Sample records for andradite

  1. Thermodynamic properties of andradite and application to skarn with coexisting andradite and hedenbergite (United States)

    Zhang, Zheru; Saxena, S. K.


    The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 410_2004_Article_BF00310711_TeX2GIFE1.gif begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \\ Hedenbergite andradite magnetite quartz \\ 1 410_2004_Article_BF00310711_TeX2GIFE2.gif begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \\ Hedenbergite wollastonite andradite quartz \\ 1 410_2004_Article_BF00310711_TeX2GIFE3.gif begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \\ Wollastonite magnetite andradite \\ 1 410_2004_Article_BF00310711_TeX2GIFE4.gif begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \\ Andradite pseudowollastonite hematite \\ and 410_2004_Article_BF00310711_TeX2GIFE5.gif log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } . Oxygen-barometric scales are presented as follows: 410_2004_Article_BF00310711_TeX2GIFE6.gif begin{gathered} E = 12.51; D = 0.078; \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \\ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: 410_2004_Article_BF00310711_TeX2GIFE7.gif begin{gathered} E = 13.98; D = 0.0081; \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \\ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 410_2004_Article_BF00310711_TeX2GIFE8.gif begin{gathered} E = 13.98;{text{ }}D = 0.0081; \\ A = 4log (X_{Ad} /X_{Hd} );{text{ C = 0;}} \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \\ For the assemblage andradite-hedenbergite-calcitequartz: 1 410_2004_Article_BF00310711_TeX2GIFE9.gif begin{gathered} E = - 1.69;{text{ }}D = - 0.199; \\ A = 4log (X_{Ad} /X_{Hd} );{text{ C = 2;}} \\ B

  2. Molecular simulations of interfacial and thermodynamic mixing properties of grossular-andradite garnets (United States)

    Becker, U.; Pollok, K.

    Experimental observations using transmission electron microscopy (TEM) indicate that Fe3+-rich grossular-andradite solid solutions with oscillatory zoning tend to occur as separate lamellae of andradite and intermediate compositions (Hirai and Nakazawa 1986; Pollok etal. 2001). From one lamella to the next, the Fe3+ concentration can change significantly within a few nm. In order to understand the Fe3+ and Al content of each phase and the thermodynamics, chemistry, structure, and stability at the interfaces, Monte Carlo simulations were performed. According to our calculations, there is an ordered structure with a 1:1 ratio of Al and Fe3+ with alternating Al and Fe octahedra along the main cubic crystallographic axes. Even though this ordered grandite is more energetically favorable than a 1:1 mixture of the end members grossular and andradite [by 1.6kJ (mol exchangeable cations)-1], this structure is stable only at temperatures below 500K. Enthalpies, free energies, configurational and vibrational entropies of mixing, and the long-range order parameter are influenced by the formation of ordered grandite below 500K. These data also explain why interfaces are stable only between grossular and grandite or between andradite and grandite but not between the end members. The interface energies between the end members and ordered grandite are comparably low [0.16meVÅ-2∥(100), 0.55meVÅ-2∥(110), 0.63meVÅ-2∥(111)] and, therefore, do not hinder the formation of lamellae. Our calculations on the free energies of mixing indicate that there are miscibility gaps between grossular and grandite and between grandite and andradite only below 430K. Since most of these solid solutions are formed at higher temperatures for which we did not find evidence of a miscibility gap, the formation of compositional oscillations is probably due to kinetic hindering of thermodynamically stable complete solid solutions. A new methodological aspect is the incorporation of zero

  3. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  4. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. (United States)

    Zhang, Ran; Zheng, Shili; Ma, Shuhua; Zhang, Yi


    Bayer red mud (RM) is an alumina refinery waste product rich in aluminum oxides and alkalis which are present primarily in the form of sodium hydro-aluminosilicate desilication product (DSP). A hydrothermal process was employed to recover alumina and alkali from "Fe-rich" and "Fe-lean" RM, the two representative species of RM produced in China. The hydrothermal process objective phase is andradite-grossular hydrogarnet characterized by the isomorphic substitution of Al and Fe. Batch experiments were used to evaluate the main factors influencing the recovery process, namely reaction temperature, caustic ratio (molar ratio of Na(2)O to Al(2)O(3) in sodium solution), sodium concentration and residence time. The results revealed that the Na(2)O content of 0.5 wt% and A/S of 0.3 (mass ratio of Al(2)O(3) to SiO(2)) in leached residue could be achieved with Fe-rich RM under optimal conditions. However, the hydrothermal treatment of Fe-lean RM proved less successful unless the reaction system was enriched with iron. Subsequent experiments examined the effects of the ferric compound's content and type on the substitution ratio. PMID:21444152

  5. Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite (United States)

    Robie, Richard A.; Bin, Zhao; Hemingway, Bruce S.; Barton, Mark D.


    The heat capacity of synthetic andradite garnet (Ca3Fe2Si3O12) was measured between 9.6 and 365.5 K by cryogenic adiabatic calorimetry and from 340 to 990 K by differential scanning calorimetry. At 298.15 KCop,m and Som are 351.9 ± 0.7 and 316.4 ± 2.0 J/(mol·K), respectively.

  6. Physical and chemical properties of fluid and melt inclusions of the Lagoa Real uraniferous albitites (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Alexandre de Oliveira, E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Inst. de Geociencias; Rios, Francisco Javier; Alves, James Vieira; Chaves, Adriana Monica Dalla Vecchia; Fuzikawa, Kazuo; Neves, Jose Marques Correia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)


    Data of melt and fluid inclusions obtained by LA-ICP-MS and microthermometry techniques represent an important investigation complement to understand geological processes which took place in Lagoa Real uraniferous albitites (Brazil). Melt inclusions found in augite structure, which reveals the previous presence of U in the syenitic magma. Primary fluid inclusions in magmatic augite of the albitites contain Na, denoting once more its presence in original magma. The formation of andradite from augite during shear events that generated the metamorphosed syenite (uraniferous albitite) was certified by the ICP-MS signals and uranium released by magmatic titanite (U source mineral)during the 1.9 Ga metamorphism was recorded in the fluid inclusions found in andradite, mineral that was formed in this same metamorphic event which recrystallized titanite crystals. Such uranium was responsible by precipitation of the disseminated uraninite found inside andradite. (author)

  7. Two-garnet rodingite from Amador County, California (United States)

    Duffield, W.A.; Beeson, M.H.


    Two distinct phases of garnet have been discovered in rodingite from Amador County, Calif. The two garnets are hydrogrossular and (hydro?) grossular-andradite. Only one, generally hydrogrossular, has been reported in rodingitcs studied by other workers. The rodingite of this study formed from a mafic dike with abundant euhedral plagioclase laths. The hydrogrossular is concentrated within the areas of these laths and is volumetrically about as abundant. The (hydro?) grossular-andradite is concentrated in the groundmass and as incursions into the plagioclase laths. The garnets apparently grew during one general episode of metasomatism, and their spatial distribution and compositions were controlled principally by the unequal distribution of iron and aluminum caused by the presence of plagioclase laths (and mafic minerals?) in the original unaltered dike.

  8. Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions


    Malvoisin, Benjamin,; Chopin, Christian; Brunet, Fabrice; Galvez, Matthieu


    In the Alpine blueschist- to eclogite-facies meta-ophiolitic units of northern Corsica, the contact between a serpentinite body and an immediately overlying siliceous marble is remarkable for the occurrence of wollastonite and, on the marble side, a dark halo around the serpentinite. The refolded, continuous contact is a rodingite-type reaction zone with a centimetre-thick nephritic selvage of diopside + andradite/grossular ± perovskite on the serpentinite side, followed towards the marble by...

  9. Garnets within geode-like serpentinite veins: Implications for element transport, hydrogen production and life-supporting environment formation (United States)

    Plümper, Oliver; Beinlich, Andreas; Bach, Wolfgang; Janots, Emilie; Austrheim, Håkon


    Geochemical micro-environments within serpentinizing systems can abiotically synthesize hydrocarbons and provide the ingredients required to support life. Observations of organic matter in microgeode-like hydrogarnets found in Mid-Atlantic Ridge serpentinites suggest these garnets possibly represent unique nests for the colonization of microbial ecosystems within the oceanic lithosphere. However, little is known about the mineralogical and geochemical processes that allow such unique environments to form. Here we present work on outcrop-scale vein networks from an ultramafic massif in Norway that contain massive amounts of spherulitic garnets (andradite), which help to constrain such processes. Vein andradite spherulites are associated with polyhedral serpentine, brucite, Ni-Fe alloy (awaruite), and magnetite indicative of low temperature (<200 °C) alteration under low fO2 and low aSiO2,aq geochemical conditions. Together with the outcrop- and micro-scale analysis geochemical reaction path modeling shows that there was limited mass transport and fluid flow over a large scale. Once opened the veins remained isolated (closed system), forming non-equilibrium microenvironments that allowed, upon a threshold supersaturation, the rapid crystallization (seconds to weeks) of spherulitic andradite. The presence of polyhedral serpentine spheres indicates that veins were initially filled with a gel-like protoserpentine phase. In addition, massive Fe oxidation associated with andradite formation could have generated as much as 600 mmol H2,aq per 100 cm3 vein. Although no carboneous matter was detected, the vein networks fulfill the reported geochemical criteria required to generate abiogenic hydrocarbons and support microbial communities. Thus, systems similar to those investigated here are of prime interest when searching for life-supporting environments within the deep subsurface.

  10. Geochemistry of garnets from a tonalite and granitic aplite-pegmatite veins from Ciborro-Aldeia da Serra, Ossa-Morena Zone, Southern Portugal


    Lima, S. S. M.; Neiva, Ana Margarida R.; Ramos, João Farinha


    Electron-microprobe analysis of garnet from a tonalite and aplite-pegmatite and pegmatite veins cutting different lithologies from an area located in the Ossa-Morena Zone, southern Portugal, show distinct compositions, mainly andradite with a subordinate grossular component in tonalite, and predominantly spessartine with a subordinate almandine component [and rarely, of mainly almandine with a subordinate spessartine component] in the veins. In general, single crystals of garnet are unzoned i...

  11. Quantum mechanical first principles calculations of the electronic and magnetic structure of Fe-bearing rock-forming silicates

    International Nuclear Information System (INIS)

    The focus of this thesis is the study of the electronic and magnetic structure of three representatives of the main Fe-bearing rock-forming silicates: Fe2+2Si2O6, almandine Fe2+3Al2(SiO4)3 and andradite Ca3Fe3+2(SiO4)3. For this purpose the quantum mechanical first principles electronic structure calculations are performed by the most efficient DFT method in the local spin-density approximation for calculating spectroscopic data: the spin-polarized self consistent charge X[alpha] method. These minerals have attracted significant attention due to their abundance in the Earth's crust and mantle, and because crystallised silicates are main components of cosmic dust which is the most abundant raw material in the Universe. The specific feature and strength of these investigations consist in the theoretical characterization of these complex systems based on experimental results. This means that, on one hand, experimental spectroscopic and crystallographic data are being used to judge the reliability of the calculations, whereas, on the other hand, experimental data are interpreted and explained by the theoretical results. This work is divided into seven main parts. Chapter 1 is the introduction to the thesis. Chapter 2 describes the theoretical bases, ideas, approximations and advantages of the SCC- X[alpha] method and basics of the art of cluster construction. Chapter 3 considers physical bases of absorption and Moessbauer spectroscopy, crystal field theory, evaluation of the main spectroscopic values within the frames of the SCC- X[alpha] method and magnetic interaction between atoms. In addition, tetragonally, trigonally and angularly distorted octahedral sites with various degrees of the distortions are calculated and analyzed. The electronic and magnetic structures of orthoferrosilite, almandine and andradite are described in Chapters 4, 5 and 6, respectively. In the case of orthoferrosilite the magnetic interactions between the iron spins within the ribbons and

  12. Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. (United States)

    Liao, Chang-Zhong; Zeng, Lingmin; Shih, Kaimin


    Red mud is a worldwide environmental problem, and many authorities are trying to find an economic solution for its beneficial application or/and safe disposal. Ceramic production is one of the potential waste-to-resource strategies for using red mud as a raw material. Before implementing such a strategy, an unambiguous understanding of the reaction behavior of red mud under thermal conditions is essential. In this study, the phase compositions and transformation processes were revealed for the Pingguo red mud (PRM) heat-treated at different sintering temperatures. Hematite, perovskite, andradite, cancrinite, kaolinite, diaspore, gibbsite and calcite phases were observed in the samples. However, unlike those red mud samples from the other regions, no TiO2 (rutile or anatase) or quartz were observed. Titanium was found to exist mainly in perovskite and andradite while the iron mainly existed in hematite and andradite. A new silico-ferrite of calcium and aluminum (SFCA) phase was found in samples treated at temperatures above 1100°C, and two possible formation pathways for SFCA were suggested. This is the first SFCA phase to be reported in thermally treated red mud, and this finding may turn PRM waste into a material resource for the iron-making industry. Titanium was found to be enriched in the perovskite phase after 1200°C thermal treatment, and this observation indicated a potential strategy for the recovery of titanium from PRM. In addition to noting these various resource recovery opportunities, this is also the first study to quantitatively summarize the reaction details of PRM phase transformations at various temperatures. PMID:25841072

  13. Characterization of brazilian wollastonite for radiation dosimetry

    International Nuclear Information System (INIS)

    In these work preliminary results of the characterization analyses of Brazilian Wollastonite for radiation dosimetry are presented. Wollastonite is a silicate of calcium, Ca(SiO3), and it was acquired in the form of rude mineral with Andradite inclusions. The sample was cleaned and prepared for obtained selected grains of Wollastonite. The analyses of chemical and mineralogical compositions were obtained using the neutron activation and X-ray powder diffraction techniques. The thermoluminescent (TL) glow curve of the material shows a prominent peak at about 200 C. TL emission spectra, and photoinduced emission spectra were also obtained. (Author)

  14. Accretionary wedge harzburgite serpentinization and rodingitization constrained by perovskite U/Pb SIMS age, trace elements and Sm/Nd isotopes: Case study from the Western Carpathians, Slovakia (United States)

    Li, Xian-Hua; Putiš, Marián; Yang, Yue-Heng; Koppa, Matúš; Dyda, Marian


    Perovskite-bearing harzburgites occur in a “mélange” type blueschist-bearing accretionary wedge complex of the Inner Western Carpathians Meliata Unit in Slovakia. Although dark rounded, slightly hydrated relic “cores” of harzburgite boulders are perovskite-free, perovskite (Prv) occurrence in the surrounding serpentinites and rodingites enabled dating of hydration, resulting in two metamorphic-metasomatic Prv generations. Perovskite (1) grows parallel to relic clinopyroxene exsolution lamellae or forms randomly oriented grain clusters in serpentinized orthopyroxene (Opx1) porphyroclasts, often accompanied by tiny andradite lamellae clusters, or it is partly replaced by Ti-andradite. Perovskite crystallization indicates evolving rodingitization fluids pervading the boundary between the harzburgite “cores” and Prv-free serpentinite. This strictly limited occurrence of Prv (1) within a 1 to 20-cm across-zone implies slightly postponed Prv crystallization to serpentinization by LREE(Ce,La), Ca2+, Ti/Fe3+-enriched aqueous fluids. A grain scale metasomatic mechanism partitioned Ca and Ti from the host orthopyroxene porphyroclasts, spinel (Ti) and grain-boundary pervasive fluids to Prv. In contrast, Prv (2) occurs in a 1 to 3 cm across chlorite-rich blackwall zone between hosting serpentinite and rodingite veins, thus indicating channelled rodingitization fluid flow and accompanying hydraulic fracturing. Here, Prv (2) is ingrown by chlorite and apatite. Part of this Prv (2) formed in a rodingite vein mineral assemblage composed of diopside, andradite, vesuvianite, epidote/zoisite, apatite and chlorite. Both perovskite 1 and 2 are replaced by pyrophanite along the grain rims and interiors; most likely via fluid-aided coupled dissolution-reprecipitation at increased Si-Fe-Mn-Al element solubility in rodingitization fluids pervading serpentinized harzburgite. Both Prv generations, especially Prv (2), can be partly to almost totally replaced by (Ti-) Adr

  15. Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion (United States)

    Smith, C. B.; Haggerty, S. E.; Chatterjee, B.; Beard, A.; Townend, R.


    Are kimberlites, lamproites, ultramafic lamprophyres and carbonatites genetically associated or not? There are strong opinions for and against any relationship. The 20 Ha Khaderpet pipe, discovered by Rio Tinto Exploration, is an unusual diamondiferous carbonatite-kimberlite clan rock (KCR) association in the Anumpalle Cluster of the Wajrakarur Kimberlite Field in the Dharwar Craton of Peninsular Indian. The Khaderpet pipe has a discrete sovite phase intrusive into KCR breccia, not noticed elsewhere in the Wajrakarur kimberlite field. Petrographically, the KCR is a clast-supported lithic breccia and crystal lithic tuff, with occasional pelletal lapilli. Clasts show a weak horizontal imbrication. The overall appearance of the tuffs and breccias is suggestive of terminal-blocked, vent accumulations that formed by under pressure, with spallation of country rock causing an abundance of granitoid debris. The sovite phase has up to 95% calcite, occasionally showing flow textured polycrystalline laths set in a minor saponite matrix. There are mineralogical gradations from an olivine-rich ultramafic to a calcite-dominant rock resembling pure carbonatite. Rare REE mineral phases in the carbonatite include allanite and other REE-rich unidentified mineral phases. Xenocrystic high pressure phases in both ultramafic and carbonatite include mantle-derived diamonds, lherzolitic-, eclogitic- and subcalcic-pyrope, Ti-poor andradite, chrome diopside, picrochromite and picroilmenite. Extensive metasomatism in the form of reddening of country rock feldspars by hematite, introduction of green chlorite, and saponitic alteration of breccia clasts and the ultramafic phase is common. The chemistry of the Khaderpet ultramafic component, suggests that the KCR is transitional between kimberlite and ultramafic lamprophyres, like certain other pipes in the Wajrakarur Kimberlite Field, with strong enrichment in LREE, CaO and CO2. However, low MgO (~ 13%) and high CaO (~ 10%) values are more

  16. Geological, geochronological, and mineralogical constraints on the genesis of the Chengchao skarn Fe deposit, Edong ore district, Middle-Lower Yangtze River Valley metallogenic belt, eastern China (United States)

    Yao, Lei; Xie, Guiqing; Mao, Jingwen; Lü, Zhicheng; Zhao, Caisheng; Zheng, Xianwei; Ding, Ning


    The Edong ore district is located within the westernmost Middle-Lower Yangtze River Valley metallogenic belt (MLYRB), and hosts the largest concentration of skarn Fe deposits in China, although the origin of these deposits remains controversial. The Chengchao deposit is the largest skarn Fe deposit so far discovered within the MLYRB, and provides a good opportunity to address the debate surrounding the origin of these skarn Fe deposits. Here, we present geological, geochronological, and mineralogical data from the Chengchao skarn deposit and associated intrusions, and discuss the relationships between granitoids and mineralization in the Chengchao deposit. The NW-SE-striking orebodies in the study area have porphyritic quartz monzonite and/or granite footwalls, and Triassic marble or diorite hangingwalls, indicating a spatial relationship between these intrusions and Fe mineralization. Zircon U-Pb data from the granite, porphyritic quartz monzonite, diorite, and porphyritic diabase dike within the deposit show ages of 129 ± 1, 128 ± 1, 140 ± 1, and 126 ± 1 Ma, respectively. These ages and the previously reported ages on the timing of mineralization suggest that the porphyritic quartz monzonite and granite are coeval with the formation of the skarn Fe deposit. Our data confirm that the granitic rocks are temporally associated with Fe mineralization. The prograde substage of skarn development is characterized by two stages of andradite (Adr98-38Grs61-2Prp2-0Sps1-0Alm1-0) and diopside (Di95-61Hd37-5Jo3-0), including an early stage of garnet and pyroxene formation that is genetically associated with the mineralization. The early stage garnets are more andradite-rich (Adr98-50Grs49-2Prp1-0Sps1-0Alm0) than the late veinlet garnets characterized by intermediate grandite compositions (Adr67-37Grs61-31Prp2-0Sps1-0Alm1-0). The early stage pyroxenes (Di95-74Hd26-5Jo1-0) are compositionally distinct from the late stage pyroxenes (Di84-61Hd37-16Jo3-0). Compositional

  17. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites. (United States)

    Keil, K.; Fuchs, L. H.


    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  18. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust. (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris


    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. PMID:26060195

  19. Uraniferous albitites from the Lagoa Real Uranium Province, state of Bahia, Brazil

    International Nuclear Information System (INIS)

    The Uranium Province of Lagoa Real is located in the region of Caetite, throughout the south-central portion of the state of Bahia. The basic chronostratigraphic units are the metamorphic rocks - granitic rocks and gneisses of the Archean basement - and cataclastic metasomatic rocks - albitites and quartzo-feldspathic lithologies of the lower Proterozoic. The albitites, host rocks for the uranium mineralization, occur regionally as numerous lenticular and discontinuos bodies arranged submeridionally according to two main alignments forming an arc, and are therefore called linear albities in allusion to similar features in Kasachstan, Russia, where they were first given this designation. The name albitite was employed to designate the metasomatites in which albitite dominates over the other minerals. The uranium mineralization consists of uraninite and pitchblende and is confined to the ore zones of those albitites containing aegirine, alkali-amphiboles, andradite, biotite and carbonates Furthermore, it displays lithologic-structural control, the morphology being controlled by the location of shear zones. This mineralization usually takes the shape of ore shoots which pitch in the direction and dip of the lineation. The authors describe the various types of albitites (mineralized or unmineralized) and their structural and petrographic characteristics, mode of occurence, geometry, metasomatic alterations, chemistry, uranium mineralization, as well as their genetic aspects. (Author)

  20. Metamorphism, metasomatism and mineralization at Lagoa Real, Bahia, Brazil

    International Nuclear Information System (INIS)

    Uranium deposits cumulatively in the 100,000 tonne U3 O8 range occur within ductile shear zones transecting Archean basement gneisses of the Sao Francisco Craton, at the Lagoa Real region of south-central Bahia, Brasil. The gneisses, dated at 2.6-3.0Ga, are at amphibolite and granulite facies and overlie to the west, the Proterozoic Espinhaco metasedimentary sequence along a thrust fault. Petrography and mineral chemistry show that in the zones of alteration/mineralization, the original K-feldspar + quartz + albite/oligoclase + hastingsite assemblage, is replaced by albite + aegirine - angite + andradite + hematite assemblages, with or without uraninite. This information along with oxygen isotope, whole rock geochemistry and fluid inclusion studies indicate that the alteration process involves removal of Si, K, Rb, Ba and addition of Na under oxidizing conditions. V, Pb and Sr were introduced along with U via interaction with saline SO2 - rich, isotopically light fluids under varying water/rock ratios and at temperatures of 500 - 5500C. 87Sr/86Sr systematics suggest that it is unlikely that Sr, and by extension uranium, were introduced by fluids originating from the basement gneisses. Geological constraints and the general alteration pattern are consistent with the release of the mineralizing fluids in response to the overloading of the basement rocks onto the Sedimentary Espinhaco via a thrust mechanism. (Author)

  1. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu (United States)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.


    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  2. Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran

    Directory of Open Access Journals (Sweden)

    Mollai Habib


    Full Text Available Paleocene to Oligocene tectonic processes in northwest Iran resulted in extensive I-type calc-alkaline and alkaline magmatic activity in the Ahar region. Numerous skarn deposits formed in the contact between Upper Cretaceous impure carbonate rocks and Oligocene-Miocene plutonic rocks. This study presents new field observations of skarns in the western Alborz range and is based on geochemistry of igneous rocks, mineralogy of the important skarn deposits, and electron microprobe analyses of skarn minerals. These data are used to interpret the metasomatism during sequential skarn formation and the geotectonic setting of the skarn ore deposit related igneous rocks. The skarns were classified into exoskarn, endoskarn and ore skarn. Andraditic garnet is the main skarn mineral; the pyroxene belongs to the diopside-hedenbergite series. The skarnification started with pluton emplacement and metamorphism of carbonate rocks followed by prograde metasomatism and the formation of anhydrous minerals like garnet and pyroxene. The next stage resulted in retro gradation of anhydrous minerals along with the formation of oxide minerals (magnetite and hematite followed by the formation of hydrosilicate minerals like epidote, actinolite, chlorite, quartz, sericite and sulfide mineralization. In addition to Fe, Si and Mg, substantial amounts of Cu, along with volatile components such as H2S and CO2 were added to the skarn system. Skarn mineralogy and geochemistry of the igneous rocks indicate an island arc or subduction-related origin of the Fe-Cu skarn deposit.

  3. Ion irradiation effects in natural garnets: Comparison with zircon

    International Nuclear Information System (INIS)

    The behavior of garnet (A3B2(XO4)3; Ia3d; Z=8) under ion-beam irradiation was investigated in order to compare its radiation susceptibility to another orthosilicate: zircon, ZrSiO4. Five natural end-member compositions were examined by in situ transmission electron microscopy during irradiation with 1.0 MeV Kr2+ over the temperature range of 50-1070 K. The critical amorphization temperature, above which amorphization does not occur, was 1030 K for andradite, but could not be determined for the other garnet composition because the Tc was higher than the highest temperature of the experiment. Based on topologic criterion, the degree of structural freedom in garnet is ∼-2.25 and for zircon ∼-1.5. Based on topology the critical amorphization dose for garnet should be higher than that of zircon; however, the average amorphization dose of garnet (0.20 dpa) is lower than that of zircon (0.37 dpa) at room temperature. This may be the result of the assumed value for the displacement energies, Ed, used in the calculation of dpa. Garnet did not decompose, while zircon decomposes to SiO2+ZrO2 during the ion irradiation at high temperature. This behavior may be related to the phase relations of garnet which melts congruently and zircon which decomposes to ZrO2+SiO2

  4. Timescales and settings for alteration of chondritic meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Hutcheon, I D; Brearley, A J; Pravdivtseva, O V; Petaev, M I; Hohenberg, C M


    Most groups of chondritic meteorites experienced diverse styles of secondary alteration to various degrees that resulted in formation of hydrous and anhydrous minerals (e.g., phyllosilicates, magnetite, carbonates, ferrous olivine, hedenbergite, wollastonite, grossular, andradite, nepheline, sodalite, Fe,Ni-carbides, pentlandite, pyrrhotite, Ni-rich metal). Mineralogical, petrographic, and isotopic observations suggest that the alteration occurred in the presence of aqueous solutions under variable conditions (temperature, water/rock ratio, redox conditions, and fluid compositions) in an asteroidal setting, and, in many cases, was multistage. Although some alteration predated agglomeration of the final chondrite asteroidal bodies (i.e. was pre-accretionary), it seems highly unlikely that the alteration occurred in the solar nebula, nor in planetesimals of earlier generations. Short-lived isotope chronologies ({sup 26}Al-{sup 26}Mg, {sup 53}Mn-{sup 53}Cr, {sup 129}I-{sup 129}Xe) of the secondary minerals indicate that the alteration started within 1-2 Ma after formation of the Ca,Al-rich inclusions and lasted up to 15 Ma. These observations suggest that chondrite parent bodies must have accreted within the first 1-2 Ma after collapse of the protosolar molecular cloud and provide strong evidence for an early onset of aqueous activity on these bodies.

  5. The origin of skarn beds, Ryllshyttan Zn-Pb-Ag + magnetite deposit, Bergslagen, Sweden (United States)

    Jansson, Nils F.; Allen, Rodney L.


    component. Subsequently, the calcareous Fe formations were subjected to post-depositional alteration by hydrothermal fluids, locally yielding more manganoan and magnesian assemblages. The Mn-alteration is manifested by lateral gradations from epidote-grandite-clinopyroxene±magnetite rocks into significantly more Mn-rich quartz-spessartine rocks and massive andradite rocks over distances of less than 10 cm within individual skarn beds. Magnesian alteration is manifested by the development of discordant zones of pargasite para-amphibolites and formation of stratiform pargasite rocks texturally similar to the interlaminated grandite-epidote-ferroan diopside rocks. The latter increase in abundance towards the Ryllshyttan deposit and are associated with pre-metamorphic/pre-tectonic K-Mg-Fe±Si alteration (now biotite-phlogopite-garnet-cordierite-pargasite rocks) that is related to base metal mineralization. The zone of Mn- and Mg-altered skarn beds extends beyond the zone of pervasive K-Mg-Fe±Si alteration around Ryllshyttan. This suggests that the skarn bed progenitors, or their sedimentary contacts against rhyolitic ash-siltstones, acted as conduits to outflowing hydrothermal fluids. The chemical and mineralogical imprint, imposed on affected beds by alteration, may serve as indicators of proximity to intense K-Mg-Fe±Si alteration envelopes around other base metal sulphide deposits in Bergslagen. The last recorded event comprised syn-tectonic veining of competent massive andradite skarn beds. The veins contain quartz-albite-epidote-ferroan diopside-actinolite assemblages.

  6. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings (United States)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.


    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  7. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand: Evidence from fluid inclusion and sulfur isotope studies (United States)

    Kamvong, Teera; Zaw, Khin


    The Phu Lon skarn Cu-Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals. Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6-468.5 °C; 17.4-23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9-399.8 °C; 0.5-8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (-2.6 to -1.1 ‰ δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu-Au skarn based on the mineralogy and fluid inclusion characteristics.

  8. Garnetization as a ground preparation process for copper mineralization: evidence from the Mazraeh skarn deposit, Iran (United States)

    Karimzadeh Somarin, Alireza


    The Mazraeh Cu-Fe skarn deposit, NW Iran is the result of the intrusion of an Oligocene-Miocene granitic pluton into Cretaceous calcareous rocks. The pluton ranges in composition from monzonite to quartz monzonite, monzogranite, tonalite and granodiorite with I-type, calc-alkaline, and weakly peraluminous characteristics. The Mazraeh pluton was emplaced in a volcanic arc setting in an active continental margin at a depth of ~8 km. Pyroxene skarn, garnet skarn, and epidote skarn zones were formed during the intrusive phase. The garnet skarn developed as exoskarn and endoskarn from the calcareous wall rocks and the pluton, respectively, prior to mineralization. Garnet skarn from the exoskarn zone is identified by relict layering inherited from the precursor calcareous lithologies. Mass balance calculation of garnet skarn in the endoskarn zone indicates that hydrothermal fluids originating from the cooling magma introduced Si, Fe, Mn, Ca, Mg, P, Ag, Cu, Zn, La, Pb, Cd, Mo, and Y. The main mass loss in the garnet skarn was due to destruction of feldspars in the Mazraeh plutonic rocks and leaching of K2O and Na2O. Released Ca has been fixed in the andraditic garnet. Garnetization of the Mazraeh pluton was accompanied by mass and volume increase. The magnitude of these changes depends mainly on the degree of alteration and composition of the precursor. The brittle behavior of the endoskarn zone was increased due to formation of massive garnet which subsequently fractured. These fractures not only facilitated movement of hydrothermal fluids but also provided new locations for Cu mineralization. Therefore locating strongly garnetized zones may be a vector to ore in skarn deposits.

  9. Mineralogy of the pollutant products formed in the Masca exploration area (Lower Iara Valley Basin, Cluj County, Romania

    Directory of Open Access Journals (Sweden)

    Lucret̡ia Ghergari


    Full Text Available In the present study the mineralogy of a tailing dam situated in the Maşca mining area is discussed. Our aim was to point out the physicochemical processes, which occur under the action of the exogenous factors. The studied samples were collected from different levels of the dam wall, from the Maşca mine and Iara river waters. The applied analytical methods are: transmission polarized microscopy, transmission electron microscopy, X-ray diffractometry, and atomic absorption spectrometry. The physicochemical parameters have been measured in situ and in the laboratory. The minerals present in the tailings are represented by: garnets (andradite-grossular and almandine series, diopside, hedenbergite, actinolite, tremolite, epidote, zoisite, biotite, phlogopite, serpentine minerals, chlorite, tourmaline, quartz, feldspar, anatase, apatite and opaque minerals (pyrrhotite, pyrite, magnetite and hematite. The carbonate minerals belonging to the mining waste are represented mostly by dolomite and subordinately by calcite. The identified neoformation minerals formed as a result of the action of the exogenous factors are the following: illite, illite/smectite, nontronite, palygorskite, chlorite-vermiculite, gypsum, epsomite, hexahydrite, wattevillite, ferrohexahydrite, hallotrichite, bilinite(?, goethite and amorphous iron hydroxide. The chemical analyses undertaken on the water samples show high values of the soluble salts (Na+, K+, Ca2+, Mg2+, and SO42- and heavy metals (Cu2+, Pb+, Fe2+, Fe3+, and Zn2+ contents, exceeding international and national guidelines. Although the pH of the streams originating from the mine area vary between neutral to slightly alkaline, pollution occurs and significantly impacts the mineralized area as well as the neighboring areas.

  10. Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus


    Full Text Available DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl? controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite and clino-pyroxene (wollastonite, and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

  11. Petrology and geochemistry of a peridotite body in Central- Carpathian Paleogene sediments (Sedlice, eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Koppa Matúš


    Full Text Available We studied representative samples from a peridotite body situated NE of Sedlice village within the Central- Carpathian Paleogene sediments in the Central Western Carpathians. The relationship of the peridotite to the surrounding Paleogene sediments is not clear. The fractures of the brecciated peridotite margin are healed with secondary magnesite and calcite. On the basis of the presented bulk-rock and electron microprobe data, the wt. % amounts of mineral phases were calculated. Most of calculated “modal” compositions of this peridotite corresponds to harzburgites composed of olivine (∼70-80 wt. %, orthopyroxene (∼17-24 wt. %, clinopyroxene ( < 5 wt. % and minor spinel ( < 1 wt. %. Harzburgites could originate from lherzolitic protoliths due to a higher degree of partial melting. Rare lherzolites contain porphyroclastic 1-2 mm across orthopyroxene (up to 25 wt. %, clinopyroxene (∼ 5-8 wt. % and minor spinel ( < 0.75 wt. %. On the other hand, rare, olivine-rich dunites with scarce orthopyroxene porphyroclasts are associated with harzburgites. Metamorphic mineral assemblage of low-Al clinopyroxene (3, tremolite, chrysotile, andradite, Cr-spinel to chromite and magnetite, and an increase of fayalite component in part of olivine, indicate low-temperature metamorphic overprint. The Primitive Mantle normalized whole-rock REE patterns suggest a depleted mantle rock-suite. An increase in LREE and a positive Eu anomaly may be consequence of interactive metamorphic fluids during serpentinization. Similar rocks have been reported from the Meliatic Bôrka Nappe overlying the Central Western Carpathians orogenic wedge since the Late Cretaceous, and they could be a potential source of these peridotite blocks in the Paleogene sediments.

  12. Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence) (United States)

    Baudouin, Céline; Parat, Fleurice; Denis, Carole M. M.; Mangasini, Fredrik


    North Tanzanian Divergence is the first stage of continental break-up of East African Rift (volcanoes. Hanang volcano is the southernmost volcano in the North Tanzanian Divergence and the earliest stage of rift initiation. Hanang volcano erupted silica-undersaturated alkaline lavas with zoned clinopyroxene, nepheline, andradite-schorlomite, titanite, apatite, and pyrrhotite. Lavas are low MgO-nephelinite with low Mg# and high silica content (Mg# = 22.4-35.2, SiO2 = 44.2-46.7 wt%, respectively), high incompatible element concentrations (e.g. REE, Ba, Sr) and display Nb-Ta fractionation (Nb/Ta = 36-61). Major elements of whole rock are consistent with magmatic differentiation by fractional crystallization from a parental melt with melilititic composition. Although fractional crystallization occurred at 9-12 km and can be considered as an important process leading to nephelinite magma, the complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites recorded magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melilititic melt replenishment. The low water content of clinopyroxene (3-25 ppm wt. H2O) indicates that at least 0.3 wt% H2O was present at depth during carbonate-rich nephelinite crystallization at 340-640 MPa and 1050-1100 °C. Mg-poor nephelinites from Hanang represent an early stage of the evolution path towards carbonatitic magmatism as observed in Oldoinyo Lengai. Paragenesis and geochemistry of Hanang nephelinites require the presence of CO2-rich melilititic liquid in the southern part of North Tanzanian Divergence and carbonate-rich melt percolations after deep partial melting of CO2-rich oxidized mantle source.

  13. Radiometric, SEM and XRD investigation of black sands at Chituc placer deposit North of the City of Navodari, Romania (United States)

    Duliu, Octavian G.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Margineanu, Romul M.; Costea, Constantin; Dumitras, Delia; Ion, Adriana


    The black sand of the Chituc marine sandbank situated northern of the city of Navodari (Romania), displayed anomalous high ambient dose rates. Field measurements performed during 2013 Summer campaign recorded in some places dose rate up to 200 nSv/h, significantly overpassing the average value of 44 ± 20 nSv/h recorded along the entire Southern sector of Romanian Black Sea shore. Here, the sand presented a black-brownish hue, different by the usual white yellowish colour. Gamma ray spectrometry performed on both Slanic-Prahove Underground Low Background Laboratory and Gological Institute Radiometric Facilities showed with clarity the dominance of 228-Ac radioisotope in the 50 microns fraction together with the 226-Ra and traces of 40-K. No significant amount of anthropogenic 137-Cs were identified. The other granulometric fractions, i.e. 315, 200 as well 100 microns presented a significant lower level of radioactivity. X-ray diffraction (XRD) as well as Scanning Electron Microsopy (SEM) data attested the presence of monazite, zircon, magnetite, ilmenite, andradite, quartz, aragonite and albite in different proportions, the monazite and zircon being preponderant in the 50 microns, the most radioactive fraction. Based on both radiometric and XRD determinations we come to the conclusion that the evidenced radioactivity could be attributed to both uranium and thorium series in the zircon and monazite fractions and to a lesser extent in the garnet fraction. By its position with respect to Danube Delta, the Chituc marine sandbank could be regarded as a placer where heavy minerals discharged in the Black Sea by the Danube River and transported southward by the Great Black Sea Rim are deposited by gravity separation during sedimentary processes. The implications of the Chituc levee radioactive anomaly for any further human activity are analysed and discussed. Acknowledgement: Work done within the BS ERA NET 041 project in the frame of BS-ERA.NET Pilot Joint CAll 2010-2011.

  14. U-Pb isotope systematics in josephinites and associated rocks

    International Nuclear Information System (INIS)

    Josephinite nodules are composed of metallic nickel iron alloy intergrown with andradite garnet. They are found in the peridotitic section of an obducted ophiolite in SW Oregon. The origin of josephinite is widely debated: for example, previous investigation have proposed it as a byproduct of low temperature synserpentinization processes linked to the intrusion of dikes or and its derivation from primitive mantle, conceivably from as deep as the core mantle boundary. We report U-Pb data from josephinites, wyrdite (a rock associated with josephinite) consisting of rutile and ilmente intergrown with silicates, and their surrounding rocks (hornblende diorites and harzburgites). The measured Pb isotopic composition of all decontaminated, leached josephinite metal samples plots in the Pb-Pb diagram just above/in the MORB field, while the first leachates are characterized by higher 207Pb/204Pb ratios. The isotopic Pb composition measured in the leachates of the wyrdite defines a line whose slope corresponds to an age of 159±8 Myr. The harzburgites show a wide spread in Pb isotopic compositions; all samples lie above the MORB field and three samples plot to the left side of the 4.55 AE geochron. The hornblende diorite dikes, characterized by the highest U and Pb concentrations of all studied rocks, plot in the MORB field. None of these different rocks is characterized by a single or homogeneous Pb composition. All samples are affected by secondary alteration processes: the circulation of hydrothermal fluids disturbed the dikes and ultramafic rocks and serpentinization processes have affected harzburgites, josephinites, and wyrdites. Thus the Pb isotopic composition measured today represents a mixture of initial Pb, radiogenic Pb and inherited Pb in variable proportions. Concerning the origin of josephinite these results show a close relationship between josephinite, wyrdite, and the dikes. (orig./WB)

  15. Matrix Effects in SIMS Analysis of Hydrogen in Nominally Anhydrous Minerals (NAMs) (United States)

    Mosenfelder, J. L.; Rossman, G. R.


    Accurate analysis of trace H in NAMs has become important with recognition that even small amounts of H influence geochemical and geophysical processes. FTIR and SIMS can measure concentrations down to ~1 ppmw H2O. However, a major limitation is that they rely on standards calibrated with other methods. SIMS matrix effects for H in NAMs are poorly constrained, but are likely dominated by differences in mean atomic mass. Here we use volatile-free molar weight (VFMW) normalized to one O/mol as a proxy for this parameter [cf. 1]. Our goal is to constrain SIMS matrix effects by combining our work on olivine [2], pyroxene [3], and feldspar [4] with new data on kyanite, zircon, and 37 garnets (pyropes, grossulars, spessartines, and andradites), while critically evaluating absolute calibrations of IR absorption coefficients (ɛi) for H in NAMs. All of these NAMs taken together span a wider range in VFMW (~32-45) than in previous comparisons [5, 6] concentrating only on olivine, pyroxene, and pyrope-rich garnet (VFMW ~ 34-37). Our results and conclusions include the following: 1) SIMS-FTIR comparisons demonstrate that ɛi is wavenumber dependent for feldspar, zircon, grossular, and clinopyroxene, in accord with theory and empirical calibrations on hydrous materials. On the other hand, a factor of 3 difference in ɛi for H defects in olivine [7] is unsupported by our data [2]. 2) Calibration slopes (for plots of ppmw H2O vs. 16OH/30Si × SiO2) correlate positively with VFMW, an effect not discerned in previous work [6]. This result is also opposite to a study demonstrating a negative correlation for hydrous phases and glasses [1]. This discrepancy may be related to differences in analytical methods (e.g., Cs+ vs. O- primary beam, collection of OH- versus H+). 3) Scatter in the trend of calibration slopes vs. VFMW is likely due to uncertainties in ɛi. Another possible factor is the structure of the matrix, which can affect the kinetic energy of cascade collisions leading to

  16. Petrogenesis of orbicular ijolites from the Prairie Lake complex, Marathon, Ontario: Textural evidence from rare processes of carbonatitic magmatism (United States)

    Zurevinski, Shannon E.; Mitchell, Roger H.


    A unique occurrence of orbicular ijolite is hosted in a matrix of contemporaneous holocrystalline ijolite at the 1.1 Ga Prairie Lake Carbonatite Complex (Marathon, Ontario, Canada), and is the only known occurrence of this textural type in a rock of ijolitic composition. This mineralogical and petrological study of this orbicular ijolite highlights many of the differences from other rare occurrences of orbicular rocks described from carbonatites, granites, diorites and lamprophyres. The orbicules occur along distinct, densely packed bands in equigranular nepheline-rich ijolite and range up to 6 cm in diameter. Macroscopically, the orbicules show variability in the mineralogy of their cores. Detailed imaging of the cores shows evidence of quench textures. Radial outward zoning is common near the cores with concentric banding occurring toward the margins of the orbicules. The mineralogy of the orbicules consists of: nepheline; diopside; calcite; apatite; andradite-melanite garnet; titanite; Fe-rich phlogopite; titaniferous magnetite; perovskite; with secondary natrolite, calcite and cancrinite. The mineralogy of the host ijolite is similar to that of the orbicules. Mineral compositions from the orbicular ijolite and the host ijolite are similar. Within the orbicules, anhedral minerals are found occurring in a 'matrix' of garnet throughout the distinct concentric bands. The textures within the concentric bands of the orbicules are best described as annealing recrystallization textures. The rims of the orbicules form interlocking crystals with the host ijolite resulting in near-indistinguishable boundaries. The orbicules are interpreted to represent interaction of a partially-crystallized quenched ijolitic melt, which was in contact with a second pulse of consanguineous ijolite magma. Immersion in the latter resulted in sub-solidus diffusion and annealing recrystallization. Orbicular textures were produced from previously formed quenched ijolite, which was

  17. Process Mineralogy of a Skarn Tungsten-Molybdenum Ore%夕卡岩型钨钼伴生矿工艺矿物学研究

    Institute of Scientific and Technical Information of China (English)

    洪秋阳; 梁冬云; 张莉莉


    The researches on a skarn tungsten-molybdenum ore by the internationally advanced MLA testing technology and traditional process mineralogy show that the grade of W and Mo is low with high comprehensive recycling value. The tungsten mainly occurs in the form of scheelite while the molybdenum principally exists as molybdenite, and the molybdenum as isomorphous addition existing in the lattice of scheelite accounts for 16.89%of the total molybdenum. The liberation degree of scheelite is close to 90%while that of molybdenite is less than 80%at the grinding fineness 62%-0.074 mm. The tungsten and molybdenum contained in the magnetic gangue minerals accounts for 2.8 % and 5.8 % respectively. Considering that the magnetic gangue minerals including andradite tremolite, diopside, etc account for about two-thirds of the total and are not closely intergrown with scheelite or molybdenite, pre-discarding these magnetic gangue minerals by high intensity magnetic separation is available so as to simplify the cleaning process of tungsten as well as molybdenum.%采用国际先进的MLA检测技术,结合传统工艺矿物学研究表明,某夕卡岩型钨钼伴生矿虽品位低,但综合回收价值较高。矿石中钨主要以含钼白钨矿矿物形式存在,以类质同象进入白钨矿晶格的钼占原矿总钼的16.89%。钼主要以辉钼矿矿物形式存在。当磨矿细度-0.074 mm占62%左右时,白钨矿单体解离近90%,而辉钼矿解离不到80%。钨、钼与本矿石中约占矿物总量三分之二的钙铁榴石、透辉石、透闪石等电磁性脉石连生关系不密切,分布于其中的钨、钼金属量分别仅2.8%、5.8%。因而可采用强磁选预先丢废而达到简化钨、钼精选。

  18. Frictional melting processes and the generation of shock veins in terrestrial impact structures: Evidence from the Steen River impact structure, Alberta, Canada (United States)

    Walton, Erin L.; Sharp, Thomas G.; Hu, Jinping


    Shock-produced melt within crystalline basement rocks of the Steen River impact structure (SRIS) are observed as thin (1-510 μm wide), interlocking networks of dark veins which cut across and displace host rock minerals. Solid-state phase transformations, such as ferro-pargasite to an almandine-andradite-majorite garnet and amorphization of quartz and feldspar, are observed in zones adjacent to comparatively wider (50-500 μm) sections of the shock veins. Shock pressure estimates based on the coupled substitution of Na+, Ti4+ and Si4+ for divalent cations, Al3+ and Cr3+ in garnet (14-19 GPa) and the pressure required for plagioclase (Ab62-83) amorphization at elevated temperature (14-20 GPa) are not appreciably different from those recorded by deformation effects observed in non-veined regions of the bulk rock (14-20 GPa). This spatial distribution is the result of an elevated temperature gradient experienced by host rock minerals in contact with larger volumes of impact-generated melt and large deviatoric stresses experienced by minerals along vein margins. Micrometer-size equant crystals of almandine-pyrope-majorite garnet define the shock vein matrix, consistent with rapid quench (100-200 ms) at 7.5-10 GPa. Crystallization of the vein occurred during a 0.1-0.15 s shock pressure pulse. Majoritic garnet, formed during shock compression by solid state transformation of pargasite along shock vein margins, is observed in TEM bright field images as nanometer-size gouge particles produced at strain rates in the supersonic field (106-108). These crystals are embedded in vesiculated glass, and this texture is interpreted as continued movement and heating along slip planes during pressure release. The deformation of high-pressure minerals formed during shock compression may be the first evidence of oscillatory slip in natural shock veins, which accounts for the production of friction melt via shear when little or no appreciable displacement is observed. Our observations

  19. Evaluation of phase chemistry and petrochemical aspects of Samchampi–Samteran differentiated alkaline complex of Mikir Hills, northeastern India

    Indian Academy of Sciences (India)

    Abhishek Saha; Sohini Ganguly; Jyotisankar Ray; Nilanjan Chaterjee


    The Samchampi –Samteran alkaline complex occurs as a plug-like pluton within the Precambrian granite gneisses of Mikir Hills,Assam,northeastern India and it is genetically related to Sylhet Traps.The intrusive complex is marked by dominant development of syenite within which ijolite – melteigite suite of rocks is emplaced with an arcuate outcrop pattern.Inliers of alkali pyroxenite and alkali gabbro occur within this ijolite –melteigite suite of rocks.The pluton is also traversed by younger intrusives of nepheline syenite and carbonatite.Development of sporadic,lumpy magnetite ore bodies is also recorded within the pluton.Petrographic details of the constituent lithomembers of the pluton have been presented following standard nomenclatorial rules.Overall pyroxene compositions range from diopside to aegirine augite while alkali feldspars are typically orthoclase and plagioclase in syenite corresponds to oligoclase species.Phase chemistry of nepheline is suggestive of Na-rich alkaline character of the complex.Biotite compositions are typically restricted to a uniform compositional range and they belong to ‘biotite ’field in the relevant classification scheme.Garnets (developed in syenite and melteigite)typically tend to be Ti-rich andradite,which on a closer scan can be further designated as melanites.Opaque minerals mostly correspond to magnetite.Use of Lindsley ’s pyroxene thermometric method suggests an equilibration temperature from ∼450°–600°C for melteigite/alkali gabbro and ∼400° C for syenite.Critical assessment of other thermometric methods reveals a temperature of equilibration of ∼700°–1350°C for ijolite –melteigite suite of rocks in contrast to a relatively lower equilibration temperature of ∼600° C for syenite. Geobarometric data based on pyroxene chemistry yield an equilibration pressure of 5.32 –7.72 kb for ijolite,melteigite,alkali pyroxenite,alkali gabbro and nepheline syenite.The dominant syenite member of the

  20. Petrology and mineralogy of the La Peña igneous complex, Mendoza, Argentina: An alkaline occurrence in the Miocene magmatism of the Southern Central Andes (United States)

    Pagano, Diego Sebastián; Galliski, Miguel Ángel; Márquez-Zavalía, María Florencia; Colombo, Fernando


    The La Peña alkaline igneous complex (LPC) is located in the Precordillera (32°41‧34″ S - 68°59‧48″ W) of Mendoza province, Argentina, above the southern boundary of the present-day flat-slab segment. It is a 19 km2 and 5 km diameter subcircular massif emplaced during the Miocene (19 Ma) in the Silurian-Devonian Villavicencio Fm. The LPC is composed of several plutonic and subvolcanic intrusions represented by: a cumulate of clinopyroxenite intruded by mafic dikes and pegmatitic gabbroic dikes, isolated bodies of malignite, a central intrusive syenite that develops a wide magmatic breccia in the contact with clinopyroxenite, syenitic and trachytic porphyries, a system of radial and ring dikes of different compositions (trachyte, syenite, phonolite, alkaline lamprophyre, tephrite), and late mafic breccias. The main minerals that form the LPC, ordered according to their abundance, are: pyroxene (diopside, hedenbergite), calcium amphibole (pargasite, ferro-pargasite, potassic-ferro-pargasite, potassic-hastingsite, magnesio-hastingsite, hastingsite, potassic-ferro-ferri-sadanagaite), trioctahedral micas (annite-phlogopite series), plagioclase (bytownite to oligoclase), K-feldspar (sanidine and orthoclase), nepheline, sodalite, apatite group minerals (fluorapatite, hydroxylapatite), andradite, titanite, magnetite, spinel, ilmenite, and several Cu-Fe sulfides. Late hydrothermal minerals are represented by zeolites (scolecite, thomsonite-Ca), epidote, calcite and chlorite. The trace element patterns, coupled with published data on Sr-Nd-Pb isotopes, suggest that the primary magma of the LPC was generated in an initially depleted but later enriched lithospheric mantle formed mainly by a metasomatized spinel lherzolite, and that this magmatism has a subduction-related signature. The trace elements pattern of these alkaline rocks is similar to other Miocene calc-alkaline occurrences from the magmatic arc of the Southern Central Andes. Mineral and whole

  1. Mineralogical composition of Oravita calcic skarns as a function of the high-temperature contact (United States)

    Ghinet, Cristina; Marincea, Stefan; Dumitras, Delia


    Insignificant in terms of mineralization, the skarns of Oravita are scientifically interested because of their mineralogical associations. The higher crystallinity and good natural conditions (they are generally barren) are two characteristics of this rocks that can provide the ideally system to understand the behavior of the mineralogical components in certain conditions of temperature and pressure, but also for the hydrated carbonate phases whose forming understanding may be useful in the applied mineralogy. The occurrence of skarns from Oraviţa includes, as representative species, gehlenite, calcic garnet, monticellite, ellestadite-(OH), vesuvianite, that means in the geochemically terms CaO - SiO2 - H2O - Al2O3 system, usually described as C-S-H-A phases by the cement researches, difficult to study because of the small dimensions of the compounds crystals. The inner skarn zone is dominated by the presence of the gehlenite, an aluminum calcium silicate whose formation involves, as conditions, high temperature (~ 750oC) and low pressure (up to 1kbar). Typically, it is associated with monticellite, ellestadite-(OH), wollastonite 2M, diopside and calcic garnets. As it is expected, the intensity of the contact metamorphism decreases from the innermost to the outermost parts of the aureole, reflected in the chemical activity of the cations that participated at the chemical reactions. In this respect, the observed garnets are zoned, being characterized by a peripheral rich in Al, while the centers of the crystals are characterized by a high content of Fe and Ti. The replacement of gehlenite with vesuvianite along the metasomtatic front, a process that was observed at the optical microscope, indicates the existence of late stage metasomatic mineral phases. The presence of the vesuvianite, frequently including partially chloritized clintonite slides, and its main associated minerals as wollastonite 2M and calcium garnet with an andradite composition, points out the

  2. Chrysotile asbestos quantification in serpentinite quarries: a case study in Valmalenco, central Alps, northern Italy (United States)

    Cavallo, Alessandro


    fibrous and lamellar polymorphs. A lot of minerals were identified in the mineralized veins: chrysotile, carbonates, talc, forsterite, brucite, chlorite, garnet (andradite), magnetite and sulphides. The quantitative XRPD and SEM-EDS analyses proved chrysotile percentages comprised between 11 and 100% by weight. On the other hand, chrysotile was never detected in the commercial massive rock. Considering the geostructural properties of the rock mass, the total asbestos content of the quarries is comprised between 0.23% and 0.02% by weight, very low percentages of no mining interest, classifiable as naturally occurring asbestos (NOA) occurrence. The SEM-EDS analyses also showed a slight chrysotile contamination close to the salvages of mineralized veins (in the form of chrysotile filled micro-fractures), for a thickness up to 5-6 cm. This study shows that the airborne asbestos exposure risk can be easily reduced by avoiding diamond wire or explosive cutting along the main mineralized veins, and by squaring off the blocks in the quarry (instead of processing plants). However, this study does not consider the possible asbestos occurrence in the form of micro-veins and micro-fractures, outside of the main discontinuities, and cannot be fully applied to highly fractured rock masses.

  3. 青海野马泉矽卡岩铁锌多金属矿区侵入岩、交代岩及矿化蚀变特征%Characteristics of intrusive rock, metasomatites, mineralization and atteration in Yemaquan skarn Fe-Zn polymetallic deposit, Qinghai Province

    Institute of Scientific and Technical Information of China (English)

    刘建楠; 丰成友; 赵一鸣; 李大新; 肖晔; 周建厚; 马永寿


    The Yemaquan Fe-Zn polymetallic deposit is located at the junction belt between Chaidamu basin and Qi-mantag area, Qinghai. There are some Hercynian and Indosinian intrusive rocks exposed in the ore dtstrict. The strata in the ore district are mainly Sijiaoyanggou Group. The skarn mainly occurs within the carbonate rocks and igneous conversion boundaries. The skarn minerals are mainly garnet, clinopyroxene, vesuvianite and epi-dote. Metallic minerals mainly include magnetite, chalcopyrite, galena, sphalerite and pyrrhotite. Based on the detailed field geological investigation and the observation of geological sections and drill cores, the authors studied the petrogeochemical characteristics and mineralization of this deposit. The petrochemistry of diorite is characterized by low SiO2 (51.90% ~ 59.03%), high MgO (2.04% ~3.44%) and TFeO (11.39% ~ 11.67%), rich REE (318.57 x 10~6 -327.76 x 10~6), and low LREE/HREE ratios (7.36-7.48). The monzonitic granite is characterized by high SiO2>(77.36% ~77.41%), low MgO (0.04% ~0.10%), low TFeO (0.76% ~1.08%), and high LREE/HREE ratios (9.14-9.37). The diopside-alkali metasomatites show stronger Eu negative anomaly (Eu = 0.07-0.52) and lower LREE/HREE ratios(3.19-7.87)than its original rock. The diopside-sodic metasomatites have low MgO (0.36% ~ 0.92%), high TFeO (3.05% ~ 8.13%) than its original rock. The skarn from Yemaquan deposit can be further divided into two types: calcic skarn and magnesian skarn. The calcic skarn is mainly distributed in the contact zone and consists of garnet and clinopyroxene. The clinopyroxenes distributed near the intrusion have high content of diposide end-member, and the garnet has more andradite end-members at the edge. According to the mineral composition and mineral inter-growth association, the authors have inferred that the diorite possesses remarkable mineralization potentiality, and calcic skarn was formed at an oxidation stage, whereas the magnesian skarn was formed in a reduction state

  4. Metasomatismo en ortoanfibolitas de la Faja máfica-ultramáfica del río de las tunas, Mendoza Metasomatism in orthoamphibolites from the Río de Las Tunas mafic-ultramafic belt, Mendoza

    Directory of Open Access Journals (Sweden)

    M. Florencia Gargiulo


    áticos y la secuencia de reemplazo observada en ellos, sugieren que tales asociaciones se generaron a causa de un proceso metasomático, acontecido en condiciones de bajo grado a una presión menor a 4 kbar, durante los estadios finales del ciclo de metamorfismo regional evidenciado en el área.In this contribution, petro-mineralogical and chemical evidences of metasomatism in orthoamphibolites from the Río de Las Tunas mafic-ultramafic belt in Frontal Cordillera of Mendoza province are provided. These orthoamphibolites integrate the metamorphic basement of the Frontal Cordillera and they belong to the Guarguaráz Metamorphic Complex. These rocks show mineral associations and textural relationships indicating disequilibrium conditions between some of the mineral phases. Hornblendic amphibole crystals show a reaction border with development of clinopyroxene (ferroan dioside; meanwhile the calcicplagioclase is mostly replaced by a fine-grained matrix integrated by the mineral association of garnet-epidotes.l -prehnite-pumpellyite- albite. The amphibole and clinopyroxene crystals are also partially replaced by pumpellyite and/or chlorite, meanwhile the matrix is slightly replaced by muscovite and calcite. Garnet compositions belong to the grossular-andradite series and their average composition is: Alm05Adr53Prp01Sps04Grs36Uv01. Some crystals with Cr2O3 content between 11.69-13.17 wt.% and with a subtle chemical zonation (uvarovitic core: Alm03Adr13Prp00Sps02Grs35Uv47 with more grossularic border: Alm03Adr12 Prp00Sps01Grs44Uv40 occur in relationship with magnetite crystals with up to 20% of the chromite component. Pressure estimations based on the compositional zoning of amphibole crystals gave values between 2.5-4.5 kbar. The observed mineral associations together with the textural and chemical characteristics of these rocks show that this kind of orthoamphibolites is completely different from the classical amphibolites of igneous protoliths outcropping in the study area

  5. Alteration and Dehydration in the Parent Asteroid of Allende (United States)

    Krot, A. N.; Scott, E. R. D.; Zolensky, M. E.


    to reduced CV3s. Nearly all of the matrix, the outer edges of the chondrules and the mesostases were aqueously altered to phyllosilicates. Magnetite and Ni-rich sulfides formed at this time. Subsequent heating of Allende resulted in equilibration of opaque assemblages at about 770 K and high fO2 and fS2 [4], dehydration of the phyllosilicates and formation of fayalitic rims and plate-like matrix olivine. Nepheline and sodalite, which occur in veins and/or intergrowths with fayalitic olivine in Allende DIs and matrix, and as alteration products in chondrules and CAIs along with grossular, wollastonite, hedenbergite, and andradite, probably formed simultaneously with fayalitic olivine. Inferred initial ^26Al/^27Al ratios in grossular and sodalite, show that CAI alteration occurred at least 2-4 Myr after CAI crystallization [8]. Variations in the initial ^129I/^127I for chondrules and CAIs in Allende suggest that the alteration lasted for about 10 Myr [9]. Oxidation during aqueous alteration and dehydration of the Allende components also provides a simple explanation for the absence of phyllosilicates in the Allende matrix, depletions in planetary noble gases [10], interstellar SiC, diamonds, and graphite [11]. We thank K. Tomeoka, T. Kojima and P. Buchanan for critical discussions. This work was supported by NASA grant NAGW-3281. References: [1] Krot A. N. and Scott E. R. D. (1995) LPS XXVI, 803-804. [2] Scott E. R. D. et al. (1995) LPS XXVII. [3] Keller L. P. et al. (1994) GCA, 58, 5589-5598. [4] Blum J. D. et al. (1989) GCA, 53, 543-556. [5] Palme H. et al. (1991) Meteoritics, 25, 383. [6] Weinbruch S. et al. (1994) GCA, 58, 1019-1030. [7] Kojima T. and Tomeoka K. (1994) Meteoritics, 29, 484. [8] Davis A. M. et al. (1994) LPS XXV, 315-316. [9] Swindle T. D. et al. (1988) GCA, 52, 2215-2227. [10] McSween H. Y. Jr. (1977) GCA, 41, 1777-1790. [11] Huss G. R. and Lewis R. S. (1995) GCA, 59, 115-160.

  6. Petrología de la aureola metamórfica de la granodiorita de Barcelona en la Sierra de Collcerola (Tibidabo

    Directory of Open Access Journals (Sweden)

    Julivert, M.


    Full Text Available The Paleozoic materials outcropping in the Sierra de Collcerola área (Tibidabo range from Upper Ordovician up to Carboníferous. These materials approximately define a syncline structure wich minor folds facing to SE or SSE and show the development of a marked slatycleavage. The structures of WNW-ESE direction are cut near Barcelona by a granodioritic intrusion (granodiorite of Barcelona. This intrusion does not show any evidence of regional deformation and presents an oblique contact to the Hercynian structures of the host rocks, affecting, therefore, a great variety of lithologies, the main ones being: 1 metapelites and metapsamites; 2 calcareous and calc-silicate rocks, and 3 metabasites (likely derived from gneous protoliths. The materials affected by the contact metamorphism belong to the Silurian and Upper Ordovician. Previously to the intrusion the Paleozoic materials were affected by a regional metamorphism, syn-kinematic with the development of the main schistosity, which did not surpass conditions of the greenschists facies. As a result of the intrusion of the granodiorite, the host materials underwent a considerable recrystallization which affected rocks situated at even more than two km from the contact. The calcareous and calc-silicate rocks are the first to show the effects of contact metamorphism; metabasites go next, and finally metapelites and metapsamites show those effects too. Calcareous and calc-silicate rocks are the more reactive too during the metamorphic event giving rise to a great variety of minerals through the contact aureole: chlorite, biotite, actinolite, epidote, homblende, clinopyroxene, idocrase, grossular/andradite and scapolite in this order; in the basic rocks a generalized development of homblende and locally of pyroxene took place, while in the pelitic and semipelitic rocks cordierite and andalusite generally formed (the latter only in those levels corresponding to ancient black shales of the Silurian, and