Evolution of multidimensional flat anisotropic cosmological models
We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means
Anisotropic Cosmological Model with Variable G and Lambda
Tripathy, S K; Routray, T R
2015-01-01
Anisotropic Bianchi-III cosmological model is investigated with variable gravitational and cosmological constants in the framework of Einstein's general relativity. The shear scalar is considered to be proportional to the expansion scalar. The dynamics of the anisotropic universe with variable G and Lambda are discussed. Without assuming any specific forms for Lambda and the metric potentials, we have tried to extract the time variation of G and Lambda from the anisotropic model. The extracted G and Lambda are in conformity with the present day observation. Basing upon the observational limits, the behaviour and range of the effective equation of state parameter are discussed.
Anisotropic cosmological models and generalized scalar tensor theory
Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty
2003-10-01
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.
Anisotropic models are unitary: A rejuvenation of standard quantum cosmology
Pal, Sridip
2016-01-01
The present work proves that the folk-lore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed to be a symmetric operator, thereby making the problem of non-unitarity in context of anisotropic homogeneous model a ghost. Moreover, it is indicated that the self-adjoint extension is not unique and this non-uniqueness is suspected not to be a feature of Anisotropic model only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension, albeit for isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian i.e {\\it Friedrichs extension}. Details of calculations are carried out for a Bianchi III model.
Anisotropic cosmology and inflation from tilted Bianchi IX model
Sundell, Peter
2015-01-01
The dynamics of the tilted Bianchi IX cosmological models are explored allowing energy flux in the source fluid. The equation of state and the tilt angle of the fluid are the two free parameters and the shear, the vorticity and the curvature of the spacetime span a three-dimensional phase space that contains seven fixed points. One of them is an attractor that inflates the universe anisotropically, thus providing a counter example to the cosmic no-hair conjecture. Also, an example of a realistic though fine-tuned cosmology is presented wherein the rotation can grow significant towards the present epoch but the shear stays within the observational bounds.
Gauge-invariant perturbations in anisotropic homogeneous cosmological models
Perturbations in spatially flat anisotropic homogeneous cosmological models with arbitrary dimension N are classified into three types I, II, and III and gauge-invariant quantities are defined in each type. Equations for them are derived for arbitrary anisotropic flat models. It is found that density perturbations are described by two second-order differential equations, as in the treatment of Perko, Matzner, and Shepley for the pressureless fluid. The solutions are obtained for approximate Kasner-type anisotropic models and their characteristic behaviors are shown for the fluids with nonzero pressure as well as the pressureless fluid. They are consistent with the counterparts of Perko, Matzner, and Shepley for the pressureless fluid. The instability problem in a Kaluza-Klein multidimensional universe also is discussed
Shear-free anisotropic cosmological models in {f (R)} gravity
Abebe, Amare; Momeni, Davood; Myrzakulov, Ratbay
2016-04-01
We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f( R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f( R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f( R) gravity. For the Starobinsky model of f( R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Averaging anisotropic cosmologies
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
Some anisotropic non-static perfect fluid cosmological models in general relativity
Perfect fluid cosmological models are derived which are anisotropic, non-static and have homogeneous distributions of density and pressure. Various physical properties of the models are explored. (author)
Anisotropic Cosmological Model in Modified Brans--Dicke Theory
Rasouli, S. M. M.; Farhoudi, Mehrdad; Sepangi, Hamid R.
2011-01-01
It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time whi...
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Anisotropic cosmological models in $f (R, T)$ theory of gravitation
Shri Ram; Priyanka; Manish Kumar Singh
2013-07-01
A class of non-singular bouncing cosmological models of a general class of Bianchi models filled with perfect fluid in the framework of $f (R, T)$ gravity is presented. The model initially accelerates for a certain period of time and decelerates thereafter. The physical behaviour of the model is also studied.
Anisotropic Cosmological Model in Modified Brans--Dicke Theory
Rasouli, S M M; Sepangi, Hamid R
2011-01-01
It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time while scale factor of extra dimension is constant, and scalar field depends on time and fifth coordinate, then in general, one will encounter inconsistencies in field equations. Then, we assume the scale factors and scalar field depend on time and extra coordinate as separated variables in power law forms. Hence, we find a few classes of solutions in 5D spacetime through which, we probe the one which leads to a generalized Kasner relations among Kasner parameters. The induced scalar potential is found to be in power law or i...
Distance-redshift relations in an anisotropic cosmological model
In this paper we study an anisotropic model generated from a particular Bianchi type-III metric, which is a generalization of Gödel's metric and an exact solution of Einstein's field equations. We analyse type Ia supernova data, namely the SDSS sample calibrated with the MLCS2k2 fitter, and we verify in which ranges of distances and redshifts the anisotropy could be observed. We also consider, in a joint analysis, the position of the first peak in the CMB anisotropy spectrum, as well as current observational constraints on the Hubble constant. We conclude that a small anisotropy is permitted by the data, and that more accurate measurements of supernova distances above z = 2 might indicate the existence of such anisotropy in the universe
In the present article we resume some of our results on homogeneous anisotropic models of the Poincare gauge theory of gravity based on the Riemann-Cartan spacetime. Namely, within the framework of the minimum quadratic Poincare gauge theory of gravity the dynamics of homogeneous anisotropic Bianchi types I-IX spinning-fluid cosmological models is studied. A basic equation set for these models is obtained and analyzed. In particular, exact solutions for the Bianchi type-I spinning-fluid and Bianchi type-V perfect-fluid models are found in integral form. (author). 30 refs, 2 tabs
Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature
Pandey, Sachin
2016-01-01
Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.
Rainbow metric from quantum gravity: anisotropic cosmology
Assanioussi, Mehdi; Dapor, Andrea
2016-01-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformatio...
Anisotropic Inflation and Cosmological Observations
Emami, Razieh
2015-01-01
Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...
Shear-free Anisotropic Cosmological Models in f(R) Gravity
Abebe, Amare; Myrzakulov, Ratbay
2015-01-01
We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f(R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f(R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in $f(R)$ gravity. For the Starobinsky model of f(R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.
How real-time cosmology can distinguish between different anisotropic models
Amendola, Luca [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany); Bjælde, Ole Eggers [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK–8000 Aarhus C (Denmark); Valkenburg, Wessel [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Wong, Yvonne Y.Y., E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: oeb@phys.au.dk, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)
2013-12-01
We present a new analysis on how to distinguish between isotropic and anisotropic cosmological models based on tracking the angular displacements of a large number of distant quasars over an extended period of time, and then performing a multipole-vector decomposition of the resulting displacement maps. We find that while the GAIA mission operating at its nominal specifications does not have sufficient angular resolution to resolve anisotropic universes from isotropic ones using this method within a reasonable timespan of ten years, a next-generation GAIA-like survey with a resolution ten times better should be equal to the task. Distinguishing between different anisotropic models is however more demanding. Keeping the observational timespan to ten years, we find that the angular resolution of the survey will need to be of order 0.1 μas in order for certain rotating anisotropic models to produce a detectable signature that is also unique to models of this class. However, should such a detection become possible, it would immediately allow us to rule out large local void models.
Anisotropic quantum cosmological models a discrepancy between many-worlds and dBB interpretations
Alvarenga, F G; Fabris, J C; Gonçalves, S V B
2002-01-01
In the isotropic quantum cosmological perfect fluid model, the initial singularity can be avoided, while the classical behaviour is recovered asymptotically. We verify if initial anisotropies can also be suppressed in a quantum version of a classical anisotropic model where gravity is coupled to a perfect fluid. Employing a Bianchi I cosmological model, we obtain a "Schr\\"odinger-like" equation where the matter variables play de role of time. This equation has a hyperbolic signature. It can be explicitly solved and a wave packet is constructed. The expectation value of the scale factor, evaluated in the spirit of the many-worlds interpretation, reveals an isotropic Universe. On the other hand, the bohmian trajectories indicate the existence of anisotropies. This is an example where the Bohm-de Broglie and the many-worlds interpretations are not equivalent. It is argued that this inequivalence is due to the hyperbolic structure of the "Schr\\"odinger-like" equation.
Cosmological model with anisotropic dark energy and self-similarity of the second kind
We study the evolution of an anisotropic fluid with self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming an equation of state where the radial pressure of the fluid is proportional to its energy density (pr =ωρ) and that the fluid moves along time-like geodesics. The equation of state and the anisotropy with self-similarity of second kind imply ω = -1. The energy conditions, geometrical and physical properties of the solutions are studied. We have found that for the parameter α=-1/2 , it may represent a Big Rip cosmological model. (author)
Rama, S Kalyana
2016-01-01
The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by Loop Quantum Cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC -- inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.
Chandel S; Ram Shri
2016-03-01
The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time $t = 0$, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.
In the general relativity theory Bianki's homogeneous axisymmetrical cosmological model of type 5 is considered. This model belongs to the class of anisotropic models with 4-velocity nonorthogonal to invariant varieties (homogeneous spaces) V3. Matter possesses a velocity and a nonzero (with the exception of dustlike matter) value of 4-acceleration. A transition from a synchronous system with geodetic time line orthogonal to space-like V3 to the concomitant system reveals the presence of horizon surfaces and a possible incompleteness of the initial synchronous system. This necessitates also the introduction of a semigeodetic system with geodetic orthogonal invariant varieties V3 that are space-like. Gravitational equations are qualitatively analyzed. The hydrodynamic specificity of continuous motion of matter with 4-acceleration manifests itself as bifoliate solutions (the presence of limiting lines). The motion of matter with the studied symmetry in the Galilean space-time is also analyzed
Rainbow metric from quantum gravity: anisotropic cosmology
Assanioussi, Mehdi
2016-01-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
Anisotropic cosmologies with ghost dark energy models in f (R, T) gravity
Fayaz, V.; Hossienkhani, H.; Zarei, Z.; Azimi, N.
2016-02-01
In this work, the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity is investigated. For this purpose, we use the squared sound speed vs2 whose sign determines the stability of the model. At first, the non-interacting ghost dark energy in a Bianchi type-I (BI) background is discussed. Then the equation-of-state parameter, ω_D=pD/ρD, the deceleration parameter, and the evolution equation of the generalized ghost dark energy are obtained. It is shown that the equation-of-state parameter of the ghost dark energy can cross the phantom line ( ω=-1 in some range of the parameter spaces. Then, this investigation was extended to the general scheme for modified f(R,T) gravity reconstruction from a realistic case in an anisotropic Bianchi type-I cosmology, using the dark matter and ghost dark energy. Special attention is taken into account for the case in which the function f is given by f(R,T)=f1(R) +f2(T). We consider a specific model which permits the standard continuity equation in this modified theory. Besides Ω_{Λ} and Ω in standard Einstein cosmology, another density parameter, Ω_{σ}, is expected by the anisotropy. This theory implies that if Ω_{σ} is zero then it yields the FRW universe model. Interestingly enough, we find that the corresponding f ( R, T) gravity of the ghost DE model can behave like phantom or quintessence of the selected models which describe the accelerated expansion of the universe.
Anisotropic 'hairs' in string cosmology
Kunze, Kerstin E.; Durrer, Ruth
1999-01-01
In this letter we investigate whether the isotropy problem is naturally solved in inflationary cosmologies inspired by string theory, so called pre-big-bang cosmologies. We find that, in contrast to what happens in the more common 'potential inflation' models, initial anisotropies do not decay during pre-big-bang inflation.
Anisotropic cosmology in K-essence theory
We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid (p = γρ) modeling the usual matter content and include the particular form of potential V(φ) = constant = 2Λ. The classical solutions for any γ ≠ 1 and Λ = 0 are found in closed form, using a time transformation. We also present the solution when Λ ≠ 0 including particular values in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between the anisotropic parameters and the volume of the universe and show that this tend to a constant or to zero for different cases
Anisotropic matter in cosmology: locally rotationally symmetric Bianchi I and VII o models
Sloan, David
2016-05-01
We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally rotationally symmetric Bianchi types I and VII o in the presence of anisotropic matter. By finding an appropriate constant of the motion, and transforming the equations of motion we are able to provide exact solutions in the presence of perfect fluids with anisotropic pressures. The solution space covers matter consisting of a single perfect fluid which satisfies the weak energy condition and is rich enough to contain solutions which exhibit behaviour which is qualitatively distinct from the isotropic sector. Thus we find that there is more ‘matter that matters’ close to a homogeneous singularity than the usual stiff fluid. Example metrics are given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic strings and domain walls.
Anisotropic Matter in Cosmology: Locally Rotationally Symmetric Bianchi $I$ and $VII_o$ Models
Sloan, David
2016-01-01
We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally rotationally symmetric Bianchi types $I$ and $VII_o$ in the presence of anisotropic matter. By finding an appropriate constant of the motion, and transforming the equations of motion we are able to provide exact solutions in the presence perfect fluids with anisotropic pressures. The solution space covers matter consisting of a single perfect fluid which satisfies the weak energy condition and is rich enough to contain solutions which exhibit behaviour which is qualitatively distinct from the isotropic sector. Thus we find that there is more `matter that matters' close to a homogeneous singularity than the usual stiff fluid. Example metrics are given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic strings and domain walls.
An anisotropic cosmological model in a modified Brans-Dicke theory
Rasouli, S. M. M.; Farhoudi, Mehrdad; Sepangi, Hamid R.
2011-08-01
Recently, it has been shown that a four-dimensional (4D) Brans-Dicke (BD) theory with an effective matter field and a self-interacting potential can be achieved from the vacuum 5D BD field equations, where we refer to as a modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing the obtained formalism, we derive the induced matter on any 4D hypersurface in the context of the MBDT. We illustrate that if the usual spatial scale factors are functions of the time while the scale factor of extra dimension is constant, and the scalar field depends on the time and the fifth coordinate, then, in general, one will encounter inconsistencies in the field equations. Then, we assume that the scale factors and the scalar field depend on the time and the extra coordinate as separated variables in the power-law forms. Hence, we find a few classes of solutions in 5D spacetime through which we probe the one which leads to a generalized Kasner relation among the Kasner parameters. The induced scalar potential is found to be in the power law or in the logarithmic form; however, for a constant scalar field and even when the scalar field only depends on the fifth coordinate, it vanishes. The conservation law is indeed valid in this MBDT approach for the derived induced energy-momentum tensor (EMT). We proceed our investigations for a few cosmological quantities, where for simplicity we assume that the metric and the scalar field are functions of the time. Hence, the EMT satisfies the barotropic equation of state, and the model indicates that the constant mean Hubble parameter is not allowed. Thus, by appealing to the variation of the Hubble parameter, we assume a fixed deceleration parameter, and set the evolution of the quantities with respect to the fixed deceleration, the BD coupling and the state parameters. The WEC allows a shrinking extra dimension for a decelerating expanding universe that, in the
Temperature and polarization patterns in anisotropic cosmologies
We study the coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models. We show results for all Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V, VII0, VIIh and IX) to illustrate the range of possible behaviour. We discuss the role of spatial curvature, shear and rotation in the geodesic equations for each model and establish some basic results concerning the symmetries of the patterns produced. We also give examples of the time-evolution of these patterns in terms of the Stokes parameters I, Q and U
The Anisotropic Geometrodynamics For Cosmology
Siparov, Sergey V.
2009-05-01
The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.
Anisotropic cosmological solutions in massive vector theories
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between...
Phase Space of Anisotropic $R^n$ Cosmologies
Leon, Genly
2014-01-01
We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.
String Cosmology in Anisotropic Bianchi-II Space-time
Kumar, Suresh
2010-01-01
The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological model representing massive strings. The energy-momentum tensor, as formulated by Letelier (1983), has been used to construct a massive string cosmological model for which the expansion scalar is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter that yields a constant value of deceleratio...
Anisotropic Bianchi-III cosmological model in f (R, T) gravity
Sahoo, P. K.; Sahu, S. K.; Nath, A.
2016-01-01
An anisotropic Bianchi type-III universe is investigated in the presence of a perfect fluid within the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the source of matter. Here we have considered the first two cases of the f(R,T) model, i.e. f(R,T)=R+2f(T) and f(R,T)=f1(R)+f2(T). We have shown that the field equations of f(R,T) gravity are solvable for any arbitrary function of a scale factor. To get a physically realistic model of the universe, we have assumed a simple power-law form of a scale factor. The exact solutions of the field equations are obtained, which represent an expanding model of the universe which starts expanding with a big bang at t = 0 . The physical behaviours of the model are discussed.
Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation
D. R. K. Reddy
2013-01-01
Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.
Anisotropic string cosmological models in Heckmann-Schucking space-time
Goswami, G. K.; Dewangan, R. N.; Yadav, A. K.; Pradhan, A.
2016-02-01
In the present work we have searched the existence of the late time acceleration of the universe with string fluid as source of matter in anisotropic Heckmann-Schucking space-time by using 287 high red shift (0.3 ≤ z≤1.4) SN Ia data of observed absolute magnitude along with their possible error from Union 2.1 compilation. It is found that the best fit values for (\\varOmegam)0, (\\varOmega_{\\varLambda})0, (\\varOmega_{σ })0 and (q)0 are 0.2820, 0.7177, 0.0002 & -0.5793 respectively. Several physical aspects and geometrical properties of the model are discussed in detail.
Anisotropic String Cosmological Models in Heckmann-Suchuking Space-Time
Goswami, G K; Yadav, A K; Pradhan, A
2016-01-01
In the present work we have searched the existence of the late time acceleration of the universe with string fluid as source of matter in anisotropic Heckmann-Suchking space-time by using 287 high red shift $(0.3 \\leq z\\leq 1.4)$ SN Ia data of observed absolute magnitude along with their possible error from Union 2.1 compilation. It is found that the best fit values for $(\\Omega_{m})_{0}$, $(\\Omega_{\\Lambda})_{0}$, $(\\Omega_{\\sigma})_{0}$ and $(q)_{0}$ are 0.2820, 0.7177, 0.0002 $\\&$ -0.5793 respectively. Several physical aspects and geometrical properties of the model are discussed in detail.
Shogin, Dmitry
2015-01-01
We test the physical relevance of the full and truncated versions of the Israel-Stewart theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes filled with a viscous {\\gamma}-fluid, keeping track of the magnitude of relative dissipative fluxes, which determines the applicability of the Israel-Stewart theory. We consider the situations when the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. Also, we apply two different temperature models in the full version of the theory in order to compare the results. We demonstrate that the only case when the fluid asymptotically approaches local equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated Israel-Stewart equations for shear viscosity are found to produce solutions which manifest patholog...
Anisotropic cosmological solutions in massive vector theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...
Light propagation in inhomogeneous and anisotropic cosmologies
Fleury, Pierre
2015-01-01
The standard model of cosmology is based on the hypothesis that the Universe is spatially homogeneous and isotropic. When interpreting most observations, this cosmological principle is applied stricto sensu: the light emitted by distant sources is assumed to propagate through a Friedmann-Lema\\^itre spacetime. The main goal of the present thesis was to evaluate how reliable this assumption is, especially when small scales are at stake. After having reviewed the laws of geometric optics in curved spacetime, and the standard interpretation of cosmological observables, the dissertation reports a comprehensive analysis of light propagation in Swiss-cheese models, designed to capture the clumpy character of the Universe. The resulting impact on the interpretation of the Hubble diagram is quantified, and shown to be relatively small, thanks to the cosmological constant. When applied to current supernova data, the associated corrections tend however to improve the agreement between the cosmological parameters inferre...
Evolution of the density parameter in the anisotropic DGP cosmology
Ansari, Rizwan Ul Haq
2011-01-01
Evolution of the density parameter in the anisotropic DGP braneworld model is studied. The role of shear and cross-over scale in the evolution of $\\Omega_\\rho$ is examined for both the branches of solution in the DGP model. The evolution is modified significantly compared to the FRW model and further it does not depend on the value of $\\gamma$ alone. Behaviour of the cosmological density parameter $\\Omega_\\rho$ is unaltered in the late universe. The study of decceleration parameter shows that the entry of the universe into self accelerating phase is determined by the value of shear. We also obtain an estimate of the shear parameter $\\frac{\\Sigma}{H_0} \\sim 1.68 \\times 10^{-10}$, which is in agreement with the constraints obtained in the literature using data.
Anisotropic invariance in minisuperspace models
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Evolution of cosmological event horizons in anisotropic universes
Kim, Hyeong-Chan
2012-01-01
We study the evolution of cosmological event horizons in anisotropic Kasner universes in the presence of a positive cosmological constant by analyzing null geodesics. At later times, the asymptotic form of cosmological horizons is the same spherical surface as the de Sitter horizon. At the early times, however, it has non-spherical shape with its eccentricity decreases with time. The horizon area increases with time respecting the second law of thermodynamics. The initial shape of the cosmological horizon takes the form of a needle or pancake surface depending on the nature of the background spacetimes. We also briefly discuss that the presence of the holographic dark energy will modify significantly the initial evolution of the anisotropic universes.
Gravitational Collapse with Cosmological Constant and Anisotropic Pressure
Ahmad, Zahid; Malik, Sania Abdul
2016-01-01
We investigate the gravitational collapse of anisotropic perfect fluid by applying junction conditions and spherically symmetric space-times in the presence of cosmological constant. We show that the cosmological constant slows down the collapsing process and also reduces the size of black hole.This work provides a generalization of the previous studies by Cissoko et al. (arXiv: gr-qc/9809057) for dust and by Sharif and Ahmad (Mod. Phys. Lett. A, 22:1493, 2007) for perfect fluid.
Cosmological model favored by the holographic principle
Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena
2016-03-01
We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.
Bianchi Type V Cosmological Models with Varying Cosmological Term
Tiwari, R. K.; Singh, Rameshwar
2015-05-01
We have analyzed a new class of spatially homogeneous and anisotropic Bianchi type-V cosmological models with perfect fluid distribution in presence of time varying cosmological and gravitational constants in the framework of general relativity. Exact solutions of Einstein's field equations are obtained for two types of cosmologies viz. m ≠ 3 and m = 3 respectively. We propose an alternate variation law in which the anisotropy ( σ/ 𝜃) per unit expansion scalar ( 𝜃) is proportional to a function of scale factor R i.e. (where σ is a shear scalar) Tiwari (The African Review of Physics, 8, 437-447 2013). Physical properties of the models are discussed in detail. The models isotropize at late times. Some cosmological distance parameters for both the models have also been presented. We also discussed state finder parameters and observe that our solutions favor Λ C D M model.
Cosmological models and stability
Andersson, Lars
2013-01-01
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiri Bicak at this conference Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed...
Grand unified models and cosmology
Jeannerot, Rachel
2006-01-01
The cosmological consequences of particle physics grand unified theories (GUTs) are studied. Cosmological models are implemented in realistic particle physics models. Models consistent from both particle physics and cosmological considerations are selected. (...)
Braneworld cosmological models with anisotropy
For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it as ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field - the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti-de Sitter bulk
Braneworld cosmological models with anisotropy
Campos, Antonio; Maartens, Roy; Matravers, David; Sopuerta, Carlos F.
2003-11-01
For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it as ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field—the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti de Sitter bulk.
Braneworld cosmological models with anisotropy
Campos, A; Matravers, D; Sopuerta, C F; Campos, Antonio; Maartens, Roy; Matravers, David; Sopuerta, Carlos F.
2003-01-01
For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field -- the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti-de Sitter bulk.
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Behavior of chaotic inflation in anisotropic cosmologies with nonminimal coupling
Futamase, T.; Rothman, T.; Matzner, R.
1989-01-15
We review the behavior of the chaotic inflationary scenario in the minimally coupled anisotropic case and in the nonminimally coupled isotropic case. In the former, anisotropy enhances inflation. In the latter, positive nonminimal coupling introduces a singularity at a critical point phi-circumflex/sub c/ in the scalar field. The exact value of phi-circumflex/sub c/ depends on the coupling parameter xi. This singularity cannot be exceeded, which precludes astrophysically sufficient inflation for xiapprox. >10/sup -2/. We extend the analysis to anisotropic Bianchi models where a second singularity phi/sub c/ appears, which further prevents inflation in these models for xiapprox. >10/sup -2/.
Model anisotropic quantum Hall states
Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su
2012-01-01
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...
An Improved Cosmological Model
Tsamis, N C
2016-01-01
We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.
The fractal cosmological model
Rozgacheva, I. K.; Agapov, A. A.
2011-01-01
The fractal cosmological model which accounts for observable fractal properties of the Universe's large-scale structure is constructed. In this framework these properties are consequences of the rotary symmetry of charged scalar meson matter field (complex field). They may be explained through a conception of the Universe as an assembly of self-similar space-time domains. We have found the scale invariant solutions of Einstein's equation and Lagrange's field equation. For the solution the spa...
Bayesian analysis of anisotropic cosmologies: Bianchi VII_h and WMAP
McEwen, J D; Feeney, S M; Peiris, H V; Lasenby, A N
2013-01-01
We perform a definitive analysis of Bianchi VII_h cosmologies with WMAP observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky, masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky, masked W-band map of WMAP 9-year observations. In addition to the physically motivated Bianchi VII_h model, we examine phenomenological models considered in previous studies, in which the Bianchi VII_h parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fit Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evi...
Anisotropic Bianchi-I universe with phantom field and cosmological constant
Bikash Chandra Paul; Dilip Paul
2008-12-01
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.
Model for Anisotropic Directed Percolation
Nguyen, V. Lien; Canessa, Enrique
1997-01-01
We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio $\\mu$ between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of $\\mu$. This result suggests that Sinai's theorem proposed originally fo...
New charged anisotropic compact models
Kileba Matondo, D.; Maharaj, S. D.
2016-07-01
We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.
Warm anisotropic inflationary universe model
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm Anisotropic Inflationary Universe Model
Sharif, M
2014-01-01
This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.
Observational constraints on two cosmological models
Rozgacheva, Irina; Borisov, Andrei; Agapov, Alexander
2015-01-01
Recently the model-independent approach to calculating a plot of scale factor $a$ versus lookback time $\\tau_L$ has been developed by Ringermacher $\\&$ Mead. In the present paper we compare the dependence obtained in their workwith predicted ones given by cosmological model with scalar meson field and by two-component (warm massive fermions + cosmological constant) cosmological model. For these models we fit cosmological parameters and estimate corresponding confidence intervals. It was found...
Cosmological aspects of superstring models
I consider more specifically the cosmological aspects of supersymmetry breaking in ''superstring models'' (grand unified models which are believed to describe the effective theory obtained by compactification of superstring theories). The most interesting aspects are related to the presence of flat directions in the scalar potential (vacuum degeneracies). These flat directions are discussed both in the hidden sector of these models (do they give rise to inflation) and in the observable sector of quarks, leptons and Higgs particles, in connection with baryogenesis
Quantum effects and regular cosmological models
Allowance for the quantum nature of material fields and weak gravitational waves on the background of the classical metric of the cosmological model results in two basic effects: vacuum polarization and particle production. The first of the effects may be taken into account qualitatively by introducing into the lagrangian density of the gravitational field an additional term of the type A+BR2+CR2In|R/R0|; the second effect can be accounted for by prescribing a local rate of particle (graviton) production which is proportional to the square of the scalar curvature R2. It is shown that the taking into account of the combined effect of these phenomena on the evolution of a homogeneous anisotropic metric of the first Bianchi type removes the Einstein singularities. Asymptotic approach to the classical model, however, is attained only if additional assumptions are made. At the stage of compression the solution is close to the anisotropic vacuum Kasner solution; at the expansion stage it tends to the isotropic Friedman solution in which matter is produced by the gravitational field
Chiral Cosmological Models: Dark Sector Fields Description
Chervon, S V
2014-01-01
The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...
Anisotropic loop quantum cosmology with self-dual variables
Wilson-Ewing, Edward
2015-01-01
A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual connection variables is presented in this paper. The basic operators in the quantum theory correspond to areas and generalized holonomies of the Ashtekar connection and the reality conditions are implemented via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian constraint operator is given explicitly for the case when the matter content is a massless scalar field (in which case the scalar field can be used as a relational clock), and it is shown that the big-bang and big-crunch singularities are resolved in the sense that singular and non-singular states decouple under the action of the Hamiltonian constraint operator.
Anisotropic loop quantum cosmology with self-dual variables
Wilson-Ewing, Edward
2016-04-01
A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual connection variables is presented in this paper. The basic operators in the quantum theory correspond to areas and generalized holonomies of the Ashtekar connection, and the reality conditions are implemented via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian constraint operator is given explicitly for the case when the matter content is a massless scalar field (in which case the scalar field can be used as a relational clock), and it is shown that the big bang and big crunch singularities are resolved in the sense that singular and nonsingular states decouple under the action of the Hamiltonian constraint operator.
SNe Ia Tests of Quintessence Tracker Cosmology in an Anisotropic Background
Miranda, W; Pigozzo, C
2014-01-01
We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Godel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters $\\Omega_M = 0.29$ and $\\Omega_k= 0.01$ respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.
SNe Ia tests of quintessence tracker cosmology in an anisotropic background
We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ψ, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ΩM = 0.29 and Ωk= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos
Bianchi type II models in the presence of perfect fluid and anisotropic dark energy
Akarsu, Özgur; Kumar, Suresh
2011-01-01
arXiv:1110.2408v2 [gr-qc] 15 Jun 2012 Bianchi type II models in the presence of perfect fluid and anisotropic dark energy Suresh Kumar ¨O zg¨ur Akarsu † June 18, 2012 Abstract Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Ein...
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Singh, Parampreet
2013-01-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaitre-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaitre-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Post-Newtonian cosmological models
Sanghai, Viraj A A
2015-01-01
We construct a framework to probe the effect of non-linear structure formation on the large-scale expansion of the universe. We take a bottom-up approach to cosmological modelling by splitting our universe into cells. The matter content within each cell is described by the post-Newtonian formalism. We assume that most of the cell is in the vicinity of weak gravitational fields, so that it can be described using a perturbed Minkowski metric. Our cells are patched together using the Israel junction conditions. We impose reflection symmetry across the boundary of these cells. This allows us to calculate the equation of motion for the boundary of the cell and, hence, the expansion rate of the universe. At Newtonian order, we recover the standard Friedmann-like equations. At post-Newtonian orders, we obtain a correction to the large-scale expansion of the universe. Our framework does not depend on the process of averaging in cosmology. As an example, we use this framework to investigate the cosmological evolution ...
Cosmological models and gravitational lenses
Full text: The large amount of observational data collected since the early last century by Surveys as: CLASS, SNAP, SDSS and others, made the tests possible cosmological models. What stands out most is one that uses gravitational lensing, which serves as a complement to tests with SNe-Ia. Currently, the observations indicate that the universe is accelerated expansion. Moreover to that we have the cosmic structures we observe today as the need to add more material. A proposal usual to solve these problems is to propose the existence of two dark components. This name comes from the constituents emitted any radiation. However, despite both not emit radiation they must distort space-time somehow. Thus, when a beam of light from any source in this region spreads geometrically modified, will have its trajectory changed. Therefore, the phenomenon of gravitational lensing allows infer indirectly the amount of dark matter in the universe. Moreover, the study of gravitational lensing enables to obtain cosmological parameters as the Hubble constant and density parameter. Moreover, this effect can heaven be used to detect exoplanets, or also as a natural telescope. In this study aims to assess some cosmological models using gravitational lenses and the CLASS data in tests with fluids quartessence. Such fluids are useful for treating the matter and dark energy as a single fluid. Unlike the model LambdaCDM that treats separately, i.e. in this model the universe consists of baryons, radiation, dust, dark matter and dark energy. We will use the statistics of gravitational lensing to make a comparison between the generalized Chaplygin gas and the viscous fluid. In addition, an application of statistics to the CLASS lenses will be applied in models well accepted by the scientific community. (author)
Matrix model approach to cosmology
Chaney, A.; Lu, Lei; Stern, A.
2016-03-01
We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.
$\\Lambda$CDM-type cosmological model and observational constraints
Goswami, G K; Mishra, Mandwi
2014-01-01
In the present work, we have searched the existence of $\\Lambda$CDM-type cosmological model in anisotropic Heckmann-Schucking space-time. The matter source that is responsible for the present acceleration of the universe consist of cosmic fluid with $p = \\omega\\rho$, where $\\omega$ is the equation of state parameter. The Einstein's field equations have been solved explicitly under some specific choice of parameters that isotropizes the model under consideration. It has been found that the derived model is in good agreement with recent SN Ia observations. Some physical aspects of the model has been discussed in detail.
Simple inhomogeneous cosmological (toy) models
I., Eddy G Chirinos; Zimdahl, Winfried
2016-01-01
Based on the Lema\\^itre-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump provides a better description of the observations than a local void. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the $\\Lambda$CDM model.
LRS Bianchi Type-I Dark Energy Cosmological Models in General Scalar Tensor Theory of Gravitation
D. Neelima; V. U. M. Rao
2013-01-01
Locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model with variable equation of state (EoS) parameter in (Nordtvedt 1970) general scalar tensor theory of gravitation with the help of a special case proposed by (Schwinger 1970) is obtained. It is observed that these anisotropic and isotropic dark energy cosmological models always represent an accelerated universe and are consistent with the recent observations of type-Ia supernovae. Some important features of the m...
Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and
Nawsad Ali
2013-09-01
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.
Cosmology with decaying cosmological constant -- exact solutions and model testing
Szydlowski, Marek
2015-01-01
We study dynamics of $\\Lambda(t)$ cosmological models which are a natural generalization of the standard cosmological model (the $\\Lambda$CDM model). We consider a class of models: the ones with a prescribed form of $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$. This type of a $\\Lambda(t)$ parametrization is motivated by different cosmological approaches. To guarantee the covariance principle in general relativity we interpreted $\\Lambda(t)$ relation as $\\Lambda(\\phi(t))$, where $\\phi(t)$ is a scalar field with a self-interacting potential $V(\\phi)$. For the $\\Lambda(t)$ cosmology with a prescribed form of $\\Lambda(t)$ we have found the exact solution in the form of Bessel functions. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of $H(z)$ and the Alcock-Paczy{\\'n}ski test. In this context we formulate a simple criterion of variability of $\\Lambda$ with respect to $t$ in terms of variability of the jerk or ...
Bianchi type II models in the presence of perfect fluid and anisotropic dark energy
Kumar, Suresh
2011-01-01
Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \\Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics th...
Cosmological models with running cosmological term and decaying dark matter
Szydlowski, Marek
2015-01-01
We are investigating dynamics of the generalized $\\Lambda$CDM model, which the $\\Lambda$ term is running with the cosmological time. We demonstrate that this model of $\\Lambda(t)$CDM cosmology can easily interpret in the interacting cosmology. Time, which is depended on $\\Lambda$ term, is emerging from the covariant theory of the scalar field $\\phi$ with the self-interacting potential $V(\\phi)$. On the example of the model $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$ we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: $\\rho_{\\text{dm}}\\propto a^{-3+\\delta(t)}$. We also present the idea of the testing $\\Lambda(t)$CDM model with dark energy and dark matter not as an isolated hypothesis but as integral part of the concordance cosmological model. At the $2\\sigma$ confidence level, we find $\\delta<0$, which is an evidence that the energy transfer from decaying dark matter is favored. This effect gives rise to lowering a mass of dark matter pa...
Cosmological model with dynamical curvature
Stichel, Peter C
2016-01-01
We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.
Dynamical analysis of anisotropic scalar-field cosmologies for a wide range of potentials
We perform a detailed dynamical analysis of anisotropic scalar-field cosmologies, and in particular of the most significant Kantowski–Sachs, locally rotationally symmetric (LRS) Bianchi I and LRS Bianchi III cases. We follow the new and powerful method of f-devisers, which allows us to perform the whole analysis for a wide range of potentials. Thus, one can just substitute the specific potential form in the final results and obtain the corresponding behavior, without the need of new calculations. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or stiff-dark energy solutions. In particular, all expanding, accelerating, stable attractors are isotropic. Additionally, we prove that as long as matter obeys the null energy condition, bounce behavior is impossible. Finally, applying the general results to the well-studied exponential and power-law potentials, we find that some of the general stable solutions disappear. This feature may be an indication that such simple potentials might restrict the dynamics in scalar-field cosmology, opening the way to the introduction of more complicated ones. (paper)
Quantum cosmological perfect fluid models
Alvarenga, F G; Lemos, N A; Monerat, G A
2001-01-01
Perfect fluid Friedmann-Robertson-Walker quantum cosmological models for an arbitrary barotropic equation of state $p = \\alpha\\rho$ are constructed using Schutz's variational formalism. In this approach the notion of time can be recovered. By superposition of stationary states, finite-norm wave-packet solutions to the Wheeler-DeWitt equation are found. The behaviour of the scale factor is studied by applying the many-worlds and the ontological interpretations of quantum mechanics. Singularity-free models are obtained for $\\alpha \\alpha > - 1$. If $\\alpha > 1$ then the norm of the evolving wave function becomes infinite. Remarkably, however, the de Broglie-Bohm interpretation makes sense in the latter case and predicts a Universe with an initial and a final singularity.
Adiabatic models of the cosmological radiative era
Sussman, R A; Sussman, Roberto A.; Ishak, Mustapha
2001-01-01
We consider a generalization of the Lemaitre-Tolman-Bondi (LTB) solutions by keeping the LTB metric but replacing its dust matter source by an imperfect fluid with anisotropic pressure $\\Pi_{ab} $. Assuming that total matter-energy density $\\rho$ is the sum of a rest mass term, $\\rhom$, plus a radiation $\\rhor=3p$ density where $p$ is the isotropic pressure, Einstein's equations are fully integrated without having to place any previous assumption on the form of $\\Pi_{ab} $. Three particular cases of interest are contained: the usual LTB dust solutions (the dust limit), a class of FLRW cosmologies (the homogeneous limit) and of the Vaydia solution (the vacuum limit). Initial conditions are provided in terms of suitable averages and contrast functions of the initial densities of $\\rhom, \\rhor$ and the 3-dimensional Ricci scalar along an arbitrary initial surface $t=t_i$. We consider the source of the models as an interactive radiation-matter mixture in local thermal equilibrium that must be consistent with caus...
Saga, Shohei; Sugiyama, Naoshi
2014-01-01
Gravitational waves (GWs) are inevitably induced at second-order in cosmological perturbations through non-linear couplings with first order scalar perturbations, whose existence is well established by recent cosmological observations. So far, the evolution and the spectrum of the secondary induced GWs have been derived by taking into account the sources of GWs only from the product of first order scalar perturbations. Here we newly investigate the effects of purely second-order anisotropic stresses of photons and neutrinos on the evolution of GWs, which have been omitted in the literature. We present a full treatment of the Einstein-Boltzmann system to calculate the spectrum of GWs with anisotropic stress based on the formalism of the cosmological perturbation theory. We find that photon anisotropic stress amplifies the amplitude of GWs by about $150 %$ whereas neutrino anisotropic stress suppress that of GWs by about $30 %$ on small scales $k\\gtrsim 1.0 h{\\rm Mpc}^{-1}$ compared to the case without anisotro...
Barrow, John D.; Ganguly, Chandrima
2016-06-01
We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropization on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialize to consider the closed Bianchi type IX universe, and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionless particles in an anisotropically expanding universe is therefore essential for a full analysis of the consequences of a cosmological bounce or singularity in cyclic universes.
Simple inhomogeneous cosmological (toy) models
Chirinos Isidro, Eddy G.; Zuñiga Vargas, Cristofher; Zimdahl, Winfried
2016-05-01
Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Singh, Parampreet; Wilson-Ewing, Edward
2014-02-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Will quantum cosmology resurrect chaotic inflation model?
Kim, Sang Pyo
2016-01-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Troubles with quantum anistropic cosmological models Loss of unitarity
Alvarenga, F G; Fabris, J C
2003-01-01
The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. A Schr\\"odinger-type equation is obtained where the matter variables play the role of time. However, the signature of the kinetic term is hyperbolic. This Schr\\"odinger-like equation is solved and a wave packet is constructed. The norm of the resulting wave function comes out to be time dependent, indicating the loss of unitarity in this model. The loss of unitarity is due to the fact that the effective Hamiltonian is hermitian but not self-adjoint. The expectation value and the bohmian trajectories are evaluated leading to different cosmological scenarios, what is a consequence of the absence of a unitary quantum structure. The consistency of this quantum model is discussed as well as the generality of the absence of unitarity in anisotropic quantum models.
Cosmological Models and Renormalization Group Flow
Kristjansson, K. R.; Thorlacius, L.
2002-01-01
We study cosmological solutions of Einstein gravity with a positive cosmological constant in diverse dimensions. These include big-bang models that re-collapse, big-bang models that approach de Sitter acceleration at late times, and bounce models that are both past and future asymptotically de Sitter. The re-collapsing and the bounce geometries are all tall in the sense that entire spatial slices become visible to a comoving observer before the end of conformal time, while the accelerating bi...
Cosmological parametrization of $\\gamma$ ray burst models
Linder, E V
1996-01-01
Using three parametrizations of the gamma ray burst count data comparison is made to cosmological source models. While simple models can fit and faint end slope constraints, the addition of a logarithmic count range variable describing the curvature of the counts shows that models with no evolution or evolution power law in redshift with index less than 10 fail to satisfy simultaneously all three descriptors of the burst data. The cosmological source density that would be required for a fit is illustrated.
Friction forces in cosmological models
Bini, Donato; Gregoris, Daniele; Succi, Sauro
2014-01-01
We investigate the dynamics of test particles undergoing friction forces in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction with the background fluid is modeled by introducing a Poynting-Robertson-like friction force in the equations of motion, leading to measurable (at least in principle) deviations of the particle trajectories from geodesic motion. The effect on the peculiar velocities of the particles is investigated for various equations of state of the background fluid and different standard cosmological models. The friction force is found to have major effects on particle motion in closed FRW universes, where it turns the time-asymptotic value (approaching the recollapse) of the peculiar particle velocity from ultra-relativistic (close to light speed) to a co-moving one, i.e., zero peculiar speed. On the other hand, for open or flat universes the effect of the friction is not so significant, because the time-asymptotic peculiar particle speed is largely non-relativistic also in the geodesi...
Bond diluted anisotropic quantum Heisenberg model
Akıncı, Ümit
2013-01-01
Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigat...
Homogeneous cosmological models in Yang's gravitation theory
Fennelly, A. J.; Pavelle, R.
1979-01-01
We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.
Bond diluted anisotropic quantum Heisenberg model
Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined
Isotropic and anisotropic pointing models
Pál, András; Mészáros, László; Mező, György
2015-01-01
This paper describes an alternative approach for generating pointing models for telescopes equipped with serial kinematics, esp. equatorial or alt-az mounts. Our model construction does not exploit any assumption for the underlying physical constraints of the mount, however, one can assign various effects to the respective components of the equations. In order to recover the pointing model parameters, classical linear least squares fitting procedures can be applied. This parameterization also lacks any kind of parametric singularity. We demonstrate the efficiency of this type of model on real measurements with meter-class telescopes where the results provide a root mean square accuracy of 1.5-2 arcseconds.
Tests of cosmological models constrained by inflation
The inflationary scenario requires that the universe have negligible curvature along constant-density surfaces. In the Friedmann-Lemaitre cosmology that leaves us with two free parameters, Hubble's constant H0 and the density parameter Ω0 (or, equivalently, the cosmological constant Λ). I discuss here tests of this set of models from local and high-redshift observations. The data agree reasonably well with Ω0approx.0.2
Some analytical models of anisotropic strange stars
Murad, Mohammad Hassan
2016-01-01
Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.
Generalized model for anisotropic compact stars
Maurya, S K; Ray, Saibal; Deb, Debabrata
2016-01-01
In the present investigation an exact generalized model for anisotropic compact stars of embedding class one is sought for under general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model present here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates $RXJ~1856-37$, $SAX~J~1808.4-3658~(SS1)$ and $SAX~J~1808.4-3658~(SS2)$ are concerned.
Cosmological twinlike models with multi scalar fields
Zhong, Yuan; Liu, Yu-Xiao
2016-01-01
We consider cosmological models driven by several canonical or noncanonical scalar fields. We show how the superpotential method enables one to construct twinlike models for a particular canonical model from some noncanonical ones. We conclude that it is possible to construct twinlike models for multi-field cosmological models, even when the spatial curvature is nonzero. This work extends the discussions of [D. Bazeia and J. D. Dantas, Phys. Rev. D, 85 (2012) 067303] to cases with multi scalar fields and with non-vanished spatial curvature, by using a different superpotential method.
Some Exact Solutions of Magnetized viscous model in String Cosmology
Singh, C P
2012-01-01
In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.
Cosmological perturbations in mimetic matter model
Matsumoto, Jiro; Sushkov, Sergey V
2015-01-01
We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.
Bianchi type-II models in the presence of perfect fluid and anisotropic dark energy
Kumar, Suresh; Akarsu, Özgür
2012-06-01
The spatially homogeneous but totally anisotropic and non-flat Bianchi type-II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein field equations have been solved by applying two kinematical Ansätze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of the deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding the anisotropic pressure, the fluid we consider in the context of dark energy can produce results that can be produced in the presence of isotropic fluid in accordance with the ΛCDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well-behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that, although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.
Isotropic singularity in inhomogeneous brane cosmological models
We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2 brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicate that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Barrow, John D
2015-01-01
We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropisation on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialise to consider the closed Bianchi type IX universe and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionl...
Bouncing models with a cosmological constant
Pinto-Neto, Nelson; Pereira, Stella; Siffert, Beatriz [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2011-07-01
Full text: Bouncing models have been proposed by many authors as a complementation, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify substantially the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a perfect fluid with constant equation of state parameter w. We show that the spectrum and the amplitude of the perturbations are substantially altered by the presence of a cosmological constant with value tuned to give the present acceleration of the Universe. In this case, one needs the presence of a stiff matter fluid in the contracting phase, which can be modelled by a scalar field with kinetic energy much greater than its potential energy, very plausible in this situation, in order to have a scale invariant spectrum of perturbations in the expanding phase, contrary to the case without a cosmological constant, where a dust fluid is required. The difference resides on the vacuum state choice we have to make when a cosmological constant is present. (author)
LRS Bianchi type-I string cosmological models in f (R, T) gravity
Kanakavalli, T.; Ananda Rao, G.
2016-07-01
Spatially homogeneous and anisotropic LRS Bianchi type-I space time is investigated in the presence of cosmic string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011). We have solved the field equations using the equations of state for strings and presented cosmological models which describe geometric string, Takabayasi string and Reddy string in this particular theory. Some physical and kinematical parameters of the models are computed and discussed their physical significance.
A model for anisotropic strange stars
Deb, Debabrata; Ray, Saibal; Rahaman, Farook; Guha, B K
2016-01-01
We attempt to find a singularity free interior solution for a neutral and static stellar model. We consider that (i) the star is made up of anisotropic fluid and (ii) the MIT bag model can be used. The total system is defined by assuming the density profile given by Mak and Harko \\cite{Mak2002}, which satisfies all the physical conditions of a stellar system and is stable by nature. We find that those stellar systems which obey such a non-linear density function must have maximum anisotropy at the surface. We also perform several tests for physical features of the proposed model and show that these are mostly acceptable within certain range. As a special mention, from our investigation we find that the maximum mass and radius of the quark star are $11.811 km$ and $3.53 {M}_{\\odot}$ respectively.
Cosmological model without big-bang
The modified field equations are transferred onto an isotropic homogeneous universe. In contrast to the Robertson-Walker model the cosmological equations are deducted by means of metric components. Assuming the total gravitational charge being constant in time positive mean densities of matter are only compatible with a spherical space. The solutions do not have any cosmological singularity in finite times, and they demonstrate that the universal red shift may not be explained by the Doppler effect but as a gravitational red shift. (orig.)
A model with cosmological Bell inequalities
Maldacena, Juan
2015-01-01
We discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed.
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Galaxy Bias in Quintessence Cosmological Models
Basilakos, S
2003-01-01
We derive the evolution of the linear bias factor, $b(z)$, in cosmological models driven by an exotic fluid with an equation of state: $p_{x}=w\\rho_{x}$, where $-1\\le w<0$ (quintessence). Our aim is to put constrains on different cosmological and biasing models by combining the recent observational clustering results of optical ({\\em 2dF}) galaxies (Hawkings et al.) with those predicted by the models. We find that our bias model when fitted to the {\\em 2dF} clustering results predicts different bias evolution for different values of $w$. The models that provide the weak biasing ($b_{\\circ} \\sim 1.1$) of optical galaxies found in many recent observational studies are flat, $\\Omega_{\\rm m}=0.3$ with $w\\le -0.9$. These models however, predict a weak redshift evolution of $b(z)$, not corroborated by N-body simulations.
Spectral Action for Bianchi Type-IX Cosmological Models
Fan, Wentao; Marcolli, Matilde
2015-01-01
A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors $w_1(t), w_2(t), w_3(t),$ and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients $a_0, a_2, a_4$ of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki's noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi ...
Spectral action for Bianchi type-IX cosmological models
Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde
2015-10-01
A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w 1( t) , w 2( t) , w 3( t) , and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a 0 ,a 2 ,a 4 of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki's noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.
A Cosmological Model of Thermodynamic Open Universe
Goswami, G K
2012-01-01
In this paper we have given a generalisation of the earlier work by Prigogine et al. who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-sitter type model with uniform matter, radiation, creation densities and Hubble's constant H. The de-sitter regime survives during a decay time then connects continuously to a usual adiabatic mat...
Lensing effects in inhomogeneous cosmological models
Ghassemi, Sima; Mansouri, Reza
2009-01-01
Concepts developed in the gravitational lensing techniques such as shear, convergence, tangential and radial arcs maybe used to see how tenable inhomogeneous models proposed to explain the acceleration of the universe models are. We study the widely discussed LTB cosmological models. It turns out that for the observer sitting at origin of a global LTB solution the shear vanishes as in the FRW models, while the value of convergence is different which may lead to observable cosmological effects. We also consider Swiss-cheese models proposed recently based on LTB with an observer sitting in the FRW part. It turns out that they have different behavior as far as the formation of radial and tangential arcs are concerned.
Relativistic modelling of stable anisotropic super-dense star
Maurya, S K; Jasim, M K
2015-01-01
In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al.[1] algorithm. The anisotropic fluid spheres so obtained join continuously to Schwarzschild exterior solution across the pressure free boundary.It is observed that most of the new anisotropic solutions are well behaved and utilized to construct the super-dense star models such as neutron star and pulsars.
Cosmological models in the generalized Einstein action
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R2, where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H4. In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ2. Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ tn = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R2 mimics a cosmic matter that could substitute the ordinary matter. (author)
Cosmological perturbations in a mimetic matter model
Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.
2015-03-01
We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.
Modeling and Measurements of CMUTs with Square Anisotropic Plates
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian;
2013-01-01
The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic ...
Quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model
Meitei, Irom Ablu; Singh, T. Ibungochouba; Singh, K. Yugindro
2014-08-01
Using the Hamilton-Jacobi method a study of quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model is carried out. It is shown that there exist seas of positive and negative energy states in the vicinity of the cosmological event horizon and there also exists a forbidden energy gap between the two seas. The forbidden energy gap vanishes on the surface of the cosmological event horizon so that the positive and negative energy levels overlap. The width of the forbidden energy gap and the energy of the particle at the cosmological event horizon are found to depend on the cosmological constant, the rotation parameter, positions of the particle and the cosmological event horizon, angular momentum of the particle, evaporation rate and shape of the cosmological event horizon. The tunneling probability of the emitted particles constituting Hawking radiation is also deduced for stationary nonrotating de Sitter cosmological model and the standard Hawking temperature is recovered.
$C$-field cosmological models: revisited
Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H
2015-01-01
We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...
Starobinsky cosmological model in Palatini formalism
Stachowski, Aleksander; Borowiec, Andrzej
2016-01-01
We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of geometry of a potential function if it has poles. At the sewn singularity, which is of a type of the finite scale factor, the singularity in the past meets the singularity in the future. We show, that such singularities appear in the Starobinsky model in $f(\\hat{R})=\\hat{R}+\\gamma \\hat{R}^2$ in the Palatini formalism, when dynamics is determined by the corresponding piece-wise smooth dynamical system. As an effect we obtain a degenerated singularity, which can be interpreted as a place, when history of the Universe ends and originates simultaneously. Detailed analytical calculations are given for the cosmological model with matter and the cosmological constant in the Starobinsky model. In this case we obtain an exact formula for values of redshift at the singularity points. The dynamics of model is also studied using dynamical system methods wh...
The simplest possible bouncing quantum cosmological model
Peter, Patrick
2016-01-01
We present and expand the simplest possible quantum cosmological model already discussed in a previous work: the trajectory formulation of quantum mechanics applied to cosmology in the FLRW minisuperspace without spatial curvature. The initial conditions that were assumed there were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperpace.
Conceptual Problems of the Standard Cosmological Model
Baryshev, Y
2006-01-01
The physics of the expansion of the universe is still a poorly studied subject of the standard cosmological model. This because the concept of expanding space can not be tested in the laboratory and because ``expansion'' means continuous creation of space, something that leads to several paradoxes. We re-consider and expand here the discussion of conceptual problems, already noted in the literature, linked to the expansion of space. In particular we discuss the problem of the violation of energy conservation for local comoving volumes, the exact Newtonian form of the Friedmann equations, the receding velocity of galaxies being greater than the speed of light, and the Hubble law inside inhomogeneous galaxy distribution. Recent discussion by Kiang, Davis \\& Lineweaver, and Whiting of the non-Doppler nature of the Lemaitre cosmological redshift in the standard model is just a particular consequence of the paradoxes mentioned above. The common cause of these paradoxes is the geometrical description of gravity...
Conceptual Problems of the Standard Cosmological Model
Baryshev, Yurij
2005-01-01
The physics of the expansion of the universe is still a poorly studied subject of the standard cosmological model. This because the concept of expanding space can not be tested in the laboratory and because ``expansion'' means continuous creation of space, something that leads to several paradoxes. We re-consider and expand here the discussion of conceptual problems, already noted in the literature, linked to the expansion of space. In particular we discuss the problem of the violation of ene...
Observable Quantities in Cosmological Models with Strings
Dabrowski, Mariusz P.; Stelmach, Jerzy
2004-01-01
The Friedman equation for the universe with arbitrary curvature $(k = 0, \\pm 1)$, filled with mutually noninteracting pressureless dust, radiation, cosmological constant, and strings is considered. We assume the string domination scenario for the evolution of the latter component. Moreover, we discuss the simplest possibility for the scaling of the string energy density: $\\varrho \\propto R^{-2}$. For such models we write down the explicit solution of the Friedman equation. We realize that cor...
Inextendibility of expanding cosmological models with symmetry
Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)
2005-12-07
A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)
On the geometry of cosmological model building
Scholz, Erhard
2005-01-01
This article analyzes the present anomalies of cosmology from the point of view of integrable Weyl geometry. It uses P.A.M. Dirac's proposal for a weak extension of general relativity, with some small adaptations. Simple models with interesting geometrical and physical properties, not belonging to the Friedmann-Lema\\^{\\i}tre class, are studied in this frame. Those with positive spatial curvature (Einstein-Weyl universes) go well together with observed mass density $\\Omega_m$, CMB, supernovae ...
Past Eras In Cyclic Cosmological Models
Frampton, Paul H
2009-01-01
In infinitely cyclic cosmology past eras are discussed using set theory and transfinite numbers. One consistent scenario, already in the literature, is where there is always a countably infinite number, $\\aleph_0$, of universes and no big bang. I describe here an alternative where the present number of universes is $\\aleph_0$ and in the infinite past there was only a finite number of universes. In this alternative model it is also possible that there was no big bang.
Critical exponents of the anisotropic Bak-Sneppen model
Maslov, Sergei; Rios, Paolo De Los; Marsili, Matteo; Zhang, Yi-Cheng
1998-01-01
We analyze the behavior of spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial relation between critical exponents tau and mu=d/D, recently derived for the isotropic Bak-Sneppen model, holds for its anisotropic version as well. For one-dimensional anisotropic Bak-Sneppen model we derive a novel exact equation for the distribution of avalanche spatial sizes, and extract the value gamma=2 for one of the critical exponents of the model. Other critical exponents are then det...
Cosmological bounds on oscillating dark energy models
We study the cosmological constraints on the two purely phenomenological models of oscillating dark energy. In these oscillating models, the equation of state of dark energy varies periodically. The periodic equation of state may provide the natural way to unify the early acceleration (inflation) and the late time acceleration of the Universe. These models give the effective way to tackle the cosmic coincidence problem. We examine the observational constraints on the oscillatory models from the latest observational data including the gold sample of 182 SNe type Ia, the shift parameter, R, given by the WMAP and the BAO measurements from the SDSS
Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory
D. D. Pawar
2014-01-01
Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.
Linsefors, Linda
2014-01-01
This article addresses the issue of estimating the duration in inflation in bouncing cosmology when anisotropies, inevitably playing and important role, are taken into account. It is shown that in Bianchi-I loop quantum cosmology, the higher the shear, the shorter the period of inflation. For a wide range of parameters, the probability distribution function of the duration of inflation is however peaked at values compatible with data, but not much higher. This makes the whole bounce/inflationary scenario consistent and phenomenologically appealing as all the information from the bounce might then not have been fully washed out.
Acceptability of the standard cosmological model
An attempt is made to assess the acceptability of the standard model of cosmology. While the success claimed in connection with the microwave background radiation and primordial nucleogenesis may not be convincing, the absence of any adhoc hypothesis in the standard model and the nonavailability of any better model are strong arguments in its favour. It is suggested that anomalous redshifts and the quantal effect in the redshifts are as yet little understood and do not invalidate the idea of redshift due to universal expansion. (author)
Tainted Evidence: Cosmological Model Selection vs. Fitting
Linder, E V; Linder, Eric V.; Miquel, Ramon
2007-01-01
Interpretation of cosmological data to determine the number and values of parameters describing the universe must not rely solely on statistics but involve physical insight. Statistical techniques such as "model selection" or "integrated survey optimization" blindly apply Occam's Razor - this can lead to painful results. We emphasize that the sensitivity to prior probabilities and to the number of models compared can lead to "prior selection" rather than robust model selection. A concrete example demonstrates that Information Criteria can in fact misinform over a large region of parameter space.
Moriond Conference Summary: The Cosmological Model(s)
Lahav, Ofer
2002-01-01
The XXXVIIth Rencontres de Moriond on "The Cosmological Model" is briefly summarized. Almost none of the current observations argues against the popular Cold Dark Matter + Lambda concordance model. However, it remains to be tested how astrophysical uncertainties involved in the interpretation of the different data sets affect the derived cosmological parameters. Independent tests are still required to establish if the Cold Dark Matter and Dark Energy components are `real', or just `epicycles'...
Cosmological models in general relativity
B B Paul
2003-12-01
LRS Bianchi type-I space-time ﬁlled with perfect ﬂuid is considered here with deceleration parameter as variable. The metric potentials and are functions of as well as . Assuming '/=(), where prime denotes differentiation with respect to , it was found that =('/) and =(), where =() and is the scale factor which is a function of only. The value of Hubble’s constant 0 was found to be less than half for non-ﬂat model and is equal to 1.3 for a ﬂat model.
SINGH, Kangujam Priyokumar
2010-01-01
This paper presents cosmological models in which the gravitational and cosmological constants G and L are time-dependent. We find a variety of solutions for the variation of cosmological parameters. It is also found that, in the case of matter dominated Robertson-Walker Universe, if the cosmological constant L \
Triangulation in Friedmann's cosmological model
In Friedmann's model, physical 3-space has a curvature K = constant. In the cases of greatest interest (K different from 0) triangulation for the measurement of great distances should be based on non-Euclidean geometries: Riemannian (or doubly elliptic) geometry for a closed universe and Bolyai-Lobatchevsky's (or hiperbolic) geometry for an open universe
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
Modelling anisotropic damage and permeability of mortar under dynamic loads
Chen, W.; MAUREL, O.; REESS, T.; MATALLAH, M.; FERRON, A.; C. La Borderie; G. Pijaudier-Cabot
2011-01-01
This paper deals with the development of a model for concrete subjected to dynamic loads. Shock waves are generated by Pulsed Arc Electro-hydraulic Discharges (PAED) in water and applied to mortar samples. A diphasic model (liquid water and vapour) is implemented in order to describe the electrical discharge and the propagation of shock waves in water. An anisotropic damage model is devised, which takes account of the strain rate effect and the crack closure effect. Coupling between anisotrop...
Density contrast indicators in cosmological dust models
Filipe C Mena; Reza Tavakol
2000-10-01
We discuss ways of quantifying structuration in relativistic cosmological settings, by employing a family of covariant density constrast indicators. We study the evolution of these indicators with time in the context of inhomogeneous Szekeres models. We ﬁnd that different observers (having either different spatial locations or different indicators) see different evolutions for the density contrast, which may or may not be monotonically increasing with time. We also ﬁnd that monotonicity seems to be related to the initial conditions of the model, which may be of potential interest in connection with debates regarding gravitational entropy and the arrow of time.
Cosmological modelling with Regge calculus
Liu, Rex G
2015-01-01
The late universe's matter distribution obeys the Copernican principle at only the coarsest of scales. The relative importance of such inhomogeneity is still not well understood. Because of the Einstein field equations' non-linear nature, some argue a non-perturbative approach is necessary to correctly model inhomogeneities and may even obviate any need for dark energy. We shall discuss an approach based on Regge calculus, a discrete approximation to general relativity: we shall discuss the Collins--Williams formulation of Regge calculus and its application to two toy universes. The first is a universe for which the continuum solution is well-established, the $\\Lambda$-FLRW universe. The second is an inhomogeneous universe, the `lattice universe' wherein matter consists solely of a lattice of point masses with pure vacuum in between, a distribution more similar to that of the actual universe compared to FLRW universes. We shall discuss both regular lattices and one where one mass gets perturbed.
Dynamical system approach to running $\\Lambda$ cosmological models
Stachowski, Aleksander
2016-01-01
We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\\Lambda$: 1) $\\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\\Lambda$: 3) $\\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\\Lambda(\\phi)$-cosmologies with diffusion, 5) $\\Lambda(X)$-cosmologies, where $X=\\frac{1}{2}g^{\\alpha\\beta}\
Modelling of anisotropic compact star of emending class one
Bhar, Piyali; Manna, Tuhina
2016-01-01
In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of metric function $\
Inflation in the standard cosmological model
The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multi-verse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. (author)
Inflation in the standard cosmological model
Uzan, Jean-Philippe
2015-12-01
The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"
Some exact solutions of magnetized viscous model in string cosmology
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
Cosmological models with linearly varying deceleration parameter
Akarsu, Özgür; Dereli, Tekin; Oflaz, Neslihan
2011-01-01
arXiv:1102.0915v3 [gr-qc] 8 Sep 2011 Cosmological models with linearly varying deceleration parameter ¨O zg¨ur Akarsu Tekin Dereli † Department of Physics, Ko¸c University, 34450 ˙Istanbul/Turkey. Abstract We propose a new law for the deceleration parameter that varies linearly with time and covers Berman’s law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but al...
$C$-field cosmological models: revisited
Yadav, A K; Ali, A T; Ray, Saibal; Rahaman, F.; Sardar, I. H.
2015-01-01
We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in ...
Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology
Aghmohammadi, A; Abolhassani, M R [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University of Tehran (Iran, Islamic Republic of); Saaidi, Kh; Vajdi, A [Department of Physics, Faculty of Science, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of)], E-mail: agha35484@yahoo.com, E-mail: ksaaidi@uok.ac.ir, E-mail: mrhasani@modares.ac.ir, E-mail: Avajdi@uok.ac.ir
2009-12-15
In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.
Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation
Shri Ram; M.K.Verma; Mohd.Zeyauddin
2009-01-01
We discuss spatially homogeneous and anisotropic Bianchi type-V spacetime filled with a perfect fluid in the framework of the scaie-covariant theory of gravitation proposed by Canuto et al.By applying the law of variation for Hubble's parameter,exact solutions of the field equations are obtained,which correspond to the model of the universe having a big-bang type singularity at the initial time t=0.The cosmological model,evolving from the initial singularity,expands with power-law expansion and gives essentially an empty space for a large time.The physical and dynamical properties of the model are also discussed.
Scale Factor Self-Dual Cosmological Models
dS, U Camara; Sotkov, G M
2015-01-01
We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.
Anisotropic static solutions in modelling highly compact bodies
M Chaisi; S D Maharaj
2006-03-01
Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ∝ -2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density
Modeling operations back extrusion billets thick-walled anisotropic
ПЛАТОНОВ В.И.; Яковлев, С. С.
2014-01-01
The mathematical model is an inverse extrusion thick-walled tube blanks of material having anisotropic mechanical properties cylindrical. Relations are given to assess the kinematics of course materials la, stress and strain states, power operation modes reverse extrusion. The results of theoretical investigations of power modes. You are the manifest effects of process parameters on the power mode of operation isothermal reverse extrusion billets of high anisotropic materials in the short-ter...
Vacaru, Sergiu I.
2015-04-01
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.
Vacaru, Sergiu I
2015-01-01
We re-investigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. There are constructed new classes of locally anisotropic and (in) homogeneous cosmological metrics with open and closed spatial geometries. By resorting such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related St\\" uckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lama\\^{\\i}tre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of physical constants and deformations of metrics, which may explain dark ene...
Cosmological constraint on Brans-Dicke Model
Li, Ji-Xia; Li, Yi-Chao; Gong, Yan; Chen, Xue-Lei
2015-01-01
We combine new Cosmic Microwave Background (CMB) data from Planck with Baryon Acoustic Oscillation (BAO) data to constrain the Brans-Dicke (BD) theory, in which the gravitational constant $G$ evolves with time. Observations of type Ia supernovae (SNeIa) provide another important set of cosmological data, as they may be regarded as standard candles after some empirical corrections. However, in theories that include modified gravity like the BD theory, there is some risk and complication when using the SNIa data because their luminosity may depend on $G$. In this paper, we assume a power law relation between the SNIa luminosity and $G$, but treat the power index as a free parameter. We then test whether the difference in distances measured with SNIa data and BAO data can be reduced in such a model. We also constrain the BD theory and cosmological parameters by making a global fit with the CMB, BAO and SNIa data set. For the CMB+BAO+SNIa data set, we find $0.08\\times10^{-2} < \\zeta <0.33\\times10^{-2} $ at ...
Cosmological constraint on Brans-Dicke Model
Li, Ji-Xia; Wu, Feng-Quan; Li, Yi-Chao; Gong, Yan; Chen, Xue-Lei
2015-12-01
We combine new Cosmic Microwave Background (CMB) data from Planck with Baryon Acoustic Oscillation (BAO) data to constrain the Brans-Dicke (BD) theory, in which the gravitational constant G evolves with time. Observations of type Ia supernovae (SNeIa) provide another important set of cosmological data, as they may be regarded as standard candles after some empirical corrections. However, in theories that include modified gravity like the BD theory, there is some risk and complication when using the SNIa data because their luminosity may depend on G. In this paper, we assume a power law relation between the SNIa luminosity and G, but treat the power index as a free parameter. We then test whether the difference in distances measured with SNIa data and BAO data can be reduced in such a model. We also constrain the BD theory and cosmological parameters by making a global fit with the CMB, BAO and SNIa data set. For the CMB+BAO+SNIa data set, we find 0.08 × 10-2 confidence level (CL) and -0.01 × 10-2 < ζ < 0.43 × 10-2 at the 95% CL, where ζ is related to the BD parameter ω by ζ = ln(1 + 1/ω).
Cosmological Models with Fractional Derivatives and Fractional Action Functional
V.K. Shchigolev
2011-01-01
Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.
A CP violetion model of cosmological origin
It's presented a model of spontaneous violation of the CP symmetry whose mechanism of symmetry breaking is of cosmological nature. The main feature is the conformal coupling of the field of a λφ4 theory with a background gravitational field. We show that, for the open Friedmann model of the universe, the reason of the critical temperaTure for the symmetry restoration to the equilibrium temperature of the universe rrmains constant, so that either the symmetry breaking never happened or, if happened, it can't be reverted by means of thermal effects. Upon coupling the boson to a fermion, this symmetry breaking id related to the CP non-conservation in two distinct ways: violating the P and T symmetries, and violating the C and T symmetries. (author)
Improving lognormal models for cosmological fields
Xavier, Henrique S; Joachimi, Benjamin
2016-01-01
It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimises either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine ...
Scaled Triangleland Model of Quantum Cosmology
Anderson, Edward
2010-01-01
Scaled relational particle mechanics is a mechanics in which only relative times, relative angles and relative separations are meaningful. It arose in the study of the absolute versus relative motion debate, and furthermore turned out to be useful toy models of classical and quantum general relativity, such as for investigating conceptual strategies for the problem of time. This paper studies the 3 particle 2-$d$ relational particle model, for which the configurations are scaled triangles. The configuration space for these is $\\mathbb{R}^3$ with a conformally flat metric thereupon (it is the cone over the corresponding shape space S^2). I furthermore use multiple harmonic oscillator type potentials and other potentials inspired by analogy with cosmology. I solve these by using a partial analogy with the atom in spherical and parabolic coordinates. Spherical coordinates are here the total moment of inertia $I$ for radius and two pure-shape coordinates: \\Theta a function of the ratio of the two relative separat...
Critical exponents of the anisotropic Bak-Sneppen model
Maslov, S. [Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States); De Los Rios, P.; Marsili, M.; Zhang, Y. [Institut de Physique Theorique, Universite de Fribourg Perolles, Fribourg CH-1700 (Switzerland); Marsili, M. [International School for Advanced Studies (SISSA) and INFM Unit, Trieste I-34014 (Italy)
1998-12-01
We analyze the behavior of the spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial relation between critical exponents {tau} and {mu}=d/D, recently derived for the isotropic Bak-Sneppen model, holds for its anisotropic version as well. For the one-dimensional anisotropic Bak-Sneppen model, we derive an exact equation for the distribution of avalanche spatial sizes, and extract the value {gamma}=2 for one of the critical exponents of the model. Other critical exponents are then determined from previously known exponent relations. Our results are in excellent agreement with Monte Carlo simulations of the model as well as with direct numerical integration of the new equation. {copyright} {ital 1998} {ital The American Physical Society}
Experimentally testing the standard cosmological model
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ωb, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that Ωb ∼ 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming Ωtotal = 1) and the need for dark baryonic matter, since Ωvisible b. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass Mx approx-gt 20 GeV and an interaction weaker than the Z0 coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for ν-masses may imply that the ντ is a good hot dark matter candidate. 73 refs., 5 figs
Experimentally testing the standard cosmological model
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
Dereli, Tekin; Akarsu, Özgür
2013-01-01
arXiv:1201.4545v3 [gr-qc] 31 Mar 2013 A four-dimensional CDM-type cosmological model induced from higher dimensions using a kinematical constraint Özgür Akarsu, Tekin Dereli Department of Physics, Koç University, 34450 Sarıyer, İstanbul, Turkey Abstract A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes t...
Non-standard Models and the Sociology of Cosmology
Lopez-Corredoira, Martin
2013-01-01
I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.
Non-standard models and the sociology of cosmology
López-Corredoira, Martín
2014-05-01
I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.
Hysteresis modeling of anisotropic and isotropic nanocrystalline hard magnetic films
Cornejo, D. R.; Azevedo, A.; Rezende, S. M.
2003-05-01
In the Hauser model, the magnetic state of a system is obtained by minimizing the so-called total energy function for a statistical set of magnetic domains. In this article, this energetic model of ferromagnetic materials is used in order to calculate hysteresis loops of isotropic and anisotropic nanocrystalline SmCo films at room temperature. A qualitative very good agreement between the calculated and experimental curves is obtained, mainly in the anisotropic case. Also, it has been verified that, under suitable approximations, the free parameters of the model can tie with intrinsic characteristics of the reversal magnetization process.
The anisotropic \\lambda-deformed SU(2) model is integrable
Sfetsos, Konstantinos
2014-01-01
The all-loop anisotropic Thirring model interpolates between the WZW model and the non-Abelian T-dual of the anisotropic principal chiral model. We focus on the SU(2) case and we prove that it is classically integrable by providing its Lax pair formulation. We derive its underlying symmetry current algebra and use it to show that the Poisson brackets of the spatial part of the Lax pair, assume the Maillet form. In this way we procure the corresponding r and s matrices which provide non-trivial solutions to the modified Yang-Baxter equation.
Introduction to particle cosmology the standard model of cosmology and its open problems
Bambi, Cosimo
2016-01-01
This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP. This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...
Hybrid Models in Loop Quantum Cosmology
Navascués, B Elizaga; Marugán, G A Mena
2016-01-01
In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...
Precision cosmology defeats void models for acceleration
The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, σ8. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.
Oscillatory models in Kaluza-Klein cosmology
We investigate the dynamical behaviour of a 7-dimensional, homogeneous, cosmological model. Anisotropy is prevailed all over the spatial dimensions constituting a manifold of a direct product of two three-spheres (S3xS3). It is found that the universe evolves from an initial Kasner epoch towards a final one through repetitious oscillations of the scale factors, and on the way of the evolution its total volume turns to decrease. No chaotic behaviour is present near the singularities. For the vacuum case its spatial sections in the final state are not always split into expanding S3 and contracting S3. However, the effect of matter which tends to isotropise each S3 can resolve this difficulty. (author)
The Derived Equivalent Circuit Model for Magnetized Anisotropic Graphene
Cao, Ying S; Ruehli, Albert E
2015-01-01
Due to the static magnetic field, the conductivity for graphene becomes a dispersive and anisotropic tensor, which complicates most modeling methodologies. In this paper, a novel equivalent circuit model is proposed for graphene with the magnetostatic bias based on the electric field integral equation (EFIE). To characterize the anisotropic property of the biased graphene, the resistive part of the unit circuit is replaced by a resistor in series with current control voltage sources (CCVSs). The CCVSs account for the off-diagonal parts of the surface conductivity tensor for the magnetized graphene. Furthermore, the definitions of the absorption cross section and the scattering cross section are revisited to make them feasible for derived circuit analysis. This proposed method is benchmarked with several numerical examples. This paper also provides a new equivalent circuit model to deal with dispersive and anisotropic materials.
Cosmology with decaying cosmological constant—exact solutions and model testing
Szydłowski, Marek; Stachowski, Aleksander
2015-10-01
We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λbare+α2/t2. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term -dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in the form of Bessel functions. Our model shows that fractional density of dark energy Ωe is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1-Ωm,0-ΩΛ,0). The case study of our model enable us to find an upper limit α2 < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.
Numerical modelling of tunnel construction in anisotropic foliated soft rock
Markovič, Jernej
2009-01-01
The present work focuses on the influence on tunnelling in the anisotropic foliated soft rock. The excavation initiates stress redistribution around an opening and thus causes the deformation to occur. The numerical problem of the tunnel excavation was modelled in the Plaxis 2D code using different soil constitutive models for modelling the rock mass behaviour. A parametric study was performed to obtain the model response to alteration of the rock mass parameters. The analysis was divided int...
Improving lognormal models for cosmological fields
Xavier, Henrique S.; Abdalla, Filipe B.; Joachimi, Benjamin
2016-07-01
It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimizes either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine directly from theory the skewness of the convergence distribution and, therefore, the parameters for a lognormal fit. We present the public code Full-sky Lognormal Astro-fields Simulation Kit (FLASK) which can make tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields by applying either of the two proposed solutions, and show that it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges.
Improving lognormal models for cosmological fields
Xavier, Henrique S.; Abdalla, Filipe B.; Joachimi, Benjamin
2016-04-01
It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimises either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine directly from theory the skewness of the convergence distribution and, therefore, the parameters for a lognormal fit. We present the public code Full-sky Lognormal Astro-fields Simulation Kit (FLASK) which can make tomographic realisations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields by applying either of the two proposed solutions, and show that it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges.
Mathematical model of non-isothermal creep based anisotropic damage
Галаган, Ю. Н.; Лысенко, С. В.; Львов, Г. И.
2008-01-01
А mathematical model of nonisothermic creep for anisotropic damage case is considered. Constitutive relation of creep rate and kinematic equation of damage evolution are assumed temperature dependent. A second range tensor is used for description damage. A technique based on existing experimental curves for the identification of material creep constants is presented.
Quasi-local energy for cosmological models
Chen, Chiang-Mei; Liu, Jian-Liang; Nester, James M.
2007-01-01
First we briefly review our covariant Hamiltonian approach to quasi-local energy, noting that the Hamiltonian-boundary-term quasi-local energy expressions depend on the chosen boundary conditions and reference configuration. Then we present the quasi-local energy values resulting from the formalism applied to homogeneous Bianchi cosmologies. Finally we consider the quasi-local energies of the FRW cosmologies. Our results do not agree with certain widely accepted quasi-local criteria.
Two scalar field cosmology from coupled one-field models
Moraes, P H R S
2014-01-01
One possible description for the current accelerated expansion of the universe is quintessence dynamics. The basic idea of quintessence consists of analyzing cosmological scenarios driven by scalar fields. In this work we present some interesting features on the cosmological scenario obtained from the solutions of an effective two scalar field model in a flat space-time. This effective model was constructed by coupling two single scalar field systems in a nontrivial way via an extension method. The solutions related to the fields allowed us to compute analytical cosmological parameters. The behavior of these parameters are highlighted, as well as the different epochs obtained from them.
Bianchi-IX string cosmological model in Lyra geometry
F Rahaman; S Chakraborty; N Begum; M Hossain; M Kalam
2003-06-01
A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.
Graviton mass and cosmological constant: a toy model
Metaxas, Dimitrios
2010-01-01
I consider a simple model where the graviton mass and the cosmological constant depend on a scalar field with appropriate couplings and I calculate the graviton propagator and the induced effective action for the scalar field.
Graviton mass and cosmological constant: a toy model
Metaxas, Dimitrios
2010-01-01
I consider a simple model where the graviton mass and the cosmological constant depend on a scalar field with appropriate couplings and I calculate the graviton propagator and the resulting effective action for the scalar field.
An alternative to the cosmological 'concordance model'
Blanchard, A; Rowan-Robinson, M; Sarkar, S; Blanchard, Alain; Douspis, Marian; Rowan-Robinson, Michael; Sarkar, Subir
2003-01-01
Precision measurements of the cosmic microwave background by WMAP are believed to have established a flat Lambda-dominated universe, seeded by nearly scale-invariant adiabatic primordial fluctuations. However by relaxing the hypothesis that the fluctuation spectrum can be described by a single power law, we demonstrate that an Einstein-de Sitter universe with ZERO cosmological constant can fit the data as well as the best concordance model. Moreover unlike a $\\Lambda$-dominated universe, such an universe has no strong integrated Sachs-Wolfe effect, so is in better agreement with the low quadrupole seen by WMAP. The main problem is that the Hubble constant is required to be rather low: H_0 ~ 46 km/s/Mpc; we discuss whether this can be consistent with observations. Furthermore for universes consisting only of baryons and cold dark matter, the amplitude of matter fluctuations on cluster scales is too high, a problem which seems generic. However, an additional small contribution (Omega_X \\sim 0.1) of matter which...
Cosmological Model with a Local Void: New Supernova Constraints
Ho, Le Tuan Anh; Ng, Shao Chin Cindy
2009-01-01
A simple inhomogeneous cosmological model with a local void is constrained with the latest Union supernova compilation. To fit the supernova data, a large local void on the scales of 1 Gpc is found, contrary to the small scales of 200 Mpc in the previous finding. A more realistic inhomogeneous cosmological model may be required to fit the supernova data. Alternatively, a clumpy universe with clumpiness parameter < 1 can fit the supernova data with reduced local void scales.
Prestack exploding reflector modelling and migration for anisotropic media
Alkhalifah, Tariq Ali
2014-10-09
The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
Field Fractal Cosmological Model As an Example of Practical Cosmology Approach
Baryshev, Yu V
2008-01-01
The idea of the global gravitational effect as the source of cosmological redshift was considered by de Sitter (1916, 1917), Eddington (1923), Tolman (1929) and Bondi (1947), also Hubble (1929) called the discovered distance-redshift relation as "De Sitter effect". For homogeneous matter distribution cosmological gravitational redshift is proportional to square of distance: z_grav ~ r^2. However for a fractal matter distribution having the fractal dimension D=2 the global gravitational redshift is the linear function of distance: z_grav ~ r, which gives possibility for interpretation of the Hubble law without the space expansion. Here the field gravity fractal cosmological model (FGF) is presented, which based on two initial principles. The first assumption is that the field gravity theory describes the gravitational interaction within the conceptual unity of all fundamental physical interactions. The second hypothesis is that the spatial distribution of matter is a fractal at all scales up to the Hubble radi...
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
A new model for spherically symmetric anisotropic compact star
Maurya, S K; Dayanandan, Baiju; Ray, Saibal
2016-01-01
In this article we obtain a new anisotropic solution for Einstein's field equation of embedding class one metric. The solution is representing the realistic objects such as $Her~X-1$ and $RXJ~1856-37$. We perform detailed investigation of both objects by solving numerically the Einstein field equations under with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if anisotropy is zero everywhere inside the star then the density and pressures will become zero and metric turns out to be flat. We report our results and compare with the above mentioned two compact objects on a number of key aspects: the central density, the surface density onset and the critical scaling behavior, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications...
A new model for spherically symmetric anisotropic compact star
Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Ray, Saibal
2016-05-01
In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Anisotropic dark energy model with a hybrid scale factor
Mishra, B
2015-01-01
Anisotropic dark energy model with dynamic pressure anisotropies along different spatial directions is constructed at the backdrop of a spatially homogeneous diagonal Bianchi type $V$ $(BV)$ space-time in the framework of General Relativity. A time varying deceleration parameter generating a hybrid scale factor is considered to simulate a cosmic transition from early deceleration to late time acceleration. We found that the pressure anisotropies along the $y-$ and $z-$ axes evolve dynamically and continue along with the cosmic expansion without being subsided even at late times. The anisotropic pressure along the $x-$axis becomes equal to the mean fluid pressure. At a late phase of cosmic evolution, the model enters into a phantom region. From a state finder diagnosis, it is found that the model overlaps with $\\Lambda$CDM at late phase of cosmic time.
Bianchi Type I Cosmological Models in Eddington-inspired Born–Infeld Gravity
Tiberiu Harko
2014-10-01
Full Text Available We consider the dynamics of a barotropic cosmological fluid in an anisotropic, Bianchi type I space-time in Eddington-inspired Born–Infeld (EiBI gravity. By assuming isotropic pressure distribution, we obtain the general solution of the field equations in an exact parametric form. The behavior of the geometric and thermodynamic parameters of the Bianchi type I Universe is studied, by using both analytical and numerical methods, for some classes of high density matter, described by the stiff causal, radiation, and pressureless fluid equations of state. In all cases the study of the models with different equations of state can be reduced to the integration of a highly nonlinear second order ordinary differential equation for the energy density. The time evolution of the anisotropic Bianchi type I Universe strongly depends on the initial values of the energy density and of the Hubble function. An important observational parameter, the mean anisotropy parameter, is also studied in detail, and we show that for the dust filled Universe the cosmological evolution always ends into isotropic phase, while for high density matter filled universes the isotropization of Bianchi type I universes is essentially determined by the initial conditions of the energy density.
Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack
Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the
Bianchi type-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory
Shri Ram; M Zeyauddin; C P Singh
2009-02-01
In this paper we discuss the variation law for Hubble's parameter with average scale factor in a spatially homogeneous and anisotropic Bianchi type-V space-time model, which yields constant value of the deceleration parameter. We derive two laws of variation of the average scale factor with cosmic time, one is of power-law type and the other is of exponential form. Exact solutions of Einstein field equations with perfect fluid and heat conduction are obtained for Bianchi type-V space-time in these two types of cosmologies. In the cosmology with the power-law, the solutions correspond to a cosmological model which starts expanding from the singular state with positive deceleration parameter. In the case of exponential cosmology, we present an accelerating non-singular model of the Universe. We find that the constant value of deceleration parameter is reasonable for the present day Universe and gives an appropriate description of evolution of Universe. We have also discussed different types of physical and kinematical behaviour of the models in these two types of cosmologies.
Confronting the concordance model of cosmology with Planck data
Hazra, Dhiraj Kumar
2014-01-01
We confront the concordance (standard) model of cosmology, the spatially flat $\\Lambda$CDM Universe with power-law form of the primordial spectrum with Planck CMB angular power spectrum data searching for possible smooth deviations beyond the flexibility of the standard model. The departure from the concordance cosmology is modeled in the context of Crossing statistic and statistical significance of this deviation is used as a measure to test the consistency of the standard model to the Planck data. Derived Crossing functions suggest the presence of some broad features in angular spectrum beyond the expectations of the concordance model. Our results indicate that the concordance model of cosmology is consistent to the Planck data only at 2 to 3$\\sigma$ confidence level if we allow smooth deviations from the angular power spectrum given by the concordance model. This might be due to random fluctuations or may hint towards smooth features in the primordial spectrum or departure from another aspect of the standa...
A New Cosmological Model: Black Hole Universe
Zhang T. X.
2009-07-01
Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe
Anisotropic neutron star models: stability against radial and nonradial pulsations
The problem of stability of fully relativistic neutron star models, which are constructed from plausible assumptions about an anisotropic equation of state, is analysed in the framework of general relativity. The differential equations for radial pulsation of such models are derived and results of numerical solutions are presented. It is shown that there exists a static stability criterion similar to the one obtained for isotropic models. Moreover there is in principle no limiting mass for arbitrarily large anisotropy and these models are still stable against radial pulsations. Non-radial pulsations are analysed in the Newtonian approximation for some simplified models. Again we do not find any dynamical instabilities. (orig.)
The Anisotropic Bak-Sneppen Model
Head, DA; Rodgers, GJ
1998-01-01
The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multi-trait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law ``tail'' which pas...
Bianchi-Type Ⅱ String Cosmological Models with Bulk Viscosity
WANG Xing-Xiang
2004-01-01
The locally rotationally symmetric Bianchi-type Ⅱ string cosmological models with bulk viscosity are obtained, where an equation of state, p = kλ, and a relation between metric potentials, R = ASn, are adopted. The physical features of the models are also discussed. In special cases the model reduces to the string models without viscosity that was previously given in the literatures.
A summary view of the symmetric cosmological model
A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
Inflationary Weak Anisotropic Model with General Dissipation Coefficient
Sharif, M
2015-01-01
This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.
Cosmological Model Based on Gauge Theory of Gravity
WU Ning
2005-01-01
A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.
Five-Dimensional Cosmological Model with Variable G and Λ
H. Baysal; (I). Yilmaz
2007-01-01
@@ Einstein's field equations with G and Λ both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and Λ are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.
Anisotropic propagation model of ventricular myocardium
Hren, Rok; Simelius, Kim; Nenonen, Jukka; Horáček, B Milan
2015-01-01
We describe a hybrid model for propagated excitaion in three-dimensional human ventricles. The subtreshold behaviour of the excitable elements is governed by a reaction-diffusion equation derived from the bidomain theory, while in the supratreshold state the elements obey cellular automata rules. The ventricles consist of two million discrete cubes (cells) with the side length of 0.5 mm. Each cell is assigned a principal fiber direction according to the fiber arhitecture in the human heart. W...
Critical state model with anisotropic critical current density
Bhagwat, K V; Ravikumar, G
2003-01-01
Analytical solutions of Bean's critical state model with critical current density J sub c being anisotropic are obtained for superconducting cylindrical samples of arbitrary cross section in a parallel geometry. We present a method for calculating the flux fronts and magnetization curves. Results are presented for cylinders with elliptical cross section with a specific form of the anisotropy. We find that over a certain range of the anisotropy parameter the flux fronts have shapes similar to those for an isotropic sample. However, in general, the presence of anisotropy significantly modifies the shape of the flux fronts. The field for full flux penetration also depends on the anisotropy parameter. The method is extended to the case of anisotropic J sub c that also depends on the local field B, and magnetization hysteresis curves are presented for typical values of the anisotropy parameter for the case of |J sub c | that decreases exponentially with |B|.
A New Type of Isotropic Cosmological Model
Naboulsi, R
2003-01-01
The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.
Information aspects of type IX cosmological models
A study of amounts of information necessary to localize the trajectory of a dynamical system known as the Mixmaster universe, is presented. The main result is that less information is necessary near the cosmological singularity of the system than far away. This conclusion is obtained by evolving probability distributions towards the singularity and comparying the associated information functions. Qualitative methods of dynamical systems theory present a phenomenon that might be related to this loss of information. (author)
Cosmological models with Gurzadyan-Xue dark energy
The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ωm = 2/3, and link with the issue of the content of physical constants
Cosmological and astrophysical constraints on tachyon dark energy models
Martins, C J A P
2016-01-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant $\\alpha$. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of $\\alpha$ to improve constraints on this class of models. We show that the constraints on $\\alpha$ imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state $(1+w_0)<2.4\\times10^{-7}$ at the $99.7\\%$ confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of $\\alpha$ variations could possibly do so since they would have a characteristic redshift dependence.
Filippov, A T
2016-01-01
The dynamics of any spherical cosmology with a scalar field (`scalaron') coupling to gravity is described by the nonlinear second-order differential equations for two metric functions and the scalaron depending on the `time' parameter. The equations depend on the scalaron potential and on arbitrary gauge function that describes time parameterizations. This dynamical system can be integrated for flat, isotropic models with very special potentials. But, somewhat unexpectedly, replacing the independent variable $t$ by one of the metric functions allows us to completely integrate the general spherical theory in any gauge and with arbitrary potentials. In this approach, inflationary solutions can be easily identified, explicitly derived, and compared to the standard approximate expressions. This approach is also applicable to intrinsically anisotropic models with a massive vector field (`vecton') as well as to some non-inflationary models.
Dvali-Gabadadze-Porrati Cosmology in Bianchi I brane
Ansari, Rizwan Ul Haq
2008-01-01
The dynamics of Dvali-Gabadadze-Porrati Cosmology (DGP) braneworld with an anisotropic brane is studied. The Friedmann equations and their solutions are obtained for two branches of anisotropic DGP model. The late time behavior in DGP cosmology is examined in the presence of anisotropy which shows that universe enters a self-accelerating phase much later compared to the isotropic case. The acceleration conditions and slow-roll conditions for inflation are obtained.
Homoclinic chaos in axisymmetric Bianchi-IX cosmological models with an ad hoc quantum potential
In this work we study the dynamics of the axisymmetric Bianchi-IX cosmological model with a term of quantum potential added. As it is well known, this class of Bianchi-IX models is homogeneous and anisotropic with two scale factors, A(t) and B(t), derived from the solution of Einstein's equation for general relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent short-range effects due to the general relativistic behavior of matter in small scales and play the role of a repulsive force near the singularity. We find that this potential restricts the dynamics of the model to positive values of A(t) and B(t) and alters some qualitative and quantitative characteristics of the dynamics studied previously by several authors. We make a complete analysis of the phase space of the model finding critical points, periodic orbits, stable/unstable manifolds using numerical techniques such as Poincare section, numerical continuation of orbits, and numerical globalization of invariant manifolds. We compare the classical and the quantum models. Our main result is the existence of homoclinic crossings of the stable and unstable manifolds in the physically meaningful region of the phase space [where both A(t) and B(t) are positive], indicating chaotic escape to inflation and bouncing near the singularity.
Loop quantum cosmology of Bianchi type I models
The ''improved dynamics'' of loop quantum cosmology is extended to include anisotropies of the Bianchi type I model. As in the isotropic case, a massless scalar field serves as a relational time parameter. However, the extension is nontrivial because one has to face several conceptual subtleties as well as technical difficulties. These include a better understanding of the relation between loop quantum gravity and loop quantum cosmology, handling novel features associated with the nonlocal field strength operator in presence of anisotropies, and finding dynamical variables that make the action of the Hamiltonian constraint manageable. Our analysis provides a conceptually complete description that overcomes limitations of earlier works. We again find that the big-bang singularity is resolved by quantum geometry effects but, because of the presence of Weyl curvature, Planck scale physics is now much richer than in the isotropic case. Since the Bianchi I models play a key role in the Belinskii, Khalatnikov, Lifshitz conjecture on the nature of generic spacelike singularities in general relativity, the quantum dynamics of Bianchi I cosmologies is likely to provide considerable intuition about the fate of generic spacelike singularities in quantum gravity. Finally, we show that the quantum dynamics of Bianchi I cosmologies projects down exactly to that of the Friedmann model. This opens a new avenue to relate more complicated models to simpler ones, thereby providing a new tool to relate the quantum dynamics of loop quantum gravity to that of loop quantum cosmology.
Decaying Domain Walls in an Extended Gravity Model and Cosmology
Shiraishi, Kiyoshi
2013-01-01
We investigate cosmological consequences of an extended gravity model which belongs to the same class studied by Accetta and Steinhardt in an extended inflationary scenario. But we do not worry about inflation in our model; instead, we focus on a topological object formed during cosmological phase transitions. Although domain walls appear during first-order phase transitions such as QCD transition, they decay at the end of the phase transition. Therefore the "domain wall problem" does not exist in the suitable range of pameters and, on the contrary, the "fragments" of walls may become seeds of dark matter. A possible connection to "oscillating universe" model offered by Morikawa et al. is also discussed.
f(T,T) cosmological models in phase space
Ganiou, M. G.; Salako, Ines G.; Houndjo, M. J. S.; Tossa, J.
2016-02-01
In this paper we explore f(T, T), where T and T denote the torsion scalar and the trace of the energy-momentum tensor respectively. We impose the covariant conservation to the energy-momentum tensor and obtain a cosmological f(T, T) respectively. We impose the covariant conservation to the energy-momentum tensor and obtain a cosmological f(T, T) model. Then, we study the stability of the obtained model for power-law and de Sitter solutions and our result show that the model can be stable for some values of the input parameters, for both power-law and de Sitter solutions.
On Radiative Fluids in Anisotropic Spacetimes
Shogin, Dmitry
2016-01-01
We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the Universe. Also, we show that, in constrast to the mathematical fluid models widely used before, the radiative fluid does approach local thermal equilibrium at late times, although very slowly, due to the cosmological expansion.
Wang, Hui
2014-05-01
This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my
Homoclinic Chaos in Axisymmetric Bianchi-IX cosmological models with an "ad hoc" quantum potential
Corrêa, G C; Jorás, S E; 10.1103/PhysRevD.81.083531
2010-01-01
In this work we study the dynamics of the axisymmetric Bianchi IX cosmological model with a term of quantum potential added. As it is well known this class of Bianchi IX models are homogeneous and anisotropic with two scale factors, $A(t)$ and $B(t)$, derived from the solution of Einstein's equation for General Relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent short-range effects due to the general relativistic behavior of matter in small scales and play the role of a repulsive force near the singularity. We find that this potential restricts the dynamics of the model to positive values of $A(t)$ and $B(t)$ and alters some qualitative and quantitative characteristics of the dynamics studied previously by several authors. We make a complete analysis of the phase space of the model finding critical points, periodic orbits, stable/unstable manifolds using numerical techniques such a...
A completely analytical family of anisotropic Plummer models
In spherical stellar systems a given mass density allows an infinity of distribution functions. This indeterminacy is illustrated with a one-parameter family of anisotropic models. They all satisfy the Plummer law in the mass density, but have different velocity dispersions. Moreover, the stars are not confined to a particular subset of the total accessible phase space. This family is explored analytically in detail. Even when both the mass density and the velocity dispersion profiles are required to be the same, a degeneracy in the model space persists, which can be shown with a three-parameter generalization of the above family. (author)
The anisotropic material constitutive models for the human cornea.
Li, Long-yuan; Tighe, Brian
2006-03-01
This paper presents an anisotropic analysis model for the human cornea. The model is based on the assumption that the fibrils in the cornea are organised into lamellae, which may have preferential orientation along the superior-inferior and nasal-temporal directions, while the alignment of lamellae with different orientations is assumed to be random. Hence, the cornea can be regarded as a laminated composite shell. The constitutive equation describing the relationships between membrane forces, bending moments, and membrane strains, bending curvatures are derived. The influences of lamella orientations and the random alignment of lamellae on the stiffness coefficients of the constitutive equation are discussed. PMID:16426861
Secondary Cosmic Positrons in an Anisotropic Diffusion Model
Kappl, Rolf
2016-01-01
One aim of cosmic ray measurements is the search for possible signatures of annihilating or decaying dark matter. The so-called positron excess has attracted a lot of attention in this context. On the other hand it has been proposed that the data might challenge the established diffusion model for cosmic ray propagation. We investigate an anisotropic diffusion model by solving the corresponding equations analytically. Depending on the propagation parameters we find that the spectral features of the positron spectrum are affected significantly. We also discuss the influence of the anisotropy on hadronic spectra.
Vacaru, Sergiu I. [University ' ' Al. I. Cuza' ' Iasi, Rector' s Department, Iasi (Romania)
2015-04-01
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stueckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaitre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painleve-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed. (orig.)
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stueckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaitre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painleve-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed. (orig.)
Cosmological constant in SUGRA models and the multiple point principle
The tiny order of magnitude of the cosmological constant is sought to be explained in a model involving the following ingredients: supersymmetry breaking in N=1 supergravity and the multiple point principle. We demonstrate the viability of this scenario in the minimal SUGRA model. (author)
Bianchi type IX string cosmological model in general relativity
Raj Bali; Shuchi Dave
2001-04-01
We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.
Phase-space dynamics of Bianchi IX cosmological models
The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author)
Dynamic of exact perturbations in Bianchi IX type cosmological models
The dynamic of Bianchi IX type cosmological models is studied, after reducing Einstein equations to Hamiltonian system. Using the Melnikov method, the existence of chaos in the dynamic of these models is proved, and some numerical experiments are carried out. (M.C.K.)
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2006-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10 to the power of (-48) square Km. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter.
Cosmological constraints on spontaneous R-symmetry breaking models
Hamada, Yuta; Kobayashi, Tatsuo; Ookouchi, Yutaka
2012-01-01
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, $T_R>10$ GeV.
Cosmological constraints on spontaneous R-symmetry breaking models
Hamada, Yuta; Kobayashi, Tatsuo [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kamada, Kohei [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Ookouchi, Yutaka, E-mail: hamada@gauge.scphys.kyoto-u.ac.jp, E-mail: kohei.kamada@desy.de, E-mail: kobayash@gauge.scphys.kyoto-u.ac.jp, E-mail: yutaka@gauge.scphys.kyoto-u.ac.jp [The Hakubi Center for Advanced Research and Department of Physics, Kyoto University, Kyoto 606-8302 (Japan)
2013-04-01
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R} > 10 GeV.
Cosmological constraints on spontaneous R-symmetry breaking models
Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics
2012-11-15
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.
Cosmological constraints on spontaneous R-symmetry breaking models
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, TR > 10 GeV