteria. One of them was shown to immunolabel strongly and specifically to GFAP of human astrocytes in tissue sections. The quality of the IHC was comparable or, in some aspects, superior to the quality obtained with conventional IgG. The VHH was shown to diffuse on a longer distance than conventional monoclonal antibodies in fixed cortical tissue: a property that may be useful in immunolabeling of thick sections.

  7. Immunoscintigraphy of human pancreatic carcinoma in nude mice with I-131-F(ab')/sub 2/-fragments of monoclonal antibodies

    International Nuclear Information System (INIS)

    Senekowitsch, R.; Maul, F.D.; Wenisch, H.J.C.; Kriegel, H.; Hor, G.

    1985-01-01

    In the present study radioiodinated F(ab')/sub 2/-fragments of CA19-9 and antibody that reacts specifically with human gastrointestinal cancer were examined for their ability to detect human pancreatic carcinoma hosted in nude mice. Tumor-bearing mice received 80μCi of I-131-F(ab')/sub 2/ with a specific activity of 1.8μCi/μg. All mice were imaged after the injection and every 24hr up to 6 days. The retained radioactivity was also registered with a whole-body counter immediately after imaging. As a control F(ab's)/sub 2/ of a nonspecific antibody were administered in parallel to another group of animals bearing the same tumor. Three animals of each group were killed at 1,2,4 and 8 days for determination of the distribution of both labeled antibody-fragments. On scintigraphic images obtained with the CA19-9-F(ab')/sub 2/ the tumors could be visualized 24hr after injection, the best dilineation however was achieved 96hr p.i.. The biodistribution data exhibited a more rapid blood clearance for the specific fragments compared to that for the unspecific ones. Tumors showed an increase in uptake up to 48hr reaching 1.7% of the injected dose per gram, declining to values of 0.08%/g at day 6 p.i.. The highest tumor-to-blood ratios were found after 96h. They were 7 for the CA19-9-fragments compared to 1.5 for the unspecific fragments. The whole body counting revealed a more rapid excretion for the fragments of the specific monoclonal antibodies than for the unspecific ones. In summary the authors were able to show that CA19-9-F(ab')/sub 2/-fragments can be used for immunodetection of human pancreatic carcinoma hosted in nude mice

  8. Serum and urine analysis of the aminoterminal procollagen peptide type III by radioimmunoassay with antibody Fab fragments.

    Science.gov (United States)

    Rohde, H; Langer, I; Krieg, T; Timpl, R

    1983-09-01

    A radioimmunoassay based on antibody Fab fragments was developed for the aminoterminal peptide Col 1-3 of bovine type III procollagen. This assay does not distinguish the intact aminopropeptide Col 1-3 from its globular fragment Col 1. Parallel inhibition profiles were observed with human serum and urine allowing the simultaneous quantitative determination of intact and fragmented antigens in these samples. Most of the material has a size similar to that of fragment Col 1 indicating that the aminopropeptide is degraded under physiologic conditions. The concentration of aminopeptide in normal sera was in the range 15-63 ng/ml. Daily excretion was found to be in the range 30-110 micrograms. More than 50% of patients with alcoholic hepatitis and liver cirrhosis showed elevated serum levels of aminopropeptide by the Fab assay. Elevated concentrations were detected more frequently with an antibody radioimmunoassay which measures mainly the intact form of the aminopropeptide. It is suggested that analysis of patients material by both assays could improve their diagnostic application.

  9. Antibody guided targeting of non-small cell lung cancer using 111In-labeled HMFG1 F(ab')2 fragments

    International Nuclear Information System (INIS)

    Kalofonos, H.P.; Sivolapenko, G.B.; Courtenay-Luck, N.S.

    1988-01-01

    Immunoscintigraphy using F(ab')2 fragments of tumor-associated monoclonal antibody HMFG1 was performed in 14 patients with primary and metastatic non-small cell carcinoma of lung cancer. The antibody was conjugated with diethylenetriamine pentaacetic acid and labeled with 111 In. Quality control studies showed efficient incorporation of 111 In onto antibody (5 mCi/mg), no significant loss of immunoreactivity, and in vitro and in vivo stability. The optimal time for imaging was between 48 and 72 h. Following i.v. administration, serum activity fell rapidly (t1/2a = 2.5 +/- 1.3 (SD) h; t1/2b = 42 +/- 4.5 h). The majority of the radioactivity was associated with the plasma and not with the blood cells. All patients had a significant concentration of 111 In in the liver (approximately 20% of the injected dose, 48 h postadministration). No toxicity was encountered. No human antimurine-IgG antibody was detected in any of the patients within 4 months of follow-up, even in patients receiving two administrations of F(ab')2 fragments. Localization of all primary lesions and the majority (80%) of metastatic lesions was achieved. Seven of 14 patients were also studied using a 111 In-labeled nonspecific antibody (Fab')2 fragment (4C4). In three patients the specificity index was higher than the other four (P less than 0.05). We conclude that although successful targeting of 111 In-labeled (Fab')2 fragments of HMFG1 can be achieved in patients with non-small cell carcinoma of lung, observable tumor localization can also be achieved using a nonspecific antibody

  10. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs, named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2O(2 by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.

  11. Use and limitations of radiolabelled anti-CEA antibodies and their fragments for photoscanning detection of human colorectal carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Mach, J P; Forni, M; Ritschard, J; Buchegger, F; Carrel, S; Widgren, S; Donath, A; Alberto, P [Lausanne Univ. (Switzerland)

    1980-08-01

    Fifty-three patients with histologically proven carcinoma were injected with highly purified (/sup 131/I)-labelled goat antibodies or fragments of antibodies against carcinoembryonic antigen (CEA). Each patient was tested by external photoscanning 4, 24, 36, 48h after injection. In 22 patients (16 of 38 injected with intact antibodies, 5 of 13 with F(ab')/sub 2/ fragments and 1 of 2 with Fab' fragments), an increased concentration of /sup 131/I radioactivity corresponding to the previously known tumor location was detected by photoscanning 36-48 h after injection. Blood pool and secreted radioactivity was determined in all patients by injecting 15 min after scanning, (sup(99m)Tc)-labeled normal serum albumin and free sup(99m)TcO/sub 4//sup -/. The computerized subtraction of sup(99m)Tc from /sup 131/I radioactivity enhanced the definition of tumor localization in the 22 positive patients. However, in spite of the computerized subtraction, interpretation of the scans remained doubtful for 12 patients and was entirely negative for 19 additional patients.

  12. A novel method for in Situ detection of hydrolyzable casein fragments in a cheese matrix by antibody phage display technique and CLSM

    DEFF Research Database (Denmark)

    Duan, Zhi; Brüggemann, Dagmar Adeline; Siegumfeldt, Henrik

    2009-01-01

    three small synthetic peptides of the alpha(s1)-casein sequence. These peptides traverse enzymatic cleavage sites of casein during cheese ripening. The specificity of the generated anti-peptide antibodies was determined by ELISA and Western blot. Finally, an immunofluorescent labeling protocol......A novel method to monitor in situ hydrolyzable casein fragments during cheese ripening by using immunofluorescent labeling and confocal laser scanning microscopy (CLSM) was developed. Monoclonal single chain variable fragments of antibody (scFvs) were generated by antibody phage display toward...

  13. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  14. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lee

    2017-10-01

    Full Text Available Russell’s vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs containing 3.4 × 107 and 5.5 × 107 transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  15. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis.

    Science.gov (United States)

    Lee, Chi-Hsin; Lee, Yu-Ching; Lee, Yueh-Lun; Leu, Sy-Jye; Lin, Liang-Tzung; Chen, Chi-Ching; Chiang, Jen-Ron; Mwale, Pharaoh Fellow; Tsai, Bor-Yu; Hung, Ching-Sheng; Yang, Yi-Yuan

    2017-10-27

    Russell's vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF) venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY) antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs) containing 3.4 × 10⁷ and 5.5 × 10⁷ transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  16. An unusual cysteine VL87 affects the antibody fragment conformations without interfering with the disulfide bond formation.

    Science.gov (United States)

    Attallah, Carolina; Aguilar, María Fernanda; Garay, A Sergio; Herrera, Fernando E; Etcheverrigaray, Marina; Oggero, Marcos; Rodrigues, Daniel E

    2017-10-01

    The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: V H 22 and V H 92 in the variable heavy chain (V H ) and V L 23, V L 87 and V L 88 in the variable light chain (V L ). The influence of two unusual contiguous Cys at positions V L 87 and V L 88 was studied by considering the wild type fragment and mutant variants: V L -C88S, V L -C87S, V L -C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that V L -C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the V L -C87 by a usual residue at this position like Tyr caused distant structural changes at the V H region that confers a higher mobility to the V H -CDR2 and V H -CDR3 loops improving the scFv binding to the antigen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.

    Science.gov (United States)

    Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J

    2017-06-01

    Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') 2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') 2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') 2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct

  18. Nebulized Anti-IL-13 Monoclonal Antibody Fab' Fragment Reduces Allergen-Induced Asthma

    OpenAIRE

    Hacha, Jonathan; Tomlinson, K; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noël, Agnès; Palframan, R; Guéders, Maud; Cataldo, Didier

    2012-01-01

    Rationale: Interleukin-13 (IL-13) is a prototypic Th2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration. Objectives: We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness and remodeling in an experime...

  19. Direct immobilization of antibodies on Zn-doped Fe_3O_4 nanoclusters for detection of pathogenic bacteria

    International Nuclear Information System (INIS)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin

    2017-01-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe_3O_4 nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S_t_h_i_o_l bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  20. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan

    2005-01-01

    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  1. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.

    2012-01-01

    We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to

  2. Preparation and radiolabeling of humanized anti-HER1 monoclonal antibody nimotuzumab Fab' fragment with 68Ga and 90Y

    International Nuclear Information System (INIS)

    Alonso Martinez, L. M.; Xiques Castillo, A.; Leyva Montanna, R.; Perez-Malo Cruz, M.; Zamora Barrabi, M.; Manresa Sanchez, Y.

    2013-01-01

    Antibody-based targeted delivery of radioisotopes to malignant tissues is a promising approach in cancer diagnostics and therapy. However, intact antibody molecules are large glycoproteins (∼150 kDa) that have limited application in molecular imaging and therapy due to their relatively slow clearance from the circulation leading to a high background signal rather both cases the sensitivity can be increased with the use of enzymatically produced Fab' fragments. In this work, the ability to get labeled with 62 Ga and 90 Y of a monoclonal antibody (mAb) Fab' fragment against the transmembrane receptor tyrosine kinase HER-1 was studied for future applications in PET imaging and radioimmunotherapy of tumors. In order to obtain the Fab' fragment the mAb was cleaved with pepsin in molar excess. After separating the reaction mixture in two steps using affinity and ion-exchange chromatography, the Fab' fragment was finally obtained by reduction of the F(ab') 2 with a molar excess of 2-mercaptoethanol followed by a size exclusion purification step. The Fab' fragment was derivatized with 1,4,7,10-tetraaza cyclododecane-1,4,7,10-tetraacetic acid mono N-hydroxysuccinimide commercial ester (DOTA-NHS-ester) applying a simple procedure and the number of DOTA groups linked to Fab' were determinate. The labeling of the conjugate with 68 Ga and 90 Y from 'in-house generators yielded radiochemically pure probes that can become a suitable radioimmunoconjugated in a near future. (Author)

  3. Crystallization and preliminary crystallographic studies of the single-chain variable fragment of antibody chA21 in complex with an N-terminal fragment of ErbB2

    International Nuclear Information System (INIS)

    Liu, Yang; Zhou, Huihao; Zhu, Juanjuan; Gao, Yongxiang; Niu, Liwen; Liu, Jing; Teng, Maikun

    2009-01-01

    An antibody–antigen complex consisting of a single-chain variable fragment of the potential therapeutic antibody chA21 and an N-terminal fragment (residues 1–192) of the human ErbB2 extracellular domain was expressed, purified and crystallized. X-ray diffraction data were collected to 2.45 Å resolution. ErbB2 is a transmembrane tyrosine kinase, the overexpression of which causes abnormality and disorder in cell signalling and leads to cell transformation. Previously, an anti-ErbB2 single-chain chimeric antibody chA21 that specifically inhibits the growth of ErbB2-overexpressing cancer cells in vitro and in vivo was developed. Here, an antibody–antigen complex consisting of the single-chain variable fragment (scFv) of chA21 and an N-terminal fragment (residues 1–192, named EP I) of the ErbB2 extracellular domain was crystallized using the sitting-drop vapour-diffusion method. An X-ray diffraction data set was collected to 2.45 Å resolution from a single flash-cooled crystal; the crystal belonged to space group P2 1 2 1 2 1

  4. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  5. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  6. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  7. Tumour localization and pharmacokinetics of iodine-125 human monoclonal IgM antibody (COU-1) and its monomeric and half-monomeric fragments analysed in nude mice grafted with human tumour

    International Nuclear Information System (INIS)

    Ditzel, H.; Erb, K.; Rasmussen, J.W.; Jensenius, J.C.

    1992-01-01

    Human monoclonal IgM antibodies reactive with cancer-associated antigens may not have the optimal imaging capability due to their large size. Fragmentation of human IgM is less than straight-forward due to the loss of immunoreactivity. From the human monoclonal IgM antibody COU-1 we have prepared monomeric and half-monomeric fragments, which retain the ability to bind to colon cancer cells in vitro. The pharmacokinetics and tumour localization were evaluated in nude mice bearing human colon adenocarcinoma and human melanoma grafts. Faster clearance from the circulation was seen for the smaller half-monomeric fragment with a half-life (rapid phase/slow phase) of 2 h/16 h compared with the intact antibody, 4 h/25 h, and the monomeric fragment, 3 h/27 h. Intact COU-1 as well as the fragments accumulated in the colon tumour graft. Higher amounts of radioactivity were found in the colon tumour as compared to normal organs for intact COU-1 at days 4 and 6, for the monomeric fragment at day 4, and for the half-monomeric fragment at day 2 after injection. This investigation demonstrates the favourable biodistribution of the half monomeric COU-1 fragment. The fast clearance of this fragment resulted in a tumour-to-muscle ratio as high as 22 on day 2 after injection. Also, only this fragment gave a positive tumour-to-blood ratio. Normal IgM and its fragments were used as controls. Radioimmunoscintigraphy demonstrated the colon tumour discriminatory properties of each of the three iodine-labelled antibody preparations. The results compare favourably with previously reported investigations of the localization of human monoclonal antibodies and suggest that fragments of human monoclonal IgM antibodies may be useful tools for the immunodetection of cancer in patients. (orig.)

  8. Raising an Antibody Specific to Breast Cancer Subpopulations Using Phage Display on Tissue Sections

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Meldgaard, Theresa; Fridriksdottir, Agla Jael Rubner

    2016-01-01

    BACKGROUND/AIM: Primary tumors display a great level of intra-tumor heterogeneity in breast cancer. The current lack of prognostic and predictive biomarkers limits accurate stratification and the ability to predict response to therapy. The aim of the present study was to select recombinant antibody...... fragments specific against breast cancer subpopulations, aiding the discovery of novel biomarkers. MATERIALS AND METHODS: Recombinant antibody fragments were selected by phage display. A novel shadowstick technology enabled the direct selection using tissue sections of antibody fragments specific against...

  9. ECT with /sup 123/I-labeled fragments of anti-CEA monoclonal antibodies in colo-rectal cancer

    International Nuclear Information System (INIS)

    Bischof-Delaloye, A.; Delaloye, B.

    1986-01-01

    The recent progress of tumor localization with labelled antibodies can be attributed to three techniques: 1) use of I-123 as a label; 2) fragmentation of antibodies; 3) tomographic recording and evaluation of patient radiation data. Under these conditions the method yields good sensitivity and specifity indexes (15/16 for primary tumors and local recurrences, 7/10 for metastasis). A strictly prospective study, however, remains mandatory in order to assess the clinical value of this method

  10. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments.

    Science.gov (United States)

    LaGraff, John R; Chu-LaGraff, Quynh

    2006-05-09

    Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.

  11. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment

  12. Direct immobilization of antibodies on Zn-doped Fe{sub 3}O{sub 4} nanoclusters for detection of pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin, E-mail: jeons@postech.ac.kr

    2017-02-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe{sub 3}O{sub 4} nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S{sub thiol} bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  13. Evaluation of tumor targeting with radiolabeled F(ab2 fragment of a humanized monoclonal antibody

    Directory of Open Access Journals (Sweden)

    "Babaei MH

    2002-08-01

    Full Text Available Humanized monoclonal antibody U36 and its F(ab'2 fragment, radio labeled with 125I, were tested for tumor localization in nude mice bearing a squamous cell carcinoma xenograft line derived from a head and neck carcinoma. Monoclonal antibody IgG or F(ab'2 fragment were injected in parallel and at days 1, 2 and 3, mice were dissected for determination of isotope biodistribution. IgG as well as F(ab'2 showed highly specific localization in tumor tissue. The mean tumor uptake (n=3 is expressed as the percentage of the injected dose per gram of tumor tissue (%ID/g. %ID/g of IgG was 11.7% at day 1 and decreased to 10.9% at day 3 whereas %ID/g of F(ab'2 was 2.9% at day 1 and decreased on following days. Tumor to blood ratios (T/B at day 1 were 0.86 for IgG and 1.32 for F(ab'2 and reached a maximum at day 3 with values of 4.41 and 1.84 respectively. These findings suggest that the superior tumor to non-tumor ratios in the day of 1 render the F(ab'2 fragment more qualified for specific targeting radioisotopes to tumor xenografts in this exprimental setting.

  14. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  15. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    Science.gov (United States)

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening. © 2013. Published by Elsevier B.V. All rights reserved.

  16. Evaluation of radioiodinated and radiocopper labeled monovalent fragments of monoclonal antibody chCE7 for targeting of neuroblastoma

    International Nuclear Information System (INIS)

    Carrel, Francois; Amstutz, Hanspeter; Novak-Hofer, Ilse; Schubiger, P. August

    1997-01-01

    Monovalent fragments of antineuroblastoma antibody mAb chCE7 were evaluated for their in vitro and in vivo tumor cell binding properties. Single chain fragments were constructed from the variable region genes cloned from hybridoma cells, expressed in E.coli and purified by metal chelate affinity chromatography. Radioiodinated CE7-scFv fragments were found to bind with high affinity (K d ∼10 -9 M) to target cells in vitro but formed aggregates at 37 deg. C, and bound to serum proteins in vitro and in vivo. Circular Dichroism spectra revealed the protein to be in a conformationally altered form and no permanent 'refolding' could be achieved. In contrast, chCE7-Fab fragments were found to bind to target tumor cells with similar affinity than the parent mAb chCE7 (K d ∼10 -10 M), showed no tendency to aggregate and were stable in serum both in vitro and in vivo. Kinetics of association and dissociation of radioiodinated scFv and Fab fragments were found to be rapid. Radioiodination with the Iodogen method led to impaired immunoreactivity which was found to further increase the off- rates of radioiodinated fragments from tumor cells. Radioiodination with the Bolton-Hunter reagent as well as labeling of chCE7-Fab fragments with 67 Cu via the macrocyclic CPTA ligand led to fully immunoreactive Fab fragments. Radioiodinated and radiocopper labeled monovalent CE7 fragments did not internalize into target tumor cells as the parent mAb and its F(ab') 2 fragment. A comparison of the biodistribution in tumor bearing nude mice of the radiocopper labeled monovalent, non internalizing Fab fragments with the internalizing divalent F(ab') 2 fragments showed in both cases high levels of radioactivity in the kidneys. Concerning tumor uptake, radioactivity from both internalizing and non internalizing fragments remained associated with tumor tissue for longer times than in case of the corresponding radioiodinated fragments. When compared with the radioiodinated forms, tumor uptake

  17. Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination.

    Science.gov (United States)

    Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K; Liang, Wenguang G; Rui, Huan; Clark, Michael; Jaskolowski, Mateusz; Kim, Yejoon; Deneka, Dawid; Tang, Wei-Jen; Kossiakoff, Anthony A

    2018-02-02

    Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radioimmunoimaging of human colon carcinoma grafted into nudemice using 131I-labeled monoclonal anticea antibody and its F(ab')2 fragments

    International Nuclear Information System (INIS)

    Liu Guangda

    1988-01-01

    131 I-labeled monoclonal anti-CEA antibody and its F(ab') 2 fragments were injected into nude mice bearing human colon carcinoma xenografts for tumor localization and radioimmunoimaging studies. Transplanted tumors were visualized in 12 hours after injection of the labeled anti-CEA or its F(ab') 2 by gamma camera. Biodistribution data indicated that F(ab') 2 fragments were cleared more rapidly from blood (T 1/2 = 13.3 h for F(ab') 2 , T 1/2 = 21.1 h for intact antibody) over 6-24 h and had higher tumor blood ratios. The intact antibody was concentrated in the tumor better than F(ab') 2 . In double-label experiments, a nonspecific localization of the control ( 125 I-labeled anti-HCG) in the tumor was also observed

  19. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.

  20. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    Science.gov (United States)

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. A simple vector system to improve performance and utilisation of recombinant antibodies

    Directory of Open Access Journals (Sweden)

    Vincent Karen J

    2006-12-01

    Full Text Available Abstract Background Isolation of recombinant antibody fragments from antibody libraries is well established using technologies such as phage display. Phage display vectors are ideal for efficient display of antibody fragments on the surface of bacteriophage particles. However, they are often inefficient for expression of soluble antibody fragments, and sub-cloning of selected antibody populations into dedicated soluble antibody fragment expression vectors can enhance expression. Results We have developed a simple vector system for expression, dimerisation and detection of recombinant antibody fragments in the form of single chain Fvs (scFvs. Expression is driven by the T7 RNA polymerase promoter in conjunction with the inducible lysogen strain BL21 (DE3. The system is compatible with a simple auto-induction culture system for scFv production. As an alternative to periplasmic expression, expression directly in the cytoplasm of a mutant strain with a more oxidising cytoplasmic environment (Origami 2™ (DE3 was investigated and found to be inferior to periplasmic expression in BL21 (DE3 cells. The effect on yield and binding activity of fusing scFvs to the N terminus of maltose binding protein (a solubility enhancing partner, bacterial alkaline phosphatase (a naturally dimeric enzymatic reporter molecule, or the addition of a free C-terminal cysteine was determined. Fusion of scFvs to the N-terminus of maltose binding protein increased scFv yield but binding activity of the scFv was compromised. In contrast, fusion to the N-terminus of bacterial alkaline phosphatase led to an improved performance. Alkaline phosphatase provides a convenient tag allowing direct enzymatic detection of scFv fusions within crude extracts without the need for secondary reagents. Alkaline phosphatase also drives dimerisation of the scFv leading to an improvement in performance compared to monovalent constructs. This is illustrated by ELISA, western blot and

  2. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  3. Immobilization of Fab' fragments onto substrate surfaces: A survey of methods and applications.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2015-08-15

    Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Radioimmunolocalization and selective delivery of radiation in a rat model system: comparison of intact and fragmented antibody

    International Nuclear Information System (INIS)

    Walker, K.Z.; Seymour-Munn, K.; Axiak, S.M.; Raison, R.L.; Basten, A.; Towson, J.E.; Bautovitch, G.J.; Morris, J.

    1988-01-01

    Monoclonal antibody (MoAb) fragments are known to have advantages over intact immunoglobulins for radioimmunoscintigraphy. It is less clear whether they are as effective in the delivery of radioimmunotherapy. The imaging and dosimetric properties of an intact MoAb, K-1-21, reactive against human kappa light chains (LC) were compared with that of its F(ab') 2 and Fab fragments using a normal rat model system. Two days after injection of 131 I-K-1-21 into rats bearing antigen-sepharose implants, gamma camera images showed specific localization of the MoAb to the target (kappa LC) but not to the control (lambda LC) implant. Better images were obtained with K-1-21 F(ab') 2 than with Fab or intact antibody. Mean kappa implant: blood ratios were 8.6 ± 3.9 for Fab, 7.9 ± 1.8 for F(ab') 2 and 2.0 ± 0.3 for intact K-1-21. The improvement associated with the use of 131 I-K-1-21 fragments was, however, achieved at the expense of lower absolute values of activity at the target site. Thus the absorbed dose delivered to the implant by the intact K-1-21 was double that delivered with F(ab') 2 and six times that delivered with Fab. As intact K-1-21 also delivered a greater radiation dose to normal tissues, F(ab') 2 fragments may have the greatest overall advantages for therapy with radionuclide MoAb conjugates. (author)

  5. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Direct fragmentation of quarkonia including Fermi motion using light-cone wave function

    Energy Technology Data Exchange (ETDEWEB)

    Nobary, M.A. Gomshi [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran); A.E.O.I., Center for Theoretical Physics and Mathematics, Tehran (Iran); Javadi, B. [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran)

    2005-07-01

    We investigate the effect of Fermi motion on the direct fragmentation of the J/{psi} and {upsilon} states employing a light-cone wave function. Consistent with such a wave function we set up the kinematics of a heavy quark fragmenting into quarkonia such that the Fermi motion of the constituents splits into a longitudinal as well as a transverse direction and thus calculate the fragmentation functions for these states. In the framework of our investigation, we estimate that the fragmentation probabilities of J/{psi} and {upsilon} may increase at least up to 14 percent when including this degree of freedom. (orig.)

  7. Radiolabelled monoclonal antibodies against alpha-fetoprotein for in vivo localization of human hepatocellular carcinoma by immunotomoscintigraphy

    International Nuclear Information System (INIS)

    Bergmann, J.F.; Lumbroso, J.D.; Manil, L.; Saccavini, J.C.; Rougier, P.; Assicot, M.; Mathieu, A.; Bellet, D.; Bohuon, C.

    1987-01-01

    Two high affinity monoclonal antibodies, designated AF01 and AF04, directed against distinct epitopes of human alpha-fetoprotein (AFP) and the Fab fragments of one of them, were labelled with 131 I and injected into 18 patients with AFP producing hepatocellular carcinoma (HCC) in order to carry out imaging studies by tomoscintigraphy. Twelve patients were injected with whole antibody, only three of seven patients injected with AF01 and two of five patients injected with AF04 had a positive scan. In contrast, five out of six patients injected with labelled Fab fragments of AF04 had positive imaging. These results confirm that tumour imaging of HCC using 131 I labelled monoclonal antibody against AFP is feasible. Moreover, utilization of tomoscintigraphy in place of linear scintigraphy and Fab fragments instead of whole immunoglobulin may improve the sensitivity of radioimmunolocalization. This technique provides useful information on the in vivo distribution of monoclonal antibodies directed against AFP and on the practicability of the eventual therapeutic use of anti-AFP antibodies in HCC. (orig.)

  8. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  9. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    Science.gov (United States)

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients. Images PMID:1774262

  10. How protein recognizes ladder-like polycyclic ethers. Interactions between ciguatoxin (CTX3C) fragments and its specific antibody 10C9.

    Science.gov (United States)

    Ui, Mihoko; Tanaka, Yoshikazu; Tsumuraya, Takeshi; Fujii, Ikuo; Inoue, Masayuki; Hirama, Masahiro; Tsumoto, Kouhei

    2008-07-11

    Ciguatoxins are a family of marine toxins composed of transfused polycyclic ethers. It has not yet been clarified at the atomic level on the pathogenic mechanism of these toxins or the interaction between a polycyclic ether compounds and a protein. Using the crystal structures of anti-ciguatoxin antibody 10C9 Fab in ligand-free form and in complexes with ABCD-ring (CTX3C-ABCD) and ABCDE-ring (CTX3C-ABCDE) fragments of the antigen CTX3C at resolutions of 2.6, 2.4, and 2.3 angstroms, respectively, we elucidated the mechanism of the interaction between the polycyclic ethers and the antibody. 10C9 Fab has an extraordinarily large and deep binding pocket at the center of the variable region, where CTX3C-ABCD or CTX3C-ABCDE binds longitudinally in the pocket via hydrogen bonds and van der Waals interactions. Upon antigen-antibody complexation, 10C9 Fab adjusts to the antigen fragments by means of rotational motion in the variable region. In addition, the antigen fragment lacking the E-ring induces a large motion in the constant region. Consequently, the thermostability of 10C9 Fab is enhanced by 10 degrees C upon complexation with CTX3C-ABCDE but not with CTX3C-ABCD. The crystal structures presented in this study also show that 10C9 Fab recoginition of CTX3C antigens requires molecular rearrangements over the entire antibody structure. These results further expand the fundamental understanding of the mechanism by which ladder-like polycyclic ethers are recognized and may be useful for the design of novel therapeutic agents by antibodies, marine toxins, or new diagnostic reagents for the detection and targeting of members of the polycyclic ether family.

  11. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  12. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Setten, van M.C.

    2005-01-01

    The therapeutic parenteral application of llama single-domain antibody fragments (VHHs) is hampered by their small size, resulting in a fast elimination from the body. Here we describe a method to increase the serum half-life of VHHs in pigs by fusion to another VHH binding to porcine immunoglobulin

  13. Association of Circulating Transfer RNA fragments with antibody response to Mycoplasma bovis in beef cattle.

    Science.gov (United States)

    Casas, Eduardo; Cai, Guohong; Kuehn, Larry A; Register, Karen B; McDaneld, Tara G; Neill, John D

    2018-03-13

    High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.

  14. Radiolabeled monoclonal antibody 15 and its fragments for localization and imaging of xenografts of human lung cancer

    International Nuclear Information System (INIS)

    Endo, K.; Kamma, H.; Ogata, T.

    1988-01-01

    Monoclonal antibody (MAb) 15 and its F(ab')2 and Fab fragments were radioiodinated, and their biodistribution and imaging were compared in BALB/c nude mice bearing a xenograft of a human lung cancer (TKB-2). Association constants for 125I-labeled MAb 15 IgG, F(ab')2, and Fab were 1.9 X 10(9), 1.8 X 10(9), and 3.7 X 10(8) M-1, respectively. Immunoreactive fractions ranged from 0.59 to 0.50. Cultured TKB-2 cells expressed 1.1 X 10(4) binding sites/cell for MAb 15 IgG in vitro. The binding of a control antibody and the binding of its fragments to TKB-2 cells were less than 3% of the input doses. The mice with the TKB-2 tumors were given simultaneous injections of 10 microCi of 131I-labeled MAb 15 or its fragments and 10 microCi of 125I-labeled control IgG or its fragments. With MAb 15 IgG, the percentage of the injected dose bound per gram of tissue (ID/g) of the tumor was 3.68% at day 7, when the localization index (LI) was 4.38. At day 2 after MAb 15 F(ab')2 injection, 1.12% of the ID/g was localized in the tumor and the LI was 3.04. After MAb 15 Fab injection, the percentage of the ID/g of the tumor was 0.31% and the LI was 2.58 at day 1. MAb 15 IgG, F(ab')2, and Fab cleared from the blood early, with a half-life of 33, 16, and 9 hours, respectively. The distributions of MAb 15 and its fragments in the normal organs did not differ from those of the control. Radioimaging with 100 microCi of 131I-labeled MAb 15 and its fragments showed that 42%, 44%, and 32% of the total-body count were localized in the tumor with IgG at day 7, F(ab')2 at day 2, or Fab at day 1, respectively. Because the radioactivity remaining in the tumor with Fab was low, the image was insufficient. Throughout the period, less than 10% of the control IgG and its fragments remained in the tumor. Microautoradiography confirmed the binding of MAb 15 and its fragments to the tumor cells

  15. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  16. Shark Variable New Antigen Receptor (VNAR Single Domain Antibody Fragments: Stability and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Stewart Nuttall

    2013-01-01

    Full Text Available The single variable new antigen receptor domain antibody fragments (VNARs derived from shark immunoglobulin new antigen receptor antibodies (IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apical membrane antigen 1 (AMA-1 from Plasmodium falciparum. The VNARs are compared to traditional monoclonal antibodies (mAbs in liquid, lyophilized and immobilized nitrocellulose formats. When maintained in various formats at 45 °C, VNARs have improved stability compared to mAbs for periods of up to four weeks. Using circular dichroism spectroscopy we demonstrate that VNAR domains are able to refold following heating to 80 °C. We also demonstrate that VNAR domains are stable during incubation under potential in vivo conditions such as stomach acid, but not to the protease rich environment of murine stomach scrapings. Taken together, our results demonstrate the suitability of shark VNAR domains for various diagnostic platforms and related applications.

  17. Peripheral neuropathies associated with antibodies directed to intracellular neural antigens.

    Science.gov (United States)

    Antoine, J-C

    2014-10-01

    Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  19. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    Science.gov (United States)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  20. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Directory of Open Access Journals (Sweden)

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  1. In vitro and in vivo tumor models for studies of distribution of radiolabelled monoclonal antibodies and fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Halpern, S.E.; Sutherland, R.M.; Schreyer, M.; Mach, J.P.; Rochester Univ., NY

    1986-01-01

    Colon carcinoma multicellular spheroids were incubated in vitro with radiolabelled MAbs. The more rapid penetration of fragments as compared to intact MAbs was clearly demonstrated. For the study of antibody localization in tumors in vivo, the model of nude mice with ligated kidneys was used. Although very artificial, this model allowed to demonstrate that, without urinary excretion, Fab fragments accumulated more rapidly into the tumor than intact MAbs and disappeared faster from the blood. This difference was less striking for F(ab') 2 fragments. In the liver a decreased accumulation of both types of fragments as compared to intact MAbs was observed. Concerning radio-immunotherapy we think that Fab fragments are not useful because of their too short half-life the circulation and in tumor and because they will probably be too toxic for the kidneys. Intact MAbs and F(ab') 2 fragments have each their advantages. Intact MAbs show highest tumor accumulation in mice without ligated kidney, however, they remain mostly on the periphery of tumor nodules, as shown by autoradiography. F(ab') 2 fragments have been found to penetrate deeper into the tumor and to accumulate less in the liver. It might be therefore an advantage to combine intact MAbs with F(ab') 2 fragments, so that in the tumor two different regions could be attacked whereas in normal tissues toxicity could be distributed to different organs such as to the liver with intact MAbs and to the kidney with F(ab') 2 fragments. (orig.) [de

  2. Packing motifs as predictors of the propensity of antibody fragments to crystallize

    Science.gov (United States)

    Edmundson, Allen B.; DeWitt, Christina R.; Goldsteen, Benjamin Z.; Ramsland, Paul A.

    1999-01-01

    A recurring theme in the crystallization of antibody fragments in our laboratory has been a packing pattern involving formation of intermolecular, antiparallel β-pleated sheets across two-fold axes. The most common motif is the antiparallel stacking of constant (C) domains of light (L) chain dimers or Fab molecules. Here, cross-molecule six-stranded sheets are produced by hydrogen-bonding interactions of three-residue polypeptide segments (triads), in the i, i+2 and i+4 positions of the final strands (designated 3-3) of the three-chain layers from two adjacent molecules. In the variable (V) domains the triads are supplied by the first strands (4-1) of the four-chain layers and the resulting cross-molecule sheets contain eight strands. The latter type of packing is more likely to be seen in crystals of Fv fragments (V domains only) than in those of L chain dimers or Fabs. Amongst the triads from either the V or C domains, there are on average four sets of backbone carbonyl and amide groups within hydrogen bonding distance (chain dimers, Fab and Fvs are likely to crystallize in these packing patterns.

  3. Technetium-99 labelling of DD-3B6/22 antifibrin monoclonal antibody fragmented Fab' for thrombus imaging

    International Nuclear Information System (INIS)

    Lee, F-T.; Boniface, G.R.; Lambrecht, R.M.; Rylatt, D.B.; Bundesen, P.G.

    1993-01-01

    The antifibrin DD-3B6/22 monoclonal antibody Fab' fragment, a murine immunoglobulin, IgG3, has been labelled with technetium-99m ( 99mTc ) via a transchelation reaction, to specific activity in excess of 30 mCi/mg protein. The radiolabelling of Fab' was dependent on time, temperature, pH, antibody concentrations and nature intermediary transchelation complex used. The resultant radioconjugate was stable in vitro and in vivo. Blood clearance of 99m Tc-Fab' in rat followed two compartment kinetics with the half time of the fast phase being 0.5 h. The main route of excretion was via the kidneys with little uptake indicated by other tissues. The results suggest that the inherent specificity of the antibody, small molecular size, rapid plasma clearance, high specific radioactivity, together with the physical properties of the 99m Tc label, combine to make this labelled monoclonal antibody (MoAb), potentially suitable as a radiopharmaceutical for the scintigraphic detection of thrombi in humans. 17 refs., 3 tabs., 5 figs

  4. A binary plasmid system for shuffling combinatorial antibody libraries.

    Science.gov (United States)

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-11-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.

  5. [Preparation of monoclonal antibody against 4-amylphenol and homology modeling of its Fv fragment].

    Science.gov (United States)

    Cheng, Lei; Wu, Haizhen; Fei, Jing; Zhang, Lujia; Ye, Jiang; Zhang, Huizhan

    2017-03-01

    Objective To prepare and characterize a monoclonal antibody (mAb) against 4-amylphenol (4-AP), clone its cDNA sequence and make homology modeling for its Fv fragment. Methods A high-affinity anti-4-AP mAb was generated from a hybridoma cell line F10 using electrofusion between splenocytes from APA-BSA-immunized mouse and Sp2/0 myeloma cells. Then we extracted the mRNA of F10 cells and cloned the cDNA of mAb. The homology modeling and molecular docking of its Fv fragment was conducted with biological software. Results Under the optimum conditions, the ic-ELISA equation was y=A 2 +(A 1 -A 2 )/(1+(x/x 0 ) p ) (A 1 =1.28; A 2 =-0.066; x 0 =12560.75; p=0.74) with a correlation coefficient (R 2 ) of 0.997. The lowest detectable limit was 0.65 μg/mL. The heavy and light chains of mAb respectively belonged to IgG1 and Kappa. The homology modeling and molecular docking studies revealed that the binding of 4-Ap and mAb was attributed to the hydrogen bond and hydrophobic interactions. Conclusion The study successfully established a stable 4-AP mAb-secreting hybridoma cell line. The study on spatial structure of Fv fragment using homology modeling provided a reference for the development and design of single chain variable fragments.

  6. Selection of monoclonal anti-CEA antibody fragments for tumor detection by immunoscintigraphy

    International Nuclear Information System (INIS)

    Mach, J.P.; Buchegger, F.

    1986-01-01

    It is described how individual MAb directed against carcinoembryotic antigen (CEA) is selected which does not crossreact with granulocytes and gives the best tumor localization in the model of nude mice grafted with human colon carcinoma. Using this model, the superiority of F(ab')/sub 2/ and particularly Fab fragments from high affinity MAb for the localization of relatively small tumor nodules is demonstrated. These MAb fragments are also successfully used in an ongoing clinical trial for the detection of primary and metastatic colorectal carcinomas

  7. Characterization of monoclonal antibodies directed against human thyroid stimulating hormone

    International Nuclear Information System (INIS)

    Soos, M.; Siddle, K.

    1982-01-01

    Monoclonal antibodies directed against human thyroid stimulating hormone (TSH) were obtained from hybrid myelomas, following fusion of mouse NSI myeloma cells with mouse spleen cells. Ten different antibodies were obtained from 4 separate fusions. Eight antibodies were of the IgG 1 subclass. Affinities of antibodies for TSH were in the range 2 x 10 8 -5 x 10 10 M -1 . Five of the antibodies were specific for TSH and did not react with LH, FSH or hCG. The remaining antibodies reacted with all these hormones and were assumed to recognise their common (α) subunit. The 5 specific antibodies fell into 3 subgroups recognising distinct antigenic determinants, whereas the 5 non-specific antibodies recognised a single determinant or closely related set of sites. It is concluded that these antibodies should be valuable reagents for use in sensitive and specific two-site immunoradiometric assays. (Auth.)

  8. Monoclonal antibody

    International Nuclear Information System (INIS)

    Oyamada, Hiyoshimaru

    1987-01-01

    Some aspects of monoclonal antibodies are described, centering on studies made by the author and those presented at the Second International Conference on Monoclonal Antibody Immunoconjugates for Cancer held in March this year (1987). The history of immuno-nuclear medicine and procedures for producing monoclonal antibodies are briefly outlined. Monoclonal antibodies are immunoglobulins. Here, the structure of IgG, which is used most frequently, is described. An IgG is composed of two antigen binding fragments (Fab) and one crystallizable fragment (Fc). The end portion of a Fab reacts with an antigen. One of the major applications of immuno-nuclear medicine is the diagnosis of cancer. As label nucleides, 131 I and 111 I were selected in most cases in the past while 123 I and 99m Tc are currently used more often. Advantages and disadvantages of this diagnosis method is discussed citing studies presented at the First (1986) and Second (1987) International Conference on Monoclonal Antibody Immunoconjugates for Cancer. The present status of the application of monoclonal antibodies to treatment of cancer is also described. (Nogami, K.)

  9. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional 1H NMR analyses fo the antigen-antibody interactions

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji

    1991-01-01

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C H 1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1 H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed

  10. Isolation of Mal d 1 and Api g 1 - specific recombinant antibodies from mouse IgG Fab fragment libraries - Mal d 1-specific antibody exhibits cross-reactivity against Bet v 1.

    Science.gov (United States)

    Haka, Jaana; Niemi, Merja H; Iljin, Kristiina; Reddy, Vanga Siva; Takkinen, Kristiina; Laukkanen, Marja-Leena

    2015-05-27

    Around 3-5% of the population suffer from IgE-mediated food allergies in Western countries and the number of food-allergenic people is increasing. Individuals with certain pollen allergies may also suffer from a sensitisation to proteins in the food products. As an example a person sensitised to the major birch pollen allergen, Bet v 1, is often sensitised to its homologues, such as the major allergens of apple, Mal d 1, and celery, Api g 1, as well. Development of tools for the reliable, sensitive and quick detection of allergens present in various food products is essential for allergic persons to prevent the consumption of substances causing mild and even life-threatening immune responses. The use of monoclonal antibodies would ensure the specific detection of the harmful food content for a sensitised person. Mouse IgG antibody libraries were constructed from immunised mice and specific recombinant antibodies for Mal d 1 and Api g 1 were isolated from the libraries by phage display. More detailed characterisation of the resulting antibodies was carried out using ELISA, SPR experiments and immunoprecipitation assays. The allergen-specific Fab fragments exhibited high affinity towards the target recombinant allergens. Furthermore, the Fab fragments also recognised native allergens from natural sources. Interestingly, isolated Mal d 1-specific antibody bound also to Bet v 1, the main allergen eliciting the cross-reactivity syndrome between the birch pollen and apple. Despite the similarities in Api g 1 and Bet v 1 tertiary structures, the isolated Api g 1-specific antibodies showed no cross-reactivity to Bet v 1. Here, high-affinity allergen-specific recombinant antibodies were isolated with interesting binding properties. With further development, these antibodies can be utilised as tools for the specific and reliable detection of allergens from different consumable products. This study gives new preliminary insights to elucidate the mechanism behind the pollen

  11. Isolation and characterization of monoclonal antibodies directed against two subunits of rabbit poxvirus-associated, DNA-directed RNA polymerase.

    OpenAIRE

    Morrison, D K; Carter, J K; Moyer, R W

    1985-01-01

    A library of monoclonal antibodies directed against individual proteins of the rabbit poxvirus (RPV) virion within a complex immunogenic mixture has been generated through the use of in vivo and in vitro immunization regimens. The relative efficacies of the two procedures were compared. Based on immunoblot analysis, the in vitro immunization regimen led both to a wider variety of monoclonal antibodies to different proteins and to a larger number of antibodies directed against proteins of high...

  12. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    OpenAIRE

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigment...

  13. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional sup 1 H NMR analyses fo the antigen-antibody interactions

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-03-19

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C{sub H}1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides {sup 1}H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2{prime}-H and Tyr C3{prime},5{prime}-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.

  14. Monoclonal antibodies directed to E1 glycoprotein of rubella virus

    International Nuclear Information System (INIS)

    Umino, Y.; Sato, A.; Katow, S.; Matsuno, T.; Sugiura, A.

    1985-01-01

    We have prepared four monoclonal antibodies to rubella virus E1 glycoprotein. Three nonoverlapping antigenic sites were delineated on E1 protein by competitive binding assays. Antibodies binding to one site were characterized by high hemagglutination inhibition (HI) titer but poor neutralizing activity. The addition of antiglobulin conferred neutralizing activity. Antibodies directed to two other antigenic sites had modest hemolysis inhibition but little or no HI and neutralizing activities. The addition of antiglobulin markedly augmented HI activity but had little effect on neutralizing activity. Epitopes defined by three antibodies were conserved among four rubella virus strains examined. (Author)

  15. Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naïve human phage display library.

    Science.gov (United States)

    McElhiney, J; Lawton, L A; Porter, A J

    2000-12-01

    Single-chain antibody fragments against the cyanobacterial hepatotoxin microcystin-LR were isolated from a naive human phage display library and expressed in Escherichia coli. In competition enzyme-linked immunosorbent assay (ELISA), the most sensitive antibody clone selected from the library detected free microcystin-LR with an IC(50) value of 4 microM. It was found to cross react with three other microcystin variants - microcystin-RR, microcystin-LW and microcystin-LF - and detected microcystins in extracts of the cyanobacterium Microcystis aeruginosa, found to contain the toxins by high-performance liquid chromatography (HPLC). The quantification of microcystins in these extracts by ELISA and HPLC showed good correlation. Although the antibody isolated in this study was considerably less sensitive than the polyclonal and monoclonal antibodies already available for microcystin detection, phage display technology represents a cheaper, more rapid alternative for the production of anti-microcystin antibodies than the methods currently in use.

  16. Codon-Precise, Synthetic, Antibody Fragment Libraries Built Using Automated Hexamer Codon Additions and Validated through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Laura Frigotto

    2015-05-01

    Full Text Available We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR in antibody fragment libraries and next generation sequencing (NGS analysis of their quality and diversity.

  17. The future of antibody therapeutics: ADCs bi-specifics and RIT

    International Nuclear Information System (INIS)

    Reichert, J.

    2015-01-01

    Full text of publication follows. Antibodies are widely accepted as remarkably versatile therapeutic agents. As evidence of this, the ∼ 30 antibody products marketed worldwide had total global sales of more than 50 billion dollars in 2012, and the commercial clinical pipeline currently comprises over 350 antibody-based product candidates. In a testament to scientific ingenuity, the investigational molecules (clinical and preclinical) are notably diverse in their composition of matter and include antibodies conjugated to a variety of agents (drugs, radioisotopes), bi-specific antibodies, and fragments or domains of antibodies. The concepts that form the basis of these agents were established decades ago, but advances in technology are now allowing new opportunities for their development. In this presentation, future directions in antibody therapeutics development will be discussed, with a focus on antibody-drug conjugates, bi-specific antibodies and radioimmunotherapy. (author)

  18. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  19. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  20. Radiolocalization of bovine lymphosarcoma cells in athymic mice, using a monoclonal antibody against tumor-associated antigens

    International Nuclear Information System (INIS)

    Aida, Y.; Ochiai, K.; Ito, K.; Onuma, M.; Fujimori, F.; Fujimoto, Y.; Izawa, H.

    1987-01-01

    Mouse monoclonal antibody c 143 was purified and F(ab')2 fragments were generated by pepsin digestion and then radiolabeled with 125 I. The 125 I-labeled c 143 F(ab')2 fragments were injected into athymic mice bearing bovine lymphoid tumor cells. The fragments became preferentially localized in tumor tissues, but not in normal tissues, as determined by differential counting of tissue radioactivity. The fragments became localized specifically in those tumors that were reactive with c 143 in vitro, but did not become localized in unrelated tumors. Localization of labeled F(ab')2 fragments of a monoclonal antibody of the same isotype directed against Taka virus (a variant of Newcastle disease virus) was not observed in athymic mice bearing bovine lymphoid tumor cells. Tumors were detectable by radioimmunoscintigraphy, using radiolabeled c 143 F(ab')2 fragments, without background subtraction, and by use of silver-grain scattering in light microscopic autoradiography

  1. Comparison of a direct and indirect ELISA for quantitating antisperm antibody in semen.

    Science.gov (United States)

    Lynch, D M; Howe, S E

    1987-01-01

    A direct and an indirect quantitative ELISA for antisperm antibody were compared using the spermatozoa and cell-free seminal fluid of 66 infertile males. The normal concentration of sperm binding immunoglobulin was less than or equal to 1.5 fg Ig per spermatozoon for the indirect seminal plasma assay and less than or equal to 1.5 fg Ig per spermatozoon by the direct assay. Of the 66 infertile males, 21% (14/66) had elevated levels of antisperm antibody in their seminal plasma and 26% (17/66) had elevated levels bound directly to their spermatozoa. The direct correlation between the results of these assays was 94%. A simple linear regression analysis between the indirect and direct measurements of antisperm antibody resulted in a correlation coefficient of r = 0.907. There was no statistically significant difference between results from the direct and indirect methods of the patients as a group. However, there was evidence of autospecificity in a small percentage of males who had elevated levels of antisperm antibody by the direct assay that was not detected by the indirect assay using pooled donor spermatozoa.

  2. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    Science.gov (United States)

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  3. F(ab'2 antibody fragments against Trypanosoma cruzi calreticulin inhibit its interaction with the first component of human complement

    Directory of Open Access Journals (Sweden)

    LORENA AGUILAR

    2005-01-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT, described in our laboratory, retains several important functional features from its vertebrate homologues. We have shown that recombinant TcCRT inhibits the human complement system when it binds to the collagenous portion of C1q. The generation of classical pathway convertases and membrane attack complexes is thus strongly inhibited. In most T. cruzi-infected individuals, TcCRT is immunogenic and mediates the generation of specific antibodies. By reverting the C1q / TcCRT interaction, a parasite immune evasion strategy, these antibodies contribute to the host / parasite equilibrium. In an in vitro correlate of this situation, we show that the C1q / TcCRT interaction is inhibited by F(ab'2 polyclonal anti-TcCRT IgG fragments. It is therefore feasible that in infected humans anti-TcCRT antibodies participate in reverting an important parasite strategy aimed at inhibiting the classical complement pathway. Thus, membrane-bound TcCRT interacts with the collagenous portion C1q, and this C1q is recognized by the CD91-bound host cell CRT, thus facilitating parasite internalization. Based on our in vitro results, it could be proposed that the in vivo interaction between TcCRT and vertebrate C1q could be inhibited by F(ab'2 fragments anti-rTcCRT or against its S functional domain, thus interfering with the internalization process

  4. Radioimmunoimaging of experimental gliomas using radiolabelled monoclonal antibodies

    International Nuclear Information System (INIS)

    Glaessner, H.

    1986-01-01

    The biodistribution and tumour uptake of radiolabelled (131 I) glioma-seeking monoclonal antibodies (14 AC1) and their F(ab') 2 fragments were investigated in nude mice having received glioma transplants. Radioimmunoimaging by external scintigraphy at 48 and 96 hours pointed to a superior tumour localisation by the fragments that was clearly related to the dose. Wholebody determinations of the biokinetic behaviour led to the following results: Faster clearance anc more ready elimination from the blood pool for the fragments, preferential uptake in the tumour; intact antibodies; binding in the liver, spleen and lungs. The study confirmed the value of fragments of monoclonal antibodies in the diagnosis of tumours and pointed to the possibility of using intact monoclonal antibodies as carriers of radioisotopes and cytotoxic drugs within the scope of therapeutic programmes. (TRV) [de

  5. Radioimmunoimaging of experimental thrombi in dogs using technetium-99m-labeled monoclonal antibody fragments reactive with human platelets

    International Nuclear Information System (INIS)

    Som, P.; Oster, Z.H.; Zamora, P.O.; Yamamoto, K.; Sacker, D.F.; Brill, A.B.; Newell, K.D.; Rhodes, B.A.

    1986-01-01

    Monoclonal antibody 50H.19, which reacts with human platelets, was converted to fragments, pretinned, and made into kits for subsequent radiolabeling with /sup 99m/Tc. The antibody, which cross-reacts with dog platelets, was used to evaluate in vitro binding to blood clots and in vivo in experimental thrombi in dogs. After radiolabeling, 97.4 +/- 6.4% of the /sup 99m/Tc was antibody-associated. The preparations retained immunoreactivity, as determined by: binding studies using whole blood and determining the ratio of cell-to-plasma radioactivity (ratios of 57.6-61.2) and binding of the antibody to clots (clot/serum ratios were 57.2-74.6%). Approximately 50% of the radioactivity was cleared from the blood in 3-6 min and 18-24% was excreted in urine within 3 hr. Experimental thrombi in dogs could be visualized consistently within 2-3 hr postinjection in peripheral veins and arteries, pulmonary arteries, and the right ventricle. In addition, damage to blood vessel intima without visible thrombi could also be detected. This method has the following advantages: short and simple pre-imaging preparation, and rapid visualization of thrombi with no need for blood-pool subtraction or delayed imaging

  6. Antibody or Antibody Fragments : Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    NARCIS (Netherlands)

    Xenaki, Katerina T; Oliveira, Sabrina; van Bergen En Henegouwen, Paul M P

    2017-01-01

    The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody-drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are

  7. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  8. Modified cytokeratins expressed on the surface of carcinoma cells undergo endocytosis upon binding of human monoclonal antibody and its recombinant Fab fragment

    DEFF Research Database (Denmark)

    Ditzel, H J; Garrigues, U; Andersen, C B

    1997-01-01

    display selection and the human Fab fragment was expressed in bacteria. Analysis by confocal laser scanning microscopy demonstrated that COU-1 bound in a uniform punctate pattern to the surface of viable carcinoma cells stained at 4 degrees C, and binding increased significantly when cells were cultured...... was significantly reduced. Similar results were obtained using intact IgM COU-1 and the recombinant Fab fragment. Immunohistological studies indicated that COU-1, in contrast to murine monoclonal antibodies against normal cytokeratin 8 and 18, could differentiate between malignant and normal colon epithelia...

  9. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    International Nuclear Information System (INIS)

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-01-01

    et al. (J. Mol. Biol. 275:269), and the participation of specific residues in antigen recognition was assessed using site-directed mutagenesis. Three amino acids in the light chain variable region, H39, Y54 and F103, were particularly important in antigen recognition. In a separate series of experiments, a recombinant phage-displayed antibody library has been prepared using RNA isolated from the spleens of sheep and rabbits immunized with specific metal-chelate complexes. Phage-display libraries produced from an immunized source are inclined to include variable genes specific for the immunized antigen(s), many of which are already affinity matured. An antibody fragment specific for the UO 2 2+ -DCP complex was isolated from this combined phage display library. While the binding affinity of this antibody fragment for UO 2 2+ -DCP was not as high as that of the 12F6 monoclonal antibody, the beauty of antibody phage display technology is that it allows for the potential manipulation and saturation of the antibody's binding affinity, which may drastically improve and ultimately surpass that of monoclonal antibodies.

  10. A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies

    DEFF Research Database (Denmark)

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah

    2017-01-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories world-wide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types......, and developmental stages. Despite their importance and broad use, the precise binding epitope for only a few of these antibodies has been determined. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies....... Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall...

  11. Antigen-targeting strategies using single-domain antibody fragments

    NARCIS (Netherlands)

    Duarte, Joao Nuno Silva

    2017-01-01

    Antibodies display high selectivity and affinity and have been the preferred platform for antigen targeting. Despite the development of antigen-delivery systems that enable T cell activation, targeting approaches that enhance antibody responses need improvement. This need specially applies to poorly

  12. Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis.

    Science.gov (United States)

    Shigemori, Suguru; Ihara, Masaki; Sato, Takashi; Yamamoto, Yoshinari; Nigar, Shireen; Ogita, Tasuku; Shimosato, Takeshi

    2017-01-01

    Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

  13. In vivo instability of reduction-mediated 99mTc-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Sakahara, Harumi; Saga, Tsuneo; Endo, Keigo

    1993-01-01

    A murine monoclonal antibody that reacts with human osteogenic sarcoma (OST7) was reduced and directly labelled with 99m Tc without any loss of immunoreactivity. No fragmentation of the antibody was detected by high performance liquid chromatography after the labelling. However, SDS-PAGE analysis of the labelled antibody demonstrated the presence of low molecular weight species. Although more than 95% of the radioactivity remained bound at the antibody after incubation with human serum for 24 h, 99m Tc-labelled OST7 was cleared faster from the circulation than 125 I-labelled OST7 or 111 In-labelled OST7 in mice. (author)

  14. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, N. van den; Goosen, T.; Verrips, C.T.; Hondel, C.A.M.J.J. van den; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5′- or 3′-terminal ends of the gene encoding llama variable heavy chain antibody fragment VHH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which

  15. Imaging of colorectal carcinoma with radiolabeled antibodies.

    Science.gov (United States)

    Goldenberg, D M; Goldenberg, H; Sharkey, R M; Lee, R E; Higgenbotham-Ford, E; Horowitz, J A; Hall, T C; Pinsky, C M; Hansen, H J

    1989-10-01

    Colorectal cancer has been the tumor type most frequently studied with radiolabeled antibodies. Among the various antibodies, a majority of patients with colorectal cancer have received xenogeneic polyclonal or monoclonal antibodies against carcino-embryonic antigen. This review summarizes the current status of colorectal cancer imaging with radiolabeled antibodies, ie, radioimmunodetection (RAID), and examines the published studies involving carcinoembryonic antigen (CEA) antibodies and 17-1A, 19-9, and B72.3, and other monoclonal antibodies. In order to better address the issue of the current and future clinical usefulness of this emerging technology, particular attention is given to the protocols, methods, and results of the published studies. Despite differences in study parameters, antibodies and forms, labels, administration routes and doses, and scanning instruments and methods, it has been found that (1) almost no adverse reactions have been evident; (2) antibody fragments are preferred over whole immunoglobulin G reagents because they achieve higher tumor-to-background ratios earlier, thus reducing or precluding the need for dual-isotope subtraction methods or long delays before imaging; (3) use of antibody fragments, including the monovalent Fab' form, permits imaging with short-lived radionuclides of excellent photon properties, such as 123I and 99mTc; (4) circulating antigens against which the imaging antibody is directed can complex with the injected antibody, but such complexes have not prevented successful RAID; (5) patients with high serum titers of the appropriate antigen target usually have higher rates of positive RAID; (6) patients who are seronegative for the tumor antigen being studied can have positive RAID findings, which can represent the detection of occult lesions; (7) single photon emission computed tomography appears to provide better image resolution than planar scanning; (8) regardless of the sensitivity reported in any particular

  16. Epitope analysis of anti-myeloperoxidase antibodies in patients with ANCA-associated vasculitis.

    Directory of Open Access Journals (Sweden)

    Shen-Ju Gou

    Full Text Available OBJECTIVE: Increasing evidences have suggested the pathogenic role of anti-neutrophil cytoplasmic antibodies (ANCA directing myeloperoxidase (MPO in ANCA-associated vasculitis (AAV. The current study aimed to analyze the association between the linear epitopes of MPO-ANCA and clinicopathological features of patients with AAV. METHODS: Six recombinant linear fragments, covering the whole length amino acid sequence of a single chain of MPO, were produced from E.coli. Sera from 77 patients with AAV were collected at presentation. 13 out of the 77 patients had co-existence of serum anti-GBM antibodies. Ten patients also had sequential sera during follow up. The epitope specificities were detected by enzyme-linked immunosorbent assay using the recombinant fragments as solid phase ligands. RESULTS: Sera from 45 of the 77 (58.4% patients with AAV showed a positive reaction to one or more linear fragments of the MPO chain. The Birmingham Vasculitis Activity Scores and the sera creatinine were significantly higher in patients with positive binding to the light chain fragment than that in patients without the binding. The epitopes recognized by MPO-ANCA from patients with co-existence of serum anti-GBM antibodies were mainly located in the N-terminus of the heavy chain. In 5 out of the 6 patients, whose sera in relapse recognize linear fragments, the reactivity to linear fragments in relapse was similar to that of initial onset. CONCLUSION: The epitope specificities of MPO-ANCA were associated with disease activity and some clinicopathological features in patients with ANCA-associated vasculitis.

  17. Synergistic cytotoxic effects of antibodies directed against different cell surface determinants

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, E V; Pindar, A; Stevenson, F K; Stevenson, G T [Southampton General Hospital (UK). Tenovus Research Lab.

    1978-03-01

    Three antibody populations were raised in rabbits against surface antigens on guinea-pig L/sub 2/C leukaemic lymphocytes: against idiotypic determinants on the lambda chain of the surface immunoglobulin, against C region determinants on the lambda chain, and against the surface antigens recognised by conventional anti-lymphocyte sera. Complement and K-cell cytotoxicities effected by the antibodies on L/sub 2/C cells were studied in vitro. In both cytotoxic systems mixtures of the antibodies revealed synergy, in that the titres of the mixtures exceeded predicted additive titres of their components. The synergy was greater when the mixed antibodies were directed to determinants on the same molecule rather than to determinants on different molecules.

  18. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody

    Science.gov (United States)

    Richard, Gabrielle; Meyers, Ashley J.; McLean, Michael D.; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Hall, J. Christopher

    2013-01-01

    Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab’)2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α–Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α–Cbtx. Mouse α–Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α–Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy. PMID:23894495

  19. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis.

    Science.gov (United States)

    Kubota, Kei; Kobayashi, Naoki; Yabuta, Masayuki; Ohara, Motomu; Naito, Toyohiro; Kubo, Takuya; Otsuka, Koji

    2017-06-05

    This report describes a novel, comprehensive approach to identifying a fragment peak of monoclonal antibody-A (mAb-A), detected by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-cGE). The fragment migrated close to the internal standard (10kDa marker) of SDS-cGE and increased about 0.5% under a 25°C condition for 6 months. Generally, identification of fragments observed in SDS-cGE is challenging to carry out due to the difficulty of collecting analytical amounts of fractionations from the capillary. In this study, in-gel digestion peptide mapping and reversed phase liquid chromatography-mass spectrometry (RPLC-MS) were employed to elucidate the structure of the fragment. In addition, a Gelfree 8100 fractionation system was newly introduced to collect the fragment and the fraction was applied to the structural analysis of a mAb for the first time. These three analytical methods showed comparable results, proving that the fragment was a fraction of heavy chain HC1-104. The fragment contained complementarity determining regions (CDRs), which are significant to antigen binding, and thus would affect the efficacy of mAb-A. In addition, SDS-cGE without the 10kDa marker was demonstrated to clarify the increased amount of the fragment, and the experiment revealed that the fragment increases 0.2% per year in storage at 5°C. The combination of the three analytical methodologies successfully identified the impurity peak detected by SDS-cGE, providing information critical to assuring the quality and stability of the biotherapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pharmacokinetics of the FO23C5 anti-CEA antibody fragment labelled with 99Tcm and 111In: a comparison in patients

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Mardirossian, G.; Rusckowski, M.; Roy, S.; Busche, H.; Griffin, T.W.; Brill, A.B.

    1993-01-01

    The FO23C5 anti-carcinoembryonic antigen (CEA) F(ab') 2 antibody was radiolabelled with sup(111)In via diethylenetriaminepentaacetic acid (DTPA) and directly with 99 Tc m by stannous ion and mercaptoethanol antibody reduction to compare the pharmacokinetics of these three agents. Four patients received 15 mCi 99 Tc m -Fab' 1 week before receiving 1 mCi 111 In-F(ab') 2 . Five additional patients received only the 99 Tc m -Fab'. The biodistribution of 99 Tc m was as expected for a labelled Fab' fragment: relative to 111 In, 99 Tc m cleared rapidly from circulation and into kidneys and urine. Liver levels of 111 In and 99 Tc m were surprisingly similar at 1 day although initial 111 In levels were lower and increased while 99 Tc m levels were higher and decreased. Spleen levels were also similar. In 4/9 patients receiving 99 Tc m , hepatobiliary clearance was observed at levels which could confuse interpretation whereas this mode of clearance was observed in only 1/4 patients receiving 111 In. Image quality was superior with 111 In versus 99 Tc m at 1 day postadministration as judged by counting rates and background activity whereas the opposite was true at 2-3 h postadministration. (author)

  1. Diagnosis of canine rabies by the direct fluorescent antibody ...

    African Journals Online (AJOL)

    Diagnosis of canine rabies by the direct fluorescent antibody technique in Plateau State, Nigeria. DO Ehizibolo, EA Ogunsan, MJ Muhammad, CI Nwosuh, S Olaleye, OOC Chuckwu, MY Sugun, NM Sati, NE Waziri, OK Egwu, J Kamani, CA Meseko, SE Idachaba, GI Dogo ...

  2. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  3. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

    2016-12-13

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

    IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

  4. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (V-HH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, van den N.; Goosen, T.; Verrips, C.T.; Hondel, van den C.A.M.J.J.; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5'- or 3'-terminal ends of the gene encoding llama variable heavy chain antibody fragment V-HH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which

  5. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Radiolabeled antibody imaging

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1987-01-01

    Radiolabeled antibodies, in particular monoclonal antibodies, offer the potential for the specific nuclear imaging of malignant and benign diseases in man. If this imaging potential is realized, they may also have a large role in cancer treatment. This paper reviews: (1) what monoclonal antibodies are and how they differ from polyclonal antibodies, (2) how they are produced and radiolabeled, (3) the results of preclinical and clinical trials in cancer imaging, including the utility of SPECT and antibody fragments, (4) the role of antibodies in the diagnosis of benign diseases, (5) alternate routes of antibody delivery, (6) the role of these agents in therapy, and (7) whether this technology ''revolutionizes'' the practice of nuclear radiology, or has a more limited complementary role in the imaging department

  7. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Human antibody responses to Schistosoma mansoni: does antigen directed, isotype restriction result in the production of blocking antibodies?

    Directory of Open Access Journals (Sweden)

    David W. Dunne

    1987-01-01

    Full Text Available After treatment young Kenyan schoolchildren are highly susceptible to reinfection with Schistosoma mansoni. Older children and adults are resistant to reinfection. There is no evidence that this age related resistance is due to a slow development of protective immunological mechanisms, rather, it appears that young children are susceptible because of the presence of blocking antibodies which decline with age, thus allowing the expression of protective responses. Correlations between antibody responses to different stages of the parasite life-cycle suggest that, in young children, antigen directed, isotype restriction of the response against cross-reactive polysaccharide egg antigens results in an ineffectual, or even blocking antibody response to the schistosomulum.

  9. Thermodynamic signatures of fragment binding: Validation of direct versus displacement ITC titrations.

    Science.gov (United States)

    Rühmann, Eggert; Betz, Michael; Fricke, Marie; Heine, Andreas; Schäfer, Martina; Klebe, Gerhard

    2015-04-01

    Detailed characterization of the thermodynamic signature of weak binding fragments to proteins is essential to support the decision making process which fragments to take further for the hit-to-lead optimization. Isothermal titration calorimetry (ITC) is the method of choice to record thermodynamic data, however, weak binding ligands such as fragments require the development of meaningful and reliable measuring protocols as usually sigmoidal titration curves are hardly possible to record due to limited solubility. Fragments can be titrated either directly under low c-value conditions (no sigmoidal curve) or indirectly by use of a strong binding ligand displacing the pre-incubated weak fragment from the protein. The determination of Gibbs free energy is reliable and rather independent of the applied titration protocol. Even though the displacement method achieves higher accuracy, the obtained enthalpy-entropy profile depends on the properties of the used displacement ligand. The relative enthalpy differences across different displacement experiments reveal a constant signature and can serve as a thermodynamic fingerprint for fragments. Low c-value titrations are only reliable if the final concentration of the fragment in the sample cell exceeds 2-10 fold its K(D) value. Limited solubility often prevents this strategy. The present study suggests an applicable protocol to characterize the thermodynamic signature of protein-fragment binding. It shows however, that such measurements are limited by protein and fragment solubility. Deviating profiles obtained by use of different displacement ligands indicate that changes in the solvation pattern and protein dynamics most likely take influence on the resulting overall binding signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer's disease brain.

    Science.gov (United States)

    Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T

    2017-01-01

    Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.

  11. Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement

    International Nuclear Information System (INIS)

    Grennan, Kathleen; Strachan, Gillian; Porter, Andrew J.; Killard, Anthony J.; Smyth, Malcolm R.

    2003-01-01

    This work describes the development of an electrochemical immunosensor for the analysis of atrazine using recombinant single-chain antibody (scAb) fragments. The sensors are based on carbon paste screen-printed electrodes incorporating the conducting polymer polyaniline (PANI)/poly(vinylsulphonic acid) (PVSA), which enables direct mediatorless coupling to take place between the redox centres of antigen-labelled horseradish peroxidase (HRP) and the electrode surface. Competitive immunoassays can be performed in real-time using this separation-free system. Analytical measurements based on the pseudo-linear relationship between the slope of a real-time amperometric signal and the concentration of analyte, yield a novel immunosensor set-up capable of regenerationless amperometric analysis. Multiple, sequential measurements of standards and samples can be performed on a single scAb-modified surface in a matter of minutes. No separation of bound and unbound species was necessary prior to detection. The system is capable of measuring atrazine to a detection limit of 0.1 ppb (0.1 μg l -1 ). This system offers the potential for rapid, cost-effective immunosensing for the analysis of samples of environmental, medical and pharmaceutical significance

  12. Stability of llama heavy chain antibody fragments under extreme conditions

    NARCIS (Netherlands)

    Dolk, E.

    2004-01-01

    Camelids have next to their normal antibodies, a unique subset of antibodies lacking light chains. The resulting single binding domain, VHH, of these heavy chain antibodies consequently have unique properties. A high stability is one of these properties, which was investigated in this thesis. The

  13. Radiolabeled monoclonal antibodies for imaging and therapy: Potential, problems, and prospects: Scientific highlights

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Buraggi, G.L.

    1986-01-01

    This meeting focused on areas of research on radiolabeled monoclonal antibodies. Topics covered included the production, purification, and fragmentation of monoclonal antibodies and immunochemistry of hybridomas; the production and the chemistry of radionuclides; the radiohalogenation and radiometal labeling techniques; the in-vivo pharmacokinetics of radiolabeled antibodies; the considerations of immunoreactivity of radiolabeled preparations; the instrumentation and imaging techniques as applied to radioimmunodetection; the radiation dosimetry in diagnostic and therapeutic use of labeled antibodies; the radioimmunoscintigraphy and radioimmunotherapy studies; and perspectives and directions for future research. Tutorial as well as scientific lectures describing the latest research data on the above topics were presented. Three workshop panels were convened on ''Methods for Determining Immunoreactivity of Radiolabeled Monoclonal Antibodies - Problems and Pitfalls,'' Radiobiological and Dosimetric Considerations for Immunotherapy with Labeled Antibodies,'' and ''The Human Anti-Mouse Antibody Response in Patients.''

  14. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  15. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab´antibody fragments for the analysis of serum transthyretin.

    Science.gov (United States)

    Pont, Laura; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2017-08-01

    This paper describes an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using an immunoaffinity sorbent with Fab' antibody fragments (Fab'-IA) for the analysis of serum transthyretin (TTR), a homotetrameric protein (M r ~56,000) involved in different types of amyloidosis. The IA sorbent was prepared by covalent attachment of Fab' fragments obtained from a polyclonal IgG antibody against TTR to succinimidyl silica particles. The Fab'-IA-SPE-CE-MS methodology was first established analyzing TTR standard solutions. Under optimized conditions, repeatability and reproducibility were acceptable, the method was linear between 1 and 25µgmL -1 , limits of detection (LODs) were around 0.5µgmL -1 (50-fold lower than by CE-MS, ~25µgmL -1 ) and different TTR conformations were observed (folded and unfolded). The applicability of the developed method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was evaluated analyzing serum samples from healthy controls and FAP-I patients. For the analysis of sera, the most abundant proteins were precipitated with 5% (v/v) of phenol before Fab'-IA-SPE-CE-MS. The current method enhanced our previous results for the analysis of TTR using intact antibodies immobilized on magnetic beads. It allowed a slight improvement on LODs (2-fold), the detection of proteoforms found at lower concentrations and the preparation of microcartridges with extended durability. Copyright © 2017. Published by Elsevier B.V.

  16. Ultra scaledown to predict filtering centrifugation of secreted antibody fragments from fungal broth.

    Science.gov (United States)

    Boulding, N; Yim, S S S; Keshavarz-Moore, E; Ayazi Shamlou, P; Berry, M

    2002-08-20

    Extracellularly expressed anti-hen egg lysozyme single-chain antibody fragments (scFv) produced by Aspergillus awamori were recovered using filtering centrifugation. Two filtering centrifuges with 0.5- and 30-L capacities were used to represent laboratory- and pilot-scale equipment, respectively. Critical regime analysis using the computational fluid dynamics (CFD) technique provided information about the local energy dissipation rates in both units. Experimental data indicated loss of scFv activity for energy dissipation rates above about 2.0 x 10(4) W kg(-1). This loss of activity increased in the presence of gas-liquid interfaces during filtering centrifugation. An ultra scaledown filtering centrifuge with a maximum working volume of 35 mL was designed to mimic the operating conditions identified by the critical regime analysis for the laboratory- and pilot-plant-scale units. The recovered scFv activity levels and the separation performance of the three units were comparable when operated at equal maximum energy dissipation rates. Copyright 2002 Wiley Periodicals, Inc.

  17. Targeting human prostate cancer with In-111-labeled D2B IgG, F(ab ')(2) and Fab fragments in nude mice with PSMA-expressing xenografts

    NARCIS (Netherlands)

    Lutje, Susanne; van Rij, Catharina M.; Franssen, Gerben M.; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J.; Colombatti, Marco; Boerman, Otto C.

    2014-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab)(2) and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing

  18. Targeting human prostate cancer with (111) In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts

    NARCIS (Netherlands)

    Lutje, S.; Rij, C.M. van; Franssen, G.M.; Fracasso, G.; Helfrich, W.; Eek, A.; Oyen, W.J.G.; Colombatti, M.; Boerman, O.C.

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing

  19. INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY

    Directory of Open Access Journals (Sweden)

    O.V. Galkin

    2017-10-01

    Full Text Available Obtaining single-chain variable fragments (scFv of recombinant antibodies in E. coli cells is often associated with numerous problems causing low yields or inactive conformation of the product. The aim of this work was to study the influence of staphylococcal protein A fragment fused with scFv antibodies (SpA-tag on the efficiency of expression of final product. Examination of scFv antibodies of different origin and specificity has shown that in similar expression systems fused scFv is synthesized in much higher quantities than free scFv. Furthermore, the scFv antibodies in fused form retained their antigen-binding properties and the SpA fragment the ability to bind other immunoglobulins. Thus, the proposed strategy can be considered effective in improving the efficiency of scFv-antibodies production in E. coli cells.

  20. Kinetics and tissue distribution of the radiolabeled chimeric monoclonal antibody MOv18 IgG and F(ab')2 fragments in ovarian carcinoma patients

    NARCIS (Netherlands)

    Buist, M. R.; Kenemans, P.; den Hollander, W.; Vermorken, J. B.; Molthoff, C. J.; Burger, C. W.; Helmerhorst, T. J.; Baak, J. P.; Roos, J. C.

    1993-01-01

    Twenty-four patients suspected of having ovarian carcinoma received i.v. injection with a combination of radiolabeled intact IgG (1 mg) and F(ab')2 fragments (1 mg) of the chimeric monoclonal antibody MOv18, each form labeled with 1.85 MBq 131I or 125I. Laparotomy was performed either 2 or 6 days

  1. Direct fission fragment energy converter - Magnetic collimator option

    International Nuclear Information System (INIS)

    Tsvetkov, P. V.; Hart, R. R.

    2006-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  2. Development of Antibody-Coated Magnetite Nanoparticles for Biomarker Immobilization

    Directory of Open Access Journals (Sweden)

    Christian Chapa Gonzalez

    2014-01-01

    Full Text Available Magnetic nanoparticles (MNPs have great potential in biomedical applications because of their magnetic response offers the possibility to direct them to specific areas and target biological entities. Magnetic separation of biomolecules is one of the most important applications of MNPs because their versatility in detecting cancer biomarkers. However, the effectiveness of this method depends on many factors, including the type of functionalization onto MNPs. Therefore, in this study, magnetite nanoparticles have been developed in order to separate the 5′-nucleotidase enzyme (5eNT. The 5eNT is used as a bio-indicator for diagnosing diseases such as hepatic ischaemia, liver tumor, and hepatotoxic drugs damage. Magnetic nanoparticles were covered in a core/shell type with silica, aminosilane, and a double shell of silica-aminosilane. A ScFv (fragment antibody and anti-CD73 antibody were attached to the coated nanoparticles in order to separate the enzyme. The magnetic separation of this enzyme with fragment antibody was found to be 28% higher than anti-CD73 antibody and the enzyme adsorption was improved with the double shell due to the increased length of the polymeric chain. Magnetite nanoparticles with a double shell (silica-aminosilane were also found to be more sensitive than magnetite with a single shell in the detection of biomarkers.

  3. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop specific single chain variable fragments (scFv) against ... libraries. The binding ability of the selected scFv antibody fragments against the IBDV particles was ..... Hermelink H, Koscielniak E. A human recombinant.

  4. Pharmacokinetics and tumor targeting of 131I-labeled F(ab')2 fragments of the chimeric monoclonal antibody G250: preclinical and clinical pilot studies.

    NARCIS (Netherlands)

    Brouwers, A.H.; Mulders, P.F.A.; Oosterwijk, E.; Buijs, W.C.A.M.; Corstens, F.H.M.; Boerman, O.C.; Oyen, W.J.G.

    2004-01-01

    INTRODUCTION: Clinical and animal studies of chimeric monoclonal antibody G250 (moAb cG250) for the targeting of clear-cell renal cell carcinoma (RCC), to date, have been with the intact IgG form. To determine whether F(ab')2 fragments are more suited for radioimmunotherapy (RIT) than intact IgG,

  5. Dimerized plasmin fragment D as a potential biomarker to predict successful catheter-directed thrombolysis therapy in acute deep vein thrombosis.

    Science.gov (United States)

    Luo, Chien-Ming; Wu, I-Hui; Chan, Chih-Yang; Chen, Yih-Sharng; Yang, Wei-Shiung; Wang, Shoei-Shen

    2015-10-01

    The value of dimerized plasmin fragment D in the clinical monitoring during the catheter-directed thrombolysis in patients with acute deep vein thrombosis is not known. Dimerized plasmin fragment D levels in 24 patients with acute deep vein thrombosis undergoing catheter-directed thrombolysis were prospectively evaluated. The plasma dimerized plasmin fragment D level was measured serially before and at every 12 h during catheter-directed thrombolysis for 24 h. Technical success was defined as restoration of patency and flow with less than 50% residual thrombus by surveillance rotational venography. Technical success was achieved in 79.2% (19 of 24) of the treated limbs after catheter-directed thrombolysis. In univariate analysis, there was significant elevation of the dimerized plasmin fragment D at 12th h after starting the catheter-directed thrombolysis (P fragment D to predict successful catheter-directed thrombolysis was determined as 18.4 µg/ml at the 12th h after starting the catheter-directed thrombolysis with sensitivity 0.8 and specificity 0.8 (P = 0.03). It was further validated in multivariate logistic regression analysis (odds ratio: 14.38; 95% CI: 1.22-169.20; P = 0.03). Catheter-directed thrombolysis is safe and effective for restoration of blood flow in patients with acute deep vein thrombosis. Dimerized plasmin fragment D value greater than 18.4 µg/ml at the 12th h after starting catheter-directed thrombolysis had a high predictive rate of greater than 50% lysis at the end of catheter-directed thrombolysis. © The Author(s) 2014.

  6. Targeting osteomyelitis with complete [99mTc]besilesomab and fragmented [99mTc]sulesomab antibodies: kinetic evaluations

    International Nuclear Information System (INIS)

    GRATZ, Stefan; KEMKE, Bendix; KEIZE, Patrik; KAMPEN, Wim U.; LUSTER, Markus; HÖFFKEN, Helmut

    2016-01-01

    The aim of this retrospective study was to compare the targeting of “pure” osteomyelitis (i.e., without surrounding soft tissue infection) by directly 99mTc-labelled complete immunoglobulin G (IgG) monoclonal antibody (MAb) ([99mTc]besilesomab) and by directly 99mTc-labelled fragment antigen-binding (FAb) MAb ([99mTc]sulesomab) in relation to their kinetic fate. A total of 73 patients with “pure” osteomyelitis were examined with [99mTc]besilesomab, (Scintimun®, IBA/CIS bio international, Saclay, France; N.=38) and [99mTc]sulesomab (LeukoScan®, Immunomedics Inc., Morris Plains, NJ, USA; N.=35). Kinetic data were deduced from whole-body and single-photon emission computed tomographic scans, performed 10 minutes to 24 hour p.i. (region-of-interest technique [ROI]). In targeting “pure” osteomyelitis, sensitivities at 1-4 hours were found to be higher for [99mTc]sulesomab (44% and 80% for [99mTc]besilesomab and [99mTc]sulesomab, respectively) but at significantly lower target/background (T/B) ratios than with [99mTc]besilesomab (1.8±0.3 versus 1.4±0.5 for [99mTc]besilesomab and [99mTc]sulesomab respectively; P<0.01). With [99mTc]besilesomab, there was a continuous osteomyelitis uptake over 24 hours, whereas with [99mTc]sulesomab, the maximal uptake occurred mostly within 1-4 hours, with subsequent clearance being slower for antigen-bound activity than for nonspecific background. Hence, diagnosis was possible mostly after 4h with [99mTc]sulesomab but often not before 24 hours with [99mTc]besilesomab, the later increasing significantly (P<0.01) in sensitivity (87% and 84% for [99mTc]besilesomab and [99mTc]sulesomab, respectively). These results show that the higher sensitivity of [99mTc]sulesomab in osteomyelitis targeting at earlier p.i. times does not rely on an increased antibody uptake but on a more rapid clearance of nonspecific background activity due to faster metabolism and excretion. Intact [99mTc]besilesomab show a slow, continuous uptake

  7. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  8. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies.

    Science.gov (United States)

    Dekker, Lennard; Wu, Si; Vanduijn, Martijn; Tolić, Nikolai; Stingl, Christoph; Zhao, Rui; Luider, Theo; Paša-Tolić, Ljiljana

    2014-05-01

    We have previously shown that different individuals exposed to the same antigen produce antibodies with identical mutations in their complementarity determining regions (CDR), suggesting that CDR tryptic peptides can serve as biomarkers for disease diagnosis and prognosis. Complete Fabs derived from disease specific antibodies have even higher potential; they could potentially be used for disease treatment and are required to identify the antigens toward which the antibodies are directed. However, complete Fab sequence characterization via LC-MS analysis of tryptic peptides (i.e. bottom-up) has proven to be impractical for mixtures of antibodies. To tackle this challenge, we have developed an integrated bottom-up and top-down MS approach, employing 2D chromatography coupled with Fourier transform mass spectrometry (FTMS), and applied this approach for full characterization of the variable parts of two pharmaceutical monoclonal antibodies with sensitivity comparable to the bottom-up standard. These efforts represent an essential step toward the identification of disease specific antibodies in patient samples with potentially significant clinical impact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  10. Clinical experience in humans with radiolabeled antibody for tumor detection

    International Nuclear Information System (INIS)

    Morrison, R.T.; Lyster, D.M.; Szasz, I.; Alcorn, L.N.; Huckell, V.F.; Rhodes, B.; Breslow, K.; Burchiel, S.

    1982-01-01

    I-131 and Tc-99m labeled polyclonal or monoclonal antibody and fragments of antibody, specific to human chorionic gonadotropin (hCG) or to a melanoma cell surface antigen (MCSA) were injected into proven cancer patients. Using standard homeostasis parameters, and scanning techniques, the safety and efficacy of each antibody was evaluated. Antibody fragments were expected to clear faster from the circulation allowing for earlier imaging and a better target-to-non-target ratio. The technetium label may perturb the antiboby's kinetics so that clearance is more rapid for both whole antibody and fragments. After a statistical evaluation of all parameters measured pre and post injection it was concluded that no acute toxicity reactions were present in any patient studied. Scan results were not acceptable for a tumor detecting procedure used in routine practice. Tumor upake was seen in less than 10% of scans

  11. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  12. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    International Nuclear Information System (INIS)

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai

    2007-01-01

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice

  13. Development of an immunoassay for determination of 2,4-dichlorophenoxyacetic acid (2,4-D) based upon the recombinant Fab fragment of 2,4-D specific antibody

    Science.gov (United States)

    Nguyen, Van C.; Nguyen, Thi D. T.; Dau, Hung A.; Tham, Thu N.; Quyen, Dinh T.; Bachmman, Till; Schmid, Rolf D.

    2001-09-01

    To develop an immunoassay and further an immunosensor for 2,4-D based upon recombinant antibody, the Fab fragments of 2,4-D specific antibody were expressed in E. coli. Western blotting analysis of the periplasmic cell fractions shown that under the non-reducing condition only a single protein band at a molecular mass of 45-kDa, corresponding to the whole Fab fragment was detected. Antigen binding activity for 2,4-D was found only in the extract of cells bearing the 2,4-D plasmid. An immunoassay based on the competitive reaction of 2,4-D and enzyme tracer with 2,4-D Fab fragments immobilized on micro titer plates via rabbit anti-mouse IgC was developed. Using this assay, 2,4-D could be detected at concentration range of 0.5 (mu) g/1 to 10(mu) g/1. The center point of the 2,4-D test was found at a concentration of 5 (mu) g/l. The assay was applied for detection of 2,4-D in spiked orange samples, resulting in recovery rate of 90 percent. The immunoassay could be applied to monitor human exposure to 2,4-D from contamination in fruit samples.

  14. Feasibility study of the Fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool.

    Science.gov (United States)

    Tsumura, Ryo; Sato, Ryuta; Furuya, Fumiaki; Koga, Yoshikatsu; Yamamoto, Yoshiyuki; Fujiwara, Yuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2015-12-01

    Tissue factor (TF) is expressed strongly in various types of cancer, especially cancers that are often refractory to treatment, such as pancreatic cancer. In this study, we compared the differences in the biophysical and pharmacological properties of whole IgG and the Fab fragment of anti-human TF monoclonal antibody (1849 antibodies), in order to determine their suitability for application in the diagnosis and treatment of cancers. In the biophysical examination, we investigated the characteristics of 1849-whole IgG and 1849-Fab by SPR sensing and confocal fluorescence microscopy analysis using recombinant human TF antigen and TF-overexpressing human pancreatic cancer cell line, BxPC3, respectively. After conjugation with Alexa-Flour-647, in vivo imaging was conducted in mice bearing BxPC3 xenograft tumors. Furthermore, the distribution of the conjugates in tumors and major organs was evaluated by ex vivo study. The in vitro experiments showed that 1849 antibodies had high affinity against TF antigen. In addition, 1849-Fab showed a faster dissociation rate from the antigen than 1849-whole IgG. In mice, 1849-Fab-Alexa-Flour-647 showed rapid renal clearance and faster tumor accumulation, achieving a high contrast signal over nearby normal tissues in the early phase and enhanced tumor penetration after administration. On the other hand, 1849-whole IgG-Alexa-Flour-647 showed slow clearance from the blood and sustained high tumor accumulation. These results suggest that 1849-Fab may be a useful tool for pancreatic cancer diagnosis.

  15. Kotai Antibody Builder: automated high-resolution structural modeling of antibodies.

    Science.gov (United States)

    Yamashita, Kazuo; Ikeda, Kazuyoshi; Amada, Karlou; Liang, Shide; Tsuchiya, Yuko; Nakamura, Haruki; Shirai, Hiroki; Standley, Daron M

    2014-11-15

    Kotai Antibody Builder is a Web service for tertiary structural modeling of antibody variable regions. It consists of three main steps: hybrid template selection by sequence alignment and canonical rules, 3D rendering of alignments and CDR-H3 loop modeling. For the last step, in addition to rule-based heuristics used to build the initial model, a refinement option is available that uses fragment assembly followed by knowledge-based scoring. Using targets from the Second Antibody Modeling Assessment, we demonstrate that Kotai Antibody Builder generates models with an overall accuracy equal to that of the best-performing semi-automated predictors using expert knowledge. Kotai Antibody Builder is available at http://kotaiab.org standley@ifrec.osaka-u.ac.jp. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  17. Azimuthal Anisotropies in Nuclear Fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.

    2002-01-01

    The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)

  18. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    Science.gov (United States)

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Passive vaccination with a human monoclonal antibody: generation of antibodies and studies for efficacy in Bacillus anthracis infections.

    Science.gov (United States)

    vor dem Esche, Ulrich; Huber, Maria; Zgaga-Griesz, Andrea; Grunow, Roland; Beyer, Wolfgang; Hahn, Ulrike; Bessler, Wolfgang G

    2011-07-01

    A major difficulty in creating human monoclonal antibodies is the lack of a suitable myeloma cell line to be used for fusion experiments. In order to create fully human monoclonal antibodies for passive immunization, the human mouse heteromyeloma cell line CB-F7 was evaluated. Using this cell line, we generated human monoclonal antibodies against Bacillus anthracis toxin components. Antibodies against protective antigen (PA) and against lethal factor (LF) were obtained using peripheral blood lymphocytes (PBLs) from persons vaccinated with the UK anthrax vaccine. PBL were fused with the cell line CB-F7. We obtained several clones producing PA specific Ig and one clone (hLF1-SAN) producing a monoclonal antibody (hLF1) directed against LF. The LF binding antibody was able to neutralize Anthrax toxin activity in an in vitro neutralization assay, and preliminary in vivo studies in mice also indicated a trend towards protection. We mapped the epitope of the antibody binding to LF by dot blot analysis and ELIFA using 80 synthetic LF peptides of 20 amino acid lengths with an overlapping range of 10 amino acids. Our results suggest the binding of the monoclonal antibody to the peptide regions 121-150 or 451-470 of LF. The Fab-fragment of the antibody hLF1 was cloned in Escherichia coli and could be useful as part of a fully human monoclonal antibody for the treatment of Anthrax infections. In general, our studies show the applicability of the CB-F7 line to create fully human monoclonal antibodies for vaccination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Kinetics of anti-carcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability

    Science.gov (United States)

    Schmidt, Michael M.; Thurber, Greg M.

    2010-01-01

    Theoretical analyses suggest that the cellular internalization and catabolism of bound antibodies contribute significantly to poor penetration into tumors. Here we quantitatively assess the internalization of antibodies and antibody fragments against the commonly targeted antigen carcinoembryonic antigen (CEA). Although CEA is often referred to as a non-internalizing or shed antigen, anti-CEA antibodies and antibody fragments are shown to be slowly endocytosed by LS174T cells with a half-time of 10–16 h, a time scale consistent with the metabolic turnover rate of CEA in the absence of antibody. Anti-CEA single chain variable fragments (scFvs) with significant differences in affinity, stability against protease digestion, and valency exhibit similar uptake rates of bound antibody. In contrast, one anti-CEA IgG exhibits unique binding and trafficking properties with twice as many molecules bound per cell at saturation and significantly faster cellular internalization after binding. The internalization rates measured herein can be used in simple computational models to predict the microdistribution of these antibodies in tumor spheroids. PMID:18408925

  1. Isolation and characterisation of a human-like antibody fragment (scFv that inactivates VEEV in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Torsten Rülker

    Full Text Available Venezuelan equine encephalitis virus (VEEV belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv, ToR67-3B4, from a non-human primate (NHP antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.

  2. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment

    OpenAIRE

    Syvänen, Stina; Edén, Desireé; Sehlin, Dag

    2017-01-01

    Antibodies and fragments thereof are, because of high selectivity for their targets, considered as potential therapeutics and biomarkers for several neurological disorders. However, due to their large molecular size, antibodies/fragments do not easily penetrate into the brain. The aim of the present study was to improve the brain distribution via adsorptive-mediated transcytosis of an amyloid-beta (A beta) protofibril selective F(ab')2 fragment (F(ab')2-h158). F(ab')2-h158 was cationized to d...

  3. Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Pereira, L.; Hampar, B.; Zweig, M.; Cohen, G.H.

    1982-01-01

    We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide

  4. Making Recombinant Monoclonal Antibody And Radiolabelling For Medical Purpose

    International Nuclear Information System (INIS)

    Nguyen Thi Thu; Duong Van Dong; Vo Thi Cam Hoa; Bui Van Cuong; Chu Van Khoa; Vu Bich Huong; Le Quang Huan

    2008-01-01

    Recombinant monoclonal antibody labeling with 131 I specific to tumor cell has been studied and prepared for treatment of Hodgkin lymphoma. In this study, a recombinant monoclonal antibody with two specific properties is a hybrid molecule created by coupling an antibody variable fragments with peptide melittin. The gene coding the antibody fragment has been obtained from human synthetic Fv libraries using for panning and screening on populations of lymphocytes fragmented from human blood cells with Hodgkin diseases. The gene encoding peptit melittin has been cloned from honeybee Apis cerana DNA. The gene coding recombinant monoclonal antibody has been expressed in E.coli BL21 (DE3) at 37 o C and was induced with 0.6 mM IPTG. The recombinant compound has been purified by affinity chromatography with HiTrap affinity column. The obtained recombinant monoclonal antibody has showed cytolytic activities when added to cell culture medium for LU cancer cell line with the amount of 100 - 200 mg/ml. This monoclonal antibody is labeled with 131 I using chloramine T procedure. ChT mass for the oxidation of 50 μg monoclonal antibody in 76 MBq was 10 μg. Sodium metabisulfite was used as a reducing agent. Reaction time was above 3 mins. The radiochemical purity was determined using electrophoresis and TLC methods. Radiochemical yield was > 97%. Radiochemical purity after purification was > 99%. Nuclear purity was > 99%. Stability of the label antibody was 12 days. This is the product promise potential used in the diagnostic and therapeutic of Hodgkin lymphoma. (author)

  5. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  6. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  7. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N SARS-CoV protein using a phage display approach

    Directory of Open Access Journals (Sweden)

    Grasso Felicia

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.

  8. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    Science.gov (United States)

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  9. Bispecific Antibody Pretargeting for Improving Cancer Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Robert M.

    2005-02-04

    The main objective of this project was to evaluate pretargeting systems that use a bispecific antibody (bsMAb) to improve the detection and treatment of cancer. A bsMAb has specificity to a tumor antigen, which is used to bind the tumor, while the other specificity is to a peptide that can be radiolabeled. Pretargeting is the process by which the unlabeled bsMAb is given first, and after a sufficient time (1-2 days) is given for it to localize in the tumor and clear from the blood, a small molecular weight radiolabeled peptide is given. According to a dynamic imaging study using a 99mTc-labeled peptide, the radiolabeled peptide localizes in the tumor in less than 1 hour, with > 80% of it clearing from the blood and body within this same time. Tumor/nontumor targeting ratios that are nearly 50 times better than that with a directly radiolabeled Fab fragment have been observed (Sharkey et al., ''Signal amplification in molecular imaging by a multivalent bispecific nanobody'' submitted). The bsMAbs used in this project have been composed of 3 antibodies that will target antigens found in colorectal and pancreatic cancers (CEA, CSAp, and MUC1). For the ''peptide binding moiety'' of the bsMAb, we initially examined an antibody directed to DOTA, but subsequently focused on another antibody directed against a novel compound, HSG (histamine-succinyl-glycine).

  10. Tumor detection using radiolabeled monoclonal antibodies

    International Nuclear Information System (INIS)

    Moldofsky, P.J.; Powe, J.; Hammond, N.D.

    1987-01-01

    Radioisotope conjugated to monoclonal antibody products has been used for imaging tumors targeted by the antibody. As imaging progresses, new sets of procedural and technical questions arise. In this chapter, we discuss several current problems in imaging tumor with radiolabeled monoclonal antibody. These include (1) methods for selection of specific antibody and, once the particular antibody is selected, which fragment form is to be used; (2) imaging procedures: what are the optimum imaging parameters, such as optimum time for imaging after administration of tracer and considerations regarding background subtraction; and (3) noninvasive quantitative techniques: quantitation of localization of antibody indirectly from quantitative information in the images.100 references

  11. Fab fragments of ovine antibody to colchicine enhance its clearance in the rat.

    Science.gov (United States)

    Peake, Philip W; Pianta, Timothy J; Succar, Lena; Fernando, Mangalee; Buckley, Nicholas A; Endre, Zoltan H

    2015-06-01

    Colchicine is an anti-inflammatory alkaloid used for the treatment of acute gout, but has a narrow therapeutic index. Colchicine overdoses are relatively rare, but have high mortality requiring rapid treatment. To evaluate the ability of a newly available ovine fragment antigen-binding (Fab) antibody to colchicine (ColchiFab(™)) to protect rats against renal and other injury 24 h after colchicine ingestion. Rats were gavaged with colchicine (5 mg/kg), then 2 h later injected intraperitoneally with 5 ml of sterile saline, or Fab anti-colchicine, a newly available ovine antibody to colchicine. Samples of blood were taken at 1, 2, 5 and 24 h after gavage, and urine was collected from 5 to 24 h after gavage. Concentrations of colchicine in tissue, blood and urine were measured by liquid chromatography/mass spectrometry, concentrations of Fab anti-colchicine, urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 or KIM-1 by enzyme-linked immunosorbent assay or ELISA, while concentrations of creatine kinase and creatinine (Cr) were measured enzymatically. Colchicine equilibrated rapidly throughout the body and increased serum creatine kinase. Fab anti-colchicine also rapidly redistributed to the blood and remained at high concentrations over 24 h. Fab anti-colchicine caused a rapid 7.1-fold increase in serum colchicine level, followed by excretion of both colchicine and Fab anti-colchicine through the urine. This was associated with the accumulation of colchicine in the kidney, a reversal of colchicine-induced diarrhoea, and increasing urinary NGAL level; from 168 ± 48 to 477 ± 255 ng/mmol Cr [mean ± standard deviation or SD]. Fab anti-colchicine greatly increased the clearance of colchicine, although increasing NGAL level suggested the presence of mild kidney damage. These data suggest clinical utility for Fab anti-colchicine in the treatment of colchicine overdose.

  12. Computational identification of antigen-binding antibody fragments.

    Science.gov (United States)

    Burkovitz, Anat; Leiderman, Olga; Sela-Culang, Inbal; Byk, Gerardo; Ofran, Yanay

    2013-03-01

    Determining which parts of the Ab are essential for Ag recognition and binding is crucial for understanding B cell-mediated immunity. Identification of fragments of Abs that maintain specificity to the Ag will also allow for the development of improved Ab-based therapy and diagnostics. In this article, we show that structural analysis of Ab-Ag complexes reveals which fragments of the Ab may bind the Ag on their own. In particular, it is possible to predict whether a given CDR is likely to bind the Ag as a peptide by analyzing the energetic contribution of each CDR to Ag binding and by assessing to what extent the interaction between that CDR and the Ag depends on other CDRs. To demonstrate this, we analyzed five Ab-Ag complexes and predicted for each of them which of the CDRs may bind the Ag on its own as a peptide. We then show that these predictions are in agreement with our experimental analysis and with previously published experimental results. These findings promote our understanding of the modular nature of Ab-Ag interactions and lay the foundation for the rational design of active CDR-derived peptides.

  13. Detection of thrombi using a Tc-99m labelled antifibrin monoclonal antibody (MoAb)

    International Nuclear Information System (INIS)

    Wasser, M.N.J.M.

    1989-01-01

    This thesis presents an investigation into the possibility of immunoscintigraphic detection of thrombi using an antifibrin monoclonal antibody, and fragments of the latter. The antifibrin antibody and tis fragments were labelled with Ec-99m, which has excellent characteristics for imaging with a gamma camera. The characterization of the antifibrin antibody and its fragments, the assessment of quality of labelling with Tc-99m, and results of experiments in vitro and in animals, which show the potential of immunoscintigraphic detection, are described. (author). 142 refs.; 44 figs.; 5 tabs

  14. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  15. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    Science.gov (United States)

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: Imaging of tumors hosted in nude mice

    International Nuclear Information System (INIS)

    Le Doussal, J.M.; Gruaz-Guyon, A.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J.

    1990-01-01

    Antibody conjugates were prepared by coupling F(ab')2 or Fab' fragments of an antibody specific for the human high molecular weight-melanoma associated antigen to Fab' fragments of an antibody specific for indium-diethylenetriaminepentaacetate complexes. Monovalent and bivalent haptens were synthesized by reacting the dipeptide tyrosyl-lysine with diethylenetriaminepentaacetic cyclic anhydride. In vitro, the antibody conjugate mediated binding of the 111In-labeled haptens to melanoma cells. In vivo, it allowed specific localization of the haptens in A375 tumors. The bivalent hapten exhibited much higher efficiency at targeting 111In onto cells, both in vitro and in vivo. Antibody conjugate and hapten doses (2 micrograms and 1 pmol, respectively) and the delay between antibody conjugate and tracer injections (24 h) were adjusted to maximize tumor uptake (4% injected dose/g) and tumor to normal tissue contrast (greater than 3) obtained 3 h after injection of the 111In-labeled bivalent hapten. This two-step technique, when compared to direct targeting of 111In-labeled F(ab')2 fragments, provided lower localization of injected activity into the tumor (x 0.25), but higher tumor/tissue ratios, especially with respect to liver (x 7), spleen (x 8), and kidneys (x 10). In addition, high contrast images were obtained within 3 hours, instead of days. Thus, antibody conjugate-mediated targeting of small bivalent haptens, labeled with short half-life isotopes, is proposed as a general method for improving tumor radioimmunolocalization

  17. Radioimmunoimaging of human breast carcinoma xenografts in nude mouse model with 111In-labeled new monoclonal antibody EBA-1 and F(ab')2 fragments

    International Nuclear Information System (INIS)

    Yemul, Shrishailam; Leon, J.A.; Pozniakoff, Ted; Esser, P.D.; Estabrook, Alison; Met-Path Inc., Teterboro, NJ

    1993-01-01

    Radioimmunoimaging characteristics of a new monoclonal antibody EBA-1 and its F(ab') 2 fragments utilizing nu/nu mice bearing human breast carcinoma xenografts are described. 111 In-DPTA conjugates of EBA-1 localized with tumor/blood ratios of 0.99 ± 0.10 (P 2 radioconjugates at 48 h. These results suggest that EBA-1 and its F(ab') 2 might be useful reagents in radioimmunoimaging and radioimmunotherapy. (author)

  18. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  19. Development of 90Y-DOTA-nimotuzumab Fab fragment for radioimmunotherapy

    International Nuclear Information System (INIS)

    Alonso Martinez, L.M.; Marylaine Perez-Malo Cruz; Rene Leyva Montana; Calzada Falcon, V.N.; Minely Zamora Barrabi; Alejandro Arbesu Valdivia; Ignacio Hernandez Gonzalez; Mariela Leon Perez

    2014-01-01

    Yttrium-90-( 90 Y) labeled monoclonal antibodies prepared with a chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), have been used for radioimmunotherapy of cancer. In the present work, the Fab fragment of anti-EGFR monoclonal antibody nimotuzumab was prepared with high purity, integrity and biological activity. The Fab fragment with high specific recognition of EGFR in NCI-H125 human lung adenocarcinoma cells was derivatized with DOTA-NHS applying a simple procedure. DOTA-nimotuzumab Fab fragment was successfully radiolabeled with 90 Y with high radiochemical yield. The in vitro stability of labeled product was optimal over 24 h in buffered solution at 37 deg C. Biodistribution and pharmacokinetic studies correctly evaluated the in vivo non-tumor uptake, dosage regimen and excretion pathway in normal Wistar rats. (author)

  20. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    Science.gov (United States)

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  1. Expression of recombinant Antibodies

    Directory of Open Access Journals (Sweden)

    André eFrenzel

    2013-07-01

    Full Text Available Recombinant antibodies are highly specific detection probes in research, diagnostics and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines and transgenic plants are promising to obtain antibodies with human-like post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  2. Functionally fused antibodies--a novel adjuvant fusion system

    DEFF Research Database (Denmark)

    Larsen, Martin; Jensen, Kim Bak; Christensen, Peter Astrup

    2008-01-01

    Antibodies capable of recognizing key molecular targets isolated e.g. by phage display technology have been used in the pursuit of new and improved therapies for prevalent human diseases. These approaches often take advantage of non-immunogenic antibody fragments to achieve specific toxin-, radio...

  3. Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody

    International Nuclear Information System (INIS)

    Baral, Pravas Kumar; Wieland, Barbara; Swayampakula, Mridula; Polymenidou, Magdalini; Aguzzi, Adriano; Kav, Nat N. V.; James, Michael N. G.

    2011-01-01

    The complex of MoPrP(120–232) and Fab POM1 has been crystallized (space group C2, unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°). Diffraction data to 2.30 Å resolution have been collected using synchrotron radiation. Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein PrP c to the pathogenic isoform PrP sc . Several antibodies are known to interact with the cellular prion protein and to inhibit this transition. An antibody Fab fragment, Fab POM1, was produced that recognizes a structural motif of the C-terminal domain of mouse prion protein. To study the mechanism by which Fab POM1 recognizes and binds the prion molecule, the complex between Fab POM1 and the C-terminal domain of mouse prion (residues 120–232) was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group C2, with unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°

  4. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    International Nuclear Information System (INIS)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-01-01

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  5. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    Energy Technology Data Exchange (ETDEWEB)

    Crivianu-Gaita, Victor [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada); Romaschin, Alexander [Clinical Biochemistry, St. Michael' s Hospital, Toronto, ON M5B 1W8 (Canada); Thompson, Michael, E-mail: mikethom@chem.utoronto.ca [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)

    2015-12-30

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  6. Immunoscintigraphy of adenocarcinomas by means of 111In-labelled F(ab')2 fragments of anti-CEA monoclonal antibody F023C5

    International Nuclear Information System (INIS)

    Riva, P.; Paganelli, G.; Callegaro, L.

    1988-01-01

    F(ab') 2 fragments of F023C5, an anti-CEA monoclonal antibody, were conjugated to diethylenetriamine pentaacetic acid (DTPA) and converted into a ready to use reagent for instant 111 In-labelling. The resulting 111 In radiopharmaceutical was administered intravenously and tested for its ability to image (at 48-72 h after administration) 31 primary and 85 metastatic carcinoma lesions in 70 adenocarcinoma patients (26 gastrointestinal, 18 breast and 26 lung tumour patients) whose serum CEA was elevated in 43 cases and normal in the other 27. (author)

  7. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Odaka, Asano; Matsunaga, Chigusa; Kato, Koichi; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan)); Kawaminami, Shunro (Kao Corp., Tochigi (Japan))

    1991-07-02

    A multinuclear NMR study is reported of Fv, which is a minimum antigen-binding unit of immunoglobulin. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire C{sub H}1 domain. A variety of Fv analogues labeled with {sup 2}H in the aromatic rings and with {sup 13}C and/or {sup 15}N in the peptide bonds have been prepared and used for multinuclear NMR analyses of Fv spectra of Fv sensitively reflect the antigen binding and can be used along with {sup 1}H and {sup 13}C spectral data for the structural analyses of antigen-antibody interactions. Hydrogen-deuterium exchange of the amide protons has been folowed in the absence and presence of DNS-Lys by using the {sup 1}H-{sup 15}N shift correlation spectra. Use of the {beta}-shift observed for the carbonyl carbon resonances has also been helpful in following the hydrogen-deuterium exchange. On the basis of the NMR data obtained, the static and dynamic structure of the Fv fragment in the absence and presence of DNS-Lys has been discussed.

  8. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Odaka, Asano; Matsunaga, Chigusa; Kato, Koichi; Shimada, Ichio; Arata, Yoji; Kawaminami, Shunro

    1991-01-01

    A multinuclear NMR study is reported of Fv, which is a minimum antigen-binding unit of immunoglobulin. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire C H 1 domain. A variety of Fv analogues labeled with 2 H in the aromatic rings and with 13 C and/or 15 N in the peptide bonds have been prepared and used for multinuclear NMR analyses of Fv spectra of Fv sensitively reflect the antigen binding and can be used along with 1 H and 13 C spectral data for the structural analyses of antigen-antibody interactions. Hydrogen-deuterium exchange of the amide protons has been folowed in the absence and presence of DNS-Lys by using the 1 H- 15 N shift correlation spectra. Use of the β-shift observed for the carbonyl carbon resonances has also been helpful in following the hydrogen-deuterium exchange. On the basis of the NMR data obtained, the static and dynamic structure of the Fv fragment in the absence and presence of DNS-Lys has been discussed

  9. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  10. Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement.

    Science.gov (United States)

    Aarden, Lucien; Ruuls, Sigrid R; Wolbink, Gertjan

    2008-08-01

    To date, millions of people have been treated with therapeutic monoclonal antibodies (TmAbs) for various indications. It is becoming increasingly clear that TmAbs can be immunogenic, which may reduce efficacy or induce adverse effects. Over the years, the importance of antibody formation has been questioned and sometimes minimized, as few antibody responses to TmAbs (HACA or HAHA) were reported. However, the methods to detect and quantify such antibodies used in the past have been problematic. Only recently, methods have been developed that have adequate sensitivity and are not seriously disturbed by false-positive reactions caused by rheumatoid factors, natural antibodies to Fab or F(ab')2 fragments, or Fc interactions of IgG4. The large number of treated patients, in combination with these new assays, presents a unique opportunity to study the anti-antibody immune response in man, possibly allowing us to manipulate immunogenicity in the future.

  11. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  12. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

    Directory of Open Access Journals (Sweden)

    María Elena Iezzi

    2018-02-01

    Full Text Available Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs, in particular those engineered from the variable heavy-chain fragment (VHH gene found in Camelidae heavy-chain antibodies (or IgG2 and IgG3, are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

  13. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    Science.gov (United States)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  14. Epitope mapping of monoclonal antibodies directed to aminopeptidase A and their relevance for albuminuria in mice.

    Science.gov (United States)

    Gerlofs-Nijland, Miriam E; Assmann, Karel J M; van Son, Jacco P H F; Dijkman, Henry B P M; te Loeke, Nathalie A J M; van der Zee, Ruurd; Wetzels, Jack F M; Groenen, Patricia J T A

    2003-01-01

    We have shown previously that injection of specific combinations of anti-aminopeptidase A monoclonal antibodies induces an acute massive albuminuria in mice. This albuminuria is neither dependent on systemic mediators of inflammation nor angiotensin II. In this study, we examined the contribution of two individual antibodies, the enzyme-inhibiting antibody ASD-37 and the non-enzyme-inhibiting antibody ASD-41, in the induction of albuminuria as well as the interactions between these two monoclonals. In addition, we have mapped the epitopes of both antibodies using in vitro coupled transcription/translation of specifically designed cDNA fragments followed by immunoprecipitation, and using peptide enzyme-linked immunosorbent assay in case of a continuous epitope. A single intravenous injection of 4 mg of either ASD-37 or ASD-41 did not induce albuminuria. This dose of ASD-37 did not completely inhibit enzyme activity. The combination of 4 mg ASD-37/41 (1:1 weight ratio) induced albuminuria and almost completely inhibited enzyme activity. Similar results were obtained with a combination of ASD-37/41 in a 1:39 or 39:1 weight ratio. Administration of 2 mg ASD-41 24 h before injection of 2 mg ASD-37 significantly enhanced albuminuria. The epitope of ASD-37 is located at the C-terminal end of aminopeptidase A, whereas the ASD-41 epitope is mapped near the enzyme active site. Our data suggest that ASD-41 modulates the binding of ASD-37 to its epitope and/or vice versa. As a consequence, ASD-37 and ASD-41 act synergistically, not only in inhibiting enzyme activity but also in inducing albuminuria. Copyright 2003 S. Karger AG, Basel

  15. Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies

    Directory of Open Access Journals (Sweden)

    Maria Soler

    2014-01-01

    Full Text Available Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.

  16. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies.

    Science.gov (United States)

    Soler, Maria; Estevez, M-Carmen; Alvarez, Mar; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M

    2014-01-29

    Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.

  17. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    Science.gov (United States)

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    Science.gov (United States)

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Land fragmentation and production diversification

    NARCIS (Netherlands)

    Ciaian, Pavel; Guri, Fatmir; Rajcaniova, Miroslava; Drabik, Dusan; Paloma, Sergio Gomez Y.

    2018-01-01

    We analyze the impact of land fragmentation on production diversification in rural Albania. Albania represents a particularly interesting case for studying land fragmentation as the fragmentation is a direct outcome of land reforms. The results indicate that land fragmentation is an important driver

  20. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    Science.gov (United States)

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  1. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin

    International Nuclear Information System (INIS)

    Demartis, S.; Tarli, L.; Neri, D.; Borsi, L.; Zardi, L.

    2001-01-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211 At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. (orig.)

  2. Monoclonal antibody to the rat glucocorticoid receptor. Relationship between the immunoreactive and DNA-binding domain

    International Nuclear Information System (INIS)

    Eisen, L.P.; Reichman, M.E.; Thompson, E.B.; Gametchu, B.; Harrison, R.W.; Eisen, H.J.

    1985-01-01

    The region of the glucocorticoid receptor that reacted with a monoclonal antibody (BUGR-1) was identified. In order to identify the immunoreactive region, the rat liver glucocorticoid receptor was subjected to limited proteolysis; immunoreactive fragments were identified by Western blotting. The monoclonal antibody reacted with both the undigested Mr approximately 97,000 receptor subunit and a Mr approximately 45,000 fragment containing the steroid-binding and DNA-binding domains. Digestion by trypsin also produced two steroid-binding fragments of Mr approximately 27,000 and 31,000 which did not react with the antibody and an immunoreactive Mr approximately 16,000 fragment. This Mr approximately 16,000 fragment was shown to bind to DNA-cellulose, indicating that it contained a DNA-binding domain of the receptor. The undigested receptor must have steroid associated with it to undergo activation to a DNA-binding form. However, the Mr approximately 16,000 immunoreactive fragment binds to DNA-cellulose even if it is obtained by digestion of the steroid-free holoreceptor which does not itself bind to DNA

  3. Detection of antibodies in human serum using trimellityl-erythrocytes: direct and indirect haemagglutination and haemolysis.

    Science.gov (United States)

    Turner, E S; Pruzansky, J J; Patterson, R; Zeiss, C R; Roberts, M

    1980-02-01

    Utilizing trimellityl-erythrocytes (TM-E), antibodies were detected in sera of seven workers with trimellitic anhydride (TMA) induced airway syndromes by direct haemagglutination, indirect haemagglutination with anti-human IgG, IgA or IgM or by haemolysis. Detectable levels of antibody were obtained with all three methods. The most sensitive technique was indirect haemagglutination using anti-IgG. When added as an inhibitor, TM-human serum albumin produced a 10- to 800-fold reduction in titres. TM-ovalbumin of similar epitope density was less inhibitory and sodium trimellitate the least inhibitory on a molar basis. All of the assays using haptenized human red cells were also capable of detecting anti-TM antibodies in Rhesus monkeys whose airways had been exposed to TMA. These assays are useful for detecting anti-TM antibodies and may also be adapted to demonstrate antibodies induced against other inhaled haptens in sera of environmentally exposed individuals or in animal models of such exposure.

  4. Antibody-Based Immunotoxins for the Treatment of Cancer

    OpenAIRE

    Nurit Becker; Itai Benhar

    2012-01-01

    Antibody-based immunotoxins comprise an important group in targeted cancer therapeutics. These chimeric proteins are a form of biological guided missiles that combine a targeting moiety with a potent effector molecule. The targeting moiety is mostly a monoclonal antibody (MAb) or a recombinant antibody-based fragment that confers target specificity to the immunotoxin. The effector domain is a potent protein toxin of bacterial or plant origin, which, following binding to the target cells, unde...

  5. Incomplete Antibodies May Reduce ABO Cross-Match Incompatibility: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Mehmet Özen

    2018-02-01

    Full Text Available Objective: Any erythrocyte transfusion among humans having type A or B blood groups is impossible due to antibodies causing fatal transfusion complications. A cross-match test is performed to prevent immune transfusion complications before transfusion. Our hypothesis is that the fragment antibody (Fab part of the antibody (incomplete antibody may be used to prevent an immune stimulus related to the complete antibody. Therefore, we designed a pilot study to evaluate the effectiveness of these incomplete antibodies using cross-match tests. Materials and Methods: Pepsin enzyme and staphylococcal protein A columns were used to cut anti-A and anti-B monoclonal antibodies and purify their Fab (2 fragments, respectively. An Rh-positive erythrocyte suspension with purified anti-A Fab (2 solution and B Rh-positive erythrocyte suspension with purified anti-B Fab (2 solution were combined correspondingly. Cross-match tests were performed by tube and gel centrifugation methods. The agglutination levels due to the anti-A and anti-B Fab (2 antibodies and their effects on the agglutination normally observed with complete antibodies were then measured. Results: No agglutination for the purified incomplete anti-A Fab (2 with A Rh+ erythrocyte and anti-B Fab (2 with B Rh+ erythrocyte combinations was observed in the tube cross-match tests. These agglutination levels were 1+ in two wells in the gel centrifugation cross-match tests. Fab (2-treated erythrocytes were also resistant to the agglutination that normally occurs with complete antibodies. Conclusion: We determined that the Fab (2 fragments of antibodies may not only be used to obtain a mild or negative reaction when compared to complete antibodies, but they might also be used for decreasing ABO incompatibility. Incomplete antibodies might be a therapeutic option in autoimmune hemolytic anemia and they may also be used in solid organ or hematopoietic stem cell transplantation. Therefore, we have planned an

  6. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

    Science.gov (United States)

    Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.

  7. Detection of auto-anti-idiotypic antibodies to Lol p I (rye I) IgE antibodies in human sera by the use of murine idiotypes: levels in atopic and non-atopic subjects and effects of immunotherapy.

    Science.gov (United States)

    Hébert, J; Bernier, D; Mourad, W

    1990-06-01

    Anti-idiotypic antibodies (anti-Id Abs) are involved in the regulation of a number of immune responses including the IgE antibody production. In atopic patients, the increased synthesis of IgE antibodies could be related to a defective production of regulatory anti-Id Abs. In the present study, we first developed a sensitive assay for measuring the levels of anti-Id Abs directed against antibodies specific for Lol p I, the major allergenic determinant of Lolium perenne (rye grass). In this assay, we used previously described murine monoclonal anti-Lol p I antibodies that were shown to share epitopic specificities with human anti-Lol p I IgE and IgG antibodies, thus short-cutting the need for purification of F(ab')2 fragments of human IgG Abs and insuring optimal specificity and sensitivity. Levels of anti-Id Abs against two anti-Lol p I monoclonal antibodies (290A-167, 348A-6) were higher in normal volunteers than in untreated atopic patients. Specific immunotherapy increased the levels of anti-Id Abs to those of normal volunteers. These observations suggest a role for the Id-anti-Id network in the regulation of IgE antibody production.

  8. Sortilin Fragments Deposit at Senile Plaques in Human Cerebrum

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2017-06-01

    Full Text Available Genetic variations in the vacuolar protein sorting 10 protein (Vps10p family have been linked to Alzheimer’s disease (AD. Here we demonstrate deposition of fragments from the Vps10p member sortilin at senile plaques (SPs in aged and AD human cerebrum. Sortilin changes were characterized in postmortem brains with antibodies against the extracellular and intracellular C-terminal domains. The two antibodies exhibited identical labeling in normal human cerebrum, occurring in the somata and dendrites of cortical and hippocampal neurons. The C-terminal antibody also marked extracellular lesions in some aged and all AD cases, appearing as isolated fibrils, mini-plaques, dense-packing or circular mature-looking plaques. Sortilin and β-amyloid (Aβ deposition were correlated overtly in a region/lamina- and case-dependent manner as analyzed in the temporal lobe structures, with co-localized immunofluorescence seen at individual SPs. However, sortilin deposition rarely occurred around the pia, at vascular wall or in areas with typical diffuse Aβ deposition, with the labeling not enhanced by section pretreatment with heating or formic acid. Levels of a major sortilin fragment ~15 kDa, predicted to derive from the C-terminal region, were dramatically elevated in AD relative to control cortical lysates. Thus, sortilin fragments are a prominent constituent of the extracellularly deposited protein products at SPs in human cerebrum.

  9. Antibody-Based Immunotoxins for the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Nurit Becker

    2012-05-01

    Full Text Available Antibody-based immunotoxins comprise an important group in targeted cancer therapeutics. These chimeric proteins are a form of biological guided missiles that combine a targeting moiety with a potent effector molecule. The targeting moiety is mostly a monoclonal antibody (MAb or a recombinant antibody-based fragment that confers target specificity to the immunotoxin. The effector domain is a potent protein toxin of bacterial or plant origin, which, following binding to the target cells, undergoes internalization and causes cell death. Over time and following research progression, immunotoxins become better fitted to their purpose, losing immunogenic fragments and non-specific targeting moieties. Many immunotoxins have gone through clinical evaluation. Some of these have been shown to be active and work is progressing with them in the form of further clinical trials. Others, mostly developed in the previous century, failed to generate a response in patients, or even caused undesired side effects. This article reviews the antibody and protein-toxin based immunotoxins that were clinically evaluated up to the present day.

  10. Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein 1

    Directory of Open Access Journals (Sweden)

    Pontón José

    2007-04-01

    Full Text Available Abstract Background The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Results Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1 generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT. The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 % and the negative predictive value (90.2 % but slightly decreased the specificity (82.6 % and positive predictive values (80 %. The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT. Conclusion An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore.

  11. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    Science.gov (United States)

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. Copyright © 2015. Published by Elsevier Ltd.

  12. Current diagnostic efficacy of Tc-99m-labeled antitumor antibodies

    International Nuclear Information System (INIS)

    Morrison, R.T.; Lyster, D.M.; Szasz, I.; Alcorn, L.N.; Rhodes, B.A.; Breslow, K.; Burchiel, S.W.

    1983-01-01

    The authors have recently evaluated technetium 99 labeled antibodies specific to human chorionic gonadotropin (hCG) for the in vivo detection of a variety of human tumors. Both mouse monoclonal and sheep polyclonal antibodies were evaluated in this study. Another antibody specific to hCG studied, is an antigen-agglutinating monoclonal F(ab') 2 fragment. Some preliminary results are reported

  13. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Aβ peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Miles, Luke A. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Crespi, Gabriela A. N. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Wycherley, Kaye [WEHI Biotechnology Centre, La Trobe R& D Park, Bundoora, Victoria 3086 (Australia); Ascher, David B. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Barnham, Kevin J.; Cappai, Roberto [Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Beyreuther, Konrad [ZMBH, University of Heidelberg, Heidelberg (Germany); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Parker, Michael W. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); McKinstry, William J., E-mail: wjmckinstry@hotmail.com [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Medicine (St Vincent’s Hospital), The University of Melbourne, 41 Victoria Parade, Fitzroy 3065 (Australia)

    2008-05-01

    Crystallization and X-ray diffraction data collection of the Fab fragment of the monoclonal antibody WO2 in the absence or presence of amyloid β peptides associated with Alzheimer’s disease are reported. The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid β peptide (Aβ) associated with Alzheimer’s disease. This region of Aβ has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Aβ peptides Aβ{sub 1–16} and Aβ{sub 1–28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 Å resolution. The complexes of WO2 Fab with either Aβ{sub 1–@}@{sub 16} or Aβ{sub 1–28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 Å resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Aβ{sub 1–42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 Å resolution.

  14. Development of anti-bovine IgA single chain variable fragment and its application in diagnosis of foot-and-mouth disease

    Science.gov (United States)

    Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran

    2014-01-01

    Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404

  15. Membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide

    International Nuclear Information System (INIS)

    Semelr, B.L.; Anderson, C.W.; Hanecak, R.; Dorner, L.F.; Wimmer, E.

    1982-01-01

    A synthetic heptapeptide corresponding to the C-terminal sequence of the poliovirus genome protein (VPg) has been linked to bovine serum albumin and used to raise antibodies in rabbits. These antibodies precipitate not only VPg but also at least two more virus-specific polypeptides. The smaller polypeptide, denoted P3-9 (12,000 daltons), has been mapped by Edman degradation and by fragmentation with cyanogen bromide and determined to be the N-terminal cleavage product of polypeptide P3-1b, a precursor to the RNA polymerase. P3-9 contains the sequence of the basic protein VPg (22 amino acids) at its C terminus. As predicted by the known RNA sequence of poliovirus, P3-9 also contains a hydrophobic region of 22 amino acids preceding VPg, an observation suggesting that P3-9 may be membrane-associated. This was confirmed by fractionation of infected cells in the presence or absence of detergent. We speculate that P3-9 may be the donor of VPg to RNA chains in the membrane-bound RNA replication complex

  16. Fragmentation and direct transfer reactions for 40Ar incident beam on 27Al target at 1760 MeV

    International Nuclear Information System (INIS)

    Cisse, Ousmane

    1985-01-01

    Peripheral collision studies performed with 40 Ar projectiles at 44 MeV/A and 27 Al target show that both fragmentation and transfer reactions can be discerned in this type of interaction. The experimental observation of fragments with masses charges and velocities close to those of the incident beam are the signature of transfer reactions and a detailed analysis of the energy spectra of such fragments has been carried out and interpreted in terms of a direct diffraction transfer model. On the other hand, for large mass transfer reactions, abrasion is the suitable mechanism. Inclusive fragment measurement together with the appropriate residual nuclei-fragment coincidence results then provides experimental data in good agreement with the theoretical predictions obtained from a participant spectator model. These investigations also indicate that the separation energies of the participant from the spectator nucleus, at least within the framework of the above model, can be interpreted in terms of a friction force which becomes more efficient as the projectile energy decreases. (author) [fr

  17. Experimental study on 211At labelled monoclonal antibody 3H11 and its Fab fragment radioimmunotherapy for human gastric cancer xenografts in nude mice

    International Nuclear Information System (INIS)

    Jin Jiannan; Liu Ning; Zhang Shuyuan; Zhang Shiyuan; Luo Deyuan; Zhou Maolun

    1996-01-01

    Experimental radioimmunotherapy investigation of α-emitting radionuclide 211 At labelled anti-gastric cancer monoclonal antibody 3H11 and its Fab fragment for nude mice carrying human gastric cancer xenografts was conducted. Three i.p. injections of 14.8 or 22.2 kBq/g mouse were given, once every 5 days. The results showed that the growth of tumor xenografts was inhibited efficiently. The most evident therapy effect was observed at 15 days after treatment, and the tumor inhibition rates were 65% and 72%, respectively. No radiation injury of important organs was found

  18. Site-specific chemical modification of antibody fragments using traceless cleavable linkers.

    Science.gov (United States)

    Bernardes, Gonçalo J L; Steiner, Martina; Hartmann, Isabelle; Neri, Dario; Casi, Giulio

    2013-11-01

    Antibody-drug conjugates (ADCs) are promising agents for the selective delivery of cytotoxic drugs to specific cells (for example, tumors). In this protocol, we describe two strategies for the precise modification at engineered C- or N-terminal cysteines of antibodies in IgG, diabody and small immunoprotein (SIP) formats that yield homogenous ADCs. In this protocol, cemadotin derivatives are used as model drugs, as these agents have a potent cytotoxic activity and are easy to synthesize. However, other drugs with similar functional groups could be considered. In the first approach, a cemadotin derivative containing a sulfhydryl group results in a mixed disulfide linkage. In the second approach, a cemadotin derivative containing an aldehyde group is joined via a thiazolidine linkage. The procedures outlined are robust, enabling the preparation of ADCs with a defined number of drugs per antibody in a time frame between 7 and 24 h.

  19. DIRECT AND INDIRECT FLUORESCENT-ANTIBODY TECHNIQUES FOR THE PSITTACOSIS-LYMPHOGRANULOMA VENEREUM-TRACHOMA GROUP OF AGENTS1

    Science.gov (United States)

    Ross, Martin R.; Borman, Earle K.

    1963-01-01

    Ross, Martin R. (Connecticut State Department of Health, Hartford) and Earle K. Borman. Direct and indirect fluorescent-antibody techniques for the psittacosis-lymphogranuloma venereum-trachoma group of agents. J. Bacteriol. 85:851–858. 1963.—Direct and indirect fluorescent-antibody (FA) techniques were developed for the detection of group antigen in infected tissue cultures and the titration of group antibody in human antiserum. The growth of the agent of meningopneumonitis (MP) in mouse embryo lung cell monolayers was followed by infectivity and complement-fixing (CF) antigen titrations, and cytological examination of FA stained cultures. Although infectivity and CF antigen reached a peak at 2 days and remained constant for an additional 3 days, only cells tested 2 to 3 days after infection were suitable for FA staining with labeled anti-MP serum because of excessive artifacts in the older cultures. Fluorescein isothiocyanate-labeled rooster and guinea pig anti-MP serums and human antipsittacosis serums were titrated in direct FA and hemagglutination-inhibition (HI) tests. The rooster conjugate showed brighter staining and higher antibody titers than the guinea pig or human conjugates and was more effective in detecting minimal amounts of virus antigen. FA staining reactions with 1 and 2 units of labeled rooster serum were inhibited by unlabeled rooster serum but clear-cut inhibition with human antipsittacosis serum could not be demonstrated. The indirect FA technique was successfully used for the titration of group antibody in human serum. A comparison of the indirect FA, HI, and CF tests showed the indirect FA technique to be intermediate in sensitivity between the HI and CF tests. None of the three tests showed significant cross reactions with human serums reactive for influenza A and B; parainfluenza 1, 2, and 3; respiratory syncytial virus; Q fever; or the primary atypical pneumonia agent. PMID:14044954

  20. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Directory of Open Access Journals (Sweden)

    Britta Hansmann

    2015-09-01

    Full Text Available Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2, a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  1. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Science.gov (United States)

    Hansmann, Britta; Schröder, Jens-Michael; Gerstel, Ulrich

    2015-09-01

    Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  2. Cancer imaging with CEA antibodies: historical and current perspectives.

    Science.gov (United States)

    Goldenberg, D M

    1992-01-01

    This article reviews the history and status of cancer imaging with radiolabeled antibodies against carcinoembryonic antigen (CEA). Although CEA and many other cancer-associated antigens are not distinct for neoplasia, the quantitative increase of these markers in malignant tissues provides a sufficient differential for selective antibody targeting. Animal studies with xenografted human tumors provided the first evidence of the prospects of this technology, followed by initial clinical success with purified goat whole IgG antibodies to CEA, labeled with 131I and with the use of dual-isotope subtraction methods. Subsequently, improved and earlier imaging could be accomplished with monoclonal antibody fragments, which then would permit the use of shorter-lived radionuclides, such as 111In, 123I, and 99mTc. The preferred use of a monoclonal anti-CEA IgG Fab' fragment, labeled with 99mTc by a recently developed, simple and rapid kit, has enabled the detection of small lesions, including those in the liver, within 4 h of injection. By means of SPECT imaging, a high sensitivity and specificity for RAID could be achieved.

  3. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.

    Science.gov (United States)

    Chung, Amy W; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2014-11-13

    To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein-Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4(+) binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Each mAb was assayed for antibody-binding affinity to gp140(SR162), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcγRIIa, FcγRIIb and FcγRIIIa receptors. Antibody glycan profiles were determined by HPLC. Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcγRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcγRIIIa and ADCC activity, independent of the specificity of the mAb. Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection.

  4. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment

    International Nuclear Information System (INIS)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-01-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies

  5. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice.

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-02-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. © 2014 British Society for Immunology.

  6. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein–RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-01-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. PMID:25255895

  7. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    Science.gov (United States)

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  8. Evaluation of a direct immunofluorescent antibody (difma test using Leishmania genus - specific monoclonal antibody in the routine diagnosis of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Martha E. Chico

    1995-06-01

    Full Text Available A direct immunofluorescent antibody (DIFMA test using a Leishmania genus- specific monoclonal antibody was evaluated in the routine diagnosis of cutaneous leishmaniasis (CL in Ecuador. This test was compared with the standard diagnostic techniques of scrapings, culture and histology. Diagnostic samples were taken from a total of 90 active dermal ulcers from patients from areas of Ecuador known to be endemic for cutaneous leishmaniasis. DIFMA was positive in all lesions. It was shown to be significantly superior to standard diagnostic methods either alone or in combination. The sensitivity of DIFMA did not diminish with chronicity of lesions. This test proved to be extremely useful in the routine diagnosis of CL because it is highly sensitive, is easy to use and produces rapid results.

  9. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities......Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments...... for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity...

  10. The Impact of Therapeutic Antibodies on the Management of Digestive Diseases: History, Current Practice, and Future Directions.

    Science.gov (United States)

    Sofia, M Anthony; Rubin, David T

    2017-04-01

    The development of therapeutic antibodies represents a revolutionary change in medical therapy for digestive diseases. Beginning with the initial studies that confirmed the pathogenicity of cytokines in inflammatory bowel disease, the development and application of therapeutic antibodies brought challenges and insights into their potential and optimal use. Infliximab was the first biological drug approved for use in Crohn's disease and ulcerative colitis. The lessons learned from infliximab include the importance of immunogenicity and the influence of pharmacokinetics on disease response and outcomes. Building on this foundation, other therapeutic antibodies achieved approval for inflammatory bowel disease and many more are in development for several digestive diseases. In this review, we reflect on the history of therapeutic antibodies and discuss current practice and future directions for the field.

  11. Direct Resin Composite Restoration of Maxillary Central Incisors with Fractured Tooth Fragment Reattachment: Case Report.

    Science.gov (United States)

    Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga

    This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.

  12. Immunogenic properties of Streptococcus agalactiae FbsA fragments.

    Directory of Open Access Journals (Sweden)

    Salvatore Papasergi

    Full Text Available Several species of Gram-positive bacteria can avidly bind soluble and surface-associated fibrinogen (Fng, a property that is considered important in the pathogenesis of human infections. To gain insights into the mechanism by which group B Streptococcus (GBS, a frequent neonatal pathogen, interacts with Fng, we have screened two phage displayed genomic GBS libraries. All of the Fng-binding phage clones contained inserts encoding fragments of FbsA, a protein displaying multiple repeats. Since the functional role of this protein is only partially understood, representative fragments were recombinantly expressed and analyzed for Fng binding affinity and ability to induce immune protection against GBS infection. Maternal immunization with 6pGST, a fragment containing five repeats, significantly protected mouse pups against lethal GBS challenge and these protective effects could be recapitulated by administration of anti-6pGST serum from adult animals. Notably, a monoclonal antibody that was capable of neutralizing Fng binding by 6pGST, but not a non-neutralizing antibody, could significantly protect pups against lethal GBS challenge. These data suggest that FbsA-Fng interaction promotes GBS pathogenesis and that blocking such interaction is a viable strategy to prevent or treat GBS infections.

  13. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation.

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

  15. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae.

    Science.gov (United States)

    Hisada, Hiromoto; Tsutsumi, Hiroko; Ishida, Hiroki; Hata, Yoji

    2013-01-01

    Llama variable heavy-chain antibody fragment (VHH) fused to four different reader proteins was produced and secreted in culture medium by Aspergillus oryzae. These fusion proteins consisted of N-terminal reader proteins, VHH, and a C-terminal his-tag sequence which facilitated purification using one-step his-tag affinity chromatography. SDS-PAGE analysis of the deglycosylated purified fusion proteins confirmed that the molecular weight of each corresponded to the expected sum of VHH and the respective reader proteins. The apparent high molecular weight reader protein glucoamylase (GlaB) was found to be suitable for efficient VHH production. The GlaB-VHH-His protein bound its antigen, human chorionic gonadotropin, and was detectable by a new ELISA-based method using a coupled assay with glucoamylase, glucose oxidase, peroxidase, maltose, and 3,3',5,5'-tetramethylbenzidine as substrates. Addition of potassium phosphate to the culture medium induced secretion of 0.61 mg GlaB-VHH-His protein/ml culture medium in 5 days.

  16. Universal elements of fragmentation

    International Nuclear Information System (INIS)

    Yanovsky, V. V.; Tur, A. V.; Kuklina, O. V.

    2010-01-01

    A fragmentation theory is proposed that explains the universal asymptotic behavior of the fragment-size distribution in the large-size range, based on simple physical principles. The basic principles of the theory are the total mass conservation in a fragmentation process and a balance condition for the energy expended in increasing the surface of fragments during their breakup. A flux-based approach is used that makes it possible to supplement the basic principles and develop a minimal theory of fragmentation. Such a supplementary principle is that of decreasing fragment-volume flux with increasing energy expended in fragmentation. It is shown that the behavior of the decreasing flux is directly related to the form of a power-law fragment-size distribution. The minimal theory is used to find universal asymptotic fragment-size distributions and to develop a natural physical classification of fragmentation models. A more general, nonlinear theory of strong fragmentation is also developed. It is demonstrated that solutions to a nonlinear kinetic equation consistent with both basic principles approach a universal asymptotic size distribution. Agreement between the predicted asymptotic fragment-size distributions and experimental observations is discussed.

  17. Approaches to lung cancer treatment using the CD3E x GP-2-directed bispecific monoclonal antibody BIS-1

    NARCIS (Netherlands)

    Kroesen, BJ; Nieken, J; Sleijfer, DT; Molema, G; deVries, EGE; Groen, HJM; Helfrich, W; The, TH; Mulder, NH; deLeij, L

    1997-01-01

    The bispecific monoclonal antibody (bsAb) BIS-1 combines a monoclonal-antibody(mAb)-defined specificity for the CD3 complex, as present on all T lymphocytes, with a mAb-defined specificity for the pancarcinoma/epithelium associated glycoprotein EGP-2. In vitro studies indicate that BIS-1 can direct

  18. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures

    Science.gov (United States)

    2013-01-01

    Background Fab antibody fragments in E. coli are usually directed to the oxidizing periplasmic space for correct folding. From periplasm Fab fragments may further leak into extracellular medium. Information on the cultivation parameters affecting this leakage is scarce, and the unpredictable nature of Fab leakage is problematic regarding consistent product recovery. To elucidate the effects of cultivation conditions, we investigated Fab expression and accumulation into either periplasm or medium in E. coli K-12 and E. coli BL21 when grown in different types of media and under different aeration conditions. Results Small-scale Fab expression demonstrated significant differences in yield and ratio of periplasmic to extracellular Fab between different culture media and host strains. Expression in a medium with fed-batch-like glucose feeding provided highest total and extracellular yields in both strains. Unexpectedly, cultivation in baffled shake flasks at 150 rpm shaking speed resulted in higher yield and accumulation of Fabs into culture medium as compared to cultivation at 250 rpm. In the fed-batch medium, extracellular fraction in E. coli K-12 increased from 2-17% of total Fab at 250 rpm up to 75% at 150 rpm. This was partly due to increased lysis, but also leakage from intact cells increased at the lower shaking speed. Total Fab yield in E. coli BL21 in glycerol-based autoinduction medium was 5 to 9-fold higher at the lower shaking speed, and the extracellular fraction increased from ≤ 10% to 20-90%. The effect of aeration on Fab localization was reproduced in multiwell plate by variation of culture volume. Conclusions Yield and leakage of Fab fragments are dependent on expression strain, culture medium, aeration rate, and the combination of these parameters. Maximum productivity in fed-batch-like conditions and in autoinduction medium is achieved under sufficiently oxygen-limited conditions, and lower aeration also promotes increased Fab accumulation into

  19. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    Science.gov (United States)

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  20. Analysis of Immunogenicity of Intracellular CTAR Fragments of Epstein-Barr Virus Latent Phase Protein LMP1.

    Science.gov (United States)

    Lomakin, Ya A; Shmidt, A A; Bobik, T V; Chernov, A S; Pyrkov, A Yu; Aleksandrova, N M; Okunola, D O; Vaskina, M I; Ponomarenko, N A; Telegin, G B; Dubina, M V; Belogurov, A A

    2017-10-01

    Intracellular fragments of latent phase protein LMP1 of Epstein-Barr virus, denoted as CTAR1/2/3, can trigger a variety of cell cascades and contribute to the transforming potential of the virus. Generation of recombinant proteins CTAR1/2/3 is expected to yield more ample data on functional and immunogenic characteristics of LMP1. We created genetic constructs for prokaryotic expression of LMP1 CTAR fragments and selected optimal conditions for their production and purification. Using a new library of LMP1 CTAR fragments, we carried out epitope mapping of a diagnostic anti-LMP1 antibody S12. Analysis of polyclonal serum antibodies from mice immunized with full-length LMP1 confirmed immunogenicity of CTAR elements comparable with that of full-length protein.

  1. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.

    Science.gov (United States)

    Umlauf, Benjamin J; Mix, Kalie A; Grosskopf, Vanessa A; Raines, Ronald T; Shusta, Eric V

    2018-05-03

    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.

  2. Construction and expression of a functional monoclonal antibody SZ-51 specific for GMP-140 chimeric fab fragment in Escherichia coli

    International Nuclear Information System (INIS)

    Gu Jianming; Zhang Xiaomin; Xia Lijun; Wan Haiying; Liu Yue; Li Peixia; Ruan Changgeng

    1996-04-01

    The variable region cDNAs of a monoclonal antibody SZ-51 specific for α-granule membrane protein (GMP-140) on the surface of activated human platelets were spliced with the constant region cDNA of the heavy chain CH1 and light chain k of human Ig G by means of the gene recombination techniques. The above recombinant gene was amplified by the polymerase chain reaction (PCR). The expression vector of phage plasmid pHEN1 SZ-51 Fab/Hu was constructed. The pHEN1-51 Fab/Hu was introduced into non-suppressor E. coli HB2151. The amount of expression of SZ-51 chimeric Fab/Hu measured by quantitative ELISA was about 500 μg/L. Western blot demonstrated that the SZ-51 chimeric Fab fragment could specifically bind to GMP-140. (2 figs.)

  3. Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G

    OpenAIRE

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Kazemi, Tohid; Esparvarinha, Mojghan; Majidi, Jafar

    2017-01-01

    Antibodies are essential tools of biomedical and biochemical researches. Polyclonal antibodies are produced against different epitopes of antigens. Purified F(ab')2 can be used for animal’s immunization to produce polyclonal antibodies. Human immunoglobulin G (IgG) was purified by ion exchange chromatography method. In all stages verification method of the purified antibodies was sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purified IgG was digested by pepsin enzyme a...

  4. Conversion of a Mouse Fab into a Whole Humanized IgG Antibody for Detecting Botulinum Toxin

    National Research Council Canada - National Science Library

    Palys, Thomas J; Schmid, Kara E; Scherer, John M; Schoepp, Randal J

    2006-01-01

    Antibodies serve as the gold standard in most immunodiagnostic assays. Recent advances in recombinant DNA technology have offered the production of antibody fragments or Fabs as promising alternatives...

  5. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S J

    1982-01-01

    Rat monoclonal antibody (MoAb) to fragment D (FgD) of human fibrinogen was used to characterize the direct binding of antibody to protein in solution or bound to solid supports. Purified IgG, F(ab')/sub 2/ and Fab' were prepared from ascites fluid of hybridoma 104-14B which is a fusion product of spleen cells from a rat immunized with FgD and the mouse myeloma cell line, P3-X63-Ag8. Two-dimensional electrophoresis of radioiodinated antibody preparations demonstrated the presence of hybrid immunoglobulin molecules, but only structures having rat heavy and rat light chains had active antibody combinig sites. The affinity constant for IgG as well as F(ab')/sub 2/ and Fab', 6x10/sup 9/ M/sup -1/, was identical when tested using fluid phase antigen (/sup 125/I-labeled FgD). Affinity constants determined for direct binding of iodinated IgG using FgD immobilized on solid supports showed a slight dependence on the antigen concentration used in the measurement. These values ranged from 0.5x10/sup 9/ M/sup -1/ at high antigen concentrations (1.3x10/sup -7/ M) to 9x10/sup 9/ M/sup -1/ at low antigen concentration (1.3x10/sup -10/ M). Binding constants for F(ab')/sub 2/ and Fab' gave similar results indicating that binding was homogeneous and univalent. The capacity of solid state antigen to bind antibody varied with the method used to bind FgD to the solid support. FgD bound directly to polystyrene plates was least efficient at binding labeled antibody; FgD bound to plates through intermediate carriers poly(L-lysine) was only slightly more efficient, while antigen bound to Sepharose beads by cyanogen bromide activation was the most active.

  6. Use of Phage Antibodies to Distinguish Closely Related Species of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Timothy Paget

    2000-01-01

    Full Text Available Acanthamoeba are typically identified in the laboratory using culture and microscopic observation. In this paper we describe the isolation and specificity of antibody fragments that can be used for the identification of Acanthamoeba. A phage library expressing a large repertoire (approx. 5×109 of antibody fragments was used to generate two libraries one enriched for bacteriophage that exhibit genus specific binding and the other containing bacteriophage that bind specifically to pathogenic Acanthamoeba. Individual clones were isolated on the basis of binding by ELISA, and then flowcytometry and immunofluorescence were used for further characterisation. Four monoclonal antibodies were isolated, specific for Acanthamoeba at the generic level with clone HPPG6 exhibiting the highest level of binding. Furthermore clone HPPG55 was specific for pathogenic species of Acanthamoeba.

  7. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  8. Capture ELISA for IgM antibodies against Plasmodium falciparum glutamate rich protein

    DEFF Research Database (Denmark)

    Dziegiel, M; Borre, Mette; Petersen, E

    1992-01-01

    This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta-galactos......This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta...

  9. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys

    Science.gov (United States)

    Leabman, Maya K; Meng, Y Gloria; Kelley, Robert F; DeForge, Laura E; Cowan, Kyra J; Iyer, Suhasini

    2013-01-01

    Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK. PMID:24492343

  10. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  11. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    Science.gov (United States)

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  12. Fragment-based drug design.

    Science.gov (United States)

    Feyfant, Eric; Cross, Jason B; Paris, Kevin; Tsao, Désirée H H

    2011-01-01

    Fragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability. Fragment screening also requires sensitive assays, often biophysical in nature, to detect weak binders. In this chapter we will introduce the technologies used to address these challenges and outline the experimental advantages that make FBDD one of the most popular new hit-to-lead process.

  13. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  14. Customizing monoclonal antibodies for the treatment of methamphetamine abuse: current and future applications.

    Science.gov (United States)

    Peterson, Eric C; Gentry, W Brooks; Owens, S Michael

    2014-01-01

    Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggests a scientific vision for how intact monoclonal antibody (mAb) (singular and plural) or small antigen-binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review, we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution X-ray crystal structure of a high-affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen-binding fragments and single-chain variable fragments are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites, and neuronal connections. © 2014 Elsevier Inc. All rights reserved.

  15. Influence of joint direction and position of explosive charge on fragmentation

    International Nuclear Information System (INIS)

    Hafsaoui, Abdellah; Talhi, Korichi

    2009-01-01

    Although researchers have realized varying degrees of success in small-scale physical in situ testing, most will agree that the greatest uncertainty stems from the uncontrollable field variables. Given the diverse nature of field conditions encountered, there exists no reliable and proven method of predicting fragmentation. Due to the lack of adequate field controls, it is unlikely that a universal physical model will ever be developed for all blasting. This paper presents the results of a test conducted at the Hadjar Essoud quarry to investigate the problems associated with the discontinuities in the rock, which are among the factors causing the reduction of the resistance of the rocks to the explosive. Nevertheless, the distance between the joints, their dip and strike, and the position of the detonator play a significant role in the final fragmentation of the rock. In this work, we studied the role of the abovementioned factors on models of limestone rock of 150 X 375 X 450 mm. Accurate measurement of blast, fragmentation is important in mining and quarrying operations, in monitoring blasts, and optimizing their design. We shall use the Kuznetsov-Rammler method to measure fragmentation. It shows great potential as a practical aid to predict and control the quality of the fragmented material in the Hadjar Essoud quarry. (author)

  16. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-08

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  17. PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment.

    Science.gov (United States)

    Shi, Sixiang; Orbay, Hakan; Yang, Yunan; Graves, Stephen A; Nayak, Tapas R; Hong, Hao; Hernandez, Reinier; Luo, Haiming; Goel, Shreya; Theuer, Charles P; Nickles, Robert J; Cai, Weibo

    2015-06-01

    The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathologic hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use (64)Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. Fab fragment of TRC105, a mAb that specifically binds to CD105, was generated by enzymatic papain digestion and conjugated to NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) for (64)Cu labeling. The binding affinity/specificity of NOTA-TRC105-Fab was evaluated by flow cytometry and various ex vivo studies. BALB/c mice were anesthetized and treated with calcium phosphate to induce AAA and underwent weekly PET scans using (64)Cu-NOTA-TRC105-Fab. Biodistribution and autoradiography studies were also performed to confirm the accuracy of PET results. NOTA-TRC105-Fab exhibited high purity and specifically bound to CD105 in vitro. Uptake of (64)Cu-NOTA-TRC105-Fab increased from a control level of 3.4 ± 0.1 to 9.5 ± 0.4 percentage injected dose per gram (%ID/g) at 6 h after injection on day 5 and decreased to 7.2 ± 1.4 %ID/g on day 12, which correlated well with biodistribution and autoradiography studies (i.e., much higher tracer uptake in AAA than normal aorta). Of note, enhanced AAA contrast was achieved, due to the minimal background in the abdominal area of mice. Degradation of elastic fibers and highly expressed CD105 were observed in ex vivo studies. (64)Cu-NOTA-TRC105-Fab cleared rapidly through the kidneys, which enabled noninvasive PET imaging of the aorta with enhanced contrast and showed increased angiogenesis (CD105 expression) during AAA. (64)Cu-NOTA-TRC105-Fab PET may potentially be used for future diagnosis and prognosis of AAA. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    Science.gov (United States)

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    Science.gov (United States)

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  20. Studies of a murine monoclonal antibody directed against DARC: reappraisal of its specificity.

    Directory of Open Access Journals (Sweden)

    Dorota Smolarek

    Full Text Available Duffy Antigen Receptor for Chemokines (DARC plays multiple roles in human health as a blood group antigen, a receptor for chemokines and the only known receptor for Plasmodium vivax merozoites. It is the target of the murine anti-Fy6 monoclonal antibody 2C3 which binds to the first extracellular domain (ECD1, but exact nature of the recognized epitope was a subject of contradictory reports. Here, using a set of complex experiments which include expression of DARC with amino acid substitutions within the Fy6 epitope in E. coli and K562 cells, ELISA, surface plasmon resonance (SPR and flow cytometry, we have resolved discrepancies between previously published reports and show that the basic epitope recognized by 2C3 antibody is 22FEDVW26, with 22F and 26W being the most important residues. In addition, we demonstrated that 30Y plays an auxiliary role in binding, particularly when the residue is sulfated. The STD-NMR studies performed using 2C3-derived Fab and synthetic peptide corroborated most of these results, and together with the molecular modelling suggested that 25V is not involved in direct interactions with the antibody, but determines folding of the epitope backbone.

  1. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post-fragmentation

  2. Optimization of antibody immobilization for on-line or off-line immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Beyer, Natascha Helena; Schou, Christian; Højrup, Peter

    2009-01-01

    -POROS. Protein G-based matrices are very stable showing essentially no decline in performance after 50 application-wash-elution-reequilibration cycles and being easily prepared within 2-3 h of working time with a typical antibody coupling yield of above 80%. In off-line applications where constant flow....... A systematic study was conducted to determine the most versatile antibody immobilization method for use in on-line and off-line IA chromatography applications using commonly accessible immobilization methods. Four chemistries were examined using polyclonal and monoclonal antibodies and antibody fragments. We...

  3. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  4. Identification of a novel myositis-associated antibody directed against cortactin.

    Science.gov (United States)

    Labrador-Horrillo, Moisés; Martínez, Maria Angeles; Selva-O'Callaghan, Albert; Trallero-Araguás, Ernesto; Grau-Junyent, Josep M; Vilardell-Tarrés, Miquel; Juarez, Candido

    2014-10-01

    The aim of this study is to describe a novel myositis-associated autoantibody (anti-cortactin antibody) and assess related clinical and immunological manifestations and its clinical significance. Adult patients with myositis (dermatomyositis, polymyositis, immune-mediated necrotizing myopathy, and inclusion body myositis), as well as patients with other autoimmune diseases and non-inflammatory myopathies were analyzed for the presence of anti-cortactin antibody using in-house developed ELISA and immunoblotting techniques with a commercial source of purified cortactin. The cut-off for positive status was determined in a group of healthy volunteers. Antibody against cortactin was positive in 7/34 (20%) polymyositis patients, 9/117 (7.6%) dermatomyositis, 2/7 (26%) immune-mediated necrotizing myopathy, and none of the 4 patients with inclusion body myositis. The antibody also tested positive in 3/101 patients with other autoimmune diseases (2 systemic sclerosis and 1 systemic lupus erythematosus), and in 1/29 patients with non-inflammatory myopathy. No relevant association with specific clinical features was found in patients with these antibodies. Anti-cortactin antibody was more frequently positive in patients with polymyositis and immune-mediated necrotizing myopathy than in the remaining myositis patients, and was the only myositis autoantibody found in sera of 3 patients from these groups. Our data indicate that cortactin is a novel target antigen in patients with autoimmune diseases, especially patients with polymyositis or immune-mediated necrotizing myopathy. Anti-cortactin can be considered a new myositis-associated antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts.

    Science.gov (United States)

    Lütje, Susanne; van Rij, Catharina M; Franssen, Gerben M; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J; Colombatti, Marco; Boerman, Otto C

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  7. Antibody Engineering and Therapeutics

    Science.gov (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  8. A binary plasmid system for shuffling combinatorial antibody libraries.

    OpenAIRE

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-01-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind a...

  9. Intracellular antibody capture: A molecular biology approach to inhibitors of protein-protein interactions.

    Science.gov (United States)

    Zhang, Jing; Rabbitts, Terence H

    2014-11-01

    Many proteins of interest in basic biology, translational research studies and for clinical targeting in diseases reside inside the cell and function by interacting with other macromolecules. Protein complexes control basic processes such as development and cell division but also abnormal cell growth when mutations occur such as found in cancer. Interfering with protein-protein interactions is an important aspiration in both basic and disease biology but small molecule inhibitors have been difficult and expensive to isolate. Recently, we have adapted molecular biology techniques to develop a simple set of protocols for isolation of high affinity antibody fragments (in the form of single VH domains) that function within the reducing environment of higher organism cells and can bind to their target molecules. The method called Intracellular Antibody Capture (IAC) has been used to develop inhibitory anti-RAS and anti-LMO2 single domains that have been used for target validation of these antigens in pre-clinical cancer models and illustrate the efficacy of the IAC approach to generation of drug surrogates. Future use of inhibitory VH antibody fragments as drugs in their own right (we term these macrodrugs to distinguish them from small molecule drugs) requires their delivery to target cells in vivo but they can also be templates for small molecule drug development that emulate the binding sites of the antibody fragments. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Imaging of melanoma with 131I-labeled monoclonal antibodies

    International Nuclear Information System (INIS)

    Larson, S.M.; Brown, J.P.; Wright, P.W.; Carrasquillo, J.A.; Hellstroem, I.; Hellstroem, K.E.

    1983-01-01

    Mouse monoclonal antibodies and Fab fragments specific for p97, a melanoma-associated antigen, were used to image metastatic human melanoma. Preclinical studies in athymic mice showed antigen-specific uptake in melanoma xenografts, and toxicity tests in rabbits gave no evidence for tissue damage after injection of up to 100 times the amount of antibody used in humans. Six patients received 1 mg labeled antibody, and one patient received 1 mg of labeled Fab. No. toxic side effects were observed. All of the six patients had positive scans, visualizing 22 of 25 (88%) of lesions larger than 1.5 cm. In tumors from two patients, greater uptake of p97-specific, versus control IgG and Fab, respectively, was documented by biopsy. Antibodies to mouse immunoglobulin appeared in three patients receiving 1 mg or more of radiolabeled mouse antibody

  12. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.

    Science.gov (United States)

    Karkov, Hanne Sophie; Krogh, Berit Olsen; Woo, James; Parimal, Siddharth; Ahmadian, Haleh; Cramer, Steven M

    2015-11-01

    In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site-directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation-exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation-exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules. © 2015 Wiley Periodicals, Inc.

  13. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis.

    Science.gov (United States)

    Mescam-Mancini, Lénaig; Allenbach, Yves; Hervier, Baptiste; Devilliers, Hervé; Mariampillay, Kuberaka; Dubourg, Odile; Maisonobe, Thierry; Gherardi, Romain; Mezin, Paulette; Preusse, Corinna; Stenzel, Werner; Benveniste, Olivier

    2015-09-01

    Idiopathic inflammatory myopathies can be classified as polymyositis, dermatomyositis, immune-mediated necrotizing myopathy, sporadic inclusion body myositis or non-specific myositis. Anti-Jo-1 antibody-positive patients are assigned to either polymyositis or dermatomyositis suggesting overlapping pathological features. We aimed to determine if anti-Jo-1 antibody-positive myopathy has a specific morphological phenotype. In a series of 53 muscle biopsies of anti-Jo-1 antibody-positive patients, relevant descriptive criteria defining a characteristic morphological pattern were identified. They were tested in a second series of anti-Jo-1 antibody-positive patients and compared to 63 biopsies from patients suffering from other idiopathic inflammatory myopathies. In anti-Jo-1 antibody-positive patients, necrotic fibres, which strongly clustered in perifascicular regions, were frequently observed. Sarcolemmal complement deposition was detected specifically in perifascicular areas. Inflammation was mainly located in the perimysium and around vessels in 90.6%. Perimysial fragmentation was observed in 90% of cases. Major histocompatibility complex class I staining was diffusely positive, with a perifascicular reinforcement. Multivariate analysis showed that criteria defining perifascicular pathology: perifascicular necrosis, atrophy, and perimysial fragmentation allow the distinction of anti-Jo-1 antibody-positive patients, among patients suffering from other idiopathic inflammatory myopathies. Anti-Jo-1 antibody-positive patients displayed perifascicular necrosis, whereas dermatomyositis patients exhibited perifascicular atrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  15. 9 CFR 113.452 - Erysipelothrix Rhusiopathiae Antibody.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Erysipelothrix Rhusiopathiae Antibody... REQUIREMENTS Antibody Products § 113.452 Erysipelothrix Rhusiopathiae Antibody. Erysipelothrix Rhusiopathiae Antibody is a specific antibody product containing antibodies directed against one or more somatic antigens...

  16. Production and characterisation of a neutralising chimeric antibody against botulinum neurotoxin A.

    Directory of Open Access Journals (Sweden)

    Julie Prigent

    Full Text Available Botulinum neurotoxins, produced by Clostridium botulinum bacteria, are the causative agent of botulism. This disease only affects a few hundred people each year, thus ranking it among the orphan diseases. However, botulinum toxin type A (BoNT/A is the most potent toxin known to man. Due to their potency and ease of production, these toxins were classified by the Centers for Disease Control and Prevention (CDC as Category A biothreat agents. For several biothreat agents, like BoNT/A, passive immunotherapy remains the only possible effective treatment allowing in vivo neutralization, despite possible major side effects. Recently, several mouse monoclonal antibodies directed against a recombinant fragment of BoNT/A were produced in our laboratory and most efficiently neutralised the neurotoxin. In the present work, the most powerful one, TA12, was selected for chimerisation. The variable regions of this antibody were thus cloned and fused with the constant counterparts of human IgG1 (kappa light and gamma 1 heavy chains. Chimeric antibody production was evaluated in mammalian myeloma cells (SP2/0-Ag14 and insect cells (Sf9. After purifying the recombinant antibody by affinity chromatography, the biochemical properties of chimeric and mouse antibody were compared. Both have the same very low affinity constant (close to 10 pM and the chimeric antibody exhibited a similar capacity to its parent counterpart in neutralising the toxin in vivo. Its strong affinity and high neutralising potency make this chimeric antibody interesting for immunotherapy treatment in humans in cases of poisoning, particularly as there is a probable limitation of the immunological side effects observed with classical polyclonal antisera from heterologous species.

  17. Direct radioimmunoassay of serum progesterone using heterologous bridge tracer and antibody

    International Nuclear Information System (INIS)

    Kothari, K.; Pillai, M.R.A.

    1998-01-01

    The standardisation of a direct radioimmunoassay for progesterone using an 125 I labeled progesterone prepared by iodinating the tyrosine methyl ester (TME) conjugated to a progesterone hemiphthalate derivative and an antibody prepared using a progesterone linked to bovine serum albumin through 11α hemisuccinate derivative is described. The hemiphthalate derivative of progesterone was prepared by reacting 11α-hydroxy progesterone with phthalic anhydride which was then conjugated to TME by using isobutyl chloroformate. The conjugate was iodinated with 125 I using chloramine-T as oxidising agent and purified by thin layer chromatography. Radiochemical purity of the tracer was >95% in all batches. The tracer gave 70-75% binding with excess antibody. Assays were optimised with 8-anilino-1-naphthalene sulphonic acid (ANS) and sodium salicylate as blocking agents to release the progesterone from binding proteins. The assays optimised with sodium salicylate as blocking agent has a sensitivity of 0.25 ng/ml and a working range of 0.25-50 ng/ml, whereas the assay with ANS has a sensitivity of 0.75 ng/ml and a working range of 0.75-100 ng/ml. Serum samples were analysed and compared with the values obtained with a homologous bridge assay. (author)

  18. The use of a cocktail of single chain Fv antibody fragments to improve the in vitro and in vivo targeting of melanoma

    International Nuclear Information System (INIS)

    Pacifico, M.D.; Pearl, R.A.; Kupsch, J.M.

    2006-01-01

    Radio scintigraphy using single chain antibody fragments (scFvs) offers a potenti al means of early detection of melanoma metastases. However, previous studies have shown suboptimal levels of tumour localization and nonspecific background accumulation which may be due to antigen heterogeneity. We aimed to improve tumour localization by using a cocktail of different scFvs targeting different epitopes on melanoma cells. We have previously developed three scFvs against distinct and highly tumour-specific melanoma cell-surface antigens by chain shuffling and antibody phage selection on melanoma cells. Three scFvs, RAFT3, B3 and B4 were labeled with 1 25I odine and tested both individually and as a cocktail in a nude mouse xenograft model far human melanoma. Results demonstrated improved tumour localization in vivo when compared to the individual scFvs. Tumour uptake of the cocktail at l hour was 24.220% ID/g (injected dose/gram) compared with 2.854%, 2.263% and 1.355% far B4, RAFT3 and B3, respectively, when injected individually. In addition, the cocktail exhibited significantly superior tumour to normal tissue ratios far muscle and spleen (p<0.05). A combination or cocktail of scFv clones may have an advantage aver individual scFvs far melanoma targeting in patients because of heterogeneity in the expression of different epitopes of antigens on melanoma cells

  19. Rabies direct fluorescent antibody test does not inactivate rabies or eastern equine encephalitis viruses.

    Science.gov (United States)

    Jarvis, Jodie A; Franke, Mary A; Davis, April D

    2016-08-01

    An examination using the routine rabies direct fluorescent antibody test was performed on rabies or Eastern equine encephalitis positive mammalian brain tissue to assess inactivation of the virus. Neither virus was inactivated with acetone fixation nor the routine test, thus laboratory employees should treat all samples as rabies and when appropriate Eastern equine encephalitis positive throughout the whole procedure. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  1. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    Science.gov (United States)

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Tumor imaging with monoclonal antibodies

    International Nuclear Information System (INIS)

    Haisma, H.; Hilgers, J.

    1987-01-01

    Many monoclonal antibodies directed against tumor-associated antigens have been identified, but so far none of these are tumor specific. Polyclonal and monoclonal antibodies have been used for imaging of a wide variety of tumors with success. Radiolabeling of antibody is usually done with iodine isotopes of which 123 I is the best candidate for radioimmunodetection purposes. The labeling of antibodies through chelates makes it possible to use metal radioisotopes like 111 In, which is the best radioisotope for imaging with monoclonal antibodies due to its favorable half-life of 2.5 days. Usually imaging cannot be performed within 24 h after injection, but clearance of antibody can be increased by using F(ab) 2 of Fab. Another approach is to clear non-bound antibody by a second antibody, directed against the first. The detection limit of immunoimaging is about 2 cm, but will be improved by tomography or SPECT. There is still a high false positive and false negative rate, which makes it impossible to use radioimmunodetection as the only technique for diagnosis of tumors. In combination with other detection techniques, tumor imaging with monoclonal antibodies can improve diagnosis. 44 refs.; 3 tabs

  3. Detection of metastatic tumor in normal-sized retroperitoneal lymph nodes by monoclonal-antibody imaging

    International Nuclear Information System (INIS)

    Moldofsky, P.J.; Sears, H.F.; Mulhern, C.B. Jr.; Hammond, N.D.; Powe, J.; Gatenby, R.A.; Steplewski, Z.; Koprowski, H.

    1984-01-01

    Detection of metastatic colon carcinoma is reported in retroperitoneal lymph nodes that were visible but normal in size (less than 1 cm) and number on CT scanning and at surgery. A case history is presented of 1 of 27 patients with colon carcinoma, metastatic or primary, evaluated with intravenously administered, radiolabeled monoclonal-antibody fragments and subsequent nuclear medicine imaging. Images of /sup 99m/Tc-labeled red cells corresponding to each [ 131 I]antibody view of the abdomen were obtained as a control, to avoid interpretation of simple blood-pool radioactivity as specific localization of antibody on tumor. Antibody images were evaluated both without and with computer blood-pool image substraction. Directed to the level of the left renal hilum by the antibody scan, the surgeon removed the largest palpable node, which measured slightly less than 1 cm in diameter and was not palpably or visibly abnormal to the surgeon until it was removed and sectioned. Pathological evaluation of frozen and permanent sections revealed microscopic foci of adenocarcinoma consistent with a colonic primary tumor. Immunoperoxidase staining for the 1083-17-1A colorectal-carcinoma antigen demonstrated the presence of the antigen in the lymph node. As a result of the detection of this metastasis outside the liver, the patient did not receive the planned hepatic-artery chemotherapy pump but instead received intravenous chemotherapy

  4. Modelling fragmentations of amino-acids after resonant electron attachment: quantum evidence of possible direct -OH detachment

    Energy Technology Data Exchange (ETDEWEB)

    Panosetti, C.; Sebastianelli, F.; Gianturco, F.A. [Department of Chemistry and CNISM, University of Rome -La Sapienza-, Roma (Italy); Baccarelli, I. [CASPUR, Supercomputing Consortium for University and Research, Roma (Italy)

    2010-10-15

    We investigate some aspects of the radiation damage mechanisms in biomolecules, focusing on the modelling of resonant fragmentation caused by the attachment of low-energy electrons (LEEs) initially ejected by biological tissues when exposed to ionizing radiation. Scattering equations are formulated within a symmetry-adapted, single-center expansion of both continuum and bound electrons, and the interaction forces are obtained from a combination of ab initio calculations and a nonempirical model of exchange and correlation effects developed in our group. We present total elastic scattering cross-sections and resonance features obtained for the equilibrium geometries of glycine, alanine, proline and valine. Our results at those geometries of the target molecules are briefly shown to qualitatively explain some of the fragmentation patterns obtained in experiments. We further carry out a one-dimensional (1D) modeling for the dynamics of intramolecular energy transfers mediated by the vibrational activation of selected bonds: our calculations indicate that resonant electron attachment to glycine can trigger direct, dissociative evolution of the complex into (Gly-OH)- and -OH losses, while they also find that the same process does not occur via a direct, 1D dissociative path in the larger amino acids of the present study. (authors)

  5. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    Science.gov (United States)

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  6. (PCR) for direct cloning of blunt-end DNA fragments

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... Key words: Blunt-end cloning, phosphorylated DNA fragment, dephosphorylated blunt-end vector. INTRODUCTION ... With this method, a lot of steps are saved, which includes restriction .... pBSK-blunt (data not shown).

  7. Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment

    Directory of Open Access Journals (Sweden)

    Jian Gong

    2013-06-01

    Full Text Available Imaging tumors and their response to treatment could be a valuable biomarker toward early assessment of therapy in patients with cancer. Phosphatidylserine (PS is confined to the inner leaflet of the plasma membrane in normal cells but is externalized on tumor vascular endothelial cells (ECs and tumor cells, and PS exposure is further enhanced in response to radiation and chemotherapy. In the present study, we evaluated the potential of a PS-targeting human F(ab'2 antibody fragment, PGN650, to detect exposure of PS in tumor-bearing mice. Tumor uptake of PGN650 was measured by near-infrared optical imaging in human tumor xenografts in immunodeficient mice. PGN650 specifically targeted tumors and was shown to target CD31-positive ECs and tumor cells. Tumor uptake of PGN650 was significantly higher in animals pretreated with docetaxel. The peak tumor to normal tissue (T/N ratio of probe was observed at 24 hours postinjection of probe, and tumor binding was detected for at least 120 hours. In repeat dose studies, PGN650 uptake in tumors was significantly higher following pretreatment with docetaxel compared to baseline uptake prior to treatment. PGN650 may be a useful probe to detect PS exposed in tumors and to monitor enhanced PS exposure to optimize therapeutic agents to treat tumors.

  8. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    Science.gov (United States)

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-02

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  9. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    International Nuclear Information System (INIS)

    Bidart, J.M.; Troalen, F.; Salesse, R.; Bousfield, G.R.; Bohuon, C.J.; Bellet, D.H.

    1987-01-01

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptides spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex

  10. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    OpenAIRE

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called ?human cytotoxic fusion protein...

  11. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    International Nuclear Information System (INIS)

    Surinder Batra

    2006-01-01

    increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  12. Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv

    DEFF Research Database (Denmark)

    Manfield, I. W.; Bernal Giraldo, Adriana Jimena; Møller, I.

    2006-01-01

    Antibody phage display is an increasingly important alternative method for the production of monoclonal antibodies (mAbs) and involves the expression of antibody fragments (scFvs) at the surface of bacteriophage particles. We have previously used this technique to generate a phage mAb (PAM1phage...

  13. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens

    DEFF Research Database (Denmark)

    Shilova, N V; Navakouski, M J; Huflejt, M

    2011-01-01

    The repertoire of natural anti-glycan antibodies in naïve chickens and in chickens immunized with bacteria Burkholderia mallei, Burkholderia pseudomallei, and Francisella tularensis as well as with peptides from an outer membrane protein of B. pseudomallei was studied. A relatively restricted pat...... pattern of natural antibodies (first of all IgY against bacterial cell wall peptidoglycan fragments, L-Rha, and core N-acetyllactosamine) shrank and, moreover, the level of detectable antibodies decreased as a result of immunization....

  14. Determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities

    International Nuclear Information System (INIS)

    Rius, J.; Miravitlles, C.

    1988-01-01

    A strategy for the determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities is presented. It is based on the automated full-symmetry Patterson search method described by Rius and Miravitlles where the Fourier coefficients of the observed Patterson function are modified to allow the use of powder diffraction intensity data. Its application to two structures, one with simulated and one with experimental data, is shown. (orig.)

  15. Bioluminescent Antibodies for Point-of-Care Diagnostics.

    Science.gov (United States)

    Xue, Lin; Yu, Qiuliyang; Griss, Rudolf; Schena, Alberto; Johnsson, Kai

    2017-06-12

    We introduce a general method to transform antibodies into ratiometric, bioluminescent sensor proteins for the no-wash quantification of analytes. Our approach is based on the genetic fusion of antibody fragments to NanoLuc luciferase and SNAP-tag, the latter being labeled with a synthetic fluorescent competitor of the antigen. Binding of the antigen, here synthetic drugs, by the sensor displaces the tethered fluorescent competitor from the antibody and disrupts bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. The semisynthetic sensors display a tunable response range (submicromolar to submillimolar) and large dynamic range (ΔR max >500 %), and they permit the quantification of analytes through spotting of the samples onto paper followed by analysis with a digital camera. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Clinical prospective study with radioiodinated monoclonal antibodies directed against colorectal cancer

    International Nuclear Information System (INIS)

    Chatal, J.F.; Douillard, J.Y.; Kremer, M.; Curtet, C.; Le Mevel, B.; Saccavini, J.C.; Maurel, C.; Aubry, J.

    1985-01-01

    The diagnostic application of three monoclonal antibodies are studied: an anti-carcinoembryonic antigen (CEA) antibody designated as 202 and two monoclonal antibodies, designated as 17-1A and 19-9, which recognize different antigens associated with gastrointestinal carcinomas. The complementary specificity of these antibodies was determined by an immuno-histochemical study and the scintigraphic detection parameters by a radiopharmacokinetic study in colic-tumour-bearing nude mice. On the basis of a prospective study, the value of immunoscintigraphy was compared with conventional methods such as ultrasonography and computed tomography for localization of recurrences of colorectal cancers. (UK)

  17. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as anti-arthritis agents, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  18. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    Science.gov (United States)

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane

    International Nuclear Information System (INIS)

    Madaio, M.P.; Salant, D.J.; Adler, S.; Darby, C.; Couser, W.G.

    1984-01-01

    Fixed anionic sites within the glomerular capillary wall influence the permeation of serum proteins, the localization of various antigens, and the deposition of antibody in the subepithelial space. In anti-GBM nephritis antibody deposition occurs very rapidly to antigenic sites located relatively proximal in the glomerular capillary wall. The authors examined the influence of the glomerular charge barrier on anti-GBM antibody deposition by comparing the rate of deposition of antibodies with cationic and anionic isoelectric points. Purified sheep anti-rat GBM IgG was isolated from acid eluates of kidneys obtained 24 hr after rats were injected with sheep antiserum to rat GBM. Anti-GBM IgG was separated into cationic (pI 6.4-8.5) and anionic (pI 4.2-6.8) fractions, which were radiolabelled with 131 I and 125 I, respectively, shown to have equal antibody contents measured by in vitro binding to normal glomeruli, mixed in equal amounts, and injected in incremental doses to ten rats. At 1 hr the glomerular antibody binding of each fraction was directly related to the blood level (r . 0.95, r . 0.97) and delivery of antibody (r . 0.98, r . 0.98). Glomerular binding of cationic antibody was four times greater than anionic antibody over the entire range of deliveries studied (P less than 0.001). The authors conclude that glomerular deposition of anti-GBM antibody is directly related to blood concentration and delivery of antibody. Furthermore, the deposition of cationic antibodies to GBM antigens was significantly greater than the deposition of anionic antibodies

  20. [VGKC-complex antibodies].

    Science.gov (United States)

    Watanabe, Osamu

    2013-04-01

    Various antibodies are associated with voltage-gated potassium channels (VGKCs). Representative antibodies to VGKCs were first identified by radioimmunoassays using radioisotope-labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were detected only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in patients with Morvan's syndrome and in those with a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins (for example LGI-1 and CASPR-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now commonly known as VGKC-complex antibodies. In general, LGI-1 antibodies are most commonly detected in patients with limbic encephalitis with syndrome of inappropriate secretion of antidiuretic hormone. CASPR-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability. Furthermore, VGKC-complex antibodies are tightly associated with chronic idiopathic pain. Hyperexcitability of nociceptive pathways has also been implicated. These antibodies may be detected in sera of some patients with neurodegenerative diseases (for example, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease).

  1. Radioimmunoimaging of tumors with a pantumor antibody

    International Nuclear Information System (INIS)

    Chen, D.C.P.; Siegel, M.E.; Chen, F.; Taylor, O.R.; Epstein, A.L.

    1988-01-01

    The TNT-1 antibody was developed to bind intracellular nuclear antigens that are accessible only in degenerative or necrotic cells. Since about 50% of tumor cells are in various stages of cell degeneration or death, this antibody could serve as a pantumor antibody for tumor detection. After intravenous injection of 10 μg of TNT-1F(ab')2 fragments labeled with 20 μCi of I-131, serial images were obtained at 1 and 4 hours and daily for 6 days in mice bearing various human tumors. Accumulation of TNT-1 was imaged in a necrotic tumor as early as 4 hours after injection and because more intense at 48 hours. The tumor-muscle ratio was as high as 29:1. Intense accumulation was noted in the necrotic tumor, about nine times that of healthy tumor. In conclusion, TNT-1, a pantumor antibody, can detect necrotic tumors in animal models. It may be an ideal imaging agent for cancer detection

  2. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays.

    Science.gov (United States)

    Säll, Anna; Walle, Maria; Wingren, Christer; Müller, Susanne; Nyman, Tomas; Vala, Andrea; Ohlin, Mats; Borrebaeck, Carl A K; Persson, Helena

    2016-10-01

    Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression

    DEFF Research Database (Denmark)

    Tsimikas, Sotirios; Miyanohara, Atsushi; Hartvigsen, Karsten

    2011-01-01

    We sought to assess the in vivo importance of scavenger receptor (SR)-mediated uptake of oxidized low-density lipoprotein (OxLDL) in atherogenesis and to test the efficacy of human antibody IK17-Fab or IK17 single-chain Fv fragment (IK17-scFv), which lacks immunologic properties of intact antibod...... antibodies other than the ability to inhibit uptake of OxLDL by macrophages, to inhibit atherosclerosis....

  4. A four-step sandwich radioimmunoassay for direct selection of monoclonal antibodies to allergen molecules

    International Nuclear Information System (INIS)

    Ley, V.; Corbi, A.L.; Sanchez-Madrid, F.; Carreira, J.C.

    1985-01-01

    A 4-step radioimmunoassay has been devised for direct identification of monoclonal antibodies (MAb) directed to IgE-binding molecules. Polyvinyl chloride wells coated with purified anti-mouse kappa chain MAb (187-1) were successively incubated with: (1) MAb-containing hybridoma supernatants, (2) allergen extract, (3) allergic patients' serum pool, and (4) 125 I-labeled anti-human IgE antiserum, to detect MAb-allergen-IgE complexes. MAb to allergens from Parietaria judaica pollen and Dermatophagoides mites have been selected with this screening procedure. The affinity-purified allergen molecules competed the binding of IgE to allergen extracts coated to paper discs in a RAST inhibition assay, confirming the anti-allergen specificity of the selected MAb. This screening method is sensitive enough to allow detection of MAb directed to poorly represented allergens. (Auth.)

  5. Design and Pharmacokinetic Characterization of Novel Antibody Formats for Ocular Therapeutics.

    Science.gov (United States)

    Gadkar, Kapil; Pastuskovas, Cinthia V; Le Couter, Jennifer E; Elliott, J Michael; Zhang, Jianhuan; Lee, Chingwei V; Sanowar, Sarah; Fuh, Germaine; Kim, Hok Seon; Lombana, T Noelle; Spiess, Christoph; Nakamura, Makia; Hass, Phil; Shatz, Whitney; Meng, Y Gloria; Scheer, Justin M

    2015-08-01

    To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.

  6. Development and validation of an antigen-binding capture ELISA for native and putrescine-modified anti-tetanus F(ab')2 fragments for the assessment of the cellular uptake and plasma kinetics of the antibodies.

    OpenAIRE

    Welfringer, Frédéric; D'Athis, Philippe; Scherrmann, Jean-Michel; Hervé, Françoise

    2005-01-01

    International audience; Cationization is a strategy to enhance the permeability of antibodies to physiological membranes for potential therapeutic and diagnostic applications of these proteins, with one of its crucial points being the retention of antigen binding activity. Here, we describe the cationization of horse polyclonal anti-tetanus F(ab')(2) fragments and the development and validation of an ELISA for quantitative measurements of the binding activity of the native and cationized F(ab...

  7. Antibody phage display applications for nuclear medicine imaging and therapy

    International Nuclear Information System (INIS)

    Winthrop, M.D.; Denardo, G.L.; Denardo, S.J.

    2000-01-01

    Antibody-based constructs genetically engineered from genes of diverse origin provide a remarkable opportunity to develop functional molecular imaging techniques and specific molecular targeted radionuclide therapies. Phage display libraries of antibody fragment genes can be used to select antibody-based constructs that bind any chosen epitope. A large naive human antibody-based library was used to illustrate binding of antibody constructs to a variety of common and unique antigens. Antibody-based libraries from hybridoma cells, lymphocytes from immunized humans or from mice and human antibody repertoires produced in transgenic mice have also been described. Several orders of magnitude of affinity enhancement can be achieved by random or site specific mutations of the selected binding peptide domains of the scFv. Affinities (K d ) as high as 10 - 11 M (10 pM) for affinity-matured scFv have been documented. Such gene libraries thus offer an almost limitless variety of antibody-based molecular binding peptide modules that can be used in creative ways for the construction of new targeting agents for functional or molecular imaging and therapy

  8. Utilisation of tracer monoclonal antibodies for the immunoscintigraphic detection of human colorectal cancers

    International Nuclear Information System (INIS)

    Chatal, J.F.; Douillard, J.Y.; Kremer, M.; Curtet, C.; Le Mevel, B.; Fumoleau, P.; Bourdoiseau, M.

    1983-01-01

    Two monoclonal antibodies, 17-1A and 19-9, with recognized human gastrointestinal cancers in cell cultures, were labeled with iodine 131 for immunoscintigraphic application. With the intact 131 I-17-1A antibody, 21 out of 35 (60%) primary or secondary colorectal cancer sites were visualized, whereas all 21 nonepitheliomatous colic cancer sites or noncolic cancer sites were negative. With F(ab') 2 fragments of the 19-9 antibody, 18 out of 27 (67%) colorectal cancer sites were positive. With both radioantibodies, the bestly contrasted tumor images were late, 4 to 5 days after injection. A study with paired-label technique, associating a specific iodine-131-labeled antibody with a non-specific iodine-125-labeled immunoglobulin, demonstrated, that tumor uptake was indeed specific for the 17-1A or 19-9 antibody in tumor and normal colon fragments obtained during operations on 4 patients. A preliminary prospective study showed that only immunoscintigraphy was able to confirm and localize a recurrence of rectal cancer in one patient. A larger series will be necessary to validate the clinical benefit of the technique, as compared with the results of other diagnostic techniques, before immunoscintigraphy can be proposed for routine clinical use [fr

  9. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.

    2001-01-01

    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...... to mouse, rat and human laminin. and show strong immunohistochemical reactivity with basement membranes in human and murine tissue sections. Their properties make them ideal candidates for in vivo applications....

  10. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ellis, V

    1991-01-01

    We have raised four monoclonal antibodies recognizing different epitopes within the human cell-surface receptor for urokinase-type plasminogen activator (u-PA). One of these antibodies completely abolishes the potentiation of plasmin generation observed upon incubation of the zymogens pro......-u-PA and plasminogen with U937 cells. This antibody, which is also the only one to completely inhibit the binding of DFP-inactivated [125I]-u-PA to U937 cells, is directed against the u-PA binding NH2-terminal domain of u-PAR, a well-defined fragment formed by limited chymotrypsin digestion of purified u......-PAR, demonstrating the functional independence of the u-PA binding domain as well as the critical role of u-PAR in the assembly of the cell-surface plasminogen activation system....

  11. A novel TNFα antagonizing peptide-Fc fusion protein designed based on CDRs of TNFα neutralizing monoclonal antibody

    International Nuclear Information System (INIS)

    Qin Weisong; Feng Jiannan; Zhang Wei; Li Yan; Shen, Beifen

    2004-01-01

    The variable regions of antibody molecules bind antigens with high affinity and specificity. The binding sites are imparted largely to the hypervariable portions (i.e., CDRs) of the variable region. Peptides derived from CDRs can bind antigen with similar specificity acting as mimic of antibody and become drug-designing core, although with markedly lower affinity. In order to increase the affinity and bioactivity, in this study, a novel peptide (PT) designed on CDRs of a TNFα neutralizing monoclonal antibody Z12 was linked with Fc fragment of human IgG1. The interaction mode of PT-linker-Fc (PLF) with TNFα was analyzed with computer-guided molecular modeling method. After expression in Escherichia coli and purification, recombinant PT-linker-Fc could bind directly with the TNFα coated on the ELISA plates. Furthermore, PLF could competitively inhibit the binding of Z12 to TNFα and also inhibit the TNFα-induced cytotoxicity on L929 cells. The TNFα antagonizing activity of PLF was significantly higher than that of the free peptide. This study highlights the potential of human Fc to enhance the potency of peptides designed on the CDRs of antibodies and could be useful in developing new TNFα antagonists

  12. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens

    Directory of Open Access Journals (Sweden)

    Macek Jeanette

    2009-09-01

    Full Text Available Abstract Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability. Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.

  13. Hybrid IgG4/IgG4 Fc antibodies form upon 'Fab-arm' exchange as demonstrated by SDS-PAGE or size-exclusion chromatography

    NARCIS (Netherlands)

    Rispens, Theo; den Bleker, Tamara H.; Aalberse, Rob C.

    2010-01-01

    Human IgG4 antibodies are dynamic molecules that in vivo exchange half-molecules to become bispecific antibodies. Here we show that IgG4 antibodies and IgG4 Fc fragments similarly exchange resulting in hybrid antibodies (a single Fab + Fc) with a molecular weight of ca. 100 kDa. These antibodies can

  14. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  15. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  16. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  17. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    Science.gov (United States)

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  18. Detection of thrombocytic antibodies with the direct and indirect haemolysis inhibition test and the radioimmuno-Coombs test

    International Nuclear Information System (INIS)

    Mettenboerger, D.; Vith, E.

    1982-01-01

    Methods of application of the direct and indirect haemolysis inhibition test were studied in order to optimise the test parameters: The ultimate aim was to standardize the test method and compare its sensitivity in detecting various platelet antibodies with platelet indirect radioactive Coombs-test and the platelet immunofluorescence test. (orig.) [de

  19. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon

    2016-01-01

    The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evaluation of an anti-p185{sup HER2} (scFv-C{sub H}2-C{sub H}3){sub 2} fragment following radioiodination using two different residualizing labels: SGMIB and IB-Mal-D-GEEEK

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Jestin, Emmanuelle [Duke University Medical Center, Durham, NC 27710 (United States); Olafsen, Tove; Wu, Anna M. [Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095 (United States); Zalutsky, Michael R. [Duke University Medical Center, Durham, NC 27710 (United States)

    2009-08-15

    Introduction: A 105-kDa double mutant single-chain Fv-Fc fragment (scFv-Fc DM) derived from the anti-p185{sup HER2} hu4D5v8 antibody (trastuzumab; Herceptin) has been described recently. The goal of this study was to investigate whether improved tumor targeting could be achieved with this fragment through the use of residualizing radioiodination methods. Methods: The scFv-Fc DM fragment was radioiodinated using N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB) and N{sup {epsilon}}-(3-[{sup 131}I]iodobenzoyl)-Lys{sup 5}-N{sup {alpha}}- maleimido-Gly{sup 1}-GEEEK ([{sup 131}I]IB-Mal-D-GEEEK), two residualizing radioiodination agents that have been used successfully with intact antibodies. Paired-label internalization assays of the labeled fragments were performed in vitro using MCF7 human breast cancer cells transfected to express HER2 (MCF7-HER2); comparisons were made to scFv-Fc DM directly radioiodinated using Iodogen. The tissue distribution of the scFv-Fc DM labeled with [{sup 125}I]IB-Mal-D-GEEEK and [{sup 131}I]SGMIB was compared in athymic mice bearing MCF7-HER2 xenografts. Results: The scFv-Fc DM fragment was labeled with [{sup 131}I]SGMIB and [{sup 131}I]IB-Mal-D-GEEEK in conjugation yields of 53% and 25%, respectively, with preservation of immunoreactivity for HER2. Internalization assays indicated that labeling via SGMIB resulted in a 1.6- to 3.5-fold higher (P<.05) retention of radioactivity, compared to that from the directly labeled fragment, in HER2-expressing cells during a 24-h observation period. Likewise, the amount of radioactivity retained in cells from the IB-Mal-D-GEEEK-labeled fragment was 1.4- to 3.3-fold higher (P<.05). Tumor uptake of radioiodine activity in athymic mice bearing MCF7-HER2 xenografts in vivo was significantly higher for the [{sup 125}I]IB-Mal-D-GEEEK-labeled scFv-Fc DM fragment compared with that of the [{sup 131}I]SGMIB-labeled fragment, particularly at later time points. The uptake of {sup

  1. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  2. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and Humicola lanuginosa lipase from combinatorial phage libraries

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Bødtger, Uffe; Kristensen, Peter

    2004-01-01

    Allergen-specific Fab fragments isolated from combinatorial IgE and IgG libraries are useful tools for studying allergen-antibody interactions. To characterise the interaction between different allergens and antibodies we have created recombinant human phage antibody libraries in the Fab format...

  3. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    Science.gov (United States)

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  4. The competition of charge remote and charge directed fragmentation mechanisms in quaternary ammonium salt derivatized peptides--an isotopic exchange study.

    Science.gov (United States)

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-12-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445-453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms - charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms. © The Author(s) 2011. This article is published with open access at Springerlink.com

  5. Fab is the most efficient format to express functional antibodies by yeast surface display.

    Science.gov (United States)

    Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé

    2018-04-30

    Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.

  6. Application of xenogeneic anti-canine distemper virus antibodies in treatment of canine distemper puppies.

    Science.gov (United States)

    Liu, P C; Chen, C A; Chen, C M; Yen, C H; Lee, M H; Chuang, C K; Tu, C F; Su, B L

    2016-11-01

    The clinical feasibility of passive immunotherapy has not been demonstrated in dogs naturally infected with canine distemper. In this study, porcine anti-canine distemper virus IgG and F(ab') 2 antibody fragments were used to treat infected puppies. A total of 41 naturally infected puppies (age Äsix months) exhibiting severe respiratory signs, but lacking neurological signs, were enrolled in the study. Twenty-five puppies were treated with a combination of IgG or F(ab') 2 antibody fragments (Group 1) and supportive therapy and 16 puppies received routine supportive care only (Group 2). The survival rate of dogs in Group 1 (19/25; 76%) was significantly higher than that in Group 2 (5/16; 31·3%) (Pdistemper virus antibodies improved survival in puppies affected with canine distemper with minimal adverse effects. Therefore, this therapy could be considered for treatment of endangered animal species infected with canine distemper virus. © 2016 British Small Animal Veterinary Association.

  7. Kinetics of intralymphatically delivered monoclonal antibodies

    International Nuclear Information System (INIS)

    Wahl, R.L.; Geatti, O.; Liebert, M.; Beers, B.; Jackson, G.; Laino, L.; Kronberg, S.; Wilson, B.S.; Beierwaltes, W.H.

    1985-01-01

    Radiolabeled monoclonal antibody (MoAb) administration subcutaneously (sq), so that preferential uptake is to the lymphatics, holds significant promise for the detection of lymph node metastases. Only limited information is available about clearance rates of intralymphatically administered MoAbs. I-131 labeled intact IgG (225.28S), F(ab's)2 (225.28S) or IgM (FT162) were administered sq to anesthetized Balb/C mice. Eight mice were studied with each MoAb, 4 with a foot-pad injection, 4 with an anterior abdominal injection. Gamma camera images were collected into a computer, over the first 6 hrs after injection with the animals anesthetized and immobile. Animals were then allowed to move about freely. Additional images were then acquired out to 48 hrs. Regions of interest wre selected over the injection site and the kinetics of antibody egress determined. Clearance rates from local sq injection sites are influenced by motion and somewhat by location. The class and fragment status of the MoAb appear relatively less important in determining clearance rates from sq injections than they are in determining whole-body clearance after iv injections. Additional studies using Fab fragments and additional monoclonals will be useful in extending these observations

  8. Identification of epitopes within integrin β4 for binding of auto-antibodies in ocular cicatricial and mucous membrane pemphigoid: preliminary report.

    Science.gov (United States)

    Rashid, Khwaja Aftab; Foster, C Stephen; Ahmed, A Razzaque

    2013-11-19

    To identify the epitopes on human β4 integrin to which the sera of patients with ocular cicatricial pemphigoid (OCP) and mucous membrane pemphigoid (MMP) without ocular involvement bind. Fragments of the intracellular domain of the β4 molecule were cloned, expressed, purified and peptides were synthesized. Antibodies to various fragments and peptides were produced in rabbits. Binding specificity was determined via Western blot and blocking experiments. Test sera and controls were injected into neonatal BALB/c mice for in vivo passive transfer. Sera from patients with OCP, MMP, and both OCP and MMP were bound to cloned fragments of IC3.0. Its subcloned fragments IC3.4 (1489 aa-1572 aa) and IC3.4.1 (1489 aa-1510 aa) were bound with the sera from patients with OCP only. Subcloned fragments IC3.6 (1573 aa-1822 aa) and IC3.6.1 (1689 aa-1702 aa) were bound with MMP sera only. No cross-reactivity in binding was observed. Immuno-affinity-purified sera from patients with OCP, MMP, and rabbit antibodies to IC3.0, IC3.4, IC3.4.1, IC3.6, and IC3.6.1, when injected in neonatal BALB/c mice, produced subepidermal blisters in their skin. These preliminary observations identified IC3.4.1 as the possible epitope for the binding of OCP auto-antibody and IC3.6.1 as the possible epitope for the binding of MMP auto-antibody without ocular disease. Antibodies specific to these peptides produced blisters when injected in mice. Still-unidentified epitopes may exist. These observations may enhance our understanding of the role of β4 integrin in the pathobiology of OCP and MMP. Early diagnosis may be possible if serologic tests with specificity and sensitivity can be developed.

  9. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding.

    Science.gov (United States)

    Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D; Heywood, Sam; Humphreys, David P

    2016-10-01

    An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG.

  10. Lentivirus display: stable expression of human antibodies on the surface of human cells and virus particles.

    Directory of Open Access Journals (Sweden)

    Ran Taube

    Full Text Available BACKGROUND: Isolation of human antibodies using current display technologies can be limited by constraints on protein expression, folding and post-translational modifications. Here we describe a discovery platform that utilizes self-inactivating (SIN lentiviral vectors for the surface display of high-affinity single-chain variable region (scFv antibody fragments on human cells and lentivirus particles. METHODOLOGY/PRINCIPAL FINDINGS: Bivalent scFvFc human antibodies were fused in frame with different transmembrane (TM anchoring moieties to allow efficient high-level expression on human cells and the optimal TM was identified. The addition of an eight amino acid HIV-1 gp41 envelope incorporation motif further increased scFvFc expression on human cells and incorporation into lentiviral particles. Both antibody-displaying human cells and virus particles bound antigen specifically. Sulfation of CDR tyrosine residues, a property recently shown to broaden antibody binding affinity and antigen recognition was also demonstrated. High level scFvFc expression and stable integration was achieved in human cells following transduction with IRES containing bicistronic SIN lentivectors encoding ZsGreen when scFvFc fusion proteins were expressed from the first cassette. Up to 10(6-fold enrichment of antibody expressing cells was achieved with one round of antigen coupled magnetic bead pre-selection followed by FACS sorting. Finally, the scFvFc displaying human cells could be used directly in functional biological screens with remarkable sensitivity. CONCLUSIONS/SIGNIFICANCE: This antibody display platform will complement existing technologies by virtue of providing properties unique to lentiviruses and antibody expression in human cells, which, in turn, may aid the discovery of novel therapeutic human mAbs.

  11. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    DEFF Research Database (Denmark)

    Uysal, Hüseyin; Bockermann, Robert; Nandakumar, Kutty S

    2009-01-01

    Antibodies to citrulline-modified proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical...... is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta-turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose...

  12. THE HYDROGENOSOMAL ENZYME HYDROGENASE FROM THE ANAEROBIC FUNGUS NEOCALLIMASTIX SP L2 IS RECOGNIZED BY ANTIBODIES, DIRECTED AGAINST THE C-TERMINAL MICROBODY PROTEIN TARGETING SIGNAL SKL

    NARCIS (Netherlands)

    MARVINSIKKEMA, FD; KRAAK, MN; VEENHUIS, M; GOTTSCHAL, JC; PRINS, RA

    The question was addressed whether antibodies directed against the general microbody C-terminal protein targeting signal SKL recognized hydrogenosomal proteins from Neocallimastix sp. L2. Immunofluorescence, immunocytochemistry and Western blotting experiments using these antibodies indicated the

  13. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody

    International Nuclear Information System (INIS)

    Liu Guozheng; Dou Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R.; Shultz, Leonard D.; Greiner, Dale L.

    2012-01-01

    Introduction: We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Methods: Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111 In-labeled cMORF to direct targeting by 111 In-labeled HPi1. Results: HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111 In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Conclusions: Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ.

  14. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Sung Sun Yim

    Full Text Available Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS. First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6. These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.

  15. A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection.

    Directory of Open Access Journals (Sweden)

    Krystal Cole

    Full Text Available High throughput screening technologies such as acoustic droplet ejection (ADE greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above, the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above, the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.

  16. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity.

    Science.gov (United States)

    Arora, Jayant; Hu, Yue; Esfandiary, Reza; Sathish, Hasige A; Bishop, Steven M; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B; Weis, David D

    Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in C H 3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.

  17. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  18. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction

    Science.gov (United States)

    Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.

    2013-01-01

    In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594

  19. Investigating Antivenom Function and Cross-Reactivity – a Study of Antibodies and Their Targets

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Andersen, Mikael Rørdam

    species. The active toxin neutralizing components in antivenom are complex mixtures of antibodies (or fragments here of). The individual antibodies are adapted by the immune system of the production animal to bind specific to parts of each toxin used in the immunization procedure. In many cases antivenom...... is also able to neutralize some – or even all – toxic effects of snakebites from related snake species....

  20. Immunocytochemistry by electron spectroscopic imaging using well defined boronated monovalent antibody fragments.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Sierralta, W D

    1996-01-01

    Contributing to the rapidly developing field of immunoelectron microscopy a new kind of markers has been created. The element boron, incorporated as very stable carborane clusters into different kinds of peptides, served as a marker detectable by electron spectroscopic imaging (ESI)--an electron microscopic technique with high-resolution potential. Covalently linked immunoreagents conspicuous by the small size of both antigen recognizing part and marker moiety are accessible by using peptide concepts for label construction and their conjugation with Fab' fragments. Due to a specific labeling of the free thiol groups of the Fab' fragments, the antigen binding capacity was not affected by the attachment of the markers and the resulting immunoprobes exhibited an elongated shape with the antigen combining site and the label located at opposite ends. The labeling densities observed with these reagents were found to be significantly higher than those obtained by using conventional colloidal gold methods. Combined with digital image processing and analysis systems, boron-based ESI proved to be a powerful approach in ultrastructural immunocytochemistry employing pre- and post-embedding methods.

  1. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  2. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    International Nuclear Information System (INIS)

    Malviya, G.; Dierckx, R.A.; Conti, F.; Chianelli, M.; Scopinaro, F.; Signore, A.

    2010-01-01

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99m Tc or 111 In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and

  3. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen.

    Science.gov (United States)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.

  4. Protein crystallization with microseed matrix screening: application to human germline antibody Fabs

    International Nuclear Information System (INIS)

    Obmolova, Galina; Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L.

    2014-01-01

    The power of microseed matrix screening is demonstrated in the crystallization of a panel of antibody Fab fragments. The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization

  5. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    Unknown

    In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavi- ... ment system like radiation pressure balance, the power is given by ... Thus the bubble size has direct relationship with its life and.

  6. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    Science.gov (United States)

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  7. Direct solid-phase radioimmunoassay for the detection of Aujeszky's disease antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Doeller, G; Jakubik, J

    1980-06-01

    A direct solid-phase radioimmunoassy (dRIA) was developed in order to demonstrate antibodies against Aujeszky's disease virus (ADV) in sera obtained from pigs and rabbits. In the presence of guinea-pig complement the above test is 160-fold to 1500-fold more sensitive than the neutralization test (NT) and 320-fold to 150 000-fold more sensitive than sera obtained from an ADV-infected farm, which were found to be negative in the complement assisted NT. It is possible to test a single dilution of unknown serum by dRIA by comparing same with a standard curve and to make a statement regarding its ADV-specific binding capacity to /sup 125/I-labelled ADV antigen. The advantages of dRIA in comparison to the indirect RIA and the advantages and disadvantages with regard to ELISA were discussed.

  8. Single-Domain Antibodies as Tools to Perturb and Study RNA Viruses

    NARCIS (Netherlands)

    Hanke, Leo

    2017-01-01

    In this thesis, I describe the generation and characterization of alpaca-derived, antiviral, single-domain antibody fragments (VHHs). The antiviral targets of the described VHHs are the nuclear proteins of influenza A virus (IAV) and vesicular stomatitis virus (VSV). The described VHHs protect cells

  9. Radiolabeled antifibrin antibody in the detection of venous thrombosis: Preliminary results

    International Nuclear Information System (INIS)

    Alavi, A.; Palevsky, H.I.; Gupta, N.; Meranze, S.; Kelley, M.A.; Jatlow, A.D.; Schaible, T.F.; Brown, J.; Berger, H.J.

    1990-01-01

    The recent development of monoclonal antibodies against components of coagulated blood may provide new approaches to the diagnosis of venous thrombosis. Scanning with an indium-111-labeled Fab fragment of a murine monoclonal antifibrin antibody (59D8) and ascending contrast venography were performed in 33 patients. Images of the calves, popliteal fossae, thighs, and pelvis were obtained immediately, 4-6 hours, and 24 hours after injection of 2 mCi (74 MBq) of the antibody. All images were read in a blinded manner. Findings in both studies were positive in 28 patients and negative in three. In 19 patients not undergoing heparin therapy, 19 specific anatomic sites were positive on venograms and 29 were positive on antibody images (19 sites matched). In 14 patients undergoing heparin therapy, 34 sites were positive on venograms and 27 were positive on antibody images (22 sites matched). In most patients, positive results were noted within 1 hour of antibody injection. No adverse effects were noted with the antibody preparation. Preliminary data suggest that antifibrin antibody imaging is sensitive in detecting clots, is safe to use, and may have a role in diagnosing and managing venous thrombosis

  10. Immunochemical and biological properties of a mouse monoclonal antibody reactive to prunus necrotic ringspot ilarvirus.

    Science.gov (United States)

    Aebig, J A; Jordan, R L; Lawson, R H; Hsu, H T

    1987-01-01

    A monoclonal antibody reacting with prunus necrotic ringspot ilarvirus was tested in immunochemical studies, neutralization of infectivity assays, and by immuno-electron microscopy. The antibody was able to detect the 27,000 Mr coat protein of prunus necrotic ringspot ilarvirus in western blots and also detected all polypeptide fragments generated after incubation of whole virus with proteolytic enzymes. In neutralization of infectivity studies, the antibody blocked virus infectivity, although it did not precipitate the antigen in agar gel Ouchterlony double diffusion tests. Immuno-electron microscopy confirmed that the antibody coats virions but does not cause clumping. The antibody may be a useful tool for investigating coat protein-dependent initiation of ilarvirus infection.

  11. Design and Testing of a Thermostable Platform for Multimerization of Single Domain Antibodies

    Science.gov (United States)

    2012-08-01

    H.J. Properties , production, and applications of camelid single domain antibody fragments. Appl. Microbiol. Biot. 2007, 77, 13‒22. 2. Goldman...Conway, J.; Sherwood, L.J.; Fech, M.; Vo, B.; Liu, J.L.; Hayhurst, A. Thermostable llama single domain antibodies for detection of Botulinum A...antiparallel coiled-coil inserted. J. Mol. Bio. 2001, 306, 25‒35. 9. Liu, J.L.; Anderson, G.P.; Goldman, E.R. Isolation of anti- toxin single domain

  12. Direct electrical control of IgG conformation and functional activity at surfaces

    Science.gov (United States)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  13. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    Science.gov (United States)

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.

  14. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  15. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Directory of Open Access Journals (Sweden)

    Markiv Anatoliy

    2011-11-01

    Full Text Available Abstract Background Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated VH/VL interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1. Results Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either Discosoma or Aequorea in-between the variable regions of anti-p185HER2-ECD antibody 4D5-8 resulted in optimal VH/VL interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly4Ser3 linker precipitated at physiological pH 7.4. Conclusions This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative in situ, in vivo and ex vivo imaging, cell sorting and cell

  16. Efficient clustering aggregation based on data fragments.

    Science.gov (United States)

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  17. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy

    Science.gov (United States)

    Martini, Petra; Pasquali, Micol

    2017-01-01

    Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [188Re]ReO4−. The aim of this paper is to provide a short overview on 188Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic. PMID:28951872

  18. Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin n-terminal fragments in an HEK293 cell model.

    Directory of Open Access Journals (Sweden)

    Andrew T N Tebbenkamp

    Full Text Available N-terminal fragments of mutant huntingtin (htt that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1, form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD. These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like, were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400-600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115-124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1.Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.

  19. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Juan C. Almagro

    2018-01-01

    Full Text Available The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life, which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.

  20. Lymphoma, melanoma, colon cancer: diagnosis and treatment with radiolabeled monoclonal antibodies. The 1986 Eugene P. Pendergrass New Horizons Lecture

    International Nuclear Information System (INIS)

    Larson, S.M.

    1987-01-01

    The development of monoclonal antibodies for use as in vivo carriers of radioactivity for diagnosis and therapy of malignant neoplasms is proceeding rapidly within academic and commercial sectors. The author and his colleagues studied anticancer antibodies formed against tumors of both somatic and hematopoietic origins. Several general principles have been established with the work with somatic tumors, including the following: Improved tumor-to-normal-tissue ratios can be achieved with Fab fragments as opposed to whole IgG; each antitumor antibody has a characteristic biodistribution in humans that cannot be readily predicted from tissue or small animal studies; and for many antibodies, there is a strong dependency of tumor uptake on total mass amount of antibody administered (greater uptake with greater mass dose). Initial work with iodine-131 labeled Fab fragments of the antimelanoma antibodies, 96.5 and 48-7, documented that tumor uptake was broadly proportional to antigen content of the tumors and that under optimal conditions, some tumors were sufficiently loaded with radiolabeled antibody to serve as radiation therapy. The antitumor antibody B-72.3, as IgG, has been particularly promising when administered intraperitoneally. In ten patients who were administered I-131 B-72.3 via a Tenkhoff catheter, the sensitivity and specificity of tumor location were excellent for peritoneal implants, and in three of these patients, surgically confirmed tumor was seen with the radiolabeled antibody technique when abdominal computed tomography and magnetic resonance studies were negative

  1. Multiplex serology of paraneoplastic antineuronal antibodies

    NARCIS (Netherlands)

    P. Maat (Peter); E. Brouwer (Eric); E. Hulsenboom (Esther); M.M. van Duijn (Martijn); M.W.J. Schreurs (Marco); H. Hooijkaas (Herbert); P.A. Smitt (Peter)

    2013-01-01

    textabstractParaneoplastic neurological syndromes (PNS) are devastating neurological disorders secondary to cancer, associated with onconeural autoantibodies. Such antibodies are directed against neuronal antigens aberrantly expressed by the tumor. The detection of onconeural antibodies in a patient

  2. {sup 68}Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours

    Energy Technology Data Exchange (ETDEWEB)

    Eder, Matthias; Eisenhut, Michael [German Cancer Research Center, Radiopharmaceutical Chemistry, Heidelberg (Germany); Knackmuss, Stefan; Gall, Fabrice Le; Reusch, Uwe; Little, Melvyn [Affimed Therapeutics AG, Heidelberg (Germany); Rybin, Vladimir [European Molecular Biology Laboratory, Heidelberg (Germany); Haberkorn, Uwe; Mier, Walter [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2010-07-15

    Recombinant antibodies isolated from human antibody libraries have excellent affinities and high target specificity. As full-length IgGs are cleared inadequately slowly from the circulation, the aim of this work was to figure out which kind of recombinant antibody fragment proves to be appropriate for imaging epithelial cell adhesion molecule (EpCAM)-expressing tumours with the short-living radioisotope {sup 68}Ga. In order to combine the promising tumour targeting properties of antibodies with {sup 68}Ga, four antibody variants with the same specificity and origin only differing in molecular weight were constructed for comparison. Therefore, the binding domains of a single-chain fragment variable (scFv) isolated from a human naive antibody library were modified genetically to construct the respective full-length IgG, the tria- and diabody variants. These molecules were conjugated with the bifunctional chelating agent N,N{sup '}-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N{sup '}-diacetic acid (HBED-CC) to enable {sup 68}Ga labelling at ambient temperature and compared in biodistribution and immuno-PET imaging experiments. The antibody variants with identical specificity proved to have the correct molecular weight, high binding affinity and specificity to their antigen, EpCAM. Radiometal complexation was efficiently performed at room temperature leading to {sup 68}Ga-labelled antibodies with unchanged binding properties compared to the original antibody variants. The best targeting properties were obtained with the scFv and especially with the diabody. The triabody showed higher absolute tumour uptake but only moderate clearance from circulation. The antibody variants differed considerably in normal organ uptake, clearance from circulation and tumour accumulation. The data demonstrate the feasibility of imaging solid tumours with the {sup 68}Ga-labelled diabody format. This type of recombinant protein might be a promising carrier even for the

  3. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer

    Science.gov (United States)

    Willett, Christopher G; Boucher, Yves; di Tomaso, Emmanuelle; Duda, Dan G; Munn, Lance L; Tong, Ricky T; Chung, Daniel C; Sahani, Dushyant V; Kalva, Sanjeeva P; Kozin, Sergey V; Mino, Mari; Cohen, Kenneth S; Scadden, David T; Hartford, Alan C; Fischman, Alan J; Clark, Jeffrey W; Ryan, David P; Zhu, Andrew X; Blaszkowsky, Lawrence S; Chen, Helen X; Shellito, Paul C; Lauwers, Gregory Y; Jain, Rakesh K

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF blockade has a direct and rapid antivascular effect in human tumors. PMID:14745444

  4. Effectiveness of Alpha-toxin Fab Monoclonal Antibody Therapy in Limiting the Pathology of Staphylococcus aureus Keratitis.

    Science.gov (United States)

    Caballero, Armando R; Foletti, Davide L; Bierdeman, Michael A; Tang, Aihua; Arana, Angela M; Hasa-Moreno, Adela; Sangalang, Emma Ruth B; O'Callaghan, Richard J

    2015-08-01

    To investigate the effectiveness of a high-affinity human monoclonal antibody Fab fragment to Staphylococcus aureus alpha-toxin (LTM14 Fab) as therapy for S. aureus keratitis. A single topical drop of the LTM14 Fab antibody to alpha-toxin alone, or in 0.006% benzalkonium chloride (BAK), was applied every 30 min to S. aureus-infected rabbit corneas from 9 to 14 hours post-infection. Erosions and pathology were measured at 15 h post-infection. LTM14 Fab with BAK limited corneal erosions better than LTM14 Fab alone (p = 0.036), and both limited erosions compared to untreated eyes (p ≤ 0.0001). Overall pathology was similar in all groups (p ≥ 0.070), but iritis and chemosis were reduced by treatment (p ≤ 0.036). The high-affinity human monoclonal Fab fragment antibody (LTM14 Fab) to S. aureus alpha-toxin was effective in reducing corneal damage during S. aureus keratitis.

  5. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.

    Science.gov (United States)

    Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian

    2018-04-16

    mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and

  6. Investigation of a panel of monoclonal antibodies and polyclonal sera against anthrax toxins resulted in identification of an anti-lethal factor antibody with disease-enhancing characteristics.

    Science.gov (United States)

    Kulshreshtha, Parul; Tiwari, Ashutosh; Priyanka; Joon, Shikha; Sinha, Subrata; Bhatnagar, Rakesh

    2015-12-01

    Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization. Copyright © 2015. Published by Elsevier Ltd.

  7. [Batch release of immunoglobulin and monoclonal antibody products].

    Science.gov (United States)

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  8. New Insights into the Functional Behavior of Antibodies as Revealed by Binding Studies on an Anti-Uranium Monoclonal Antibody

    International Nuclear Information System (INIS)

    Blake, Diane A.; Xia Li; Haini Yu; Blake, Robert C.

    2004-01-01

    As part of an ongoing effort to develop immunoassays for chelated uranium(VI) on a hand-held flow fluorimeter, an anti-uranium monoclonal antibody designated as 8A11 was fluorescently labeled using two different strategies. When 8A11 was coupled via reactive lysines to either ALEXATM 488 or Cy5TM, the resulting fluorescent antibody conjugate exhibited positive cooperativity in the presence of its antigen, U(VI) chelated with 2,9-dicarboxy-1,10-phenanthroline (U(VI)-DCP). That is, when one of the two binding sites on the covalently modified 8A11 was occupied with bound antigen, the affinity of the remaining site on the antibody for U(VI)-DCP appeared to increase. Unmodified 8A11 bound U(VI)-DCP with the expected hyperbolic dependence on the concentration of antigen, consistent with independent and equal binding of ligand at both sites. Proteolytic cleavage of the fluorescently conjugated 8A11 to produce the fluorescent monovalent Fab fragment yielded an active preparation that now bound U(VI)-DCP with no evidence of positive cooperativity. Although, in principle, any divalent antibody has the potential to exhibit positive cooperativity in its binding interactions with its antigen, very little literature precedent for this type of behavior exists. Native 8A11 was also noncovalently labeled with highly fluorescent ZENONTM reagents. These reagents are fluorescently-labeled Fab fragments of goat anti-mouse antibodies that bind to the Fc portion of 8A11. These high-affinity, monovalent fluorescent reagents permitted the intact 8A11 mouse antibody to be labeled in situ with no covalent modifications. Incubation of the 8A11 with ZENON 647 produced a fluorescent protein complex that showed an 8-fold higher affinity for U(VI)-DCP than did the free 8A11 alone. Again, very few literature precedents exist for this phenomenon, where agents that bind to the Fc portion of an intact antibody change the affinity of the antibody for the antigen at the structurally distant Fab portion

  9. Measuring the temperature of hot nuclear fragments

    International Nuclear Information System (INIS)

    Wuenschel, S.; Bonasera, A.; May, L.W.; Souliotis, G.A.; Tripathi, R.; Galanopoulos, S.; Kohley, Z.; Hagel, K.; Shetty, D.V.; Huseman, K.; Soisson, S.N.; Stein, B.C.; Yennello, S.J.

    2010-01-01

    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin, etc.) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.

  10. Extracorporeal life support and digoxin-specific Fab fragments for successful management of Taxus baccata intoxication with low output and ventricular arrhythmia.

    Science.gov (United States)

    Farag, Mina; Badowski, Dominika; Koschny, Ronald; Skopp, Gisela; Brcic, Andreas; Szabo, Gabor B

    2017-12-01

    Yew plants are evergreen shrubs which are widely spread throughout the northern hemisphere. Taxane alkaloid derivatives, mainly taxine B, represent the main toxins of Taxus baccata and are highly cardiotoxic. Due to the lack of randomized clinical trials, case reports on accidental or suicidal yew intoxications build the only source of knowledge of clinical treatment options. We report the case of a suicidal yew ingestion admitted to our hospital under prolonged cardiopulmonary resuscitation due to pulseless electrical activity. Extra-corporeal life support (ECLS) was established to maintain adequate organ perfusion. Repeated administration of digoxin-specific Fab antibody fragments, which cross-react with taxine, was associated with an immediate conversion from asystole to broad-complex bradycardia and a gradual normalization of the electrocardiogram (ECG). This was paralleled by a recovery of the cardiac function and weaning from the ECLS. The taxine metabolite 3,5-dimethoxyphenol could be detected by mass spectrometry before but not after the first Fab-fragment treatment. In contrast, the total amount of taxine (including the neutralized, Fab fragment-bound fraction) was increased after each Fab fragment administration, suggesting an accumulation of neutralized, since antibody-bound taxine in the blood by anti-digoxin Fab fragments. In conclusion, the successful clinical course of this case suggests a benefit of an early anti-digoxin Fab-fragment administration for the treatment of yew intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  12. Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics.

    Science.gov (United States)

    Bumbaca, Daniela; Boswell, C Andrew; Fielder, Paul J; Khawli, Leslie A

    2012-09-01

    Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.

  13. Fragmentation of rotating protostellar clouds

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1980-01-01

    We examine, with a three-dimensional hydrodynamic computer code, the behavior of rotating, isothermal gas clouds as they collapse from Jeans unstable configurations, in order to determine whether they are susceptible to fragmentation during the initial dynamic collapse phase of their evolution. We find that a gas cloud will not fragment unless (a) it begins collapsing from a radius much smaller than the Jeans radius (i.e., the cloud initially encloses many Jeans masses) and (b) irregularities in the cloud's initial structure (specifically, density inhomogeneities) enclose more than one Jeans mass of material. Gas pressure smooths out features that are not initially Jeans unstable while rotation plays no direct role in damping inhomogeneities. Instead of fragmenting, most of our models collapse to a ring configuration (as has been observed by other investigators in two-dimensional, axisymmetric models). The rings appear to be less susceptible to gragmentation from arbitrary perturbations in their structure than has previously been indicated in other work. Because our models, which include the effects of gas pressure, do not readily fragment during a phase of dynamic collapse, we suggest that gas clouds in the galactic disk undergo fragmentation only during quasi-equilibrium phases of their evolution

  14. Production, purification, crystallization and preliminary X-ray diffraction analysis of the HIV-2-neutralizing V3 loop-specific Fab fragment 7C8

    International Nuclear Information System (INIS)

    Uchtenhagen, Hannes; Sourial, Samer; Friemann, Rosmarie; Ehnlund, Mariethe; Spetz, Anna-Lena; Harris, Robert A.; Madhurantakam, Chaithanya; Achour, Adnane

    2009-01-01

    Neutralizing Fab fragments of the HIV-2-binding murine antibody 7C8 were generated after purification from hybridoma cell-culture supernatant. Crystallization conditions were determined and diffraction data were collected to 2.7 Å resolution. 7C8 is a mouse monoclonal antibody that is specific for the third hypervariable loop (V3 loop) of the human immunodeficiency virus type 2 (HIV-2) associated protein gp125. Fab fragments of 7C8 effectively neutralize HIV-2. 7C8 was expressed and purified from a hybridoma cell line in order to establish the molecular basis underlying the specificity of the 7C8 antibody for the V3 loop as well as the specific role of the elongated third complementarity-determining region of the heavy chain (CDRH3). The antibody was digested with papain and Fab fragments were purified using size-exclusion chromatography. Hanging-drop vapour-diffusion crystallization techniques were employed and the protein was crystallized in 50 mM ammonium sulfate, 100 mM Tris–HCl pH 8.5, 25%(w/v) PEG 8000 and 2.5%(w/v) PEG 400 at 275 K. The analysed crystals belonged to the rhombohedral space group P3 2 21, with unit-cell parameters a = b = 100.1, c = 196.8 Å, and diffracted to 2.7 Å resolution

  15. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  16. Cloning and molecular characterization of the cDNAs encoding the variable regions of an anti-CD20 monoclonal antibody.

    Science.gov (United States)

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20-based targeting of B-cells in hematologic malignancies and autoimmune disorders is associated with outstanding clinical outcomes. Isolation and characterization of VH and VL cDNAs encoding the variable regions of the heavy and light chains of monoclonal antibodies (MAb) is necessary to produce next generation MAbs and their derivatives such as bispecific antibodies (bsAb) and single-chain variable fragments (scFv). This study was aimed at cloning and characterization of the VH and VL cDNAs from a hybridoma cell line producing an anti-CD20 MAb. VH and VL fragments were amplified, cloned and characterized. Furthermore, amino acid sequences of VH, VL and corresponding complementarity-determining regions (CDR) were determined and compared with those of four approved MAbs including Rituximab (RTX), Ibritumomab tiuxetan, Ofatumumab and GA101. The cloned VH and VL cDNAs were found to be functional and follow a consensus pattern. Amino acid sequences corresponding to the VH and VL fragments also indicated noticeable homologies to those of RTX and Ibritumomab. Furthermore, amino acid sequences of the relating CDRs had remarkable similarities to their counterparts in RTX and Ibritumomab. Successful recovery of VH and VL fragments encourages the development of novel CD20 targeting bsAbs, scFvs, antibody conjugates and T-cells armed with chimeric antigen receptors.

  17. Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Fa Yang

    2016-12-01

    Full Text Available With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.

  18. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Localization of mammary tumors in vivo with 131I-labeled Fab fragments of antibodies against mouse mammary epithelial (MME) antigens

    International Nuclear Information System (INIS)

    Wilbanks, T.; Peterson, J.A.; Miller, S.; Kaufman, L.; Ortendahl, D.; Ceriani, R.L.

    1981-01-01

    The Fab fragments of antibodies against cell-type-specific surface antigens of mouse mammary epithelial cells (MME-antigens) were used to localize mammary tumors successfully. The radioiodine-labeled anti-MME (Fab) was injected into mice carrying simulated mammary metastases, and after 24 hours the amount of label per gram of excised tissue was several times greater in the tumor than in liver, brain, lung, or muscle. Kidney showed considerable accumulation of label but this appeared to be nonspecific. Kinetic studies revealed a rapid elimination of labeled Fab in the urine with only 1% of the injected dose remaining in the entire blood pool after 24 hours. Wit a high-purity germanium camera, mammary tumors were clearly located ty the 131 I-labeled anti-MME (Fab), and normalization to /sup 99m/Tc-pertechnetate distribution in the animal increased the specificity. The density of 131 I-label was fourfold greater over the mammary tumor than over comparable areas of the mouse. No accumulation of 131 I-anti-MME (Fab) was observed in nonmammary tumors nor in mammary tumors when labeled nonspecific Fab was used. An analogous system using an antihuman mammary epithelial antiserum is being developed for localization of breast metastases in humans

  20. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library.

    Directory of Open Access Journals (Sweden)

    Yanan Sun

    Full Text Available Single chain variable fragments (scFvs against diethylstilbestrol (DES were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3 for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR analysis was used to determine binding kinetics of one clone (30-1. The measured K(D was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies.

  1. Fragment-assisted hit investigation involving integrated HTS and fragment screening: Application to the identification of phosphodiesterase 10A (PDE10A) inhibitors.

    Science.gov (United States)

    Varnes, Jeffrey G; Geschwindner, Stefan; Holmquist, Christopher R; Forst, Janet; Wang, Xia; Dekker, Niek; Scott, Clay W; Tian, Gaochao; Wood, Michael W; Albert, Jeffrey S

    2016-01-01

    Fragment-based drug design (FBDD) relies on direct elaboration of fragment hits and typically requires high resolution structural information to guide optimization. In fragment-assisted drug discovery (FADD), fragments provide information to guide selection and design but do not serve as starting points for elaboration. We describe FADD and high-throughput screening (HTS) campaign strategies conducted in parallel against PDE10A where fragment hit co-crystallography was not available. The fragment screen led to prioritized fragment hits (IC50's ∼500μM), which were used to generate a hypothetical core scaffold. Application of this scaffold as a filter to HTS output afforded a 4μM hit, which, after preparation of a small number of analogs, was elaborated into a 16nM lead. This approach highlights the strength of FADD, as fragment methods were applied despite the absence of co-crystallographical information to efficiently identify a lead compound for further optimization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Crystallization and preliminary X-ray analysis of birch-pollen allergen Bet v 1 in complex with a murine monoclonal IgG Fab' fragment

    DEFF Research Database (Denmark)

    Spangfort, M D; Mirza, Osman Asghar; Gajhede, M

    1999-01-01

    of the clinical symptoms of allergy. In order to study the structural basis of allergen-antibody interaction, a complex between the major birch-pollen allergen Bet v 1 and a Fab' fragment isolated from the murine monoclonal Bet v 1 antibody BV16 has been crystallized. Complex crystals belong to space group P1...

  3. Preparation of 188Re labelled antibodies

    International Nuclear Information System (INIS)

    Zhu Minghua; Cao Rongzhen; Li Wenxin; Sheng Rong; Yin Duanzhi; He Weiyu; Zhou Wei; Wang Yongxian

    1998-01-01

    A simple technique of directly labelling antibodies with 188 Re has been developed. The reduction of antibody disulfide groups was achieved by incubation of antibody with ascorbic acid (pH = 6.5) for an hour at room temperature and a solution of excess SnCl 2 in sodium gluconate was added to the AA-reduced antibody followed by the addition of perrhenate. Some factors that influence labelling efficiency, such as the pH of the reaction mixture, the labelling time, and the amount of antibodies and reductive agent, were studied experimentally and a better labelling method was established. The labelling yields, as determined by paper chromatography, were greater than 80%

  4. Immunoscintigraphy of ovarian carcinoma using OC 125 monoclonal antibody

    International Nuclear Information System (INIS)

    Park, Sang Yoon

    1990-03-01

    Immunoscintigraphy (ISG) with I-131 labeled OC 125 F (ab')2 fragments was studied in 7 patients for primary diagnosis and follow up of ovarian cancer. Total body planar photoscans with a scintillation camera were performed three to seven days after antibody application and results were compared with operation and/or computed tomography (CT) examination. By the region of interest technique, the tumor to background ratio was calaulated in vivo. Results are as follows. 1) The sensitivity of ISG and CT for detection of 14 tumor sites which were confirmed with histopathology were 100 % and 57.1 % and the sensitivity for the detection of omental metastasis were 100 % and 20 % respectively. 2) There were no correlation between the serum CA 125 levels and tumor to background antibody uptake ratio. 3) Tumor to background antibody uptake ratio were progressively increased from day 3 to day 7. (author)

  5. Prompt neutrons from {sup 236}U fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boldeman, J W; Musgrove, A.R. de L.; Walsch, R L

    1971-03-01

    Measurements were made of prompt neutron emission in the thermal neutron fission of {sup 235}U. The mean neutron emission per fragment was obtained for particular values of the fragment mass and total kinetic energy. A direct neutron counting method was employed and a comparison made with data from previous experiments of this type. (author)

  6. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  7. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    Science.gov (United States)

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  8. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    Science.gov (United States)

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  9. Bespoke Fragments

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2016-01-01

    , investigating levels of control and uncertainty encountering with these. Through tangible experiments, the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect's digital drawing and workflow. The project sees this expansion as an opportunity to connect...... architectural designs, tectonics and aesthetics. In this Ph.D.-project a series a physical, but conceptual, experiment plays the central role in the knowledge production. The experiments result in materialised architectural fragments and tangible experiences. However, these creations also become the driving...

  10. NMR Detection of Semi-Specific Antibody Interactions in Serum Environments

    Directory of Open Access Journals (Sweden)

    Saeko Yanaka

    2017-09-01

    Full Text Available Although antibody functions are executed in heterogeneous blood streams characterized by molecular crowding and promiscuous intermolecular interaction, detailed structural characterizations of antibody interactions have thus far been performed under homogeneous in vitro conditions. NMR spectroscopy potentially has the ability to study protein structures in heterogeneous environments, assuming that the target protein can be labeled with NMR-active isotopes. Based on our successful development of isotope labeling of antibody glycoproteins, here we apply NMR spectroscopy to characterize antibody interactions in heterogeneous extracellular environments using mouse IgG-Fc as a test molecule. In human serum, many of the HSQC peaks originating from the Fc backbone exhibited attenuation in intensity of various magnitudes. Similar spectral changes were induced by the Fab fragment of polyclonal IgG isolated from the serum, but not by serum albumin, indicating that a subset of antibodies reactive with mouse IgG-Fc exists in human serum without preimmunization. The metaepitopes recognized by serum polyclonal IgG cover the entire molecular surface of Fc, including the binding sites to Fc receptors and C1q. In-serum NMR observation will offer useful tools for the detailed characterization of biopharamaceuticals, including therapeutic antibodies in physiologically relevant heterogeneous environments, also giving deeper insight into molecular recognition by polyclonal antibodies in the immune system.

  11. From hybridomas to a robust microalgal-based production platform: molecular design of a diatom secreting monoclonal antibodies directed against the Marburg virus nucleoprotein.

    Science.gov (United States)

    Hempel, Franziska; Maurer, Michael; Brockmann, Björn; Mayer, Christian; Biedenkopf, Nadine; Kelterbaum, Anne; Becker, Stephan; Maier, Uwe G

    2017-07-27

    The ideal protein expression system should provide recombinant proteins in high quality and quantity involving low production costs only. However, especially for complex therapeutic proteins like monoclonal antibodies many challenges remain to meet this goal and up to now production of monoclonal antibodies is very costly and delicate. Particularly, emerging disease outbreaks like Ebola virus in Western Africa in 2014-2016 make it necessary to reevaluate existing production platforms and develop robust and cheap alternatives that are easy to handle. In this study, we engineered the microalga Phaeodactylum tricornutum to produce monoclonal IgG antibodies against the nucleoprotein of Marburg virus, a close relative of Ebola virus causing severe hemorrhagic fever with high fatality rates in humans. Sequences for both chains of a mouse IgG antibody were retrieved from a murine hybridoma cell line and implemented in the microalgal system. Fully assembled antibodies were shown to be secreted by the alga and antibodies were proven to be functional in western blot, ELISA as well as IFA studies just like the original hybridoma produced IgG. Furthermore, synthetic variants with constant regions of a rabbit IgG and human IgG with optimized codon usage were produced and characterized. This study highlights the potential of microalgae as robust and low cost expression platform for monoclonal antibodies secreting IgG antibodies directly into the culture medium. Microalgae possess rapid growth rates, need basically only water, air and sunlight for cultivation and are very easy to handle.

  12. [Neuroimmunological diseases associated with VGKC complex antibodies].

    Science.gov (United States)

    Watanabe, Osamu

    2013-05-01

    Antibodies to voltage-gated potassium channels(VGKC) were first identified by radioimmunoassay of radioisotope labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were found only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in Morvan's syndrome and in a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins(for example LGI-1, Caspr-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now usually known as VGKC-complex antibodies. In general, LGI-1 antibodies are most common in limbic encephalitis with SIADH. Caspr-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability.

  13. Monoclonal antibodies directed to human insulin-like growth factor I (IGF I)

    International Nuclear Information System (INIS)

    Laubli, U.K.; Baier, W.; Celio, M.R.; Binz, H.; Humbel, R.E.

    1982-01-01

    Mouse hybridomas secreting antibodies to human insulin-like growth factor I (IGF I) were produced by fusion of spleen cells of hyperimmunised mice with FO mouse-myeloma cells. Eight clones producing antibodies against human IGF I have been isolated, two of which have been characterised. One was used in a radioimmunoassay, the other for immunopurification of IGF. (Auth.)

  14. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    Science.gov (United States)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  15. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  16. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness

    Directory of Open Access Journals (Sweden)

    Isabel Corraliza-Gorjón

    2017-12-01

    Full Text Available Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin and bevacizumab (Avastin, respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.

  17. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    Science.gov (United States)

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  18. Human kinetic distribution of I-123 F(Ab')/sub 2/ and FAb compared to the parent I-123 intact antibody

    International Nuclear Information System (INIS)

    De Nardo, S.J.; De Nardo, G.L.; O'Grady, L.F.; Peng, J.S.; Macey, D.J.; Mills, S.L.; Caridiff, R.D.; Epstein, A.L.

    1985-01-01

    Studies of radiolabeled monoclonal antibodies are being performed by many investigators using a variety of molecular forms of the antibody. This study evaluates two I-123-labeled antibodies (Lym-1 IgG2a and B6.01 IgG1) and their I-123-labeled FAb and F(Ab')/sub 2/ for relative whole body distribution and kinetics, selected organ kinetics, and site of degradation. Evidence of immunocomplex formation, circulating antigen, and HAMA, were monitored by HPLC-TSK analysis and appropriate radioassays of the plasma. Each antibody and each I-123-labeled fragment has been evaluated in 5 patients. One patient had serial comparisons of the radiolabeled parent molecule, F(Ab')/sub 2/ (100μg and 5 mg) and FAb (100μg) of Lym-1. Blood clearance, urine excretion rate, and plasma and urine HPLC fractionation of the radioactive species were determined. Whole body clearance by total body scans and organ clearance were obtained by geometric mean of anterior and posterior areas of interest. The FAb and F(Ab')/sub 2/ fragments had similar blood pool recovery 5 minutes after the 5-minute injection. These were the same as blood levels when 5mg of intact I-123-labeled antibody was given. The second phase of the blood curves for F(Ab')/sub 2/ had a T1/2 of 35-40 hours and for FAb was 15-20 hours. Urine excretion varied, but agreed with total body loss from body scan information. The patient with serial studies had a 24-hour residual dose of 82% for FAb, 62% for 10μg for F(Ab')/sub 2/ and 61% for 5mg of F(Ab')/sub 2/. Renal uptake for all patients was higher and more persistent with both fragments than intact antibody, but hepatic uptake was less

  19. AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins.

    Science.gov (United States)

    Holland, Erika G; Buhr, Diane L; Acca, Felicity E; Alderman, Dawn; Bovat, Kristin; Busygina, Valeria; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2013-08-30

    Affinity maturation is an important part of the recombinant antibody development process. There are several well-established approaches for generating libraries of mutated antibody genes for affinity maturation, but these approaches are generally too laborious or expensive to allow high-throughput, parallel processing of multiple antibodies. Here, we describe a scalable approach that enables the generation of libraries with greater than 10(8) clones from a single Escherichia coli transformation. In our method, a mutated DNA fragment is produced using PCR conditions that promote nucleotide misincorporation into newly synthesized DNA. In the PCR reaction, one of the primers contains at least three phosphorothioate linkages at its 5' end, and treatment of the PCR product with a 5' to 3' exonuclease is used to preferentially remove the strand synthesized with the non-modified primer, resulting in a single-stranded DNA fragment. This fragment then serves as a megaprimer to prime DNA synthesis on a uracilated, circular, single-stranded template in a Kunkel-like mutagenesis reaction that biases nucleotide base-changes between the megaprimer and uracilated DNA sequence in favor of the in vitro synthesized megaprimer. This method eliminates the inefficient subcloning steps that are normally required for the construction of affinity maturation libraries from randomly mutagenized antibody genes. Copyright © 2013. Published by Elsevier B.V.

  20. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis

    DEFF Research Database (Denmark)

    Fismen, S; Hedberg, A; Fenton, K A

    2009-01-01

    Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo-epidermal i......Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo......-epidermal immune complex deposits have similar molecular composition as glomerular deposits, (ii) whether chromatin fragments bind dermo-epidermal structures, and (iii) whether deposits in nephritic glomeruli predispose for accumulation of similar deposits in skin. Paired skin and kidney biopsies from nephritic...... (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i...

  1. Thermodynamic model of binding of flexible bivalent haptens to antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dembo, M; Goldstein, B

    1978-01-01

    Studies by Wilder et al. of the binding of Fab' fragments to small haptens have shown that the cross-linking constant (the equilibrium constant for binding an additional Fab' fragment to a hapten-Fab' complex) is strongly dependent on the length of the hapten. We present a simple model for predicting the relationship between the intermolecular cross-linking constant and the monovalent hapten-antibody binding constant. In particular we used the model to obtain the dependence of the cross-linking constant on the length of th hapten, the depth to which the hapten fills th Fab' binding site, and the size of the Fab' fragment. To test the model, we devised expressions which allowed us to analyze the data of Wilder et al. From their data we determined the values of two parameters which we took to be unknown in the theory, the size of the Fab' fragment and the depth to which the hapten fills the Fab' binding site. The values arrived at in this way agreed well with published measurements of these parameters.

  2. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  3. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits

    Science.gov (United States)

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K. David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J.; Hildebrandt, Niko; Reiss, Peter

    2016-05-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL-1 obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL-1) and demonstrate their direct applicability in clinical diagnostics.A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post

  4. Radiolabelling of antibodies with indium: Use of diethylenetriaminepentaacetic acid (DTPA) as chelating agent

    International Nuclear Information System (INIS)

    Loetscher, H.

    1986-01-01

    /sup 111/In/sup 3+/ was used to radiolabel the F(ab')/sub 2/ fragment of a monoclonal antibody (b-12) raised against a surface antigen of a mammalian breast tumor cell line (5). The in vivo distribution of the radiolabel was analyzed in mice bearing a transplant of fixed tumor cells in the left thigh. The results demonstrate that DTPA can be efficiently coupled to a tumor specific F(ab')/sub 2/ fragment and loaded with /sup 111/In/sup 3+/ yielding a stable, highly labelled complex

  5. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  6. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  7. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    International Nuclear Information System (INIS)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-01-01

    Research highlights: → One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. → N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. → These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  8. Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency

    NARCIS (Netherlands)

    van der Zee, J. S.; van Swieten, P.; Aalberse, R. C.

    1986-01-01

    Human IgG4 antibodies directed against phospholipase A, the P1 antigen from Dermatophagoïdes pteronyssinus extracts, and cat albumin were found unable to cross-link antigen. Previously, it was demonstrated that IgG4 antibodies, in contrast to IgG1 antibodies, did not cross-link Sepharose-bound

  9. Positron emission tomographic imaging of tumors using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  10. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library.

    Science.gov (United States)

    Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S

    2018-04-01

    Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.

  11. Identification and evaluation of nextgeneration PTM-specific antibodies

    DEFF Research Database (Denmark)

    Persson, Nina Emilia

    -chain fragment variable (scFv)clones. Two different analyses are performed on the same microarray. There is no need for anypurification or enrichment before screening. In the first analysis, the ability of the individualscFv clone to bind to the soluble form of the antigens is evaluated. Favouring selection....... Including antibodies target several different categories of antigens suchas proteins, glycoproteins and glycolipids. Glycoproteins have become highlighted in cancerresearch since they are frequently involved in the initiation and spreading of cancer. One form ofglycosylation of proteins is the O...... for the patients. Severalmonoclonal antibodies have been generated against the Tn- and STn-antigens, but none has yetreached approval for therapeutic or diagnostic use. Indicating the need for a new generation ofantibodies against this type aberrant glycosylation.The two major techniques used for the production...

  12. Localization by whole-body autoradiography of intact and fragmented radiolabeled antibodies in a metastatic human colonic cancer model

    International Nuclear Information System (INIS)

    Fand, Irwin; Sharkey, R.M.; Grundy, J.P.; Goldenberg, D.M.

    1992-01-01

    In this report, we have employed macroautoradiography to compare the tumor targeting of 125 I-labeled anti-carcinoembryonic antigen (CEA) MAb (NP-4) to 125 I-labeled anti-colon-specific antigen-p (CSAp) MAb (Mu-9) and their labeled F(ab') 2 and Fab' fragments, in nude mice each bearing large dorsal human colonic tumor xenografts, and small nodular tumors in the liver and lungs. Using intact MAbs (NP-4 and Mu-9), clearance of background radioactivity was delayed to 3-7 days post-treatment. Treatment with F(ab') 2 and Fab' fragments of both NP-4 and Mu-9 MAbs, however, promoted clearance of background 125 I-radioactivity which was well advanced by 6-24 h and complete by 24-48 h after injection. Localization of 125 I-radioactivity in large and micrometastatic tumor perimeters was the most characteristic uptake pattern observed for both intact and fragmented MAbs. Qualitative analysis of macroautoradiographic images and quantitative densitometry indicated that the higher tumor-to-blood ratios achieved with labeled F(ab') 2 and Fab' fragments at early time points, compared to labeled whole immunoglobulin, appeared to be more a function of rapid plasma clearance, tumor mass, location of xenografts and specific tumor growth patterns than increased tumor penetrance by lower molecular weight univalent and bivalent immune fragments. (Author)

  13. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    Science.gov (United States)

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  15. Characterization of a monoclonal antibody with specificity for holo-transcobalamin

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey N

    2006-01-01

    Full Text Available Abstract Background Holotranscobalamin, cobalamin-saturated transcobalamin, is the minor fraction of circulating cobalamin (vitamin B12, which is available for cellular uptake and hence is physiologically relevant. Currently, no method allows simple, direct quantification of holotranscobalamin. We now report on the identification and characterization of a monoclonal antibody with a unique specificity for holotranscobalamin. Methods The specificity and affinity of the monoclonal antibodies were determined using surface plasmon resonance and recombinant transcobalamin as well as by immobilizing the antibodies on magnetic microspheres and using native transcobalamin in serum. The epitope of the holotranscobalamin specific antibody was identified using phage display and comparison to a de novo generated three-dimensional model of transcobalamin using the program Rosetta. A direct assay for holotrnscobalamin in the ELISA format was developed using the specific antibody and compared to the commercial assay HoloTC RIA. Results An antibody exhibiting >100-fold specificity for holotranscobalamin over apotranscobalamin was identified. The affinity but not the specificity varied inversely with ionic strength and pH, indicating importance of electrostatic interactions. The epitope was discontinuous and epitope mapping of the antibody by phage display identified two similar motifs with no direct sequence similarity to transcobalamin. A comparison of the motifs with a de novo generated three-dimensional model of transcobalamin identified two structures in the N-terminal part of transcobalamin that resembled the motif. Using this antibody an ELISA based prototype assay was developed and compared to the only available commercial assay for measuring holotranscobalamin, HoloTC RIA. Conclusion The identified antibody possesses a unique specificity for holotranscobalamin and can be used to develop a direct assay for the quantification of holotranscobalamin.

  16. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.

    Science.gov (United States)

    Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A

    1997-02-14

    A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.

  17. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    Science.gov (United States)

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.

  18. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  19. Modelling antibody side chain conformations using heuristic database search.

    Science.gov (United States)

    Ritchie, D W; Kemp, G J

    1997-01-01

    We have developed a knowledge-based system which models the side chain conformations of residues in the variable domains of antibody Fv fragments. The system is written in Prolog and uses an object-oriented database of aligned antibody structures in conjunction with a side chain rotamer library. The antibody database provides 3-dimensional clusters of side chain conformations which can be copied en masse into the model structure. The object-oriented database architecture facilitates a navigational style of database access, necessary to assemble side chains clusters. Around 60% of the model is built using side chain clusters and this eliminates much of the combinatorial complexity associated with many other side chain placement algorithms. Construction and placement of side chain clusters is guided by a heuristic cost function based on a simple model of side chain packing interactions. Even with a simple model, we find that a large proportion of side chain conformations are modelled accurately. We expect our approach could be used with other homologous protein families, in addition to antibodies, both to improve the quality of model structures and to give a "smart start" to the side chain placement problem.

  20. Production of light fragments in hA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1988-12-01

    Production of fast relativistic light fragments in hA collisions at high energies is considered. Direct coalescence of produced nucleons into fragments is shown to be the main mechanism for fragment production. The influence of the nuclear field is small and is not described by the well-known Butler-Pearson formulas. The coalescence coefficient strongly depends on the angle and on the behaviour of the fragment wave function at small internucleon distances. (author). 14 refs, 7 figs

  1. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.

    Science.gov (United States)

    Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E

    2016-03-15

    Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Jet Fragmentation Function Moments in Heavy Ion Collisions

    CERN Document Server

    Cacciari, Matteo; Salam, Gavin P; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_t's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p_t and to its particle content are easily corrected for.

  3. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    Science.gov (United States)

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  4. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  5. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    -selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA) modified strands are inserted into the cavity to form NTA-metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysines. Atomic force...... microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  6. Monoclonal antibodies for treating cancer

    International Nuclear Information System (INIS)

    Dillman, R.O.

    1989-01-01

    The purpose of this study is to assess the current status of in-vivo use of monoclonal antibodies for treating cancer. Publications appearing between 1980 and 1988 were identified by computer searches using MEDLINE and CANCERLIT, by reviewing the table of contents of recently published journals, and by searching bibliographies of identified books and articles. More than 700 articles, including peer-reviewed articles and book chapters, were identified and selected for analysis. The literature was reviewed and 235 articles were selected as relevant and representative of the current issues and future applications for in-vivo monoclonal antibodies for cancer therapy and of the toxicity and efficacy which has been associated with clinical trials. Approaches include using antibody alone (interacting with complement or effector cells or binding directly with certain cell receptors) and immunoconjugates (antibody coupled to radioisotopes, drugs, toxins, or other biologicals). Most experience has been with murine antibodies. Trials of antibody alone and radiolabeled antibodies have confirmed the feasibility of this approach and the in-vivo trafficking of antibodies to tumor cells. However, tumor cell heterogeneity, lack of cytotoxicity, and the development of human antimouse antibodies have limited clinical efficacy. Although the immunoconjugates are very promising, heterogeneity and the antimouse immune response have hampered this approach as has the additional challenge of chemically or genetically coupling antibody to cytotoxic agents. As a therapeutic modality, monoclonal antibodies are still promising but their general use will be delayed for several years. New approaches using human antibodies and reducing the human antiglobulin response should facilitate treatment. 235 references

  7. Solid phase radioimmunoassays using labelled antibodies: a conceptual framework for designing assays

    International Nuclear Information System (INIS)

    Kalmakoff, J.; Parkinson, A.J.; Crawford, A.M.; Williams, B.R.G.

    1977-01-01

    A simple theoretical model for the antigen-antibody reaction is presented and used to evaluate the optimum conditions for designing solid phase radioimmunoassays (RIA) using labelled antibodies. Both theoretical and experimental data are presented, using a wide variety of antigens and their corresponding antibodies. The types of RIA described include the direct, the indirect, the direct sandwich assays for detecting either antigen or antibody. The experimental results confirm in a semiquantitative manner that the greatest sensitivity of the RIA is achieved when the smallest amount of labelled antibody is used, that whenever possible the antigen/antibody ratio should be greater than unity(>1), and that the formation of the antigen-antibody complex is dependent on the mass action effect

  8. HIV antibodies for treatment of HIV infection.

    Science.gov (United States)

    Margolis, David M; Koup, Richard A; Ferrari, Guido

    2017-01-01

    The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. A phase I, dose-escalation study of TB-403, a monoclonal antibody directed against PlGF, in patients with advanced solid tumours

    DEFF Research Database (Denmark)

    Lassen, U; Nielsen, D L; Sørensen, M

    2012-01-01

    BACKGROUND: TB-403 (RO 5323441), a humanised monoclonal antibody, is a novel antiangiogenesis agent directed against placental growth factor. The safety, pharmacokinetics (PK), and antitumour activity of TB-403 were assessed in a phase I, dose-escalation study in patients with advanced solid...

  10. Localization of radioiodinated antibody to alpha-fetoprotein in rats with transplanted hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Koji, T; Ishii, N; Munehisa, T; Kusumoto, Y; Nakamura, S; Tamenishi, A [Nagasaki Univ. (Japan). School of Medicine; Kobayashi, K; Hara, A; Tsukada, Y; Nishi, S

    1980-01-01

    Total body scintigraphy, organ and subcellular distribution of radioactivity and autoradiography of tissue sections has been assessed in an animal model using radioiodinated horse antibody to rat alpha-fetoprotein (AFP). Rats bearing subcutaneous transplants of AH-7974 ascites hepatoma were injected with /sup 125/I-labeled anti-AFP and scintigraphed. Localization of radioactivity in the tumors was observed 48-168 h after injection. Scintigraphy using /sup 125/I-labeled F(ab')/sub 2/ fragment of the antibody gave approximately the same results as that with the intact anti-AFP antibody. /sup 125/I-labeled normal horse IgG was used as control. The tumor/blood radioactivity ratio after a week after injection was approximately four times higher in the antibody group than that in the control group. This ratio suggested an active accumulation of radioactive antibody in the tumor tissue. In its subcellular distribution, about 30 to 60% of the total radioactivity administered was found in a fraction of the cell membrane plus nucleus. The specific activity of this fraction increased in the antibody group with time over 10 days. In autoradiograms of the fixed tissue sections specific localization of the antibody was observed on the tumor cell surface. The specific uptake of radiolabeled antibody to AFP into AFP producing tumor cells was confirmed.

  11. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Sicheng; Zhou, Yaofeng; Huang, Xiaolin [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Yu, Ruijin [College of Science, Northwest A& F University, Yangling, Shaanxi 712100 (China); Lai, Weihua [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Xiong, Yonghua, E-mail: yhxiongchen@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2017-06-15

    Herein, for the first time we report a novel direct competitive fluorescence-linked immunosorbent assay (dcFLISA) for the ultrasensitive detection of ochratoxin A (OTA) by introducing a large size polymer beads loaded with quantum dots (QBs) as carrier of competing antigen for decreasing binding affinity to antibody and enhancing the fluorescent signal intensity. When using 255 nm QBs as carrier of competing antigen, the equilibrium dissociation constant of QB based competing antigen to antibodies can be tuned to 100 times higher than that of the horseradish peroxidase (HRP) based competing antigen by controlling labeled amounts of antigen on the surface of QBs. Various parameters that influenced the sensitivity of dcFLISA were investigated and optimized. Under optimum detection parameters, the dynamic linear range of developed dcFLISA for detecting OTA was established at 0.05 pg/mL to 1.56 pg/mL with a half maximal inhibitory concentration at 0.14 ± 0.04 pg/mL (n = 5), which is three orders of magnitude lower than that of conventional HRP-based dcELISA (0.24 ng/mL). The developed FLISA is also highly accurate, reliable, and shows no cross reaction to other mycotoxins. In summary, the proposed method offers a straightforward approach to improve the sensitivity of direct competitive immunoassay for trace small chemical molecule detection in food quality control, environmental monitoring, and clinical diagnosis. - Highlights: • Highly luminescent QBs were used as a carrier of competing antigen for ultrasensitive detection of OTA. • It is the first time to use a large size QBs as a carrier for tuning affinity of competing antigen to antibodies. • IC{sub 50} value of QB-based dcFLISA is three orders of magnitude lower than that of HRP-based dcELISA.

  12. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies

    International Nuclear Information System (INIS)

    Xiong, Sicheng; Zhou, Yaofeng; Huang, Xiaolin; Yu, Ruijin; Lai, Weihua; Xiong, Yonghua

    2017-01-01

    Herein, for the first time we report a novel direct competitive fluorescence-linked immunosorbent assay (dcFLISA) for the ultrasensitive detection of ochratoxin A (OTA) by introducing a large size polymer beads loaded with quantum dots (QBs) as carrier of competing antigen for decreasing binding affinity to antibody and enhancing the fluorescent signal intensity. When using 255 nm QBs as carrier of competing antigen, the equilibrium dissociation constant of QB based competing antigen to antibodies can be tuned to 100 times higher than that of the horseradish peroxidase (HRP) based competing antigen by controlling labeled amounts of antigen on the surface of QBs. Various parameters that influenced the sensitivity of dcFLISA were investigated and optimized. Under optimum detection parameters, the dynamic linear range of developed dcFLISA for detecting OTA was established at 0.05 pg/mL to 1.56 pg/mL with a half maximal inhibitory concentration at 0.14 ± 0.04 pg/mL (n = 5), which is three orders of magnitude lower than that of conventional HRP-based dcELISA (0.24 ng/mL). The developed FLISA is also highly accurate, reliable, and shows no cross reaction to other mycotoxins. In summary, the proposed method offers a straightforward approach to improve the sensitivity of direct competitive immunoassay for trace small chemical molecule detection in food quality control, environmental monitoring, and clinical diagnosis. - Highlights: • Highly luminescent QBs were used as a carrier of competing antigen for ultrasensitive detection of OTA. • It is the first time to use a large size QBs as a carrier for tuning affinity of competing antigen to antibodies. • IC_5_0 value of QB-based dcFLISA is three orders of magnitude lower than that of HRP-based dcELISA.

  13. Induction of albuminuria in mice: synergistic effect of two monoclonal antibodies directed to different domains of aminopeptidase A.

    Science.gov (United States)

    Mentzel, S; van Son, J P; Dijkman, H B; Wetzels, J F; Assmann, K J

    1999-04-01

    Aminopeptidase A is an enzyme that is present on podocytes and is involved in the degradation of angiotensin II. In previous studies in mice, we administered single monoclonal antibodies directed against aminopeptidase A. We observed that only monoclonal antibodies that inhibited aminopeptidase A enzyme activity caused albuminuria. In this study, the effects of the combined injections of two monoclonal anti-aminopeptidase A antibodies (mAbs) were studied, using a combination of anti-aminopeptidase A mAbs that were directed against two different domains involved in the aminopeptidase A enzyme activity (ASD-3 or ASD-37) and an anti-aminopeptidase A mAb not related to the enzyme active site (ASD-41). An injection of the combinations ASD-3/37 (total 4 mg, 1:1 ratio) and ASD-37/41 (total 4 mg, 1:1 ratio) in doses that do not cause albuminuria when given alone (4 mg) induced massive albuminuria at day 1 after injection. The combination ASD-3/41 had no effect. This albuminuria was not dependent on systemic immune mediators of inflammation and could not merely be related to a blockade of aminopeptidase A enzyme activity. However, a correlation was observed between the induction of albuminuria and the aggregation of the mAbs injected and aminopeptidase A on the podocytes. An injection of the combinations ASD-3/37 or ASD-37/41 did not cause an increase in systemic blood pressure. The treatment with a combination of enalapril and losartan lowered blood pressure (53 +/- 10 vs. 90 +/- 3 mm Hg in untreated mice) and reduced the acute albuminuria by 55% (11,145 +/- 864 vs. 24,517 +/- 2448 micrograms albumin/18 hr in untreated mice). However, similar effects were observed using triple therapy. Therefore, the reduction of albuminuria by the combined treatment of enalapril/losartan seems to be the consequence of the reduction in the systemic blood pressure. These findings argue against a specific role for angiotensin II in this model. The combined injection of two mAbs directed

  14. Radiometallating antibodies and autoantigenic peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Lewis, D.; Cole, D.A.; Newmyer, S.L.; Schulte, L.D.; Mixon, P.L.; Schreyer, S.A.; Burns, T.P.; Roberts, J.C.; Figard, S.D.; McCormick, D.J.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1991-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N- benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have one functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies and have developed methods to label smaller biologically active molecules, such as autoantigenic peptides (fragments of the acetylcholine receptor), which are pertinent to myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules, the radiometallation chemistry, and biological characterization of the radiolabeled compounds will be discussed

  15. A novel polyclonal antibody against human cytomegalovirus ...

    African Journals Online (AJOL)

    Future research should be directed to epitope screening of synthetic HMCV peptides, which could help to understand HCMV infection and virus-neutralising antibodies more fully and to prepare HCMV vaccines and antiviral drugs. Key words: Human cytomegalovirus, AD169 strain, Towne strains, polyclonal antibody.

  16. Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients.

    Science.gov (United States)

    Ayat, Hoda; Burrone, Oscar R; Sadghizadeh, Majid; Jahanzad, Eissa; Rastgou, Nasrin; Moghadasi, Sarrira; Arbabi, Mehdi

    2013-11-01

    Tumor cells expressing HER-2/neu and CEA antigens are potentially ideal targets for antibody-targeted therapy. In this study, two large human combinatorial libraries have been generated from the lymph nodes of breast cancer patients that express HER2 and CEA antigens in their tumors. These 'immune' libraries have been constructed in two different formats of scFv, differing in the length of the peptide linker connecting the two variable VH and VL domains. Libraries derived from these patients may contain a larger pool of anti-tumor antigen antibodies and are useful repertoire for isolating scFvs against any tumor markers. The results of this study showed that we were successful in obtaining human scFvs against HER-2/neu and CEA. For HER-2, cell-panning strategy was performed and resulted in two scFv binders that detected the complete HER-2 receptor on the cell membrane and internalized to the cells. Also, preliminary ELISA data showed that several anti-CEA scFv binders were isolated by panning. Copyright © 2013 The International Alliance for Biological Standardization. All rights reserved.

  17. Rapid screening of monoclonal antibodies: new 'microstick' radioimmunoassay

    International Nuclear Information System (INIS)

    Scheinberg, D.A.; Strand, M.; Wilsnack, R.

    1983-01-01

    A new system for assaying monoclonal antibodies consisting of an 8 x 12 array of sticks which fits into a 96-well microtiter plate is described. Tests using virus specific monoclonal antibodies and virus proteins demonstrated sensitivity equivalent to the conventional microtiter plate assay. Antibody production, antigen specific antibody, and immunoglobulin isotypes could be measured under sterile conditions directly in the original fusion mixture wells and much greater rapidity than with the microtiter plate assay. (Auth.)

  18. Virtual fragment preparation for computational fragment-based drug design.

    Science.gov (United States)

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  19. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  20. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies

    Directory of Open Access Journals (Sweden)

    Christine Rasetti-Escargueil

    2017-10-01

    Full Text Available The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies. For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs. The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.