Quark to $\\Lambda$-hyperon spin transfers in the current-fragmentation region
Chi, Yujie; Ma, Bo-Qiang
2013-01-01
We perform a study on the struck quark to the $\\Lambda$-hyperon fragmentation processes by taking into account the anti-quark fragmentations and intermediate decays from other hyperons. We concentrate on how the longitudinally polarized quark fragments to the longitudinally polarized $\\Lambda$, how unpolarized quark and anti-quark fragment to the unpolarized $\\Lambda$, and how quark and anti-quark fragment to the $\\Lambda$ through the intermediate decay processes. We calculate the effective f...
Longitudinal {lambda} and anti {lambda} polarization at the COMPASS experiment
Kang, Donghee
2007-09-15
At the COMPASS experiment at CERN {lambda} and anti {lambda} particles are produced in deep inelastic scattering (DIS) processes with high statistics. The main focus of the research is the understanding of the spin transfer mechanism from quarks to hadrons through the fragmentation process by utilizing the longitudinal {lambda} and anti {lambda} polarization. The result of the spin transfer provides useful information to test different model predictions which describe spin effects in hyperon production and the quark-antiquark asymmetry of the nucleon and hyperon. The {lambda} and anti {lambda} polarization are determined by measuring the acceptance corrected angular distribution of its decay products. A Monte Carlo simulation is used to correct the acceptance of the COMPASS spectrometer. In this work, preliminary results from data collected in the current fragmentation region during 2002-2004 are presented. A significantly positive average spin transfer of anti {lambda} is found to be equal to C{sub LL}=+0.232{+-}0.039(stat.){+-}0.022(sys.), while the spin transfer of lambda is compatible with zero within the statistical accuracy. The dependences of the spin transfer on various kinematic variables are also presented. (orig.)
Transverse polarization of {Lambda} and {bar {Lambda}} hyperons in quasireal photoproduction.
Airapetian, A.; Akopov, N.; Amarian, M.; Ammosov, V. V.; Andrus, A.; Elalaoui-Moulay, A.; Hafidi, K.; Jackson, H. E.; Potterveld, D. H.; Reimer, P. E.; Sanjiev, I.; Physics; Yerevan Physics Inst.; Inst. Nazionaled di Fisica Nucleare; Inst. High Energy Physics
2007-11-01
The HERMES experiment has measured the transverse polarization of Lambda and {ovr Lambda} hyperons produced inclusively in quasireal photoproduction at a positron beam energy of 27.6 GeV. The transverse polarization P{sub n}{sup Lambda} of the Lambda hyperon is found to be positive while the observed {ovr Lambda} polarization is compatible with zero. The values averaged over the kinematic acceptance of HERMES are P{sub n}{sup Lambda} =0.078 {+-} 0.006(stat) {+-} 0.012(syst) and P{sub n}{sup {ovr Lambda}} = -0.025 {+-} 0.015(stat) {+-} 0.018(syst) for Lambda and {ovr Lambda}, respectively. The dependences of P{sub n}{sup Lambda} and P{sub n}{sup {ovr Lambda}} on the fraction zeta of the beam's light-cone momentum carried by the hyperon and on the hyperon's transverse momentum p{sub T} were investigated. The measured Lambda polarization rises linearly with p{sub T} and exhibits a different behavior for low and high values of zeta, which approximately correspond to the backward and forward regions in the center-of-mass frame of the gamma*N reaction.
Single-particle spectral function of the $\\Lambda$ hyperon in finite nuclei
Vidana, Isaac
2016-01-01
The spectral function of the $\\Lambda$ hyperon in finite nuclei is calculated from the corresponding $\\Lambda$ self-energy, which is constructed within a perturbative many-body approach using some of the realistic hyperon-nucleon interactions of the J\\"{u}lich and Nijmegen groups. Binding energies, wave functions and disoccupation numbers of different single-particle states are obtained for various hypernuclei from $^5_{\\Lambda}$He to $^{209}_{\\,\\,\\,\\,\\,\\Lambda}$Pb. The agreement between the calculated binding energies and experimental data is qualitatively good. The small spin-orbit splitting of the $p-, d-, f-$ and $g-$wave states is confirmed. The discrete and the continuum contributions of the single-$\\Lambda$ spectral function are computed. Their appearance is qualitatively similar to that of the nucleons. The ${\\cal Z}$-factor, that measures the importance of correlations, is also calculated. Our results show that its value is relatively large, indicating that the $\\Lambda$ hyperon is less correlated th...
Are hyperon resonances required in the elementary $K^+\\Lambda$ photoproduction?
Mart, T; 10.1007/s00601-012-0497-9
2013-01-01
We have investigated the role of hyperon resonances in the kaon photoproduction process, $\\gamma p\\to K^+\\Lambda$, by using a covariant isobar model. To this end, new experimental data are used in the fitting process, whereas the old SAPHIR 1998 data are also used for comparison. The result indicates that the $\\Lambda(1600)P_{01}$ and $\\Lambda(1810)P_{01}$ hyperon resonances can significantly reduce the $\\chi^2$ and, simultaneously, can increase the hadronic form factor cut-off in the background terms. This finding is different from the result of the previous studies, which showed that the $\\Lambda(1800)S_{01}$ was important for this purpose, instead of the $\\Lambda(1600)P_{01}$.
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar
Chien, Andrew L.; /SLAC /UCLA
2008-05-19
We employ Runs 1-4 off-peak data sample (about 21.5 fb{sup -1}) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the {Lambda} hyperon, the cascade hyperon, and the {Omega} hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the {Lambda} as 0.0900 {+-} 0.0006(stat.) {+-} 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 {+-} 0.00013(stat.) {+-} 0.00045(sys.) per hadronic event, while that for the {Omega} hyperon is 0.00027 {+-} 0.00004(stat.) {+-} 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements.
The EOS of neutron matter and the effect of $\\Lambda$ hyperons to neutron star structure
Gandolfi, Stefano
2015-01-01
The structure of neutron stars is determined by the equation of state of the matter inside the star, which relies on the knowledge of nuclear interactions. While radii of neutron stars mostly depend on the equation of state of neutron matter at nuclear densities, their maximum mass can be drastically affected by the appearance of hyperons at higher densities in the inner core of the star. We summarize recent quantum Monte Carlo results on the calculation of the equation of state of neutron matter at nuclear and higher densities. We report about the development of realistic hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei and on the effect of $\\Lambda$ hyperons to the neutron star structure.
Search for CP violation in hyperon decays.
Zyla, Piotr; Chan, A.; Chen, Y.C.; Ho, C.; Teng, P.K.; Choong, W.S.; Gidal, G.; Fu, Y.; Gu, P.; Jones, T.D.; Luk, K.B.; Turko, B.; James, C.; Volk, J.; Felix, J.; Burnstein, R.A.; Chakrovorty, A.; Kaplan, D.M.; Lederman, L.M.; Luebke, W.; Rajaram, D.; Rubin, H.A.; Solomey, N.; Torun, Y.; White, C.G.; White, S.L.; Leros, N.; Perroud, J.P.; Gustafson, H.R.; Longo, M.J.; Lopez, F.; Park H.K.; Clark, K.; Jenkins, M.; Dukes, E.C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L.; Nelson, K.S.
2002-10-25
Direct CP violation in nonleptonic hyperon decays can be established by comparing the decays of hyperons and anti-hyperons. For {Xi} decay to {Lambda} {pi} followed by {Lambda} to p{pi}, the proton distribution in the rest frame of Lambda is governed by the product of the decay parameters {alpha}{sub {Xi}} {alpha}{sub {Lambda}}. The asymmetry A{sub {Xi}{Lambda}}, proportional to the difference of {alpha}{sub {Xi}}{alpha}{sub {Lambda}} of the hyperon and anti-hyperon decays, vanishes if CP is conserved. We report on an analysis of a fraction of 1997 and 1999 data collected by the Hyper CP (E871) collaboration during the fixed-target runs at Fermilab. The preliminary measurement of the asymmetry is {Alpha}{sub {Xi}{Lambda}} = [-7 {+-} 12(stat) {+-} 6.2(sys)] x 10{sup -4}, an order of magnitude better than the present limit.
Transverse polarization of $\\Lambda$ hyperons from quasi-real photoproduction on nuclei
Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Kobayashi, N; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Lu, X -G; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P
2014-01-01
The transverse polarization of $\\Lambda$ hyperons was measured in inclusive quasi-real photoproduction for various target nuclei ranging from hydrogen to xenon. The data were obtained by the HERMES experiment at HERA using the 27.6 GeV lepton beam and nuclear gas targets internal to the lepton storage ring. The polarization observed is positive for light target nuclei and is compatible with zero for krypton and xenon.
Shape of the $\\Lambda(1405)$ Hyperon Measured Through its $\\Sigma^0\\pi^0$ Decay
Zychor, I; Kacharava, A K; Keshelashvili, I; Khoukaz, A; Kleber, V; Koptev, V; Maeda, Y; Mersmann, T; Mikirtychiants, S; Schleichert, R; Ströher, H; Valdau, Y; Wilkin, C
2007-01-01
The pp -> p K+ Y0 reaction has been studied for hyperon masses m(Y0)<1540 MeV/c2 at COSY-J\\"ulich by using a 3.65 GeV/c circulating proton beam incident on an internal hydrogen target. Final states comprising two protons, one positively charged kaon and one negatively charged pion have been identified with the ANKE spectrometer. Such configurations are sensitive to the production of the ground state Lambda and Sigma0 hyperons as well as the Sigma0(1385) and Lambda(1405) resonances. Applying invariant- and missing-mass techniques, the two overlapping excited states can be separated unambiguously. The shape and position of the Lambda(1405) distribution, reconstructed cleanly from its Sigma0 pion0 decay, are similar to those found in other production modes and there is no obvious mass shift. This finding constitutes a challenging test for models that predict Lambda(1405) to be a two-state resonance.
McCracken, M E; Adhikari, K P; Adikaram, D; Akbar, Z; Pereira, S Anefalos; Badui, R A; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Alaoui, A El; Fassi, L El; Elouadrhiri, E; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Filippi, A; Fleming, J A; Garillon, B; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jiang, H; Jo, H S; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Kubarovsky, V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Moody, C I; Moriya, K; Camacho, C Munoz; Nadel-Turonski, P; Net, L A; Niccolai, S; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Raue, B A; Ripani, M; Rizzo, A; Rosner, G; Roy, P; Sabatié, F; Salgado, C; Schumacher, R A; Seder, E; Sharabian, Y G; Skorodumina, Iu; Sokhan, D; Sparveris, N; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-01-01
We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range $(4-200)\\times 10^{-7}$ at the $90\\%$ confidence level.
Kamano, H; Lee, T -S H; Sato, T
2015-01-01
Resonance parameters (pole masses and residues) associated with the excited states of hyperons, Lambda^* and Sigma^*, are extracted within a dynamical coupled-channels model developed recently in Phys. Rev. C 90, 065204 (2014) through a comprehensive partial-wave analysis of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi data up to invariant mass W = 2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow J^P=3/2^+ Lambda resonance that couples strongly to the eta Lambda channel. The J^P=1/2^- Lambda resonances located below the barK N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K^- ...
Xue, W X; Hagino, K; Li, Z P; Mei, H; Tanimura, Y
2014-01-01
The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of $E2$ transition strength in low-lying states of hypernucleus $^{7}_\\Lambda$Li. Many more data on low-lying states of $\\Lambda$ hypernuclei will be measured soon for $sd$-shell nuclei, providing good opportunities to study the $\\Lambda$ impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of $\\Lambda$ hyperon impurity effect on the low-lying states of $sd$-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the $\\Lambda$ hyperon is injected into the lowest positive-parity ($\\Lambda_s$) and negative-parity ($\\Lambda_p$) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the $\\Lambda$ binding energies of hypernuclei as well as the potential energy surfaces (PESs) in $(\\beta, \\g...
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar
Chien, Andrew L. [Stanford Univ., CA (United States)
2008-01-01
We employ Runs 1-4 off-peak data sample (about 21.5 fb^{-1}) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the Λ hyperon, the cascade hyperon, and the Ω hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the Λ as 0.0900 ± 0.0006(stat.) ± 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 ± 0.00013(stat.) ± 0.00045(sys.) per hadronic event, while that for the Ω hyperon is 0.00027 ± 0.00004(stat.) ± 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements.
Longitudinal Spin Transfer to the $\\Lambda$ Hyperon in Semi-Inclusive Deep-Inelastic Scattering
Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Beckmann, M; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Chen, T; Chen, X; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Grebenyuk, O; Gregor, I M; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, H; Lü, J; Lu, S; Lü, X; Ma, B Q; Maiheu, B; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Osborne, A; Pickert, N; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Sommer, W; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vincter, M G; Vogel, C; Volmer, J; Wang, S; Wendland, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2006-01-01
The transfer of polarization from a high-energy positron to a \\lam hyperon produced in semi-inclusive deep-inelastic scattering has been measured. The data have been obtained by the HERMES experiment at DESY using the 27.6 GeV longitudinally polarized positron beam of the HERA collider and unpolarized gas targets internal to the positron (electron) storage ring. The longitudinal spin transfer coefficient is found to be $\\dll = 0.11 \\pm 0.10 \\mathrm{(stat)} \\pm 0.03 \\mathrm{(syst)}$ at an average fractional energy carried by the \\lam hyperon $= 0.45$. The dependence of \\dll on both the fractional energy $z$ and the fractional longitudinal momentum $x_F$ is presented.
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G..; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.
2009-01-01
Roč. 80, č. 11 (2009), 111102/1-111102/7. ISSN 1550-7998 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : CHARGED CURRENT INTERACTIONS * PP COLLISIONS * (LAMBDA)OVER-BAR POLARIZATION Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.922, year: 2009
Setup tuning using Lambda and anti-Lambda particles
Benelli, A
2013-01-01
In order to check the general geometry of the DIRAC experiment, we use the $\\Lambda$ and $\\bar{\\Lambda}$ particles that decay in our setup into $p\\pi^-$ and $\\pi^+\\bar{p}$. The Lambda mass is very well determined [1] and comparing the value reconstructed in our data with the published one we can be condent that our geometrical description is correct. The main factors that can influence the value of the Lambda mass are: the position of the Aluminum membrane and the opening angle of the two downstream arms, they will be discussed in this note in section 3. The width of the Lambda mass distribution is another tool that we use to evaluate the resolution of the momentum reconstruction of the particles. There are several factors that can contribute to the momentum reconstruction resolution. The most important are: the multiple scattering in the Aluminum membrane and in the Drift Chambers (DC), the resolution of the DC planes, the alignment of the DC downstream and the multiple scattering in the upstream detectors. ...
Kamano, H
2016-01-01
A model for the $\\bar K d \\to \\pi Y N$ reactions with $Y=\\Lambda, \\Sigma$ is developed, aiming at establishing the low-lying $\\Lambda$ and $\\Sigma$ hyperon resonances through analyzing the forthcoming data from the J-PARC E31 experiment. The off-shell amplitudes generated from the dynamical coupled-channels (DCC) model, which was developed in Phys. Rev. C 90, 065204 (2014), are used as input to the calculations of the elementary $\\bar K N \\to \\bar K N$ and $\\bar K N \\to \\pi Y$ subprocesses in the $\\bar K d \\to \\pi Y N$ reactions. It is shown that the cross sections for the J-PARC E31 experiment with a rather high incoming-$\\bar{K}$ momentum, $|\\vec p_{\\bar K}|= 1$ GeV, can be predicted reliably only when the input $\\bar K N \\to \\bar K N$ amplitudes are generated from a $\\bar KN$ model, such as the DCC model used in this investigation, which describes the data of the $\\bar K N$ reactions at energies far beyond the $\\bar K N$ threshold. We find that the data of the threefold differential cross section $d\\sigma/...
Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Y.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Y.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Y.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Baum, G. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Bedfer, Y.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'
2013-10-15
Large samples of {Lambda}, {Sigma}(1385) and {Xi}(1321) hyperons produced in the deep-inelastic muon scattering off a {sup 6}LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of {Sigma}(1385){sup +}, {Sigma}(1385){sup -}, anti {Sigma}(1385){sup -}, anti {Sigma}(1385){sup +}, {Xi}(1321){sup -}, and anti {Xi}(1321){sup +} hyperons decaying into {Lambda}(anti {Lambda}){pi} were measured. The ratios of heavy-hyperon to {Lambda} and heavy-antihyperon to anti {Lambda} were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)
Transverse polarizaton of Λ and anti Λ hyperons in quasireal photoproduction
The HERMES experiment has measured the transverse polarization of Λ and anti Λ hyperons produced inclusively in quasireal photoproduction at a positron beam energy of 27.6 GeV. The transverse polarization PnΛ of the Λ hyperon is found to be positive while the observed anti Λ polarization is compatible with zero. The values averaged over the kinematic acceptance of HERMES are PnΛ = 0.078 ± 0.006 (stat) ± 0.012 (syst) and PnantiΛ = -0.025 ± 0.015 (stat) ± 0.018 (syst) for Λ and anti Λ, respectively. The dependences of PnΛ and PnantiΛ on the fraction of ζ the beam's light-cone momentum carried by the hyperon and on the hyperon's transverse momentum pT were investigated. The measured Λ polarization rises linearly with pT and exhibits a different behavior for low and high values of ζ, which approximately correspond to the backward and forward regions in the center-of-mass frame of the γ*N reaction. (orig.)
Behler, Matthias
2007-07-01
The radiative decay of a hyperon into a light hyperon and a photon allows to study the structure of the electroweak interaction of hadrons. For this purpose, the decay asymmetry is an appropriate observable. It describes the distribution of the daughter hyperon with respect to the polarization (vector)P of the mother hyperon by (dN)/(d cos({theta})){proportional_to}1+{alpha}vertical stroke (vector)P vertical stroke cos({theta}), where {theta} is the angle between (vector)P and the momentum of the daughter hyperon. The radiative decay {xi}{sup 0}{yields}{lambda}{sub {gamma}} is of particular interest since all calculations at quark level predict a positive decay asymmetry whereas two existing measurements result in a negative value of {alpha}{sub {xi}{sup 0}{yields}{lambda}{sub {gamma}}}=-0.73{+-}0.17. The goal of the analysis presented here was to verify these results and to improve the accuracy of the decay asymmetry measurement. In addition, the decay asymmetry of the similar decay {xi}{sup 0}{yields}{sigma}{sup 0}{sub {gamma}} was measured, and the well-known decay {xi}{sup 0}{yields}{lambda}{pi}{sup 0} was used to test the analysis strategy. During the data taking period in 2002, the NA48/1 experiment at CERN was searching for rare K{sub S} and hyperon decays. The collected data represents the world's largest sample of {xi}{sup 0} decays. From this sample, about 52,000 {xi}{sup 0}{yields}{lambda}{sub {gamma}} decays, 15,000 {xi}{sup 0}{yields}{sigma}{sup 0}{sub {gamma}} decays and 4 mill. {xi}{sup 0}{yields}{lambda}{pi}{sup 0} decays with small background were extracted as well as the corresponding anti {xi} decays. The available anti {xi} samples amount about one tenth of the {xi}{sup 0} samples. The measurement of the decay asymmetries was based on the comparison between data and a detailed Monte Carlo simulation, giving the following results: {alpha}{sub {xi}{sup 0}{yields}{lambda}{sub {gamma}}}=-0.701 {+-} 0.019{sub stat}{+-} 0.064{sub sys}, {alpha
Differential cross sections for gamma + p --> K^+ + Y for Lambda and Sigma^0 hyperons
R. Bradford; R.A. Schumacher; J.W.C. McNabb; L. Todor; et. Al.
2005-09-29
High-statistics cross sections for the reactions {gamma} + p {yields} K{sup +} + {Lambda} and {gamma} + p {yields} K{sup +} + {Sigma}{sup 0} have been measured using CLAS at Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85 < cos {theta}{sub K{sup +}}{sup c.m.} < +0.95. In the K{sup +}{Lambda} channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. The position and width of this structure change with angle, indicating that more than one resonance is likely playing a role. The K{sup +} {Lambda} channel at forward angles and all energies is well described by a t-channel scaling characteristic of Regge exchange, while the same scaling applied to the K{sup +} {Sigma}{sup 0} channel is less successful. Several existing theoretical models are compared to the data, but none provide a good representation of the results.
Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb
Agakishiev, G.; Belyaev, A.V.; Chernenko, S.; Fateev, O.V.; Ierusalimov, A.; Ladygin, V.; Muentz, C.; Vasiliev, T.; Zanevsky, Y.V. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Arnold, O.; Berger-Chen, J.C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Schmah, A.; Siebenson, J. [Excellence Cluster ' ' Origin and Structure of the Universe' ' , Garching (Germany); Balanda, A.; Dybczak, A.; Michalska, B.; Palka, M.; Przygoda, W.; Salabura, P.; Trebacz, R. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Belver, D.; Cabanelas, P.; Garzon, J.A.; Kornakov, G. [Univ. de Santiago de Compostela, LabCAF F. Fisica, Santiago de Compostela (Spain); Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A. [LIP-Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Boehmer, M.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Weber, M. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Boyard, J.L.; Hennino, T.; Liu, T.; Ramstein, B. [Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Finocchiaro, P. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Pachmayer, Y.C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Tarantola, A.; Teilab, K. [Johann Wolfgang Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Galatyuk, T.; Gonzalez-Diaz, D. [Technische Universitaet Darmstadt, Darmstadt (Germany); Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A. [Russian Academy of Science, Institute for Nuclear Research, Moscow (Russian Federation); Gumberidze, M. [Technische Universitaet Darmstadt, Darmstadt (Germany); Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Sturm, C.; Traxler, M.; Yurevich, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Iori, I. [Sezione di Milano, INFN, Milano (Italy); Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institut fuer Strahlenphysik, Dresden (Germany); Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V. [Academy of Sciences of Czech Republic, Nuclear Physics Institute, Rez (Czech Republic); Kuc, H. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Universite Paris Sud, Institut de Physique Nucleaire (UMR 8608), CNRS/IN2P3, Orsay Cedex (France); Kuehn, W.; Metag, V.; Spataro, S.; Spruck, B. [Justus Liebig Universitaet Giessen, II.Physikalisches Institut, Giessen (Germany); Lebedev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Parpottas, Y.; Tsertos, H. [University of Cyprus, Department of Physics, Nicosia (Cyprus); Stroth, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann Wolfgang Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Collaboration: HADES Collaboration
2014-05-15
Results on Λ hyperon production are reported for collisions of p(3.5 GeV) + Nb, studied with the High-Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. The transverse mass distributions in rapidity bins are well described by Boltzmann shapes with a maximum inverse slope parameter of about 90 MeV at a rapidity of y = 1.0, i.e. slightly below the center-of-mass rapidity for nucleon-nucleon collisions, y{sub cm} = 1.12. The rapidity density decreases monotonically with increasing rapidity within a rapidity window ranging from 0.3 to 1.3. The Λ phase-space distribution is compared with results of other experiments and with predictions of two transport approaches which are available publicly. None of the present versions of the employed models is able to fully reproduce the experimental distributions, i.e. in absolute yield and in shape. Presumably, this finding results from an insufficient modelling in the transport models of the elementary processes being relevant for Λ production, rescattering and absorption. The present high-statistics data allow for a genuine two-dimensional investigation as a function of phase space of the self-analyzing Λ polarization in the weak decay Λ → pπ{sup -}. Finite negative values of the polarization in the order of 5-20% are observed over the entire phase space studied. The absolute value of the polarization increases almost linearly with increasing transverse momentum for p{sub t} > 300 MeV/c and increases with decreasing rapidity for y < 0.8. (orig.)
Ping, Huican
2005-01-01
The large sample of {Xi}{sup 0} hyperons available at KTeV 799 provides an opportunity to search for the Weak Radiative Hyperon Decay {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma}. They present a branching fraction measurement of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma} based on the E799-II experiment data-taking in 1999 at KTeV, Fermilab. They used the principal decay of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0} where {Lambda} decays to a proton and a {pi}{sup -} as the flux normalization mode. This is the first observation of this interesting decay mode. 4 candidate events are found in the data. The branching ratio at 90% confidence level has been measured to be (1.67{sub -0.80}{sup +1.45}(stat.) {+-} 0.50(syst.)) x 10{sup -5} or (1.67{sub -0.69}{sup +1.16}(stat.) {+-} 0.50(syst.)) x 10{sup -5} at 68.27% confidence level.
Measurement of K{sup 0}{sub S}, {lambda} and anti {lambda} production at HERA
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2006-12-15
The production of the neutral strange hadrons K{sup 0}{sub S}, {lambda} and anti {lambda} has been measured in ep collisions at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and charged light hadrons, {lambda} (anti {lambda}) asymmetry and polarization have been measured in three kinematic regions: Q{sup 2}>25 GeV{sup 2}; 5
Photoproduction of $\\Lambda$ and $\\Sigma^0$ hyperons using linearly polarized photons
Paterson, C A; Livingston, K; McKinnon, B
2016-01-01
Background: Measurements of polarization observables for the reactions $\\vec{\\gamma} p \\rightarrow K^+ \\Lambda$ and $\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$ have been performed. This is part of a programme of measurements designed to study the spectrum of baryon resonances. Purpose: The accurate measurement of several polarization observables provides tight constraints for phenomenological fits. Beam-recoil observables for the $\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$ reaction have not been reported before now. Method: The measurements were carried out using linearly polarized photon beams and the CLAS detector at the Thomas Jefferson National Accelerator Facility. The energy range of the results is 1.71\\,GeV $
Zh, Aslanyan P
2010-01-01
The designed 2m propane bubble chambers(PBC) with modern power technologies for PC and high precision digital photographic methods is a unique multi-propose, competitive capable and higher-informative 4$\\pi$ detector for study of exotic multi-strange events with $V^0$($\\Lambda,K^0_s$ and $\\gamma$) particles, light hyper-nucleus, ($V^0, V^0$) interactions and other correlations (P02 J-PARC LOI). First from all of unbeatable privilege for PBC are registration of multi-vertex or complex decay modes(with 10-50$\\mu$m space resolution), where is included of the beam area too. The acceptance of beam area for detectors is crucial important for $\\Lambda$ hyperon physics, because more than 70% from $\\Lambda$ hyperons are emitted in the beam area with azimuth $\\beta$ or polar angles $< 15^0$ in p+C reaction at 10 GeV/c. The observed well-known resonances $\\Sigma^{0}$, $\\Sigma^{*\\pm}$(1385) and $K^{*\\pm}$(892) from PDG are good tests of this method. The subject of proposed P02 project allow to explore of multi-strange...
John McNabb
2002-12-01
The differential cross section and hyperon recoil polarizations of the photoproduction of the ground state hyperons, {gamma} p {yields} K{sup +} {Lambda} and {gamma} p {yields} K{sup +} {Sigma}{sup 0} , have been measured with the CLAS at Jefferson Lab up to a photon energy in the lab of 2.325 GeV. The results for both channels show significantly larger cross section in the middle to forward angles than have been observed previously by the SAPHIR Collaboration. Both reactions show significantly more backward peaking in the angular distributions than has previously been possible to observe. The backward peaking hints that hyperon resonances in the u-channel play a significant role in the production mechanism. In addition, in the {gamma} p {yields} K{sup +} {Lambda} reaction, a previously unobserved bump in the cross section was observed at forward angles, centered on a W of 1.95 GeV with a width of approximately {Gamma} = 100 MeV. In both {gamma} p {yields} K{sup +} Y reactions the recoil polarization in the forward direction seems reasonably well reproduced by t-channel interferences in a Regge model calculation as well as hadrodynamic models that include kaon resonances in the t-channel. The recoil polarization for {gamma} p {yields} K{sup +} {Lambda} shows a significant enhancement around a W of 1.9 GeV in the backward angles, which is a sign of resonance activity in this vicinity. The polarization of {gamma} p {yields} K{sup +} {Sigma}{sup 0} at backward angles is, in contrast, less pronounced and mostly consistent with zero.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin
2015-01-01
The transverse polarization of $\\Lambda$ and $\\bar\\Lambda$ hyperons produced in proton--proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\\rm F}$ from $5\\times 10^{-5}$ to 0.01 and transverse momentum $p_{\\rm T}$ from 0.8 to 15 GeV is $-0.010 \\pm 0.005({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\Lambda$ and $0.002 \\pm 0.006({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\bar\\Lambda$. It is also measured as a function of $x_{\\rm F}$ and $p_{\\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\\rm F}$ range covered by this mesurement.
Abgrall, N; Ali, Y; Anticic, T; Antoniou, N; Argyriades, J; Baatar, B; Blondel, A; Blumer, J; Bogomilov, M; Bravar, A; Brooks, W; Brzychczyk, J; Bunyatov, S A; Busygina, O; Christakoglou, P; Czopowicz, T; Davis, N; Debieux, S; Dembinski, H; Diakonos, F; Di Luise, S; Dominik, W; Drozhzhova, T; Dumarchez, J; Dynowski, K; Engel, R; Ereditato, A; Esposito, L; Feofilov, G A; Fodor, Z; Fulop, A; Gazdzicki 17, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hakobyan, H; Haesler, A; Hasegawa, T; Hierholzer, M; Idczak, R; Igolkin, S; Ivanov, Y; Ivashkin, A; Jokovic, D; Kadija, K; Kapoyannis, A; Katrynska, N; Kaptur, E; Kielczewska, D; Kikola, D; Kirejczyk, M; Kisiel, J; Kiss, T; Kleinfelder, S; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kondratiev, V P; Korzenev, A; Kowalski, S; Krasnoperov, A; Kuleshov, S; Kurepin, A; Larsen, D; Laszlo, A; Lyubushkin, V V; Mackowiak-Pawlowska, M; Majka, Z; Maksiak, B; Malakhov, A I; Maletic, D; Manic, D; Marchionni, A; Marcinek, A; Marin, V; Marton, K; Mathes, H-J; Matulewicz, T; Matveev 10, V; Melkumov, G L; Mrówczynski, St; Murphy, S; Nakadaira, T; Nirkko, M; Nishikawa, K; Palczewski, T; Palla, G; Panagiotou, A D; Paul, T; Peryt, W; Pistillo, C; Redij, A; Petukhov, O; Planeta, R; Pluta, J; Popov 6, B A; Posiada la, M; Pulawski, S; Puzovic, J; Rauch, W; Ravonel, M; Renfordt, R; Robert, A; Röhrich, D; Rondio, E; Roth, M; Rubbia, A; Rustamov, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Savic, M; Schmidt, K; Sekiguchi, T; Seyboth, P; Shibata, M; Sipos, R; Skrzypczak, E; Slodkowski, M; Staszel, P; Stefanek, G; Stepaniak, J; Susa, T; Szuba, M; Tada, M; Tereshchenko, V; Tolyhi, T; Tsenov, R; Turko, L; Ulrich, R; Unger, M; Vassiliou, M; Veberic, D; Vechernin, V V; Vesztergombi, G; Vinogradov, L; Wilczek, A; Wlodarczyk, Z; Wojtaszek, A; Wyszynski, O; Zambelli, L; Zipper, W
2014-01-01
Spectra of $K^0_S$ mesons and $\\Lambda$ hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on $K^0_S$ and $\\Lambda$ production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for $K^0_S$ and $\\Lambda$ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The $K^0_...
Hyperon and antihyperon production in Pb-Pb collisions at 158 AGeV/c
Andersen, E.; Andrighetto, A.; Antinori, F.; Böhm, Jan; Píška, Karel; Staroba, Pavel; Šťastný, Jan; Vaníčková, Marcela; Závada, Petr
Singapore : World Scientific Publishing Company , 1997 - (Ajduk, A.; Wroblewski, A.), s. 960-963 ISBN 981-02-2874-0. [International Conference on High Energy Physics /28./ (ICHEP 96). Warsaw (PL), 25.07.1996-31.07.1996] R&D Projects: GA ČR GA202/95/0217 Keywords : WA97 * OMEGA spectrometer * CERN SPS * heavy ion collisions * yield (Omega, Xi, Lambda) * hyperon * anti-hyperon production Subject RIV: BF - Elementary Particles and High Energy Physics
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle
Wirth, Roland
2016-01-01
We present the first ab initio calculations for $p$-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a Similarity Renormalization Group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the Importance-Truncated No-Core Shell Model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-$p$-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon binding energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the $\\Sigma$ hyperons from the hypernuclear system, i.e., a suppression of the $\\Lambda$-$\\Sigma$ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle ...
Baatar, B; Kladnitsktaya, E N; Simich, L; Uzhinskii, V V
2005-01-01
The experimental data obtained with the JINR 2 m propane bubble chamber are used for the study of the influence of collision centrality on spectra of $\\Lambda$-hyperons and $K_s^0$-me\\-sons produced in CC interactions at 4.2 A GeV/$c$. The multiplicity of participant protons with momenta larger than 300 MeV/$c$ is taken as a measure of collision centrality. The characteristics of $\\pi$-mesons and protons accompanying the strange particle production are also presented. The experimental data are compared with the prediction of the modified version of the FRITIOF model. It is shown that the strange particles are mainly produced in central and semi-central collisions. The average values of the kinematical characteristics of $K_s^0$-me\\-sons do not depend on the collision centrality. At the same time the average transverse momentum and emission angle of $\\Lambda$-hyperons increase slowly with collision centrality. The angular anisotropy of the $\\Lambda$-hyperons and $K_s^0$-mesons (calculated with respect to the $...
Quasielastic production of polarized hyperons in antineutrino--nucleon reactions
Akbar, F; Athar, M Sajjad; Singh, S K
2016-01-01
We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...
Hyperon production with antiprotons at LEAR
Franz, J
1997-01-01
Recent results from the experiment PS185 at LEAR/CERN on the production of antihyperon-hyperon (YY) pairs are reported. An overview is given for the observables sigma , d sigma /dt, P, C/sub ij/ and S/sub F/ in the channel pp to Lambda Lambda . The results are compared with other measured antihyperon-hyperon pairs: Sigma /sup 0/ Lambda +c.c., Sigma /sup +/ Sigma /sup +/ and Sigma /sup -/ Sigma /sup $/. (7 refs).
Paschke, K D; Berdoz, A; Franklin, G B; Khaustov, P; Meyer, C A; Bradtke, C; Gehring, R; Görtz, S; Harmsen, J; Meier, A; Meyer, W; Radtke, E; Reicherz, G; Dutz, H; Plückthun, M; Schoch, B; Dennert, H; Eyrich, W; Hauffe, J; Metzger, A; Moosburger, M; Stinzing, F; Wirth, S; Fischer, H; Franz, J; Heinsius, F H; Kriegler, E; Schmitt, H; Bunker, B; Hertzog, D; Jones, T; Tayloe, R; Bröders, R; Geyer, R; Kilian, K; Oelert, W; Röhrich, K; Sachs, K; Sefzick, T; Bassalleck, B; Eilerts, S; Fields, D E; Kingsberry, P; Lowe, J; Stotzer, R; Johansson, T; Pomp, S; Wirth, St.
2006-01-01
The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.
Sanchez-Lorente, Alicia
2010-09-30
Hypernuclear research will be one of the main topics addressed by the anti PANDA experiment at the planned Facility for Antiproton and Ion Research anti FAIR. Thanks to the use of stored anti p beams, copious production of double {lambda} hypernuclei is expected at the anti PANDA experiment, which will enable high precision {gamma} spectroscopy of such nuclei for the first time. At anti PANDA excited states of {xi}{sup -} hypernuclei will be used as a basis for the formation of double {lambda} hypernuclei. For their detection, a devoted hypernuclear detector setup is planned. This setup consists of a primary nuclear target for the production of {xi}{sup -}+ anti {xi} pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform {gamma} spectroscopy. In the present work, the feasibility of performing high precision {gamma} spectroscopy of double {lambda} hypernuclei at the anti PANDA experiment has been studied by means of a Monte Carlo simulation. For this issue, the designing and simulation of the devoted detector setup as well as of the mechanism to produce double {lambda} hypernuclei have been optimized together with the performance of the whole system. In addition, the production yields of double hypernuclei in excitedparticle stable states have been evaluated within a statistical decay model. A strategy for the unique assignment of various newly observed {gamma}-transitions to specific double hypernuclei has been successfully implemented by combining the predicted energy spectra of each target with the measurement of two pion momenta from the subsequent weak decays of a double hypernucleus. Indeed, based on these Monte Carlo simulation, the analysis of the statistical decay of {sup 13}{sub {lambda}}{sub {lambda}}B has been performed. As result, three {gamma}-transitions associated to the double hypernuclei {sup 11}{sub {lambda}}{sub {lambda}}Be and to the single
Polarization of Lambda and Anti-Lambda in 920 GeV Fixed-Target Proton-Nucleus Collisions
Abt, I; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A; Belkov, Ar; Belotelov, I; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Erhan, S; Essenov, S; Fabbri, L; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Gellrich, A; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Y; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hohlmann, M; Hott, T; Hulsbergen, W; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F; Kiryushin, Yu T; Kisel, I; Klinkby, E; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Mankel, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Petersen, B AA; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwanke, U; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Sozuer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A
2006-01-01
A measurement of the polarization of Lambda and Anti-Lambda baryons produced in pC and pW collisions at sqrt(s)=41.6 GeV has been performed with the HERA-B spectrometer. The measurements cover the kinematic range of 0.6 GeV/c < p_T<1.2 GeV/c in transverse momentum and -0.15
Scaled momentum distributions for K{sup 0}{sub S} and {lambda}/ anti {lambda} in DIS at HERA
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)
2011-11-15
Scaled momentum distributions for the strange hadrons K{sub S}{sup 0} and {lambda}/ anti {lambda} were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb{sup -1}. The evolution of these distributions with the photon virtuality, Q{sup 2}, was studied in the kinematic region 10anti-quarks and gluons yielding K{sub S}{sup 0} and {lambda}/ anti {lambda} strange hadrons. (orig.)
Belostotski, S. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Naryshkin, Yu., E-mail: naryshk@mail.desy.d [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Veretennikov, D. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation)
2011-01-15
Transverse polarization of {Lambda} and {Lambda}-bar hyperons produced inclusively in quasi-real photon-nucleon scattering has been studied for several nuclear targets in a wide range of atomic-mass numbers A. A strong A-dependence of the {Lambda} polarization is observed.
Sanchez-Lopez, J L; Engelfried, J; Akgun, U; Alkhazov, G; Amaro-Reyes, J; Atamanchuk, A G; Ayan, A S; Balatz, M Y; Blanco-Covarrubias, A; Bondar, N F; Cooper, P S; Dauwe, L J; Davidenko, G V; Dersch, U; Dolgolenko, A G; Dzyubenko, G B; Edelstein, R; Emediato, L; Endler, A M F; Eschrich, I; Escobar, C O; Estrada, N; Evdokimov, A V; Filimonov, I S; Flores-Castillo, A; García, F G; Gaspero, M; Giller, I; Golovtsov, V L; Gouffon, P; Gülmez, E; He Kangling; Iori, M; Jun, S Y; Kaya, M; Kilmer, J; Kim, V T; Kochenda, L M; Konorov, I; Kozhevnikov, A P; Krivshich, A G; Krüger, H; Kubantsev, M A; Kubarovskii, V P; Kulyavtsev, A I; Kuropatkin, N P; Kurshetsov, V F; Kushnirenko, A; Kwan, S; Lach, J; Lamberto, A; Landsberg, L G; Larin, I; Leikin, E M; Li Yunshan; Luksys, M; Lungov, T; Maleev, V P; Mao, D; Mao, Chensheng; Mao, Zhenlin; Mathew, P; Mattson, M; Matveev, V; McCliment, E; Moinester, M A; Molchanov, V V; Morelos, A; Nemitkin, A V; Neoustroev, P V; Newsom, C; Nilov, A P; Nurushev, S B; Ocherashvili, A; Onel, Y; Ozel, E; Ozkorucuklu, S; Penzo, Aldo L; Petrenko, S V; Pogodin, P I; Procario, M; Prutskoi, V A; Ramberg, E; Rappazzo, G F; Razmyslovich, B V; Rud, V I; Russ, J; Schiavon, Paolo; Simón, J; Sitnikov, A I; Skow, D; Smith, V J; Srivastava, M; Steiner, V; Stepanov, V; Stutte, L; Svoiski, M; Terentyev, N K; Thomas, G P; Torres, I; Uvarov, L N; Vasilev, A N; Vavilov, D V; Vazquez-Jauregui, E; Verebryusov, V S; Victorov, V A; Vishnyakov, V E; Vorobyov, A A; Vorwalter, K; You, J; Zhao, Wenheng; Zheng, Shuchen; Zukanovich-Funchal, R
2007-01-01
We have measured the polarization of Lambda0 and antiLambda0 inclusively produced by 610GeV/c Sigma- and 525GeV/c proton beams in the experiment SELEX during the 1996/7 fixed target run at Fermilab. The polarization was measured as a function of the Lambda longitudinal momentum fraction xF and transverse momentum pt. For the Lambda0 produced by Sigma- the polarization is increasing with xF, from slightly negative at x_F~0 to about 15% at large xF; it shows a non-monotonic behavior as a function of pt. For the proton beam, the Lambda0 polarization is negative and decreasing as a function of xF and pt. The antiLambda0 polarization is compatible with 0 for both beam particles over the full kinematic range. The target dependence was examined but no statistically significant difference was found.
Electromagnetic production of hyperon resonances
K. Hicks, D. Keller, W. Tang
2011-10-01
The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.
Hyperon Electroproduction with CLAS
We present data for the electroproduction of K+ Lambda and K+ Sigma states at beam energies of 2.4 and 4.0 GeV. The data were taken with the CLAS spectrometer, a large-acceptance detector housed in Hall B at CEBAF. We show plots of particle mass calculated from momentum and time-of-flight as well as missing mass plots of the recoiling hyperons. We conclude by plotting event yields that demonstrate the large acceptance of the CLAS spectrometer, and briefly discuss prospects for further analysis
Spin transfer in hyperon production
The polarization transfer coefficient D/sub NN/ provides a sensitive test of present quark recombination models of hyperon production. In this paper we present preliminary results from a recent measurement of D/sub NN/ in the reaction p-arrow-rightBe → Lambda-arrow-rightX at the Brookhaven AGS using the newly available polarized proton beam at incident momenta of 13 and 18 GeV/c
Gandelman, Miriam Mendes
1992-07-01
In this work the A dependence of the {lambda} and {lambda}{sup -} production cross sections is studied using the E769 data for the 250 GeV/c{pi}{sup -} beam interacting on Be, Cu, Al and W targets. The measured mean value of {alpha} in the region - 0.2 < x{sub f} < 0.3 and p{sub t} < 2 GeV/c is 1.03 {+-} 0.02 for the {lambda} baryon and 1.01 {+-} 0.02 for the {lambda}{sup -}. No difference is measured between the values of {alpha} for {lambda} and {lambda}{sup -}: {alpha} is a global decreasing function of x{sub f} and has no significant variation with p{sub t}. (author). 31 refs, 48 figs, 16 tabs.
Faddeev calculation of 6 He Lambda Lambda using SU_6 quark-model baryon-baryon interactions
Fujiwara, Y; Miyagawa, K; Suzuki, Y; Sparenberg, J M
2004-01-01
Quark-model hyperon-nucleon and hyperon-hyperon interactions by the Kyoto-Niigata group are applied to the two-Lambda plus alpha system in a new three-cluster Faddeev formalism using two-cluster resonating-group method kernels. The model fss2 gives a reasonable two-Lambda separation energy Delta B_{Lambda Lambda}=1.41 MeV, which is consistent with the recent empirical value, Delta B^{exp}_{Lambda Lambda}=1.01 +/- 0.20 MeV, deduced from the Nagara event. Some important effects that are not taken into account in the present calculation are discussed.
Hyperon ordering in neutron star matter
We explore the possible formation of ordered phases in neutron star matter. In the framework of a quantum hadrodynamics model where neutrons, protons and Lambda hyperons interact via the exchange of mesons, we compare the energy of the usually assumed uniform, liquid phase, to that of a configuration in which di-lambda pairs immersed in an uniform nucleon fluid are localized on the nodes of a regular lattice. The confining potential is calculated self-consistently as resulting from the combined action of the nucleon fluid and the other hyperons, under the condition of beta equilibrium. We are able to obtain stable ordered phases for some reasonable sets of values of the model parameters. This could have important consequences on the structure and cooling of neutron stars
Spin polarizability of hyperons
K B Vijaya Kumar
2014-11-01
We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the framework of (3) heavy baryon chiral perturbation theory (HBChPT). We present the results of a systematic leading-order calculation of hyperon Compton scattering and extract the forward spin polarizability (0) of hyperons. The results obtained for $_0$ in the case of nucleons agree with the known results of (2) HBChPT when kaon loops are not considered.
Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei
SONG Chun-Yan; YAO Jiang-Ming; MENG Jie
2011-01-01
Effects of △w-tensor coupling on the spin symmetry of A spectra in A-nucleus systems are studied using relativis-tic mean-field theory. Taking 12C+A as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of A by a factor of 5 but has a negligible effect on the wave functions of A. Similar conclusions are observed in other A-nuclei, including 16O+A, 40Ca+A and 20SPb+A. It is indicated that the spin symmetry in anti-lambda-nucleus systems is still a good approximation irrespective of the tensor coupling.%@@ Effects of(∧∧)ω-tensor coupling on the spin symmetry of(∧)spectra in(∧)-nucleus systems are studied using relativis-tic mean-field theory.Taking 12C+(∧)as an example,it is found that the tensor coupling enlarges the spin-orbit splittings of(∧)a factor of 5 but has a negligible effect on the wave functions of(∧).Similar conclusions are observed in other(∧)-nuclei,including 16O+(∧),40Ca+(∧)and 20gPb+(∧).It is indicated that the spin symmetry in anti-lambdarnucleus systems is still a good approximation irrespective of the tensor coupling.
Polarization observables in the $e^+ e^- \\rightarrow \\bar{\\Lambda} \\Lambda$ reaction
Fäldt, Göran
2016-01-01
Cross-section, vector-polarization, and tensor-polarization distributions are calculated for the reactions $e^+ e^- \\rightarrow \\bar{p}p$ and $e^+ e^- \\rightarrow \\bar{\\Lambda} \\Lambda$. Each reaction requires six characteristic functions that are bilinear in the, possibly complex, electromagnetic form factors, denoted $G_E(P^2)$ and $G_M(P^2)$, of $p$ and $\\Lambda$. For the hyperon reaction also the joint-decay distributions of $\\Lambda$ and $\\bar{\\Lambda}$ are calculated. Their knowledge allow a complete determination of the hyperon electromagnetic form factors, without measuring hyperon spins. We explain how this is done in practice. For some tensor-polarization components our results are in conflict with previously repeatedly published distributions.
Superdeformed $\\Lambda$ hypernuclei with antisymmetrized molecular dynamics
Isaka, Masahiro; Kimura, Masaaki; Hiyama, Emiko; Sagawa, Hiroyuki; Yamamoto, Yasuo
2014-01-01
The response to the addition of a $\\Lambda$ hyperon is investigated for the deformed states such as superdeformation in $^{41}_\\Lambda$Ca, $^{46}_\\Lambda $Sc and $^{48}_\\Lambda$Sc. In the present study, we use the antisymmetrized molecular dynamics (AMD) model. It is pointed out that many kinds of deformed bands appear in $^{45}$Sc and $^{47}$Sc. Especially, it is found that there exists superdeformed states in $^{45}$Sc. By the addition of a $\\Lambda$ particle to $^{40}$Ca, $^{45}$Sc and $^{47}$Sc, it is predicted, for the first time, that the superdeformed states exist in the hypernuclei $^{41}_\\Lambda$Ca and $^{46}_\\Lambda$Sc. The manifestation of the dependence of the $\\Lambda$-separation energy on nuclear deformation such as spherical, normal deformation and superdeformation is shown in the energy spectra of $^{41}_\\Lambda$Ca, $^{46}_\\Lambda $Sc and $^{48}_\\Lambda$Sc hypernuclei.
Tanigawa, T; Chiba, S; Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2003-01-01
We calculate a \\Lambda\\Lambda pairing gap in binary mixed matter of nucleons and \\Lambda hyperons within the relativistic Hartree-Bogoliubov model since a recent experiment suggests a weaker \\Lambda\\Lambda attraction than before, which has a significant impact on properties of neutron stars in various aspects. Lambda hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological \\Lambda\\Lambda interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that at background density \\rho_{N}=2.5\\rho_{0} the \\Lambda\\Lambda pairing gap is very small, and that denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density.
Anisotropic pressure and hyperons in neutron stars
Sulaksono, A
2014-01-01
We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.
Adolph, C; Alexakhin, V.Yu; Alexandrov, Yu.; Alexeev, G D; Amoroso, A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O.Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; von Hohenesche, N. du Fresne; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu. A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F.; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu. V; Miyachi, Y; Morreale, A; Nagaytsev, A; Nagel, T.; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S.; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T.; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L.; Sinha, L; Sirtl, S; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M
2013-01-01
Large samples of $\\Lambda$, $\\Sigma(1385)$ and $\\Xi(1321)$ hyperons produced in deep-inelastic muon scattering off a $^6$LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of $\\Sigma(1385)^+$, $\\Sigma(1385)^-$, $\\bar{\\Sigma}(1385)^-$, $\\bar{\\Sigma}(1385)^+$, $\\Xi(1321)^-$, and $\\bar{\\Xi}(1321)^+$ hyperons decaying into $\\Lambda(\\bar{\\Lambda})\\pi$ were measured. The heavy hyperon to $\\Lambda$ and heavy antihyperon to $\\bar{\\Lambda}$ yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.
Hyperon-antihyperon production studies near threshold at LEAR
Aspects of proton-antiproton interactions above the threshold for lambda-antilambda production are studied at LEAR. Measured quantities include total and differential cross sections as well as final state polarizations and hyperon-antihyperon spin correlations for this reaction at 1508 and 1477 MeV/c antiproton beam momentum
Charge symmetry breaking in $\\Lambda$ hypernuclei revisited
Gal, Avraham
2015-01-01
The large charge symmetry breaking (CSB) implied by the $\\Lambda$ binding energy difference $\\Delta B^{4}_{\\Lambda}(0^+_{\\rm g.s.})\\equiv B_{\\Lambda}(_{\\Lambda}^4$He)$-$$B_{\\Lambda}(_{\\Lambda}^4$H) = 0.35$\\pm$0.06 MeV of the $A=4$ mirror hypernuclei ground states, determined from emulsion studies, has defied theoretical attempts to reproduce it in terms of CSB in hyperon masses and in hyperon-nucleon interactions, including one pion exchange arising from $\\Lambda-\\Sigma^0$ mixing. Using a schematic strong-interaction $\\Lambda N\\leftrightarrow\\Sigma N$ coupling model developed by Akaishi and collaborators for $s$-shell $\\Lambda$ hypernuclei, we revisit the evaluation of CSB in the $A=4$ $\\Lambda$ hypernuclei and extend it to $p$-shell mirror $\\Lambda$ hypernuclei. The model yields values of $\\Delta B^{4}_{\\Lambda} (0^+_{\\rm g.s.})\\sim 0.25$ MeV. Smaller size and mostly negative $p$-shell binding energy differences are calculated for the $A=7-10$ mirror hypernuclei, in rough agreement with the few available dat...
Hyperon-hyperon interactions with the Nijmegen ESC08 model
Rijken, T.A. [Radboud University, IMAPP, AJ Nijmegen (Netherlands); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Catania (Italy)
2016-02-15
We discuss the properties of the hyperon-hyperon interactions in the recent Nijmegen ESC08 potential, in particular the importance of the coupled-channel structure and related existence of bound states. Brueckner-Hartree-Fock calculations of hypernuclear matter employing these interactions are presented and the structure of hyperon (neutron) stars within this approach is computed. Low maximum masses are found. (orig.)
CP Violation in Hyperon Decays
Chang, Darwin; Chen, Chuan-Hung
1996-01-01
The CP properties in hyperon decays are briefly reviewed. We discuss the general phenomenology and define CP odd observables in hyperon decays. With these observables, we discuss the predictions of some models and their observational potential.
Vidaña, Isaac [Centro de Física Computacional, Department of Physics, University of Coimbra, PT-3004-516 Coimbra (Portugal)
2015-02-24
In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.
In this work we briefly review some of the effects of hyperons on neutron and proto-neutron star properties. We revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, due to the presence of hyperons, a puzzle which has become more intriguing due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1614-2230 (1.97±0.04M⊙) and PSR J1903+0327 (1.667±0.021M⊙). We examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability
In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M⊙), PSR J1614–2230 (1.97±0.04M⊙), and PSR J0348+0432 (2.01±0.04M⊙). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability
Vidaña, Isaac
2016-01-01
In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.
Vidana, Isaac
2015-01-01
In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 ($1.667\\pm 0.021 M_\\odot$), PSR J1614-2230 ($1.97 \\pm 0.04 M_\\odot$), and PSR J0348+0432 ($2.01 \\pm 0.04 M_\\odot$). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.
Study of Lambda/c+ Cabibbo Favored Decays Containing a Lambda Baryon in the Final State
Link, J M; Anjos, J C; Bediaga, I; Castromonte, C; Machado, A A; Magnin, J; Massafferri, A; De Miranda, J M; Pepe, I M; Polycarpo, E; Dos Reis, A C; Carrillo, S; Casimiro, E; Cuautle, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Agostino, L; Cinquini, L; Cumalat, J P; O'Reilly, B; Segoni, I; Stenson, K; Butler, J N; Cheung, H W K; Chiodini, G; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Wang, M; Benussi, L; Bertani, M; Bianco, S; Fabbri, F L; Pacetti, S; Zallo, A; Reyes, M; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Kryemadhi, A; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Cho, K; Park, H; Alimonti, G; Barberis, S; Boschini, M; Cerutti, A; D'Angelo, P; Di Corato, M; Dini, P; Edera, L; Erba, S; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Lopes-Pegna, D; Merlo, M M; Pantea, D; Ratti, S P; Riccardi, C; Vitulo, P; Göbel, C; Hernández, H; López, A M; Méndez, H; Paris, A; Quinones, J; Ramírez, J E; Zhang, Y; Wilson, J R; Handler, T; Mitchell, R; Engh, D; Hosack, M; Johns, W E; Luiggi, E; Moore, J E; Nehring, M; Sheldon, P D; Vaandering, E W; Webster, M; Sheaff, M
2005-01-01
Using data from the FOCUS experiment (FNAL-E831), we study the decay of $\\Lambda^+_c$ baryons into final states containing a $\\Lambda$ hyperon. The branching fractions of $\\Lambda^+_c$ into $\\Lambda \\pi^+$, $\\Lambda \\pi^+ \\pi^+ \\pi^-$ and $\\Lambda \\bar{K} ^0 K^+$ relative to that into $pK^-\\pi^+$ are measured to be $0.217 \\pm 0.013 \\pm 0.020$, $0.508 \\pm 0.024 \\pm 0.024$ and $0.142 \\pm 0.018 \\pm 0.022$, respectively. We also report new measurements of $\\frac{\\Gamma(\\Lambda^+_c \\to \\Sigma^0 \\pi^+)}{\\Gamma(\\Lambda^+_c \\to \\Lambda \\pi^+)} = 1.09 \\pm 0.11 \\pm 0.19$, $\\frac{\\Gamma(\\Lambda^+_c \\to \\Sigma^0 \\pi^+\\pi^+ \\pi^-)}{\\Gamma(\\Lambda^+_c \\to \\Lambda \\pi^+ \\pi^+ \\pi^-)} = 0.26 \\pm 0.06 \\pm 0.09$ and $\\frac{\\Gamma(\\Lambda^+_c \\to \\Xi(1690)^0(\\Lambda \\bar{K} ^0) K^+)}{\\Gamma(\\Lambda^+_c \\to \\Lambda \\bar{K} ^0 K^+)} = 0.33 \\pm 0.10 \\pm 0.04$. Further, an analysis of the subresonant structure for the $\\Lambda^+_c \\to \\Lambda \\pi^+\\pi^+\\pi^-$ decay mode is presented.
New measurements of the Σ+ and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K-p → Yπ where Y = Σ+ or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ+ → pγ to Σ+ → pπ0 and Λ → nγ to Λ → nπ0. The photons from weak radiative decays and from π0 decays were detected with modular NaI arrays. (orig.)
Tetsuya Katayama
2015-07-01
Full Text Available Using the Dirac–Brueckner–Hartree–Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of 2.08M⊙, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.
Katayama, Tetsuya
2015-01-01
Using the Dirac-Brueckner-Hartree-Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of $2.08\\,M_{\\odot}$, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.
Polarization of Hyperons in Elementary Photoproduction
Reinhard Schumacher
2006-11-21
Recent measurements using the CLAS detector at Jefferson Lab of the reactions {gamma} + p {yields} K{sup +} + {Lambda} and {gamma} + p {yields} K{sup +} + {Sigma}{sup 0} have been used to extract the spin transfer coefficients C{sub x} and C{sub z} for the first time. These observables quantify the degree of the photon circular polarization that is transferred to the recoiling hyperons in the scattering plane. The unexpected result is that {Lambda} hyperons are produced '100% polarized' as seen when combining C{sub x} and C{sub z} with the induced transverse polarization, P. Furthermore, C{sub x} and C{sub z} seem to be linearly related. This paper discusses the experimental results and offers a hypothesis which can explain these observations. We show how the produced strange quark can be subject to a pure spin-orbit type of interaction which preserves its state of polarization throughout the hadronization process.
Constituent-counting rule in photoproduction of hyperon resonances
Chang, Wen-Chen; Sekihara, Takayasu
2015-01-01
We analyze the CLAS data on the photoproduction of hyperon resonances, as well as the available data for the ground state $\\Lambda$ and $\\Sigma ^{0}$ of the CLAS and SLAC-E84 collaborations, by considering constituent-counting rule suggested by perturbative QCD. The counting rule emerges as a scaling behavior of cross sections in hard exclusive reactions with large scattering angles, and it enables us to determine the number of elementary constituents inside hadrons. Therefore, it could be used as a new method for identifying internal constituents of exotic-hadron candidates. From the analyses of the $\\gamma \\, p \\to K^{+} \\Lambda$ and $K^{+} \\Sigma ^{0}$ reactions, we find that the number of the elementary constituents is consistent with $n_{\\gamma} = 1$, $n_{p} = 3$, $n_{K^{+}} = 2$, and $n_{\\Lambda} = n_{\\Sigma ^{0}} = 3$. Then, the analysis is made for the photoproductions of the hyperon resonances $\\Lambda (1405)$, $\\Sigma (1385)^{0}$, and $\\Lambda (1520)$, where $\\Lambda (1405)$ is considered to be a $\\...
Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys.
2006-09-01
The authors report a measurement of the {Lambda}{sub b}{sup 0} lifetime in the exclusive decay {Lambda}{sub b}{sup 0} {yields} J/{psi}{Lambda}{sup 0} in p{bar p} collisions at {radical}s = 1.96 TeV using an integrated luminosity of 1.0 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. Using fully reconstructed decays, they measure {tau}({Lambda}{sub b}{sup 0}) = 1.593{sub -0.078}{sup +0.083}(stat.) {+-} 0.033(syst.) ps. This is the single most precise measurement of {tau}({Lambda}{sub b}{sup 0}) and is 3.2 {sigma} higher than the current world average.
Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar
Ziegler, Veronique; /Iowa U.
2007-07-03
This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.
Thermal protoneutron stars with hyperons
YU Zi; LIU Guang-Zhou; ZHU Ming-Feng; DING Wen-Bo; ZHAO En-Guang
2009-01-01
The properties of thermal protoneutron star matter including hyperons are investigated in the framework of the relativistic mean field theory (RMFT). In protoneuron star matter, with the increase of the temperature, the critical densities of hyperons decrease, the sequence for appearances of hyperons change, the abundances of hyperons as well as neutrinos increase, and the strong interactions between baryons get weaker.Meanwhile, the abundances of isospin multiple states for nucleons, ∑, and (三) become identical, leading to isospin saturated symmetric matter, respectively. Moreover, if a protoneutron star is born with higher temperature,it is less likely to convert to a black hole.
Hyperon polarization and magnetic moments
Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that Λ degree were produced polarized while bar Λ degree had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons
The hyperon-nucleon YN low momentum effective interaction (Vlowk) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon Vlowk can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon Vlowk one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN Vlowk potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This density
Dapo, Haris
2009-01-28
The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three
New data on the production of hyperons, as well as of pions, charged kaons, protons, anti-protons, neutrons in p+p interactions are presented. The data come from a sample of 8.2 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The high statistics data sample allows the extraction of detailed differential distributions as a function of xf, y and pT. The results are compared with published data and models. Moreover, the measurements provide an important reference for studying effects of cold nuclear matter in proton-nucleus and hot dense matter in nucleus-nucleus collisions. (author)
Hyperon production in collisions
N G Kelkar; B K Jain
2001-08-01
We report on a study of the proton induced hyperon production reactions. We discuss the theoretical efforts made towards understanding the existing data and the uncertainties involved in the calculations. Our recent calculations of the missing mass spectra for the → K+ reaction which involve a proper coupled channel treatment of the ﬁnal state interaction are presented. Signiﬁcant differences in the results using different models of the hyperon–nucleon interaction are found.
Measurement of the Spin of the Omega^- Hyperon at BABAR
The BABAR Collaboration; Aubert, B.
2006-01-01
A measurement of the spin of the Omega^- hyperon produced through the exclusive process Xi_c^0 --> Omega^- K^+ is presented using a total integrated luminosity of 116 fb^-1 recorded with the BABAR detector at the e^+ e^- asymmetric-energy B-Factory at SLAC. Under the assumption that the Xi_c^0 has spin 1/2, the angular distribution of the Lambda from Omega^- --> Lambda K^- decay is inconsistent with all half-integer Omega^- spin values other than 3/2. Lower statistics data for the process Ome...
2002-01-01
The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...
Nathaniel D Maynard
2010-07-01
Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.
Hyperon electroproduction with CLAS
We present data for the electroproduction of K+ Λ and K+ Σ states at beam energies of 2.4 and 4.0 GeV. The data were taken with the CLAS spectrometer, a large-acceptance detector housed in Hall B at CEBAF. We show plots of particle mass calculated from momentum and time-of-flight as well as missing mass plots of the recoiling hyperons. We conclude by plotting event yields that demonstrate the large acceptance of the CLAS spectrometer, and briefly discuss prospects for further analysis
Hyperon electroproduction with CLAS
The authors present data for the electroproduction of K+Λ and K+Σ states at beam energies of 2.4 and 4.0 GeV. The data were taken with the CLAS spectrometer, a large-acceptance detector housed in Hall B at CEBAF. They show plots of particle mass calculated from momentum and time-of-flight as well as missing mass plots of recoiling hyperons. They conclude by plotting event yields that demonstrate the large acceptance of the CLAS spectrometer, and briefly discuss prospects for further analysis
Positive and negative parity hyperons in nuclear medium
Azizi, K; Sundu, H
2015-01-01
The effects of nuclear medium on the residue, mass and self energy of the positive and negative parity $\\Sigma, \\Lambda$ and $\\Xi$ hyperons are investigated using the QCD sum rule method. In the calculations, the general interpolating currents of hyperons with an arbitrary mixing parameter are used. We compare the results obtained in medium with those of the vacuum and calculate the shifts in the corresponding parameters. It is found that the shifts on the residues in nuclear matter are positive for both parities in all channels, while the shifts are negative for mass of the hyperons under consideration. The shifts on the residues and masses of negative parity states are large compared to those of positive parities. The maximum shifts belong to the residues of the negative parity $\\Sigma$ and $\\Xi$ hyperons. The vector self-energies gained by the positive parity baryons are large compared to the negative parities' vector self-energies. The maximum value of the vector self-energy belongs to the positive parity...
Hyperon yields in Pb-Pb collisions from NA57 experiment
Manzari, V; Badalà, A; Barbera, R; Belogianni, A; Bhasin, A; Bloodworth, Ian J; Bruno, G; Bull, S A; Caliandro, R; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; De Haas, A P; De Rijke, P C; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Fanebust, K; Fayazzadeh, F; Fedorisin, J; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Henriquez, M; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kolojvari, A A; Kondratiev, V; Králik, I; Kravcakova, A; Kuijer, P G; Lenti, V; Lietava, R; Løvhøiden, G; Manzari, V; Martinská, G; Mazzoni, M A; Meddi, F; Michalon, A; Morando, M; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Toulina, T A; Turrisi, R; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Van Hunen, J J; Vascotto, Alessandro; Vik, T; Villalobos Baillie, O; Vinogradov, L I; Virgili, T; Votruba, M F; Vrláková, J; Zavado, P
2003-01-01
We report results from the experiment NA57 at CERN SPS on hyperon yields at midrapidity in Pb-Pb collisions at 158 A GeV/c and 40 A GeV /c. Lambda , Xi and Omega yields are compared with preliminary results from the STAR experiment at BNL. (12 refs).
QCD sum rules for the neutron, $\\Sigma$ and $\\Lambda$ in neutron matter
Jeong, Kie Sang; Lee, Su Houng
2016-01-01
The nuclear density dependencies of the neutron, $\\Sigma$ and $\\Lambda$ hyperon are important inputs in the determination of the neutron star mass as the appearance of hyperons coming from strong attractions significantly changes the stiffness of the equation of state (EOS) at iso-spin asymmetric dense nuclear matter. In-medium spectral sum rules have been analyzed for the nucleon, $\\Sigma$ and $\\Lambda$ hyperon to investigate their properties up to slightly above the normal nuclear matter density. Construction scheme of the interpolating fields without derivatives has been reviewed and used to construct a general interpolating field for each baryon with parameters specifying the strength of independent interpolating fields. Optimal choices for the interpolating fields were obtained by requiring the sum rules to be stable against variations of the parameters and the result to be consistent with known phenomenology. It is found that for the $\\Lambda$ hyperon interpolating field, the up and down quark combined ...
Influence of pions and hyperons on stellar black hole formation
Peres, Bruno; Novak, Jerome
2013-01-01
We present numerical simulations of stellar core-collapse with spherically symmetric, general relativistic hydrodynamics up to black hole formation. Using the CoCoNuT code, with a newly developed grey leakage scheme for the neutrino treatment, we investigate the effects of including pions and Lambda-hyperons into the equation of state at high densities and temperatures on the black hole formation process. Results show small but non-negligible differences between the models with reference equation of state without any additional particles and models with the extended ones. For the latter, the maximum masses supported by the proto-neutron star are smaller and the collapse to a black hole occurs earlier. A phase transition to hyperonic matter is observed when the progenitor allows for a high enough accretion rate onto the proto-neutron star.
Bound States of Double Flavor Hyperons
Froemel, F; Riska, D O
2005-01-01
Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the $\\Xi_c^{'}$ and $\\Xi_{cc}$ charm hyperons as well as between $\\Xi$ hyperons and double-charm hyperons. Bound states between two $\\Sigma_c$ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.
Bound states of heavy flavor hyperons
Frömel, F.; Juliá-Díaz, B.; Riska, D. O.
2005-04-01
Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the Ξc' and Ξ charm hyperons as well as between Ξ hyperons and double-charm hyperons. Bound states between two Σ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.
Mesonic Decay of Charm Hypernuclei $\\Lambda^+_c$
Ghosh, Sabyasachi; Krein, Gastão
2016-01-01
$\\Lambda^+_c$ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely $\\Lambda(uds)$ and $\\Lambda^+_c (udc)$. One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the $\\Lambda^+_c$ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.
The $\\Lambda\\Lambda$ Correlation Function in Au+Au collisions at $\\sqrt{s_{NN}}=$ 200 GeV
STAR Collaboration
2014-01-01
We present $\\Lambda\\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at $\\sqrt{s_{NN}}= 200$ GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednick\\'{y}-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the $\\Lambda\\Lambda$ correlation function and interaction parameters for di-hyperon searches are discussed.
Lambda Lambda Correlation Function in Au+Au Collisions at sqrt{s_NN}= 200 GeV
STAR Collaboration; Adamczyi, L.; Schmitz, N.; Seyboth, P.; et al
2015-01-01
We present \\\\Lambda\\\\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at sqrt{s_NN}= 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednicky-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the \\\\Lambda\\\\Lambda correlation function and interaction parameters for di-hyperon searches are discussed.
Excited Hyperons Produced in Proton-Proton Collisions with Anke@COSY
Zychor, Izabella
2008-01-01
Excited neutral hyperons Y0* produced in the pp -> p K+ Y0* reaction with a COSY beam momentum of 3.65 MeV/c have masses below 1540 MeV/c2. The ANKE spectrometer allows the simultaneous observation of different decay modes: Y0* -> pion0Sigma0, pion+-Sigma-+, pion0Lambda, K-p by measuring kaons and pions of either charge in coincidence with protons. We have found indications for a neutral excited hyperon resonance Y0* with a mass of (1480 +- 15) MeV/c2 and a width of (60 +- 15) MeV/c2. The cross section for Y0* is of the order of few hundred nanobarns. It can be either a Sigma0 or a Lambda hyperon and on the basis of existing data no conclusion could be made whether it is a three-quark baryon or an exotic state. Missing- and invariant-mass techniques have been used to identify the Lambda(1405) resonance decaying via Sigma0pion0. The cross section for Lambda(1405) production is equal to (4.5 +- 0.9(stat) +- 1.8(syst)) microbarn. The shape and position of the Lambda(1405) distribution are similar to those found ...
Lambda-antilambda decay asymmetries and CP violation
The exclusive reaction /bar p/p → /bar Lambda/Λ is an interesting laboratory in which to study both spin physics and fundamental symmetries. The PS185 collaboration at LEAR has been exploiting this fact for the last few years in an ongoing program of hyperon-antihyperon production. The motivation for this study will be outlined and the experimental technique will be described. Spin physics aspects such as the measurements of the outgoing hyperon polarization and preliminary determinations of spin correlation coefficients will be presented. Fundamental symmetry checks such as lifetime differences between Λ and /bar Lambda/ (CPT) and decay properties (CP) will be discussed. A future experiment which is quite sensitive to CP violation in a hyperon-antihyperon system will be mentioned. 15 refs., 4 figs
Energy dependence of hyperon production in nucleus-nucleus collisions at SPS
Antinori, F; Badalà, A; Barbera, R; Belogianni, A; Bhasin, A; Bloodworth, Ian J; Bombara, M; Bruno, G; Bull, S A; Caliandro, R; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; De Haas, A P; De Rijke, P C; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Hetland, K F; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kolojvari, A A; Kondratiev, V; Králik, I; Kravcakova, A; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Manzari, V; Martinská, G; Mazzoni, M A; Meddi, F; Michalon, A; Morando, M; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Toulina, T A; Turrisi, R; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Van Hunen, J J; Vascotto, Alessandro; Vik, T; Villalobos Baillie, O; Vinogradov, L I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P
2004-01-01
A measurement of strange baryon and antibaryon production in Pb-Pb collisions has been carried out by the NA57 experiment at the CERN SPS, with 40 and 158 A GeV/c beam momentum. Results on $\\Lambda$, $\\Xi$ and $\\Omega$ hyperon yields at mid-rapidity in the most central 53% of Pb-Pb collisions at 40 A GeV/c are presented and compared with those obtained at higher energy, in the same collision centrality range. The $\\Lambda$ and $\\Xi^-$ yields per unit rapidity stay roughly constant while those of $\\Omega^-$, $\\bar\\Lambda$, $\\bar\\Xi^+$ and $\\bar\\Omega^+$ increase when going to the higher SPS energy. Hyperon yields at the SPS are compared with those from the STAR experiment in $\\sqrt{s_{NN}}$ = 130 GeV Au-Au collisions at RHIC.
Goldstein, G R
2001-01-01
Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.
Xue, L; Chen, J H; Zhang, S; 10.1103/PhysRevC.85.064912
2012-01-01
A simple coalescence model is employed to investigate the production of light (anti)nuclei and (anti)hypertriton as well as di-$\\rm\\Lambda$ in the most central Au+Au collisions. The invariant yields of \\He(\\Hebar), \\hypert(\\hypertbar), and \\Hee(\\Heebar) obtained within current framework are found to be consistent with the measurements of the solenoidal tracker at the BNL Relativistic Heavy Ion Collider (STAR) detector. We also investigate the coalescence parameters $B_{A}$ (A = 2, 3, 4) as a function of transverse momentum for $d$(\\dbar), \\He(\\Hebar), \\hypert(\\hypertbar), and \\Hee(\\Heebar), respectively. $B_{2}$ for $d$(\\dbar) and $B_{3}$ for \\He(\\Hebar) are comparable with the STAR measurement within statistical uncertainties. The transverse momentum ($p_{T}$) integrated yields for di-$\\rm\\Lambda$ $dN_{\\Lambda\\Lambda}/dy \\sim 2.23\\times10^{-5}$, and is not strongly dependent on the parameter employed for the coalescence process. Combining the data points extracted by the PHENIX Collaboration, the coalescence...
Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering
Large samples of Λ, Σ(1385) and Ξ(1321) hyperons produced in the deep-inelastic muon scattering off a 6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of Σ(1385)+, Σ(1385)-, anti Σ(1385)-, anti Σ(1385)+, Ξ(1321)-, and anti Ξ(1321)+ hyperons decaying into Λ(anti Λ)π were measured. The ratios of heavy-hyperon to Λ and heavy-antihyperon to anti Λ were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)
The identified. Lambda. Lambda. -hypernuclei and the predicted H-particle
Dalitz, R.H. (Oxford Univ. (UK). Dept. of Theoretical Physics); Davis, D.H. (University Coll., London (UK). Dept. of Physics and Astronomy); Fowler, P.H. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Montwill, A. (University Coll., Dublin (Ireland). Dept. of Physics); Pniewski, J.; Zakrzewski, J.A. (Warsaw Univ. (Poland). Inst. of Experimental Physics)
1989-11-08
The existence of the H particle, the dihyperon predicted by Jaffe, would bring into question the existence of double hypernuclei. We review the two double hypernucleus events published in the literature. We include an independent report, hitherto unpublished, which was made on the {sub {Lambda}{Lambda}}{sup 10}Be event in 1963 and clarifies the salient features of the event; this report reaffirms its published interpretation. We have made a simple calculation of the energy spectrum for {Xi}-hyperons produced with K{sup -} beams in past emulsion experiments, with a result which accounts adequately for the paucity of reported double hypernucleus events. We outline a hybrid emulsion experiment that would locate {Xi}-hyperon interactions efficiently and could thereby greatly improve our knowledge of double hypernuclei. (author).
Neutron Star Properties with Hyperons
Whittenbury, D. L.; Carroll, J D; Thomas, A. W.; Tsushima, K; Stone, J. R.
2012-01-01
In the light of the recent discovery of a neutron star with a mass accurately determined to be almost two solar masses, it has been suggested that hyperons cannot play a role in the equation of state of dense matter in $\\beta$-equilibrium. We re-examine this issue in the most recent development of the quark-meson coupling model. Within a relativistic Hartree-Fock approach and including the full tensor structure at the vector-meson-baryon vertices, we find that not only must hyperons appear in...
Hyperon production in 158 and 40 A GeV/c Pb-Pb and p-Be collisions from the NA57 experiment
Elia, D; Bacon, P A; Badalà, A; Villalobos Baillie, O; Barbera, R; Belogianni, A; Bhasin, A; Bloodworth, Ian J; Bombara, M; Bruno, G E; Bull, S A; Caliandro, R; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; Di Bari, D; Di Liberto, S; Divià, R; Evans, D; Fanebust, K; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kolojvari, A A; Kondratiev, V; Králik, I; Kravcakova, A; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Manzari, V; Martinská, G; Mazzoni, M A; Meddi, F; Michalon, A; Morando, M; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Toulina, T A; Turrisi, R; Tveter, T S; Urbán, J; Valiev, F; Van de Vyvre, P; Vascotto, Alessandro; Vik, T; Vinogradov, L I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P; De Haas, A P; De Rijke, P C; van Eijndhoven, N; Van Hunen, J J; Van de Ven, P; Van den Brink, A
2004-01-01
The NA57 experiment at the CERN SPS has measured strange baryon and antibaryon production in Pb-Pb collisions with 158 and 40 A GeV/c beam momenta. Recent results on Lambda , Xi and Omega hyperon enhancements and from the transverse mass spectra analysis for the 158 A GeV/c data sample are presented. The energy dependence of hyperon production at midrapidity is discussed.
Entanglement in joint Λ anti Λ decay
We investigate the joint Λ anti Λ decay in the reaction e+e- → γΛ(→ pπ-) anti Λ(→ anti pπ+). This reaction may provide information on the electromagnetic form factors of the Lambda baryon, in the time-like region. We present a conventional diagram-based calculation where production and decay steps are coherent and summations over final-state proton and anti-proton spins are performed. The resulting cross-section distribution is explicitly covariant as it is expressed in scalar products of the four-momentum vectors of the participating particles. We compare this calculation with that of the folding method which we extend and make explicitly covariant. In the folding method production and decay distributions, not amplitudes, are folded together. Of particular importance is then a correct counting of the number of possible intermediate-hyperon-spin states. (orig.)
Entanglement in joint Λ anti Λ decay
Faeldt, Goeran [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)
2015-07-15
We investigate the joint Λ anti Λ decay in the reaction e{sup +}e{sup -} → γΛ(→ pπ{sup -}) anti Λ(→ anti pπ{sup +}). This reaction may provide information on the electromagnetic form factors of the Lambda baryon, in the time-like region. We present a conventional diagram-based calculation where production and decay steps are coherent and summations over final-state proton and anti-proton spins are performed. The resulting cross-section distribution is explicitly covariant as it is expressed in scalar products of the four-momentum vectors of the participating particles. We compare this calculation with that of the folding method which we extend and make explicitly covariant. In the folding method production and decay distributions, not amplitudes, are folded together. Of particular importance is then a correct counting of the number of possible intermediate-hyperon-spin states. (orig.)
Siebenson, Johannes Stephan
2013-04-18
The present work investigates the vacuum properties of the hyperon resonances {Sigma}(1385){sup +} and {Lambda}(1405). For this purpose, p+p reactions at 3.5 GeV kinetic beam energy were analyzed. By using simulations and a special background method, the Breit-Wigner mass and width of the {Sigma}(1385){sup +} could be determined. Furthermore, its production dynamics were studied in different angular distributions. In this context indications were found that the {Sigma}(1385){sup +} partially stems from the decay of a heavy {Delta}-resonance. The investigation of the {Lambda}(1405) was based on similar analysis methods. After acceptance and efficiency corrections, the spectral shape of the {Lambda}(1405) could be extracted. Here a mass shift of this particle to masses below 1400 MeV/c{sup 2} was found. This might reveal important information about the two pole structure of the {Lambda}(1405) and its influence on the low energy anti KN interaction.
Hyperon polarization: theory and experiments
We give a brief review of the experimental situation concerning hyperon polarization. We mention also the current models developed to understand the experimental results and make some comments on some theoretical aspects contained in the Thomas precession model. (author). 8 ref
Semi-leptonic decays of hyperons
The results presented in this thesis test the validity of classical Cabibbo theory. The WA2 experiment at the CERN SPS has taken data on semi-leptonic decays of the Λ0, Σ- and Ψ- strange hyperons, members of the 1/2+ baryon octet. The use of a lead glass wall combined with two transition radiation detectors suppresses the main background coming from hadronic decays Ψ- → Λπ-. The final samples are composed of 200 Ψ- → Σ0e-antiν, 1600 Σ- → Λe-antiν, 2600 Ψ- → Λe-antiν, 5000 Σ- → ne-antiν and 7200 Λ → pe-antiν. Branching ratios are computed with an experimental uncertainty of 5 % and provide a first determination of the form factors. The fit of the Dalitz plot and the angular asymmetries relative to the Λ polarisation yield the value and the sign of the ratio of axial to vector form factors. All these results are compatible with classical 3-parameter cabibbo theory and considerably enhance the present world statistics
Oscillations of superfluid hyperon stars: decoupling scheme and g-modes
Dommes, V A
2015-01-01
We analyse the oscillations of general relativistic superfluid hyperon stars, following the approach suggested by Gusakov & Kantor and Gusakov et al. and generalizing it to the nucleon-hyperon matter. We show that the equations governing the oscillations can be split into two weakly coupled systems with the coupling parameters $s_{\\rm e}$, $s_{\\rm \\mu}$, and $s_{\\rm str}$. The approximation $s_{\\rm e} = s_{\\rm \\mu} = s_{\\rm str} = 0$ (decoupling approximation) allows one to drastically simplify the calculations of stellar oscillation spectra. An efficiency of the presented scheme is illustrated by the calculation of sound speeds in the nucleon-hyperon matter composed of neutrons (n), protons (p), electrons (e), muons ($\\mu$), as well as $\\rm \\Lambda$, ${\\rm \\Xi}^-$, and ${\\rm \\Xi}^0$-hyperons. However, the gravity oscillation modes (g-modes) cannot be treated within this approach, and we discuss them separately. For the first time we study the composition g-modes in superfluid hyperon stars with the $\\rm ...
SRISAWAD; Pornrad
2010-01-01
The transverse momentum distributions of Λ’s and proton’s directed flows are investigated by using Quantum Molecular Dynamics model (QMD) within the framework of covariant kaon dynamics. The calculated results show that the transverse momentum distribution of differential directed flow of Lambda hyperons is dependent appreciably on the nuclear matter equation of states (EOS). The differential directed flow of Lambda hyperons calculated with soft EOS is consistent with the experimental data,whereas the discrepancy between the results obtained with hard EOS and experimental data increases with increasing the transverse momentum. Although the interaction acting on Λ’s by nucleons in the dense medium is attractive,the analysis indicates,that the transverse momentum distribution of proton’s directed flow is insensitive to the EOS. The results obtained with both hard and soft EOS are all roughly in agreement with the corresponding data.
Experiments on hyperon beam of UNK
The experimental program for the UNK hyperon beams is considered. It is expected, that a focused pure Σ-hyperon beam with P≅2700 GeV/c, intensity >107 Σ-/s and >85% of Σ- hyperons may be created in this machine. The magnetized iron shielding will allow one to reduce the muon halo by 2 orders of magnitude. The experiments on the study of strange-charmed and strange-beauty baryons, search for exotic states with strangeness and charm and cryptoexotic strange hadrons with hidden charm and beauty are discussed. The possibilities of the hyperon beam for these processes are unique. Future studies of hyperon form-factors and structure functions of the processes in the nuclear Coulomb field, rare decays of charmed and beauty particles, τ-leptons and hyperons are also considered. 42 refs.; 28 figs.; 17 tabs
Mass determination of Λ 0 and anti-Λ0 produced by pp reactions
It was determined the mass of the hyperon Λ 0 and of the anti-hyperon anti-Λ0 , during the second scientific research summer. Both hyperons were collected from inclusive and exclusive proton-proton collisions. The results are in excellent agreement with the universally accepted values. In this paper we compare both values and discuss their theoretical consequences. (Author)
Hyperon production in the WA89 experiment at CERN
We studied the production of strange baryons and anti-baryons in 345 GeV/c Σ-+Cu, π-+Cu and 260 GeV/c n+Cu interactions. The observation of different excited resonances with identical quark flavor content but different spin structure allows to explore the importance of the constituent diquark structure in the excited hyperons. The xF distributions of Λ - Λ pairs indicate different distribution functions for the two coincident baryons. On the other hand two anti Λ follow identical distribution functions. Momentum conservation during the formation process may represent a significant source for the observed behaviour. (orig.)
Mei, H; Yao, J M; Motoba, T
2016-01-01
We extend the microscopic particle-rotor model for hypernuclear low-lying states by including the derivative and tensor coupling terms in the point-coupling nucleon-$\\Lambda$ particle ($N\\Lambda$) interaction. Taking $^{13}_{~\\Lambda}$C as an example, we show that a good overall description for excitation spectra is achieved with four sets of effective $N\\Lambda$ interaction. We find that the $\\Lambda$ hyperon binding energy decreases monotonically with increasing the strengths of the high-order interaction terms. In particular, the tensor coupling term decreases the energy splitting between the first $1/2^-$ and $3/2^-$ states and increases the energy splitting between the first $3/2^+$ and $5/2^+$ states in $^{13}_{~\\Lambda}$C.
Spectroscopy of Lambda-9Li by electroproduction
Urciuoli, G M; Marrone, S; Acha, A; Ambrozewicz, P; Aniol, K A; Baturin, P; Bertin, P Y; Benaoum, H; Blomqvist, K I; Boeglin, W U; Breuer, H; Brindza, P; Bydzovsky, P; Camsonne, A; Chang, C C; Chen, J -P; Choi, Seonho; Chudakov, E A; Cisbani, E; Colilli, S; Coman, L; Craver, B J; De Cataldo, G; de Jager, C W; De Leo, R; Deur, A P; Ferdi, C; Feuerbach, R J; Folts, E; Fratoni, R; Frullani, S; Garibaldi, F; Gayou, O; Giuliani, F; Gomez, J; Gricia, M; Hansen, J O; Hayes, D; Higinbotham, D W; Holmstrom, T K; Hyde, C E; Ibrahim, H F; Iodice, M; Jiang, X; Kaufman, L J; Kino, K; Kross, B; Lagamba, L; LeRose, J J; Lindgren, R A; Lucentini, M; Margaziotis, D J; Markowitz, P; Meziani, Z E; McCormick, K; Michaels, R W; Millener, D J; Miyoshi, T; Moffit, B; Monaghan, P A; Moteabbed, M; Camacho, C Munoz; Nanda, S; Nappi, E; Nelyubin, V V; Norum, B E; Okasyasu, Y; Paschke, K D; Perdrisat, C F; Piasetzky, E; Punjabi, V A; Qiang, Y; Reimer, P E; Reinhold, J; Reitz, B; Roche, R E; Rodriguez, V M; Saha, A; Santavenere, F; Sarty, A J; Segal, J; Shahinyan, A; Singh, J; Sirca, S; Snyder, R; Solvignon, P H; Sotona, M; Subedi, R; Sulkosky, V A; Suzuki, T; Ueno, H; Ulmer, P E; Veneroni, P; Voutier, E; Wojtsekhowski, B B; Zheng, X; Zorn, C
2014-01-01
In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. The cross section to low-lying states of Lambda-9Li is concentrated within 3 MeV of the ground state and can be fitted with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. A Lambda separation energy of 8.36 +- 0.08 (stat.) +- 0.08 (syst.) MeV was measured, in agreement with an earlier experiment.
Enhancement of hyperon production at central rapidity in 158 A GeV/c Pb-Pb collisions
Antinori, F; Badalà, A; Barbera, R; Belogianni, A; Beusch, Werner; Bloodworth, Ian J; Bombara, M; Bruno, G E; Bull, S A; Caliandro, R C; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Hetland, K F; Holme, A K; Huss, D; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kondratiev, V; Kravcakova, A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Loconsole, R A; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Platt, R J; Quercigh, Emanuele; Riggi, F; Romano, G; Röhrich, D; Safarík, K; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Sándor, L; Thompson, M; Turrisi, R; Tveter, T S; Urbán, J; Van de Ven, P; Van de Vyvre, P; Vascotto, Alessandro; Vik, T; Villalobos Baillie, O; Vinogradov, L I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P
2006-01-01
Results are presented on hyperon and antihyperon production in Pb-Pb, pPb and pBe collisions at 158 GeV/c per nucleon. Lambda, Xi and Omega yields have been measured at central rapidity and medium transverse momentum as functions of the centrality of the collision. Comparing the yields in Pb-Pb to those in pBe interactions, strangeness enhancement is observed. The enhancement increases with the centrality and with the strangeness content of the hyperons, reaching a factor of about 20 for the Omega in the central Pb-Pb collisions.
Algebraic model for single-particle energies of $\\Lambda$ hypernuclei
Fortunato, L
2016-01-01
A model is proposed for the spectrum of $\\Lambda$ hypernuclei based on the $u(3)\\times u(2)$ Lie algebra, in which the internal degrees of freedom of the spin-1/2 $\\Lambda$ particle are treated in the Fermionic $u(2)$ scheme, while the motion of the hyperon inside a nucleus is described in the Bosonic $u(3)$ harmonic oscillator scheme. Within this model, a simple formula for single-particle energies of the $\\Lambda$ particle is obtained from the natural dynamical symmetry. The formula is applied to the experimental data on the reaction spectroscopy for the $^{89}_\\Lambda$Y and $^{51}_\\Lambda$V hypernuclei, providing a clear theoretical interpretation of the observed structures.
The ratio R=N(Λo)/N(Ko S) between the number N(Λo) of Λo's and the number N(Ko s) of the short-lived neutral kaons produced in the reaction anti p + nucleus reactions at low energy has in previous papers been discussed in terms of the fireball model of Cugnon and Vandermeulen and in terms of the reaction anti KN → Λoπ, where the anti K has been produced in the primary reaction anti pp → anti KK + X. In this note the ratio R is discussed in terms of the quark model. The results indicate that quark effects may be important for the reaction studied, even if the energy is low. The discussion is based on the assumption that diagrams with connected quark-lines from initial to final state are suppressed, and that valence quarks survive to the final state. This assumption is supported by the results of exclusive anti pp-reactions at low energy, which shows that final states with more than two pions or kaons are more likely than final states with two mesons only, even if low multiplicity is favoured by phase space
Neutron star formation with presence of hyperons
We study the influence of hyperons during the early stages of the birth of a neutron star (Kelvin-Helmholtz phase), employing neutrino opacities calculated consistently with the equation of state by considering all possible neutrino-hyperon reactions. Our results from numerical simulations of newly born neutron stars, or proto-neutron stars, show an increasingly important influence of hyperons at later times. It is remarkable the existence of metastable stars, which are stable at birth but become unstable during the evolution as the deleptonization proceeds and the hyperon concentration increases. We also present results from hydrodynamical simulations of the collapse to a black hole of metastable, hyperon-rich proto-neutron stars
Bottom-strange mesons in hyperonic matter
Pathak, Divakar
2014-01-01
The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of $B_S^0$ and ${\\bar B}_S^0$ mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium...
Namdari, M.; Siavoshi, M. A.
2015-01-01
The $\\lambda$-perfect maps, a generalization of perfect maps (continuous closed maps with compact fibers) are presented. Using $P_\\lambda$-spaces and the concept of $\\lambda$-compactness some results regarding $\\lambda$-perfect maps will be investigated.
Evidence for an Excited Hyperon State in pp -> p K^+ Y^{0*}
Zychor, I; Büscher, M; Dzyuba, A; Keshelashvili, I; Kleber, V; Koch, R; Krewald, S; Maeda, Y; Mikirtichyants, S; Nekipelov, M; Ströher, H; Wilkin, C
2006-01-01
Indications for the production of a neutral excited hyperon in the reaction pp -> p K^+ Y^{0*} are observed in an experiment performed with the ANKE spectrometer at COSY-J\\"ulich at a beam momentum of 3.65 GeV/c. Two final states were investigated simultaneously, viz. Y^{0*} -> pi^+X^- and pi^-X^+, and consistent results were obtained in spite of the quite different experimental conditions. The parameters of the hyperon state are M(Y^{0*})= (1480 +/- 15) MeV/c^2 and Gamma(Y^{0*})= (60 +/- 15) MeV/c^2. The production cross section is of the order of few hundred nanobarns. Since the isospin of the Y^{0*} has not been determined here, it could either be an observation of the Sigma(1480), a one-star resonance of the PDG tables, or alternatively a Lambda hyperon. Relativistic quark models for the baryon spectrum do not predict any excited hyperon in this mass range and so the Y^{0*} may be of exotic nature.
Phenomenology of the Lambda/Sigma0 production ratio in p p collisions
Sibirtsev, A.; Haidenbauer, J.; Hammer, H. W.; Meissner, U. G.
2006-01-01
We show that the recently measured asymmetry in helicity-angle spectra of the Lambda-hyperons, produced in the reaction pp -->K+ Lambda p reaction, and the energy dependence of the total pp --> K+ Lambda p cross-section can be explained consistently by the same Lambda p final-state interaction. Assuming that there is no final-state interaction in the Sigma(0)p channel, as suggested by the available data for the reaction pp --> K+Sigma(0) p, we can also reproduce the energy dependence of the L...
Baldini, R.; Pacetti, S. [E. Fermi, Museo Storico della Fisica e Centro Studi e Ricerche, Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Zallo, A. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Zichichi, A. [E. Fermi, Museo Storico della Fisica e Centro Studi e Ricerche, Rome (Italy); University of Bologna, INFN and Department of Physics, Bologna (Italy); CERN, Geneva (Switzerland)
2009-03-15
Unexpected features of the BaBar data on e{sup +}e{sup -}{yields}B anti B cross-sections (B stands for baryon) are discussed. These data have been collected, with unprecedented accuracy, by means of the initial-state radiation technique, which is particularly suitable in giving good acceptance and energy resolution at threshold. A striking feature observed in the BaBar data is the non-vanishing cross-section at threshold for all these processes. This is the expectation due to the Coulomb enhancement factor acting on a charged fermion pair. In the case of e{sup +}e{sup -}{yields}p anti p it is found that Coulomb final-state interactions largely dominate the cross-section and the form factor is vertical stroke G{sup p}(4M{sup 2}{sub p}) vertical stroke {proportional_to}1, which could be a general feature for baryons. In the case of neutral baryons an interpretation of the non-vanishing cross-section at threshold is suggested, based on quark electromagnetic interaction and taking into account the asymmetry between attractive and repulsive Coulomb factors. Besides strange baryon cross-sections are compared to U-spin invariance predictions. (orig.)
The saturation scale and its x-dependence from Lambda polarization studies
Boer, Daniel; Utermann, Andre; Wessels, Erik
2009-01-01
The transverse polarization of forward Lambda hyperons produced in high-energy p-A collisions is expected to display an extremum at a transverse momentum around the saturation scale. This was first observed within the context of the McLerran-Venugopalan model which has ail x-independent saturation s
A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)
Simeon McAleer
2002-01-01
The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.
Hyperon polarization from the twist-3 distribution in the unpolarized proton-proton collision
Koike, Yuji; Yoshida, Shinsuke
2015-01-01
We investigate the transverse polarization of a hyperon produced in the high-energy unpolarized proton-proton collision, $pp\\to\\Lambda^\\uparrow X$, based on the collinear twist-3 factorization formalism. We focus on the contribution from the twist-3 distribution in one of the unpolarized proton and the transversity fragmentation function for the final hyperon. Utilizing the "master formula" for the soft-gluon-pole cross section, we clarify the reason for why it receives only the derivative term of the twist-3 distribution. We also present the first computation of the soft-fermion-pole cross section and found that it vanishes. This means that the derivative of the soft-gluon-pole function is the only source for the twist-3 cross section from the unpolarized twist-3 distribution, which provides a useful basis for a phenomenological analysis.
Axial anomaly and energy dependence of hyperon polarization in Heavy-Ion Collisions
Sorin, A
2016-01-01
We address the issue of energy and charge dependence of global polarization of $\\Lambda$ hyperons in peripheral $Au-Au$ collisions recently observed by STAR collaboration at RHIC. We compare the different contributions to the anomalous mechanism relating polarization to vorticity and hydrodynamic helicity in QCD matter. We stress that the suppression of gravitational anomaly related contribution in strongly correlated matter observed in lattice simulations confirms our earlier prediction of rapid decrease of polarization with collision energy. Our mechanism leads to the polarization of $\\bar \\Lambda$ of the same sign and larger magnitude than $\\Lambda$. The energy and charge dependence of polarization is suggested as a sensitive probe of fine details of QCD matter structure.
An experimental review of hyperon magnetic moments
Hyperon magnetic moments are important probes for studying the structure of baryons. In this talk, I shall briefly describe how the measurements are made and discuss the current status of the determinations
Longitudinal Λ and anti Λ polarization at the COMPASS experiment
At the COMPASS experiment at CERN Λ and anti Λ particles are produced in deep inelastic scattering (DIS) processes with high statistics. The main focus of the research is the understanding of the spin transfer mechanism from quarks to hadrons through the fragmentation process by utilizing the longitudinal Λ and anti Λ polarization. The result of the spin transfer provides useful information to test different model predictions which describe spin effects in hyperon production and the quark-antiquark asymmetry of the nucleon and hyperon. The Λ and anti Λ polarization are determined by measuring the acceptance corrected angular distribution of its decay products. A Monte Carlo simulation is used to correct the acceptance of the COMPASS spectrometer. In this work, preliminary results from data collected in the current fragmentation region during 2002-2004 are presented. A significantly positive average spin transfer of anti Λ is found to be equal to CLL=+0.232±0.039(stat.)±0.022(sys.), while the spin transfer of lambda is compatible with zero within the statistical accuracy. The dependences of the spin transfer on various kinematic variables are also presented. (orig.)
Rui Liu
2016-06-01
Full Text Available Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples.
Measurement of spin observables in exclusive $pp \\to \\Lambda \\Lambda$ production
Paschke, K
2000-01-01
The PS185 experiment at LEAR has produced a wealth of high precision measurements of cross-sections and final state polarization observables in near-threshold antihyperon-hyperon production from antiproton-proton annihilation. In its most recent run, PS185/3 extended its capabilities by utilizing a transversely polarized frozen spin target to measure exclusive Lambda Lambda production. This allows access to a broad set of spin observables involving initial state spin. Competing theoretical models for this reaction have differing predictions for some of these newly accessible spin observables, most notably the depolarization D/sub nn/. This data is expected to provide a rigorous test of these models. Current results from the analysis of this data are presented. (5 refs).
Role of hyperons in black hole formation
A phase transition from hadronic to exotic phases might occur in the early post-bounce phase of a core collapse supernova. We investigate the role of strange hyperons in the dynamical collapse of a non-rotating massive star to a black hole using 1D General relativistic simulation GR1D. We follow the dynamical formation and collapse of a protoneutron star (PNS) from the gravitational collapse of a 40Msolar progenitor of Wooseley, adopting Shen hyperonic EoS. We also study the neutrino signals that may be used as a probe to core collapse supernova. We compare the results with those of Shen nuclear EoS and understand the role of strange hyperons in the core collapse.
Kamano, Hiroyuki
2016-01-01
We report our recent effort for the extraction of resonance parameters (complex pole mass and residues etc.) associated with Lambda* and Sigma* hyperons. This was accomplished via a comprehensive partial-wave analysis of the data for K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi reactions from the thresholds up to W=2.1 GeV within a dynamical coupled-channels approach. The results suggest a possible existence of new narrow J^P=3/2^+ \\Lambda resonance with pole mass 1671^{+2}_{-8} -i(5^{+11}_{-2}) MeV, located close to the eta Lambda threshold. This resonance is found to be responsible for reproducing the data for K^-p --> eta Lambda differential cross sections near the threshold, and thus the data seem favor its existence. The extracted poles for J^P=1/2^- Lambda resonances below the barK N threshold, including Lambda(1405), are also presented.
Gravitational waves from the axial perturbations of hyperon stars
Wen De-Hua; Yan Jing; Liu Xue-Mei
2012-01-01
The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined.It is shown that as the appearance of hyperons softens the equation of state of the super-density matter,the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass.Moreover,the eigenfrequencies of hyperon stars also have scaling universality.It is shown that the EURO thirdgeneration gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star.
Hyperon-nucleon bound states and electroproduction of strangeness on light nuclei.
Dohrmann, F.; Abbott, D.; Ahmidouch, A.; Ambrozewicz, P.; Armstrong, C. S.; Arrington, J.; Bailey, K.; Cummings, W. J.; Gao, H.; Garrow, K.; Geesaman, D. F.; Hafidi, K.; Hansen, J. O.; Jackson, H. E.; Mueller, B.; O' Neill, T. G.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Zeidman, B.
2002-06-25
The A(e,e{prime}K{sup +})Y X reaction has been investigated in Hall C at Jefferson Lab. Data were taken for Q{sup 2} {approx} 0.35 and 0.5 GeV{sup 2} at a beam energy of 3.245 GeV for {sup 1}H, {sup 2}H, {sup 3}He and {sup 4}He, C and Al targets. The missing mass spectra are fitted with Monte Carlo simulations including {Lambda}, {Sigma}{sup 0}, {Sigma}{sup -} hyperon production. Models for quasifree production are compared to the data, excess yields close to threshold are attributed to FSI. Evidence for {Lambda}-hypernuclear bound states is seen for {sup 3,4}He targets.
[Study of hyperons and beauty particles
The proposed research program is to study the production and decay properties of the hyperons and the beauty hadrons at Fermilab. Since the project was approved in 1989, a lot of progress has been made. This report is a summary of the achievements
Hyperon polarization in the constituent quark model
A mechanism for hyperon polarization in the inclusive production is considered. The main role belongs to the orbital angular momentum and polarization of strange quark-antiquark pairs in the internal structure of constituent quarks. The nonperturbative hadron structure is based on the results of chiral quark models
Anisotropic pressure and hyperons in neutron stars
We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core. (author)
K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV
Acosta, D.; Affolder, Anthony A.; Albrow, M.G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Baroiant, S.; Barone, M.; /Taiwan, Inst. Phys. /Argonne /INFN,
2005-04-01
The authors present a study of the production of K{sub s}{sup 0} and {Lambda}{sup 0} in inelastic p{bar p} collisions at {radical}s = 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K{sub s}{sup 0} and {Lambda}{sup 0} multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and (p{sub T}) of K{sub s}{sup 0} and {Lambda}{sup 0} on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p{sub T} distributions extend above 8 GeV/c, showing a (p{sub T}) higher than previous measurements. The dependence of the mean K{sub s}{sup 0}({Lambda}{sup 0}) p{sub T} on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.
P-wave Lambda N - Sigma N coupling and the spin-orbit splitting of 9 Lambda Be
Fujiwara, Y; Suzuki, Y
2008-01-01
We reexamine the spin-orbit splitting of 9 Lambda Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the Lambda alpha spin-orbit potential from the quark-model Lambda N LS interaction kernel predicted three to five times larger values for Delta E_{ell s}=E_x(3/2^+)-E_x(5/2^+) in the model FSS and fss2. This time, we calculate Lambda alpha LS Born kernel, starting from the LS components of the nuclear-matter G-matrix for the Lambda hyperon. This framework makes it possible to take full account of an important P-wave Lambda N - Sigma N coupling through the antisymmetric LS^{(-)} force involved in the Fermi-Breit interaction. We find that the experimental value, Delta E^{exp}_{ell s}=43 pm 5 keV, is reproduced by the quark-model G-matrix LS interaction with a Fermi-momentum around k_F=1.0 fm^{-1}, when the model FSS is used in the energy-independent renormalized RGM formalism.
Phenomenology of the {lambda}/{sigma}production ratio in pp collisions
Sibirtsev, A.; Hammer, H.-W. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Bonn (Germany); Haidenbauer, J. [Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany); Meissner, U.-G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Bonn (Germany); Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany)
2006-09-15
We show that the recently measured asymmetry in helicity-angle spectra of the {lambda}-hyperons, produced in the reaction pp{yields}K{sup +}{lambda}p reaction, and the energy dependence of the total pp{yields}K{sup +}{lambda}p cross-section can be explained consistently by the same {lambda}p final-state interaction. Assuming that there is no final-state interaction in the {sigma}{sup 0} p channel, as suggested by the available data for the reaction pp{yields}K{sup +}{sigma}{sup 0}p, we can also reproduce the energy dependence of the {lambda}/{sigma}{sup 0} production ratio and, in particular, the rather large ratio observed near the reaction thresholds. The nominal ratio of the {lambda} and {sigma}{sup 0} production amplitudes squared, i.e. when disregarding the final-state interaction, turns out to be about 3, which is in line with hyperon production data from proton and nuclear targets available at high energies. (orig.)
Compositeness of the strange, charm and beauty odd parity $\\Lambda$ states
Garcia-Recio, C; Nieves, J; Salcedo, L L; Tolos, L
2015-01-01
We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $\\Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $\\Lambda$ states. We find that the $\\Lambda$ states which are bound states (the three $\\Lambda_b$) or narrow resonances (one $\\Lambda(1405)$ and one $\\Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $\\frac{1}{2}^-$ wide $\\Lambda(1405)$ and $\\Lambda_c(2595)$ as well as the $\\frac{3}{2}^-$ $\\Lambda(1520)$ and $\\Lambda_c(2625)$ states display smaller compositeness and so they...
Batley, J R; Lazzeroni, C; Munday, D J; Patel, M; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Ceccucci, A; Cundy, D; Doble, N; Falaleev, V; Gatignon, L; Gonidec, A; Grafstrom, P; Kubischta, W; Mikulec, I; Norton, A; Panzer-Steindel, B; Rubin, P; Wahl, H; Goudzovski, E; Hristov, P; Kekelidze, V; Litov, L; Madigozhin, D; Molokanova, N; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Sacco, R; Walker, A; Baldini, W; Gianoli, A; Dalpiaz, P; Frabetti, P L; Martini, M; Petrucci, F; Savrie, M; Scarpa, M; Calvetti, M; Collazuol, G; Iacopini, E; Ruggiero, G; Bizzeti, A; Lenti, M; Veltri, M; Behler, M; Eppard, K; Eppard, M; Hirstius, A; Kleinknecht, K; Koch, U; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Peters, A; Wanke, R; Winhart, A; Dabrowski, A; Fonseca Martin, T; Velasco, M; Cenci, P; Lubrano, P; Pepe, M; Anzivino, G; Imbergamo, E; Lamanna, G; Michetti, A; Nappi, A; Petrucci, M C; Piccini, M; Valdata, M; Cerri, C; Fantechi, R; Costantini, F; Fiorini, L; Giudici, S; Pierazzini, G; Sozzi, M; Mannelli, I; Cheshkov, C; Cheze, J B; De Beer, M; Debu, P; Gouge, G; Marel, G; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Maier, A; Ziolkowski, M; Biino, C; Cartiglia, N; Marchetto, F; Pastrone, N; Clemencic, M; Goy Lopez, S; Menichetti, E; Wislicki, W; Dibon, H; Jeitler, M; Markytan, M; Neuhofer, G; Widhalm, L
2010-01-01
The decay asymmetries of the weak radiative Hyperon decays $\\Xi^{0}\\to \\Lambda \\gamma$ and $\\Xi^{0} \\to \\Sigma^{0}\\gamma$ have been measured with high precision using data of the NA48/1 experiment at CERN. From about 52000 $\\Xi^{0}\\to \\Lambda \\gamma$ and 15000 $\\Xi^{0} \\to \\Sigma^{0}\\gamma$ decays, we obtain for the decay asymmetries $\\alpha_{\\Xi^{0}\\to \\Lambda\\gamma}$ = -0.704 +- 0.019$_{stat}$ +- 0.064$_{syst}$ and $\\alpha_{\\Xi^{0}\\to \\Sigma^{0}\\gamma}$ = -0.729 +- 0.030$_{stat}$ +- 0.076$_{syst}$, respectively. These results are in good agreement with previous experiments, but more precise.
Danvy, Olivier; Schultz, Ulrik Pagh
Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all the...... parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each of...... the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then...
Polarization of Inclusive $\\Lambda_{c}$'s in a Hybrid Model
Goldstein, G R
2000-01-01
A hybrid model is presented for hyperon polarization that is based on perturbative QCD subprocesses and the recombination of polarized quarks with scalar diquarks. The updated hybrid model is applied to $p+p\\to \\Lambda +X$ and successfully reproduces the detailed kinematic dependence shown by the data. The hybrid model is extended to include pion beams and polarized $\\Lambda_c$'s. The resulting polarization is found to be in fair agreement with recent experiments. Predictions for the polarization dependence on $x_F$ and $p_T$ is given.
Modeling of $^6_\\Lambda$He hypernucleus within configuration space Faddeev approach
Filikhin, I; Vlahovic, B
2014-01-01
The cluster $^4\\rm He+\\Lambda+\\rm n$ model is applied to describe the $^6_\\Lambda$He hypernucleus. The consideration is based on the configuration space Faddeev equations for a system of non-identical particles. A set of the pair potentials includes the OBE simulating (NSC97f) model for the $\\Lambda \\rm n$ interaction and the phenomenological potentials for the $\\alpha\\Lambda$ and $\\alpha \\rm n$ interactions. We calculated energies of spin (1$^-$,2$^-$) doublet. For the 2$^-$ excitation energy, the obtained value is 0.18 MeV. The hyperon binding energy of the bound 1$^-$ state is less than the experimental value, which may be an evidence for violation of the exact three-body cluster structure.
Lanskoy, D E
2013-01-01
$\\Sigma^-$ hyperon component of the $^{10}_\\Lambda$Li wave function is studied. The $\\Sigma^-$ admixture is vital for production of neutron-rich $\\Lambda$ hypernuclei via mesonic beams. We use a simplified shell model wave function for the $\\Lambda$ channel and calculate the $\\Sigma^-$ admixture directly from coupled equations. Probability of the $\\Sigma^-$ admixture for realistic repulsive $\\Sigma^-$-nucleus potentials is less by several times than that for attractive potentials and does not exceed $0.1\\%$. We conclude that the cross sections of the $^{10}\\mbox{B}(\\pi^-,K^+){}^{10}_\\Lambda\\mbox{Li}$ reaction measured at KEK cannot be explained by production via $\\Sigma^-$ admixture as a doorway state.
Threshold hyperon production in proton-proton collisions at COSY-11
Rozek, T.
2005-10-01
For the first time the pp{yields}nK{sup +}{sigma}{sup +} reaction has been measured in the threshold region and the cross section was determined. The measurement was performed at the COSY-11 detection system at two beam momenta P{sub beam}=2.6 GeV/c and 2.74 GeV/c, corresponding to excess energies Q=13 MeV and 60 MeV. COSY-11 is an internal magnetic spectrometer experiment at the COoler SYnchrotron and storage ring COSY in Juelich, Germany. It is equipped with scintillator hodoscopes and drift chambers for charged particle detection and a scintillator/lead sandwich detector for neutrons. Experimentally, the {sigma}{sup +} hyperon was identified via the missing mass technique, by detecting the remaining reaction products - K{sup +} meson and neutron. Extensive background studies in the missing mass spectra have been performed and the possible influence of the higher partial waves on the detection efficiency discussed. The investigation on the {sigma}{sup +} production is a part of the long ongoing studies of the hyperons production performed by the COSY-11 collaboration. In the previous analysis of the {lambda} and {sigma}{sup 0} hyperon production in the pp{yields}pK{sup +}{lambda} and pp{yields}pK{sup +}{sigma}{sup 0} reactions, respectively, the unexpectedly high cross section ratio {sigma}({lambda}/{sigma})({sigma}{sup 0}) in the close to threshold region was observed. To explain this behavior, various theoretical scenarios were proposed, but although they differ even in the dominant basic reaction mechanism, all more or less reproduce the data. In order to get more information for disentangling the contributing reaction mechanisms, data from an other isospin channel were taken, namely pp{yields}nK{sup +}{sigma}{sup +}. Within this thesis the method of the measurement and the data analysis is given. The total cross section is presented and the results are discussed in view of available theoretical models. (orig.)
The pp->p Lambda K+ and pp->p Sigma0 K+ reactions with chiral dynamics
Xie, Ju-Jun; Oset, E
2011-01-01
We report on a theoretical study of the pp->p Lambda K+ and pp->p Sigma0 K+ reactions near threshold using a chiral dynamical approach. The production process is described by single-pion and single-kaon exchange. The final state interactions of nucleon-hyperon, K-hyperon and K-nucleon systems are also taken into account. We show that our model leads to a fair description of the experimental data on the total cross section of the pp->p Lambda K+ and pp->p Sigma0 K+ reactions. We find that the experimental observed strong suppression of Sigma0 production compared to Lambda production at the same excess energy can be explained. However, ignorance of phases between some amplitudes does not allow to properly account for the nucleon-hyperon final state interaction for the pp->p Sigma0 K+ reaction. We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information about the Lambda and Sigma0 production mechanism, and can be tested by experiments at COSY or HIRFL-CSR.
HYPERON MATTER AND BLACK HOLE FORMATION IN FAILED SUPERNOVAE
We investigate the emergence of hyperons in black-hole-forming failed supernovae, which are caused by the dynamical collapse of nonrotating massive stars. We perform neutrino-radiation hydrodynamical simulations in general relativity, adopting realistic hyperonic equation of state. Attractive and repulsive cases are examined for the potential of Σ hyperons. Since hyperons soften the EOS, they shorten the time interval from bounce to black hole formation, which corresponds to the duration of neutrino emission. This effect is more pronounced in the attractive case than in the repulsive case because Σ hyperons appear more easily. In addition, we investigate the impacts of pions to find that they also promote recollapse toward black hole formation.
First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction
Bradford, R; Adams, G; Amaryan, M J; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Asryan, G; Audit, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Bianchi, N; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Chen, S; Cole, P L; Coleman, A; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; De Masi, R; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Feldman, G; Feuerbach, R J; Forest, T A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hu, J; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lima, A C S; Livingston, K; Lu, H Y; Lukashin, K; MacCormick, M; Manak, J J; Marchand, C; Markov, N; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Muccifora, V; Müller, J; Mutchler, G S; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Natasha, N; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Quinn, B P; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatie, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Serov, V S; Shafi, A; Sharabyan, Yu G; Shaw, J; Shvedunov, N V; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Spraker, M; Stavinsky, A V; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Watts, D P; Weinstein, L B; Weller, H; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2006-01-01
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these r...
Yamanaka, Nodoka
2016-01-01
We calculate the electric dipole moment (EDM) of the deuteron in the standard model with $|\\Delta S| =1$ interactions by taking into account the $NN - \\Lambda N - \\Sigma N$ channel coupling. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne $v18$ nuclear force and the $YN$ potential which can reproduce the binding energies of $^3_\\Lambda$H, $^3_\\Lambda$He, and $^4_\\Lambda$He. The $|\\Delta S| =1$ interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10\\%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the $YN$ interaction is small, and treating $ \\Lambda N$ and $ \\Sigma N$ channels as free is a good approximation for the EDM of the deuteron.
Blum, William
2009-01-01
Safety is a syntactic condition of higher-order grammars that constrains occurrences of variables in the production rules according to their type-theoretic order. In this paper, we introduce the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition to the setting of the simply-typed lambda calculus. In contrast to the original definition of safety, our calculus does not constrain types (to be homogeneous). We show that in the safe lambda calculus, there is no need to rename bound variables when performing substitution, as variable capture is guaranteed not to happen. We also propose an adequate notion of beta-reduction that preserves safety. In the same vein as Schwichtenberg's 1976 characterization of the simply-typed lambda calculus, we show that the numeric functions representable in the safe lambda calculus are exactly the multivariate polynomials; thus conditional is not definable. We also give a characterization of representable word functions. We then study the ...
Hyperon Stars in Strong Magnetic Fields
Gomes, R O; Vasconcellos, C A Z
2013-01-01
We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.
Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Dinkelbach, A.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grajek, O.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.; Hermann, M.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iven, B.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Venugopal, G.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2009-01-01
Roč. 64, č. 2 (2009), s. 171-179. ISSN 1434-6044 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : charged-current interactions * strange particle- production * nomad experiment * deep * scattering * nucleon * asymmetry * fragmentation * neutrino * decays Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.746, year: 2009
Hyperons in neutron stars and supernova cores
Oertel, Micaela [Universite Paris Diderot, LUTH, CNRS, Observatoire de Paris, Meudon (France); Gulminelli, Francesca [UMR6534, LPC, ENSICAEN, Caen Cedex (France); Providencia, Constanca [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal); Raduta, Adriana R. [IFIN-HH, POB-MG6, Bucharest-Magurele (Romania)
2016-03-15
The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities and temperatures, where potentially other components than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark matter, could be related to a very rich phase structure with a large density domain covered by phase coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where thermal effects cannot be neglected. (orig.)
Hyperons in neutron stars and supernova cores
Oertel, M; Providencia, C; Raduta, A R
2016-01-01
The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities and temperatures, where potentially other components than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark matter, could be related to a very rich phase structure with a large density domain covered by phase coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where therm...
Effects of isovector scalar meson on hyperon star
Biswal, S K; Patra, S K
2016-01-01
We study the effects of isovector-scalar ($\\delta$)-meson on neutron star. Influence of $\\delta$-meson on both static and rotating neutron star is discussed. Inclusion of $\\delta$-meson in a neutron star system consisting of proton, neutron and electron, make the equation of state stiffer in higher density and consequently increases the maximum mass of the star. But induction of $\\delta$-meson in the hyperon star decreases the maximum mass of the hyperon star. This is due to the early evolution of hyperons in presence of $\\delta-$meson.
Do hyperons exist in the interior of neutron stars?
Chatterjee, Debarati [Universite Paris Diderot, LUTH, Observatoire de Paris, CNRS, Meudon (France); Laboratoire de Physique Corpusculaire, ENSICAEN, Caen Cedex (France); Vidana, Isaac [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal)
2016-02-15
In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called ''hyperon puzzle'', go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability. (orig.)
Do hyperons exist in the interior of neutron stars?
Chatterjee, Debarati; Vidaña, Isaac
2016-02-01
In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called "hyperon puzzle", go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.
Do hyperons exist in the interior of neutron stars?
In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called ''hyperon puzzle'', go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability. (orig.)
Do hyperons exist in the interior of neutron stars ?
Chatterjee, Debarati
2015-01-01
In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called "hyperon puzzle", go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We reexamine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.
Hyperon production in 40 A GeV/c collisions from the NA57 experiment
Enhancements of strange baryon and anti-baryon yields were first observed in Pb-Pb interactions at 160 A GeV/c by WA97. The aim of the NA57 experiment is to investigate how these enhancements behave as a function of energy, and over a broader centrality range than that which was available with WA97. This paper presents a comparison of the hyperon yields in Pb-Pb interactions at 40 A GeV/c and 160 A GeV/c. Preliminary signals for the p-Be data at 40 A GeV/c are also shown
$\\Lambda\\Lambda$ interaction and hypernuclei
Albertus, C; Nieves, J
2013-01-01
Data on $\\Lambda\\Lambda$ hypernuclei provide a unique method to learn details about the strangeness S =- 2 sector of the baryon-baryon interaction. From the free space Bonn-J\\"ulich potentials, determined from data on baryon-baryon scattering in the S = 0, -1 channels, we construct an interaction in the S =-2 sector to describe the experimentally known LL hypernuclei. After including short-range (Jastrow) and RPA correlations, we find masses for these LL hypernuclei in a reasonable agreement with data, taking into account theoretical and experimental uncertainties. Thus, we provide a natural extension, at low energies, of the Bonn-J\\"ulich one-boson exchange potentials to the S =-2 channel.
Enhancement of central $\\Lambda$, $\\Xi$ and $\\Omega$ yields in Pb-Pb collisions at 158 A GeV/c
Andersen, E; Armenise, N; Bakke, H; Bán, J; Barberis, D; Beker, H; Beusch, Werner; Bloodworth, Ian J; Böhm, J; Caliandro, R; Campbell, M; Cantatore, E; Carrer, N; Catanesi, M G; Chesi, Enrico Guido; Dameri, M; Darbo, G; Diaczek, A; Di Bari, D; Di Liberto, S; Earl, B C; Elia, D; Evans, D; Fanebust, K; Fini, R A; Fontaine, J C; Ftácnik, J; Ghidini, B; Grella, G; Guida, M; Heijne, Erik H M; Helstrup, H; Holme, A K; Huss, D; Jacholkowski, A; Jones, G; Jovanovic, P; Jusko, A; Kachanov, V A; Kachelhoffer, T; Kinson, J B; Kirk, A; Klempt, W; Knudsen, H; Knudson, K P; Králik, I; Lassalle, J C; Lenti, V; Lietava, R; Loconsole, R A; Løvhøiden, G; Lupták, M; Mack, V; Manzari, V; Martinengo, P; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Middelkamp, P; Morando, M; Muciaccia, M T; Nappi, E; Navach, F; Norman, P I; Osculati, B; Pastircák, B; Pellegrini, F; Píska, K; Posa, F; Quercigh, Emanuele; Ricci, R A; Romano, G; Rosa, G; Rossi, L; Rotscheidt, Herbert; Safarík, K; Saladino, S; Salvo, C; Sándor, L; Scognetti, T; Segato, G F; Sené, M; Sené, R; Simone, S; Singovsky, A V; Snoeys, W; Staroba, P; Szafran, S; Thompson, M; Thorsteinsen, T F; Tomasicchio, G; Torrieri, G D; Tveter, T S; Urbán, J; Vasileiadis, G; Venables, M; Villalobos Baillie, O; Virgili, T; Volte, A; Votruba, M F; Závada, P
1998-01-01
$\\Lambda$, $\\Xi$ and $\\Omega$ yields and transverse mass spectra have been measured at central rapidity in Pb-Pb and p-Pb collisions at 158~A~GeV/$c$. The yields in Pb-Pb interactions are presente d as a function of the collision centrality and compared with those obtained from p-Pb collisions. Strangeness enhancement is observed which increases with centrality and with the strangeness co ntent of the hyperon.
Test of SU(3) Symmetry in Hyperon Semileptonic Decays
Pham, T N
2014-01-01
Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann--Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of $5-11%$ and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.
Baryon resonances and polarization transfer in hyperon photoproduction
Anisovich, A V; Klempt, E; Nikonov, V A; Sarantsev, A V; Thoma, U
2007-01-01
A partial wave analysis is presented of data on photoproduction of hyperons including single and double polarization observables. The large spin transfer probability reported by the CLAS collaboration can be successfully described with an isobar partial wave analysis.
Results on hyperon production from the NA57 experiment
Antinori, F; Badalà, A; Barbera, R; Belogianni, A; Bloodworth, Ian J; Bombara, M; Bruno, G; Bull, S A; Caliandro, R; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Hetland, K F; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kondratiev, V; Kravcakova, A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Morando, M; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Platt, R J; Quercigh, Emanuele; Riggi, F; Romano, G; Röhrich, D; Safarík, K; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Sándor, L; Turrisi, R; Tveter, T S; Urbán, J; Van de Ven, P; Van de Vyvre, P; Vascotto, Alessandro; Vik, T; Villalobos Baillie, O; Vinogradov, L I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P
2005-01-01
Recent results on hyperon production in Pb--Pb collisions from the NA57 experiment are reported. Strangeness enhancement and the transverse mass spectra properties at 158 GeV per nucleon are described.
Properties of hyperon stars rotating at Keplerian frequency
Wen De-Hua; Chen Wei
2011-01-01
The structure and properties of a Keplerian rotating hyperon star with an equation of state (BOS) investigated using the relativistic σ-ω-ρ model are examined by employing an accurate numerical scheme. It is shown that there is a clear rotating effect on the structure and properties, and that hyperon star matter cannot support a star with a mass larger than 1.9 M☉, even a star rotating at the fastest allowed frequency. The constraints of the two known fastest rotating frequencies (716 Hz and 1122 Hz) on the mass and radius of a hyperon star are also explored. Furthermore, our results indicate that the imprint of the rapid rotation of a hyperon star on the moment of inertia is clear; the backward equatorial redshift, the forward equatorial redshift and the polar redshift can be distinguished clearly, the forward equatorial redshift is always negative; and its figuration is far from a spherical symmetric shape.
Bag-model quantum chromodynamics for hyperons at low energy
In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy. (orig.)
Bag-model quantum chromodynamics for hyperons at low energy
Weber, H. J.; Maslow, J. N.
1980-09-01
In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy.
Studies of the Lambda(1405) in Proton-Proton Collisions with ANKE at COSY-Juelich
Zychor, I
2007-01-01
The lineshape of the Lambda(1405) was studied in the pp -> pK+ Y0 reaction at a beam momentum of 3.65 GeV/c at COSY-Juelich. The ANKE spectrometer was used to identify two protons, one positively charged kaon, and one negatively charged pion in the final state. Invariant-mass and missing-mass techniques were applied to separate two neighbouring neutral excited hyperon resonances, the Sigma0(1385) and Lambda(1405). Both the shape and the position of the Lambda(1405) distribution are similar to those measured in other reactions and this information contributes to the ongoing debate regarding the structure of this resonance.
Dirac phenomenology and hyperon-nucleus interactions
We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of Λ, Σ and ≡ hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling fωy. Second, optical potentials for Λ and Σ scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of Λ hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs
Phenomenological Lambda-Nuclear Interactions
Sinha, R; Taib, B M; Sinha, Rita
2002-01-01
Variational Monte Carlo calculations for ${_{\\Lambda}^4}H$ (ground and excited states) and ${_{\\Lambda}^5}He$ are performed to decipher information on ${\\Lambda}$-nuclear interactions. Appropriate operatorial nuclear and ${\\Lambda}$-nuclear correlations have been incorporated to minimize the expectation values of the energies. We use the Argonne $\\upsilon_{18}$ two-body NN along with the Urbana IX three-body NNN interactions. The study demonstrates that a large part of the splitting energy in ${_{\\Lambda}^4}H$ ($0^+-1^+$) is due to the three-body ${\\Lambda}$ NN forces. $_{\\Lambda}^{17}O$ hypernucleus is analyzed using the {\\it s}-shell results. $\\Lambda$ binding to nuclear matter is calculated within the variational framework using the Fermi-Hypernetted-Chain technique. There is a need to correctly incorporate the three-body ${\\Lambda}$ NN correlations for $\\Lambda$ binding to nuclear matter.
Positive and negative parity hyperons in nuclear medium
Azizi, K.; Er, N.; Sundu, H.
2015-09-01
The effects of the nuclear medium on the residue, mass, and self-energy of the positive- and negative-parity Σ , Λ , and Ξ hyperons are investigated using the QCD sum-rule method. In the calculations, the general interpolating currents of hyperons with an arbitrary mixing parameter are used. We compare the results obtained in medium with those of the vacuum and calculate the shifts in the corresponding parameters. It is found that the shifts on the residues in nuclear matter are overall positive for both the positive- and negative-parity hyperons, except for the positive-parity Σ hyperon which has a negative shift. The shifts on the masses of these baryons are found to be negative. The shifts on the residues and masses of negative-parity states are large compared to those of positive-parity states. The maximum shift belongs to the residue of the negative-parity Λ hyperon. The vector self-energies gained by the positive-parity baryons are large compared to the vector self-energies of the negative-parity particles. The maximum value of the vector self-energy belongs to the positive-parity Σ hyperon. The numerical values are compared with the existing predictions in the literature.
Fujiwara, Y; Suzuki, Y
2006-01-01
We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave function. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the o...
Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb
Agakishiev, G.; Arnold, O.; Balanda, A.; Belver, D.; Belyaev, A. V.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Tlustý, Pavel; Wagner, Vladimír
2014-01-01
Roč. 50, č. 5 (2014), s. 81. ISSN 1434-6001 R&D Projects: GA ČR GA13-06759S; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : heavy ion collisions * HADES * spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.736, year: 2014
The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure
Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-13
The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between E_{sym} and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.
$\\Lambda$ Scattering Equations
Gomez, Humberto
2016-01-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter $\\Lambda$ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting $\\Lambda$ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the $\\Lambda$ algorithm.
Lambda-Lambda interaction from relativistic heavy-ion collisions
Morita, Kenji; Ohnishi, Akira
2014-01-01
We investigate the two-particle intensity correlation function of $\\Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $\\Lambda\\Lambda$ correlation function at small relative momenta is fairly sensitive to the interaction potential and collective flows. By comparing the results of different source functions and potentials, we explore the effect of intrinsic collective motions on the correlation function. We find that the recent STAR data gives a strong constraint on the scattering length and effective range of $\\Lambda\\Lambda$ interaction as, $-1.8~\\mathrm{fm}^{-1} < 1/a_0 < -0.8~\\mathrm{fm}^{-1}$ and $3.5~\\mathrm{fm} < r_\\mathrm{eff} < 7~\\mathrm{fm}$, respectively. Implication for the signal of existence of $H$-dibaryon is discussed. Comparison with the scattering parameters obtained from the double $\\Lambda$ hypernucleus may reveal in-medium effects in the $\\Lambda\\Lambda$ interaction.
${}_{\\Lambda\\Lambda}^{4}$H in halo effective field theory
Ando, Shung-Ichi; Oh, Yongseok
2013-01-01
The ${}_{\\Lambda\\Lambda}^{\\ \\ 4}$H bound state and the $S$-wave hypertriton(${}_\\Lambda^{\\, 3}$H)-$\\Lambda$ scattering in spin singlet and triplet channels below the hypertriton breakup momentum scale are studied in halo/cluster effective field theory at leading order by treating the ${}_{\\Lambda\\Lambda}^{\\ \\ 4}$H system as a three-cluster ($\\Lambda$-$\\Lambda$-deuteron) system. In the spin singlet channel, we find that the scattering length and phase shift can be described by the effective range parameters of the $S$-wave deuteron-$\\Lambda$ scattering in the hypertriton channel. On the other hand, in the spin triplet channel, we find that the integral equations exhibit a limit-cycle and shows a sensitivity to the momentum cutoff parameter $\\Lambda_c$. We then introduce the three-body contact-interaction and investigate its role in the ${}_{\\Lambda\\Lambda}^{\\ \\ 4}$H system. Because of the lack of empirical information, we employ the potential model calculations to constrain the strength of the contact-interact...
Polarization of the Sigma Minus Hyperon Produced by a Polarized Neutral Particle Beam
Nguyen, An Nhatton
A spin transfer technique has been tried in an attempt to produce a beam of polarized hyperons. The method makes use of a two-stage targeting scheme where unpolarized protons from Fermilab's Tevatron incident on target number one (Cu) at production angles of +/-2.0 mrad would produce a beam of particles containing polarized Lambdas and Xis as well as neutrons and Ks. This secondary beam would then be swept magnetically to retain only neutral particles and brought to bear on target number two (Cu) at 0.0 mrad, producing a tertiary beam of hyperons. The polarization of some 1.3 millions reconstructed Sigma^{-} to npi^{-} events in this tertiary beam (the Sigma^{ -} having been produced in the inclusive reaction neutrals + Cu to Sigma^{ -} + X) has been measured at average Sigma^{-} momenta 320 GeV/c (1.14 millions events) and 410 GeV/c (135,000 events) and found to be |P| = 3.9 +/- 3.2 +/- 1.8% and |P| = 13.9 +/- 8.1 +/- 2.0% respectively, where the first uncertainty is statistical and the second systematic. These polarizations are small and consistent with zero, and preclude a meaningful measurement of the Sigma^{-} magnetic moment by the spin precession method. The sign of the polarizations at the target is ambiguous, giving rise to two possible different solutions for the magnetic moment--one of which distinctly disagrees with the world average value for the moment. However, this solution fits the data slightly better than the other. This inconsistency would not exist if the polarization is, in fact, zero.
Kang, X W; Lu, G R
2010-01-01
We discuss the possible searching for the oscillation by coherent $\\Lambda\\overline{\\Lambda}$ production in $J/\\psi \\rightarrow \\Lambda \\overline{\\Lambda}$ decay process. The sensitivity of measurement of $\\Lambda - \\overline{\\Lambda}$ oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the $\\Delta B =2$ amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract $\\Lambda -\\overline{\\Lambda}$ oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of $\\delta m < 10^{-15}$ MeV at 90\\% confidence level, corresponding to about $10^{-6}$ s of $\\Lam-\\Lamb$ oscillation time.
Reinvestigating the Lambda Boo Stars
Cheng, Kwang-Ping; Corbally, C. J.; Gray, R. O.; Murphy, S.; Neff, J. E.; Desai, A.; Newsome, I.; Steele, P.
2014-01-01
The peculiar nature of Lambda Bootis was first introduced in 1943. Subsequently, Lambda Boo stars have been slowly recognized as a group of A-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements, although C, N, O, and S can be near solar. MK classification criteria include broad hydrogen lines, a weak metallic-line spectrum compared to MK standards, coupled with a particularly weak Mg II 4481 line. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star-HR 8799 and a probable Lambda Boo star-Beta Pictoris. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. However, Lambda Boo candidates published in the literature have been selected using widely different criteria. The Lambda Boo class has become somewhat of a "grab bag" for any peculiar A-type stars that didn't fit elsewhere. In order to determine the origin of Lambda Boo stars’ low abundances and to better discriminate between theories explaining the Lambda Boo phenomenon, a refined working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their existing spectra. After applying a consistent set of optical/UV classification criteria, we identified over 60 confirmed and over 20 probable Lambda Boo stars among all stars that have been suggested as Lambda Boo candidates. We are obtaining new observations for those probable Lambda Boo stars. We also have explored the possible link between debris disks and Lambda Boo Stars.
Hyperon Photoproduction in the Nucleon Resonance Region
McNabb, J W C; Todor, L; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Berman, Barry L; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Cetina, C; Ciciani, L; Cole, P L; Coleman, A; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D C; Dragovitsch, P; Dugger, M; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Funsten, H; Gaff, S J; Gai, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M R; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Kelley, J H; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kuang, Y; Kuhn, S E; Lachniet, J; Laget, J M; Lawrence, D; Ji Li; Lukashin, K; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Muccifora, V; Müller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Park, K; Pasyuk, E A; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Quinn, B; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatie, F; Sabourov, K; Salgado, C; Santoro, J P; Sapunenko, V; Serov, V S; Shafi, A; Sharabyan, Yu G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A V; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weisberg, A; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z
2004-01-01
Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ + Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics and with good angular coverage for center-of-mass energies between 1.6 and 2.3 GeV. In the K^+Lambda channel we confirm a structure near W=1.9 GeV at backward kaon angles, but our data shows a more complex s- and u- channel resonance structure than previously seen. This structure is present at forward and backward angles but not central angles, and its position and width change with angle, indicating that more than one resonance is playing a role. Rising back-angle cross sections at higher energies and large positive polarization at backward angles are consistent with sizable s- or u-channel contributions. None of the model calculations we present can consistently explain these aspects of the data.
A Fast Algorithm for Lattice Hyperonic Potentials
Nemura, Hidekatsu; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Murano, Keiko; Sasaki, Kenji
2016-01-01
We describe an efficient algorithm to compute a large number of baryon-baryon interactions from $NN$ to $\\Xi\\Xi$ by means of HAL QCD method, which lays the groundwork for the nearly physical point lattice QCD calculation with volume $(96a)^4\\approx$($8.2$fm)$^4$. Preliminary results of $\\Lambda N$ potential calculated with quark masses corresponding to ($m_{\\pi}$,$m_{K}$)$\\approx$(146,525)MeV are presented.
Measurement of the $\\Lambda_b^0$ lifetime and mass in the ATLAS experiment
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Å sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Bø rge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jø rgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-01-01
A measurement of the $\\Lambda_b^0$ lifetime and mass in the decay channel $\\Lambda_b^0 \\to J/\\psi(\\mu^+ \\mu^-) \\Lambda^0(p\\pi^-)$ is presented. The analysis uses a signal sample of about 2200 $\\Lambda_b^0$ and anti-Lambda_b decays that are reconstructed in 4.9 fb$^{-1}$ of ATLAS pp collision data collected in 2011 at the LHC center-of-mass energy of 7 TeV. A simultaneous mass and decay time maximum likelihood fit is used to extract the $\\Lambda_b^0$ lifetime and mass. They are measured to be $\\tau_{\\Lambda_b}$ = 1.449 +/- 0.036(stat) +/- 0.017(syst) ps and $m_{\\Lambda_b}$ = 5619.7 +/- 0.7(stat) +/- 1.1(syst) MeV.
Test of SU(3) Symmetry in Hyperon Semileptonic Decays
Pham, T N
2013-01-01
Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann Okubo(GMO) baryon mass formula which is satisfied to a few percents and provides evidence for SU(3) symmetry breaking in the divergence of the vector current matrix element. In this paper, we shall present a similar GMO relation for the hyperon semileptonic decay axial vector form factors. Using these relations and the measured axial vector current to vector current form factor ratios, we show that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11%.
Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M
2004-01-01
The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.
Collective Flow of A Hyperons within Covariant Kaon Dynamics
XING Yong-Zhong; ZHU Yu-Lan; WANG Yan-Yan; ZHENG Yu-Ming
2011-01-01
@@ The collective flow of ∧ hyperons produced in association with positively charged kaon mesons in nuclear reactions at SIS energies is studied using the quantum molecular dynamics(QMD)model within covariant kaon dynamics Our calculation indicates that both the directed and differential directed flows of ∧s are almost in agreement with the experimental data.This suggest that the covariant kaon dynamics based on the chiral mean field approximation can not only explain the collective flow of kaon mesons,but also give reasonable results for the collective flow of ∧ hyperons at SIS energies.The final-state interaction of ∧ hyperons with dense nuclear matter enhances their directed flow and improves the agreement of their differential directed flow with the experimental data.The influence of the interaction on the ∧ collective flow is more appreciable at large rapidity or transverse momentum region.%The collective How of A hyperons produced in association with positively charged kaon mesons in nuclear reactions at SIS energies is studied using the quantum molecular dynamics (QMD) model within covariant kaon dynamics. Our calculation indicates that both the directed and differential directed Sows of As are almost in agreement with the experimental data. This suggest that the covariant kaon dynamics based on the chiral mean Geld approximation can not only explain the collective flow of kaon mesons, but also give reasonable results for the collective How of A hyperons at SIS energies. The Hnal-state interaction of A hyperons with dense nuclear matter enhances their directed How and improves the agreement of their differential directed How with the experimental data. The influence of the interaction on the A collective How is more appreciable at iarge rapidity or transverse momentum region.
Hankin, Chris
One of the universal notions of programming languages is functional abstraction. The methods of Java and the functions defined and used in functional programming languages, such as Haskell, are instances of this general notion. The inspiration for this form of abstraction mechanism comes from Mathematical Logic; notably Church's λ(lambda)-calculi and Schönfinkel's and Curry's Combinatory Logic. A proper study of these foundations leads to a better understanding of some of the fundamental issues in Computer Science.
Thermal behavior of the mass and residue of hyperons
Azizi, K.; Kaya, G.
2016-06-01
We investigate the mass and residue of Σ, Λ and Ξ hyperons at finite temperature in the framework of thermal QCD sum rules. In our calculation, we take into account the additional operators coming up at finite temperature. We find the temperature-dependent continuum threshold for each hyperon using the obtained sum rules for their mass and residue. The numerical results demonstrate that the mass and residue of the particles under consideration remain stable up to a certain temperature, after which they decrease by increasing the temperature.
SiΛvio: A trigger for Λ-hyperons
Münzer, Robert; Berger, Martin; Fabbietti, Laura [Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, D-85748 (Germany); Averbeck, R.; Andronic, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Barret, V. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Basrak, Z. [Ruđer Bošković Institute, Zagreb (Croatia); Bastid, N. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Benabderrahmane, M.L. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Buehler, P.; Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, Wien (Austria); Čaplar, R. [Ruđer Bošković Institute, Zagreb (Croatia); Carevic, I. [University of Split, Split (Croatia); Charviakova, V. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw (Poland); Crochet, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Deppner, I. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Dupieux, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Dželalija, M. [University of Split, Split (Croatia); Fodor, Z. [Wigner RCP, RMKI, Budapest (Hungary); and others
2014-05-01
As online trigger for events containing Λ hyperons in p+p collisions at 3.1 GeV a silicon-based device has been designed and built. This system has been integrated close to the target region within the FOPI spectrometer at GSI and was also employed as a tracking device to improve the vertex reconstruction of secondary decays. The design of the detector components, read-out, the trigger capability as well as the tracking performance are presented. An enrichment factor of about 14 was achieved for events containing a Λ-hyperon candidate.
Scale dependence of. Lambda. sub MS from deep inelastic scattering
Martin, A.D.; Stirling, W.J. (Dept. of Physics, Univ. of Durham (United Kingdom)); Roberts, R.G. (Rutherford Appleton Lab., Chilton (United Kingdom))
1991-08-22
Precision measurements of {Lambda}sub(anti Manti S) from deep inelastic Scattering traditionally use a fixed renormalization scale {mu} = Q. This is in contrast to measurements in e{sup +}e{sup -} annihilation, where 'scale dependence' is an important source of uncertainty on the value of {Lambda}sub(anti Manti S). We extend our previous determination of {Lambda}sub(anti Manti S) to allow for different scale choices. We find that our previous value of {alpha}{sub s} (M{sub z})=0.109{sub -=.005}{sup +0.004} becomes {alpha}{sub s} (M{sub z})=0.109{sub 00.008}{sup +0.007} when a reasonable variation of scale is included. We discuss the implications of this result for recent attempts to obtain information on the scale of supersymmetry from coupling constant unification. (orig.).
Beyond-mean-field approach to low-lying spectra of $\\Lambda$ hypernuclei
Hagino, K; Yao, J M; Motoba, T
2015-01-01
Taking the hypernucleus $^{13}_{~\\Lambda}$C as an example, we illustrate the miscroscopic particle-rotor model for low-lying spectra of hypernuclei. This approach is based on the beyond-mean-field method, with the particle number and angular momentum projections. The quantum fluctuation of the mean-field is also taken into account for the core nucleus using the generator coordinate method. We show that the impurity effect of $\\Lambda$ hyperon, such as a change in $B(E2)$, is well described with this model. Our calculation indicates that the most important impurity effect in $sd$-shell hypernuclei is a change in a deformation parameter rather than in a nuclear size.
Results on hyperon production from the NA57 experiment
Antinori, F.; Bacon, P. A.; Balada, A.; Staroba, Pavel; Závada, Petr
2005-01-01
Roč. 22, - (2005), s. 113-120. ISSN 1219-7580 R&D Projects: GA MŠk 1P04LA211 Institutional research plan: CEZ:AV0Z10100502 Keywords : hyperons * strangeness enhancement * blast - wave model Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.137, year: 2005
Veselý, P; Hrtánková, J; Mareš, J
2016-01-01
We introduce a mean field model based on realistic 2-body baryon interactions and calculate spectra of a set of p-shell and sd-shell {\\Lambda} hypernuclei - 13{\\Lambda}C, 17{\\Lambda}O, 21{\\Lambda}Ne, 29{\\Lambda}Si and 41{\\Lambda}Ca. The hypernuclear spectra are compared with the results of a relativistic mean field (RMF) model and available experimental data. The sensitivity of {\\Lambda} single-particle energies to the nuclear core structure is explored. Special attention is paid to the effect of spin-orbit {\\Lambda}N interaction on the energy splitting of the {\\Lambda} single particle levels 0p3/2 and 0p1/2. In particular, we analyze the contribution of the symmetric (SLS) and the anti-symmetric (ALS) spin-orbit terms to the energy splitting. We give qualitative predictions for the calculated hypernuclei.
Circularity and Lambda Abstraction
Danvy, Olivier; Thiemann, Peter; Zerny, Ian
2013-01-01
In this tribute to Doaitse Swierstra, we present the rst transformation between lazy circular programs a la Bird and strict cir- cular programs a la Pettorossi. Circular programs a la Bird rely on lazy recursive binding: they involve circular unknowns and make sense equa- tionally. Circular...... unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...
Proton-lambda correlations in central Au+Au collisions at sqrt (s_NN)=200 GeV
Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; De Phillips, M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Gupta, N; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krämer, M; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Le Vine, M J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; López-Noriega, M; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Sen-Gupta, A; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Sørensen, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Kolk, N; Van der Molen, A M; Varma, R; Vasilev, A N; Vasilevski, I M; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yoo, I K; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2006-01-01
We report on p-Lambda, p-Lambda bar, p bar-Lambda and p bar-Lambda bar correlation functions constructed in central Au-Au collisions at sqrt(s_NN)=200GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p-Lambda and p bar-Lambda bar correlation functions. They are found to be smaller than the pion source size also measured by the STAR detector. This could be a consequence of the collision fireball's collective expansion. The p-Lambda bar and p bar-Lambda correlations, which are measured for the first time, exhibit a large anti-correlation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function.
Average Transverse Momenta in Hyperon Production at p-p Collider Experiments
Piskounova, Olga
2014-01-01
The previously publicated analysis of transverse momentum spectra of $\\Lambda^0$ hyperons from LHC experiments (ALICE, ATLAS, CMS)in the comparison with earlier experiments was reconsidered with correct spectra from STAR collaboration. The LHC data at $\\sqrt{s}$ = 0.9 and 7 TeV and the data of proton-proton experiments of lower energies were fitted with the universal formula that includes the energy dependent slope as the main parameter. The dependence of average transverse momenta on $\\sqrt{s}$ has been obtained with the help of this formula. The asymptotics of the energy dependence of average Pt shows the behavior $ ~ s^{0.05}$, that was not expected in early description of hadron transverse momentum in the framework of Quark-Gluon String Model. The previous important conclusion about spectra of cosmic rays was not changed: the long debated "knee" in the cosmic proton spectra at $E_p= (2,5 - 4)*10^{15}$ eV in laboratory system can not be considered any more as the result of dramatic changes in the dynamics ...
$\\bar{K} + N \\to K + \\Xi$ reaction and $S=-1$ hyperon resonances
Jackson, Benjamin C; Haberzettl, H; Nakayama, K
2015-01-01
The $\\bar{K} N \\to K \\Xi$ reaction is studied based on an effective Lagrangian approach that includes the hyperon $s$- and $u$-channel contributions as well as the phenomenological contact amplitude. The latter accounts for the rescattering term in the scattering equation and the possible short-range dynamics not included explicitly in the model. Existing data is well reproduced and three above-the-threshold resonances were found to be required to describe the data, namely, the $\\Lambda(1890)$, $\\Sigma(2030)$, and $\\Sigma(2250)$. For the latter resonance we have assumed the spin-parity of $J^P=5/2^-$ and a mass of 2265~MeV. The $\\Sigma(2030)$ resonance is critical to achieve a good reproduction of not only the measured total and differential cross sections, but also the recoil polarization asymmetry. More precise data are required before a more definitive statement can be made about the other two resonances, in particular, about the $\\Sigma(2250)$ resonance that is introduced to describe a small bump structur...
Fujiwara, Y; Kohno, M; Suzuki, Y; Baye, D; Sparenberg, J M
2004-01-01
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are...
Replication of bacteriophage lambda DNA
In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures
Antihyperon-Hyperon production in antiproton-proton annihilations with PANDA at FAIR
Papenbrock, Michael
2016-03-01
Hyperon production is an excellent probe of QCD in the confinement domain, and spin observables are a powerful tool in understanding the underlying physics. For the Ω hyperon, seven polarisation parameters can be extracted from the angular distributions of its decay products with the future PANDA experiment at FAIR. Simulation studies reveal great prospects for strange and single charmed hyperon channels with PANDA. Software tools supporting these investigations are currently under development.
Barz, H. W.; Naumann, L.
2003-01-01
The cross sections for producing K$^-$ mesons in nucleon-hyperon elementary processes are estimated assuming one-pion exchange and using the experimentally known pion-hyperon cross sections. The results are implemented in a transport model which is applied to calculation of proton-nucleus collisions. In significant difference to earlier estimates for heavy-ion collisions the inclusion of the nucleon-hyperon cross section roughly doubles the K$^-$ production in near-threshold proton-nucleus co...
Constraints on the Moment of Inertia of a Proto Neutron Star from the Hyperon Coupling Constants
Xian-Feng Zhao; Huan-Yu Jia
2012-09-01
The influence of the hyperon coupling constants on the moment of inertia of a proto neutron star has been investigated within the framework of relativistic mean field theory for the baryon octet {, , , -, 0, +, Ξ-, Ξ0} system. It is found that for a proto neutron star, the mass, the moment of inertia and their own maximum values as a function of radius or / are all more sensitive to the hyperon coupling constants. For all the different hyperon coupling constants mentioned, the case of no hyperons corresponds to the largest moment of inertia.
Observation of Lambda H-4 hyperhydrogen by decay-pion spectroscopy in electron scattering
Esser, A; Schulz, F; Achenbach, P; Gayoso, C Ayerbe; Böhm, R; Borodina, O; Bosnar, D; Bozkurt, V; Debenjak, L; Distler, M O; Friščić, I; Fujii, Y; Gogami, T; Hashimoto, O; Hirose, S; Kanda, H; Kaneta, M; Kim, E; Kohl, Y; Kusaka, J; Margaryan, A; Merkel, H; Mihovilovič, M; Müller, U; Nakamura, S N; Pochodzalla, J; Rappold, C; Reinhold, J; Saito, T R; Lorente, A Sanchez; Majos, S Sánchez; Schlimme, B S; Schoth, M; Sfienti, C; Širca, S; Tang, L; Thiel, M; Tsukada, K; Weber, A; Yoshida, K
2015-01-01
At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a Be-9 target in order to study the ground-state masses of Lambda-hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at zero degree forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. In coincidence, negatively charged decay-pions were detected by two independent high-resolution spectrometers. About 10^3 pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at p_pi ~ 133 MeV/c, corresponding to the unique signature for the two-body decay of hyperhydrogen Lambda H-4 -> He-4 + pi-, stopped inside the target. Its binding energy was determined to be B_Lambda = 2.12 +- 0.01 (stat.) +- 0.09 (syst.) MeV with respect to the H-3 + Lambda mass.
Bottom-strange mesons in hyperonic matter
Pathak, Divakar; Mishra, Amruta
2014-01-01
The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of t...
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo
2015-01-01
A search is performed for the as yet unobserved baryonic $\\Lambda_b^0 \\rightarrow \\Lambda \\eta^\\prime$ and $\\Lambda_b^0 \\rightarrow \\Lambda \\eta$ decays with 3$fb^{-1}$ of proton-proton collision data recorded by the LHCb experiment. The $B^0 \\rightarrow K_S^0 \\eta^\\prime$ decay is used as a normalisation channel. No significant signal is observed for the $\\Lambda_b^0 \\rightarrow \\Lambda \\eta^\\prime$ decay. An upper limit is found on the branching fraction of $\\mathcal{B}(\\Lambda_b^0 \\rightarrow \\Lambda \\eta^\\prime)<3.1\\times10^{-6}$ at 90% confidence level. Evidence is seen for the presence of the $\\Lambda_b^0 \\rightarrow \\Lambda \\eta$ decay at the level of $3\\sigma$ significance, with a branching fraction $\\mathcal{B}(\\Lambda_b^0 \\rightarrow \\Lambda \\eta)=(9.3^{+7.3}_{-5.3})\\times10^{-6}$.
SU(3) breaking in hyperon transition vector form factors
We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p4) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q2=-(MB1-MB2)2, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ-→n and Ξ0→Σ+ transition form factors. Hence we determine lattice-informed values of f1 at the physical point. This work constitutes progress towards the precise determination of vertical stroke Vus vertical stroke from hyperon semileptonic decays.
SU(3) breaking in hyperon transition vector form factors
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [ARC Centre of Excellence in Particle Physics at the Terascale, Adelaide (Australia); Centre for the Subatomic Structure of Matter (CSSM), Adelaide, SA (Australia); Adelaide Univ., SA (Australia). Dept. of Physics; Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-08-15
We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p{sup 4}) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q{sup 2}=-(M{sub B{sub 1}}-M{sub B{sub 2}}){sup 2}, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ{sup -}→n and Ξ{sup 0}→Σ{sup +} transition form factors. Hence we determine lattice-informed values of f{sub 1} at the physical point. This work constitutes progress towards the precise determination of vertical stroke V{sub us} vertical stroke from hyperon semileptonic decays.
The influence of Strong Magnetic Field in Hyperonic Neutron Stars
Lopes, Luiz L
2013-01-01
The physics of neutron stars leads historically towards Landau's speculation. Even before the discovery of the neutron, he postulated the possible existence of stars more compact than white dwarfs, containing matter of the order of nuclear density. From a modern point of view neutron stars are compact objects maintained by the equilibrium between gravity and the degeneracy pressure of the fermions together with a strong nuclear repulsion force due to the high density reached in their interior. While the physics in the vicinity of nuclear saturation density is well know from phenomenology, the physics of ultra-dense nuclear matter is still an open puzzle. In this work we study dense nuclear matter within a relativistic model, allowing hyperons to be present through beta equilibrium. The presence of hyperons is justifiable since the constituents of neutron stars are fermions. So, according to the Pauli principle, as the baryon density increases, so do the Fermi momentum and the Fermi energy. On the other hand, ...
Meson-theoretical model of the hyperon-nucleon interaction
We present a meson-exchange model for the hyperon-nucleon (ΛN and ΣN) interaction, which has been constructed according to the same guidelines as those used in the Bonn NN-potential. In contrast to the hyperon-nucleon coordinate space potentials of the Nijmegen group the model is given in momentum space and thus contains the full nonlocality structure predicted in the meson exchange framework. According to the importance of the Δ-isobar degree of freedom in the NN-channel, also in the hyperon nucleon systems we take into account higher order box-diagrams with the Δ and the corresponding strange spin-3/2 particle Υ* in the intermediate states. The NN- and NΔ-vertex parameters (coupling constants and cutoff masses parametrizing the extended vertex structure) are taken from the Bonn-potential. The coupling constants at the strange vertices are determined from SU6 symmetry relations whereas the corresponding cutoff masses are adjusted to the empirical hyperon-nucleon data. Effects arising from a) Δ-isobar and Υ* contributions, b) the coulomb interaction and c) the coupling of the two-particle channels ΛN and ΣN are investigated in detail. Within this model a good fit of the existing ΛN as well as ΣN data is achieved. In the scattering observables the coupled channel effect turns out to be of the order of 10%-15%. Somewhat larger effects arises from the contributions of the spin-3/2 baryons. The Coulomb interaction leads to a change in the total cross sections of 10%-20%. (orig./HSI)
The track system of the modernized 'Hyperon' spectrometer
The description of the multiwire proportional chambers of the 'Hyperon' facility aimed at research of the rare kaon decays is presented. The setup includes 39 multiwire chambers with areas from 128-128 mm2 up to 90-130 cm2 which contain about 9500 channels. Two magnetic spectrometers based on these multiwire chambers provide the momentum resolution 0.5% and 1.1% consequently at momentum 10 GeV/c. 11 refs.; 7 figs.; 2 tabs. (author)
Meson and hyperon production around 3 GeV
Full text: Meson and hyperon production has been studied, with the DISTO spectrometer, using the polarised proton beam of the Saturne accelerator at three beam momenta: 2.94, 3.31 and 3.67 GeV/c. For the meson program, total production cross sections σtot and angular distributions for the following reactions have been analysed, so far, at 3.67 GeV/c: 1. pp → ppφ (1020) → ppK+K- ; 2. pp → ppK+K- non resonant; 3. pp → pp η (547) → ppπ+π-π0; 4. pp → pp η' (958) → pp π+ π- η; 5. pp → pp ω (782) → pp π+ π- π0; 6. pp → pp ρ (770) → pp π+ π- . A review of these data will be outlined, namely results on σ tot for reaction 6 at 3.67 GeV/c. The hyperon production channels, so far investigated, are: 1) p-p → pK+ Λ and 2) p-p → pK+ Σ0 at the three beam momenta: 3.67, 3.31 and 2.94 GeV/c. We will present results on spin observables obtained for exclusive production both for positive and negative values of XF. These new data Dyy and Ay0 for reaction 2) are of particular relevance for the understanding of the reaction mechanism that makes polarised the hyperons inclusively produced at large PT. The Dyy parameter is especially sensitive to the hyperon production mechanism (3). For l production it is large and negative for both positive and negative XF values at the three beam momenta whereas it was observed to be either consistent with zero or large and positive in inclusive production and for positive only XF and higher beam momenta. Possible scenarios to explain this behavior will be discussed. (Author)
Agari, Michaela
2006-07-01
The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at {radical}(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). {lambda}, {xi} and {omega} hyperons and their antiparticles were reconstructed from 113.5 . 10{sup 6} inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, d{sigma}/dp{sub T}{sup 2} (for {lambda} and {xi}) and rapidity, d{sigma}/dy (for {lambda} only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)
Physics input for modelling superfluid neutron stars with hyperon cores
Gusakov, M E; Kantor, E M
2014-01-01
Observations of massive ($M \\approx 2.0~M_\\odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter consistent with the existence of $2~M_\\odot$ pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving $\\sigma\\omega\\rho\\phi\\sigma^\\ast$ meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the $\\ell=0,1$ Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. ...
Photoproduction of the. Lambda. sub c charmed baryon
Alvarez, M.P.; Calvino, F.; Crespo, J.M. (Universidad Autonoma de Barcelona (Spain)); Barate, R.; DiCiaccio, L.; Ferrer, A.; Giomataris, Y.; Pattison, B.; Treille, D.; Zolnierowski, Y. (European Organization for Nuclear Research, Geneva (Switzerland)); Bloch, D.; Engel, J.P.; Foucault, P.; Gerber, J.P.; Strub, R. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires Strasbourg-1 Univ., 67 (France)); Bonamy, P.; Borgeaud, P.; David, M.; Lemoigne, Y.; Magneville, C.; Primout, M.; Villet, G. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires); Burchell, M.; Burmeister, H.; Cattaneo, M.; Dixon, J.; Duane, A.; Forty, R.W.; Seez, C.; Websdale, D.M. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.); Brunet, J.M.; Poutot, D.; Triscos, P.; Tristram, G.; Volte, A. (College de France, 75 - Paris (France)); Almagne, B. d'
1990-08-23
In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29{plus minus}8 {Lambda}{sub c} (anti {Lambda}{sub c}) charmed-baryon and antibaryon decays in the pK{sup -}{pi}{sup +} (anti pK{sup +}{pi}{sup -}) final state. Quasi two-body final states do not contribute significantly to this channel. The mass of the {Lambda}{sub c} was measured to be 2281.7{plus minus}2.7{plus minus}2.6 MeV/c{sup 2} and its lifetime 0.18{plus minus}0.03{plus minus}0.03 ps. The ratio of {Lambda}{sub c}/D production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a {Lambda}{sub c} branching fraction in pK{pi} as high as 5%. (orig.).
Indication of an excited hyperon state in pp collisions with ANKE at COSY-Juelich
Zychor, I; Büscher, M; Dzyuba, A; Keshelashvili, I; Kleber, V; Koch, R; Krewald, S; Maeda, Y; Mikirtichyants, S; Nekipelov, M; Ströher, H; Wilkin, C
2005-01-01
The reaction pp->pK+Y has been studied with the ANKE spectrometer at COSY-Juelich in order to investigate heavy hyperon production. The missing mass spectra MM(pK+) have been analyzed and compared with Monte Carlo simulations. Indications for a hyperon resonance Y0*(1480) have been found.
Richard Mohring
1999-10-01
Jefferson Lab Experiment E93-018 measured kaon electroproduction in hydrogen in two hyperon channels, p(e, e'K{sup +})Lambda and p(e,e'K{sup +})Sigma{sup 0}. Data in both channels were taken at three (3) different values of the virtual photon transverse linear polarization, epsilon, for each of four (4) values of Q{sup 2} = (0.52, 0.75, 1.00, 2.00) GeV{sup 2}. Cross sections averaged over the azimuthal angle, phi, were extracted (i.e., sigma{sub T} + epsilon sigma{sub L}) at each of these twelve points for each hyperon. Rosenbluth separations were performed to separate the longitudinal and transverse production cross sections.
The discussion of the lambda anti lambda beams involves how to make polarized protons from lambda decay so that experiments on polarization at very high energies may be possible. The aspect studied is the amount of polarization and how to get it
R.M. Mohring; David Abbott; Abdellah Ahmidouch; Thomas Amatuni; Pawel Ambrozewicz; Tatiana Angelescu; Christopher Armstrong; John Arrington; Ketevi Assamagan; Steven Avery; Kevin Bailey; Kevin Beard; S Beedoe; Elizabeth Beise; Herbert Breuer; Roger Carlini; Jinseok Cha; C. Chang; Nicholas Chant; Evaristo Cisbani; Glenn Collins; William Cummings; Samuel Danagoulian; Raffaele De Leo; Fraser Duncan; James Dunne; Dipangkar Dutta; T Eden; Rolf Ent; Laurent Eyraud; Lars Ewell; John Finn; H. Terry Fortune; Valera Frolov; Salvatore Frullani; Christophe Furget; Franco Garibaldi; David Gaskell; Donald Geesaman; Paul Gueye; Kenneth Gustafsson; Jens-Ole Hansen; Mark Harvey; Wendy Hinton; Ed Hungerford; Mauro Iodice; Ceasar Jackson; Cynthia Keppel; Wooyoung Kim; Kouichi Kino; Douglas Koltenuk; Serge Kox; Laird Kramer; Antonio Leone; Allison Lung; David Mack; Richard Madey; M Maeda; Stanislaw Majewski; Pete Markowitz; T Mart; C Martoff; David Meekins; A. Mihul; Joseph Mitchell; Hamlet Mkrtchyan; Sekazi Mtingwa; Maria-Ioana Niculescu; R. Perrino; David Potterveld; John Price; Brian Raue; Jean Sebastien Real; Joerg Reinhold; Philip Roos; Teijiro Saito; Geoff Savage; Reyad Sawafta; Ralph Segel; Stepan Stepanyan; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Liliana Teodorescu; Tatsuo Terasawa; Hiroaki Tsubota; Guido Urciuoli; Jochen Volmer; William Vulcan; T. Welch; Robert Williams; Stephen Wood; Chen Yan; Benjamin Zeidman
2003-05-19
We report measurements of cross sections for the reaction {sup 1}H(e,e{prime} K{sup +})Y, for both the {Lambda} and {Sigma}{sup 0} hyperon states, at an invariant mass of W = 1.84 GeV and four-momentum transfers 0.5 < Q{sup 2} < 2 (GeV/c){sup 2}. Data were taken for three values of virtual photon polarization {epsilon}, allowing the decomposition of the cross sections into longitudinal and transverse components. The {Lambda} data are a revised analysis of prior work, whereas the {Sigma}{sup 0} results have not been previously reported.
R.M. Mohring; David Abbott; Abdellah Ahmidouch; T.A. Amatuni; Pawel Ambrozewicz; Tatiana Angelescu; Christopher Armstrong; John Arrington; Ketevi Assamagan; Steven Avery; Kevin Bailey; Kevin Beard; S. Beedoe; Elizabeth Beise; Herbert Breuer; Roger Carlini; Jinseok Cha; C. Chang; Nicholas Chant; Evaristo Cisbani; Glenn Collins; William Cummings; Samuel Danagoulian; Raffaele De Leo; Fraser Duncan; James Dunne; Dipangkar Dutta; T. Eden; Rolf Ent; Laurent Eyraud; Lars Ewell; John Finn; H. Terry Fortune; Valera Frolov; Salvatore Frullani; Christophe Furget; Franco Garibaldi; David Gaskell; Don Geesaman; Paul Gueye; Kenneth Gustafsson; Jens-ole Hansen; Mark Harvey; Wendy Hinton; Ed Hungerford; Mauro Iodice; C. Jackson; Cynthia Keppel; Wooyoung Kim; Kouichi Kino; Douglas Koltenuk; Serge Kox; Laird Kramer; Antonio Leone; Allison Lung; David Mack; Richard Madey; M. Maeda; Stanislaw Majewski; Pete Markowitz; T. MART; C.J. Martoff; David Meekins; A. Mihul; Joseph Mitchell; Hamlet Mkrtchyan; Sekazi Mtingwa; Maria-Ioana Niculescu; R. Perrino; David Potterveld; John Price; Brian Raue; Jean-Sebastien Real; Joerg Reinhold; Philip Roos; Teijiro Saito; Geoff Savage; Reyad Sawafta; Ralph Segel; Samuel Stepanyan; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Liliana Teodorescu; Tatsuo Terasawa; Hiroaki Tsubota; Guido Urciuoli; Jochen Volmer; William Vulcan; T. Welch; Robert Williams; Stephen Wood; Chen Yan; Benjamin Zeidman
2003-05-01
We report measurements of cross sections for the reaction p(e,e{prime}K{sup +})Y, for both the Lambda and Sigma{sub 0} hyperon states, at an invariant mass of W = 1.84 GeV and four-momentum transfers 0.5 < Q{sup 2} < 2 (GeV/c){sup 2}. Data were taken for three values of virtual photon polarization, allowing the decomposition of the cross sections into longitudinal and transverse components. The Lambda data is a revised analysis of prior work, whereas the Sigma{sub 0} results have not been previously reported.
Lambda polarization in association K+ -Lambda electro-production
The result of a feasibility study to measure the Lambda polarization in associated K+ -Lambda electro production is presented. This measurement was performed in the experimental Hall C at Jefferson Lab. The scattered electron was detected in the HMS spectrometer, and the electro-produced kaon and the proton from the Lambda -> ppi- decay were both detected in the SOS spectrometer. This quantity is very sensitive to the elementary p(e,e'K) [capital Lambda, Greek] process and gives information on resonance production, and Regge exchange, among others. The result presented was measured at Q2=1.50 (GeV/c)2 and cos [straight theta, small theta, Greek] K [small gamma, Greek] CM=14o. The limits of the [capital Lambda, Greek] polarization, with respect to the p [small gamma, Greek] x pK axis, were found to be -0.21 and +0.89 with a confidence level of 68%. The result is compared to theoretical predictions based on an effective hadronic field Lagrangian model and a Regge framework model
Nucleon Structure and Hyperon Form Factors from Lattice QCD
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon Σ and Ξ axial coupling constants are also performed for the first time in a lattice calculation, gσσ = 0.441(14) and gΞΞ -0.277(11)
Nucleon Structure and hyperon form factors from lattice QCD
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g#Sigma##Sigma# = 0.441(14) and g#Xi##Xi# = -0.277(11)
Pawel Ambrozewicz; Daniel Carman; Rob Feuerbach; Mac Mestayer; Brian Raue; Reinhard Schumacher; Avtandil Tkabladze
2006-11-19
We report measurements of the exclusive electroproduction of K{sup +}{Lambda} and K{sup +}{Sigma}{sup 0} final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions {sigma}{sub T}, {sigma}{sub L},{sigma}{sub TT}, and {sigma}{sub LT} were extracted from the {Phi}- and {epsilon}-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first {sigma}{sub L}/{sigma}{sub T} separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5 {le} Q{sup 2} {le} 2.8 GeV{sup 2} and invariant energy from 1.6 {le} W {le} 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the {Lambda} and {Sigma}{sup 0} hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Fits combining hyperon semileptonic decays and magnetic moments and CVC
We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi2/n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi2/n/sub D/ = 244/20
Effect of hyperons on phase coexistence in strange matter
Das, P; Chaudhuri, G
2016-01-01
The study of liquid gas phase transition in fragmentation of nuclei in heavy ion collisions has been extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz's free energy, specific heat and few other thermodynamic observables have been analyzed in order to examine the occurence of phase transition in the strange matter. The bimodal behaviour of the largest cluster formed in fragmentation also strongly indicates coexistence of both the phases. The presence of hyperons strengthens the signals and also shifts the transition temperature to lower values.
Semi-leptonic disintegration and integration of sigma hyperon
We study processes in which the hyperon sigma decays into one baryon, one pion and a lepton pair. We use the most general form for the matrix element considered, with eight form factors for the vector part of the hadron current and eight for its axial part. We calculate the contributions of soft pions, Born diagrams and the diagram with an intermediate resonance Δ(1232). We obtain the numeric values of the phase space integrals and calculate the disintegration probabilities. We also calculate, the disintegration probability of the process Σ → Δν using the quark model. (author)
Properties of Ξ hyperons and Ξ photoproduction process
Oh Yongseok
2012-12-01
Full Text Available In spite of the early efforts for studying Ξ resonances, we still do not have enough information on the properties of these resonances. The number of observed Ξ resonances is much smaller than the quark model predictions, and the predicted mass spectrum shows serious model-dependence. Furthermore, the spin-parity quantum numbers are not known for most observed resonances and the parity of the ground state Ξ has never been measured. In this talk, we review the issue in the Ξ spectrum and present a model for Ξ photoproduction which emphasizes the role of high-spin hyperon resonances.
Beauty, charm and hyperon production at fixed-target experiments
Erik Gottschalk
2002-12-11
Over the years fixed-target experiments have performed numerous studies of particle production in strong interactions. The experiments have been performed with different types of beam particles of varying energies, and many different target materials. Since the physics of particle production is still not understood, ongoing research of phenomena that we observe as beauty, charm and strange-particle production is crucial if we are to gain an understanding of these fundamental processes. It is in this context that recent results from fixed-target experiments on beauty, charm, and hyperon production will be reviewed.
Restriction alleviation by bacteriophages lambda and lambda reverse.
Toothman, P
1981-01-01
Deletion analysis indicated that the phage lambda restriction alleviation gene(s) ral resides between the cIII and N genes. The Ral+ phenotype was expressed only when lambda ral+ carried a modification such that it was resistant to restriction by the host specificity system. Under these conditions, Ral function protected superinfecting unmodified phages from restriction by EcoK or EcoB but not from restriction by EcoP1. Ral-protected phage DNA was not concomitantly K and B modified, but rathe...
First measurement of transferred polarization in the exclusive ep-->e'K+Lambda--> reaction.
Carman, D S; Joo, K; Mestayer, M D; Raue, B A; Adams, G; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Armstrong, D S; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S P; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Bennhold, C; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carnahan, B; Cazes, A; Cetina, C; Ciciani, L; Clark, R; Cole, P L; Coleman, A; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; DeSanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; DeVita, R; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Feuerbach, R J; Ficenec, J; Forest, T A; Funsten, H; Gaff, S J; Gai, M; Garçon, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Golovach, E; Gordon, C I O; Griffioen, K; Grimes, S; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ishkhanov, B; Ito, M M; Jenkins, D; Kelley, J H; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kuang, Y; Kuhn, S E; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, J; Livingston, K; Longhi, A; Lukashin, K; Manak, J J; Marchand, C; Mart, T; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Meyer, C A; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mozer, M U; Muccifora, V; Mueller, J; Murphy, L Y; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Opper, A K; Osipenko, M; Park, K; Paschke, K; Pasyuk, E; Peterson, G; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z
2003-04-01
The first measurements of the transferred polarization for the exclusive e-->p-->e(')K+Lambda--> reaction have been performed at Jefferson Laboratory using the CLAS spectrometer. A 2.567 GeV beam was used to measure the hyperon polarization over Q2 from 0.3 to 1.5 (GeV/c)(2), W from 1.6 to 2.15 GeV, and over the full K+ center-of-mass angular range. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A nonrelativistic quark-model interpretation of our data suggests that the ssmacr; quark pair is produced with spins predominantly antialigned. Implications for the validity of the most widely used quark-pair creation operator are discussed. PMID:12689277
Vaux, Lionel
2009-01-01
We introduce an extension of the pure lambda-calculus by endowing the set of terms with a structure of vector space, or more generally of module, over a fixed set of scalars. Terms are moreover subject to identities similar to usual point-wise definition of linear combinations of functions with values in a vector space. We then study a natural extension of beta-reduction in this setting: we prove it is confluent, then discuss consistency and conservativity over the ordinary lambda-calculus. W...
Hyperon Puzzle, Hadron-Quark Crossover and Massive Neutron Stars
Masuda, Kota; Takatsuka, Tatsuyuki
2015-01-01
Bulk properties of cold and hot neutron stars (NSs) are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) "CRover" which interpolates the two phases at around 3 times the nuclear matter density, it is found that the cold NSs with the gravitational mass larger than 2-solarmass can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 times the nuclear matter density and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-q...
Hyperon star in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2016-01-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a Modified Quark Meson Coupling Model (MQMC) where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. The effect of a nonlinear $\\omega$-$\\rho$ term on the equation of state is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of $2$~M$_{\\odot}$ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear $\\omega$-$\\rho$ term in the context of obtaining the star mass constraint in the present...
An Experiment on the Strong Interactions of Charged Hyperons
2002-01-01
The main goal of this experiment is to study @S*, @X* and @W* diffractive production in @X|-N collisions. Incident @X|- at a mean momentum of 118~GeV/c are tagged by a differential Cherenkov counter (DISC). The resonance decay products are analysed by a double stage magnetic spectrometer equipped with multiwire proportional chambers and drift chambers, a multicell Cherenkov counter and two complementary neutral particle detectors, a liquid argon calorimeter for @g and neutron detection and a lead glass bl wide angle @g rays. A multiplicity counter (M) and two hodoscopes of scintillators (H2 and H3) are used in the trigger. Hyperon radiative decays are also being studied with the same apparatus. The scattering target is taken out and appropriate trigger conditions are used. For the @S|+~@A~p@g decay mode, the polarity of the hyperon channel is reversed and the @S|+'s are identified by the DISC. For the @L~@A~n@g decay mode, @X|-~@A~@L@p|- decays occuring between the B and D chambers provide a source of @L's of...
Theory of neutrino emission from nucleon-hyperon matter in neutron stars: Angular integrals
Kaminker, A D; Haensel, P
2016-01-01
Investigations of thermal evolution of neutron stars with hyperon cores require neutrino emissivities for many neutrino reactions involving strongly degenerate particles (nucleons, hyperons, electrons, muons). We calculate the angular integrals $I_n$ (over orientations of momenta of $n$ degenerate particles) for major neutrino reactions with $n$ =3, 4, 5 at all possible combinations of particle Fermi momenta. The integrals $I_n$ are necessary ingredients for constructing a uniform database of neutrino emissivities in dense nucleon-hyperon matter. The results can also be used in many problems of physical kinetics of strongly degenerate systems.
Theory of neutrino emission from nucleon-hyperon matter in neutron stars: angular integrals
Kaminker, A. D.; Yakovlev, D. G.; Haensel, P.
2016-08-01
Investigations of thermal evolution of neutron stars with hyperon cores require neutrino emissivities for many neutrino reactions involving strongly degenerate particles (nucleons, hyperons, electrons, muons). We calculate the angular integrals In (over orientations of momenta of n degenerate particles) for major neutrino reactions with n=3, 4, 5 at all possible combinations of particle Fermi momenta. The integrals In are necessary ingredients for constructing a uniform database of neutrino emissivities in dense nucleon-hyperon matter. The results can also be used in many problems of physical kinetics of strongly degenerate systems.
Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering
Adolph, C.; Alekseev, M. G.; Alexakhin, V. Y.; Alexandrov, Y.; Alexeev, G. D.; Amoroso, A.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Y.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, C.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Y.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Y. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Y. V.; Miyachi, Y.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Y.; Silva, L.; Sinha, L.; Sirtl, S.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2013-10-01
Large samples of Λ, Σ(1385) and Ξ(1321) hyperons produced in the deep-inelastic muon scattering off a 6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of Σ(1385)+, Σ(1385)-, , , Ξ(1321)-, and hyperons decaying into were measured. The ratios of heavy-hyperon to Λ and heavy-antihyperon to were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.
Hyperon production inbar pp interactions at 22.4 GeV/ c
Herynek, I.; Muríň, P.; Staroba, P.; Suk, M.; Šimák, V.; Valkárová, A.; Vávra, J.
1993-07-01
In the present paper we investigate the production of charged hyperons and antihy-perons inbar pp interactions at 22.4 GeV/ c recorded in the 2m hydrogen bubble chamber “Ludmila”. After correction for losses due to the kinematics of hyperon decays and for scanning efficiency we have obtained 610 events with charged hyperons or antihyperons. A total cross section of 1.3{-0.05/+0.4} mb for ∑±/overline {sum ^ ± } has been obtained, and various associated charged particle multiplicity distributions are presented.
Hyperons in nuclear matter from SU(3) chiral effective field theory
Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)
2016-01-15
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)
Ohnishi, Akira; Furumoto, Takenori
2015-01-01
We investigate $\\Lambda\\Lambda$ interaction dependence of the $\\Lambda\\Lambda$ intensity correlation in high-energy heavy-ion collisions. By analyzing the correlation data recently obtained by the STAR collaboration based on theoretically proposed $\\Lambda\\Lambda$ interactions, we give a constraint on the $\\Lambda\\Lambda$ scattering length, $-1.25~\\text{fm} < a_0 < 0$, suggesting that $\\Lambda\\Lambda$ interaction is weakly attractive and there is no loosely bound state. In addition to the fermionic quantum statistics and the $\\Lambda\\Lambda$ interaction, effects of collective flow, feed-down from $\\Sigma^0$, and the residual source are also found to be important to understand the data. We demonstrate that the correlation data favor negative $\\Lambda\\Lambda$ scattering length with the pair purity parameter $\\lambda=(0.67)^2$ evaluated by using experimental data on the $\\Sigma^0/\\Lambda$ ratio, while the positive scattering length could be favored when we regard $\\lambda$ as a free fitting parameter.
A Discussion on Triangle Singularities in the $\\Lambda_b \\to J/\\psi K^{-} p$ Reaction
Bayar, Melahat; Guo, Feng-Kun; Oset, Eulogio
2016-01-01
We have analyzed the singularities of a triangle loop integral in detail and derived a formula for an easy evaluation of the triangle singularity on the physical boundary. It is applied to the $\\Lambda_b \\rightarrow J/\\psi K^{-} p$ process via $\\Lambda^*$-charmonium-proton intermediate states. Although the evaluation of absolute rates is not possible, we identify the $\\chi_{c1}$ and the $\\psi(2S)$ as the relatively most relevant states among all possible charmonia up to the $\\psi(2S)$. The $\\Lambda(1890)\\, \\chi_{c1}\\, p$ loop is very special as its normal threshold and triangle singularities merge at about 4.45 GeV, generating a narrow and prominent peak in the amplitude in the case that the $\\chi_{c1}\\, p$ is in an $S$-wave. We also see that loops with the same charmonium and other $\\Lambda^*$ hyperons produce less dramatic peaks from the threshold singularity alone. For the case of $\\chi_{c1}\\, p \\rightarrow J/\\psi\\, p$ and quantum numbers $3/2^-$ or $5/2^+$ one needs $P$- and $D$-waves, respectively, in th...
Lambda-mu-calculus and Bohm's theorem
David, René; Py, Walter
2001-01-01
The lambda mu-calculus is an extension of the lambda-calculus that has been introduced by M. Parigot to give an algorithmic content to classical proofs. We show that Bohm's theorem fails in this calculus.
Parity reversion in ^{12}_\\Lambda Be
Homma, H; Kimura, M
2011-01-01
The spectrum of $^{12}_\\Lambda$Be is studied by an extended version of antisymmetrized molecular dynamics for hypernuclei. The result predicts the positive-parity ground state of $^{12}_\\Lambda$Be that is reverted to the normal one by the impurity effect of $\\Lambda$ particle. The reversion of the parity is due to the difference of $\\Lambda$ binding energy in the positive- and negative-parity states that originates in the difference of $\\alpha$ clustering and deformation.
Kaons and Hyperons rare decays by the NA48 experiment at CERN
Lenti, M.
2004-01-01
Some Kaons and Hyperons rare decays branching ratios and form factors were measured by the NA48 experiment at CERN. The details of the measurements and their importance for the understanding of the CKM quark mixing matrix are discussed.
Lambda-lifting in Quadratic Time
Danvy, O.; Schultz, U.P.
2004-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...
Lambda-Lifting in Quadratic Time
Danvy, Olivier; Schultz, Ulrik Pagh
2004-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...
Lambda-Lifting in Quadratic Time
Danvy, Olivier; Schultz, Ulrik Pagh
2003-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...
Lambda-Lifting in Quadratic Time
Danvy, Olivier; Schultz, Ulrik Pagh
2002-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...