Sample records for amyloplasts

  1. Amyloplast Sedimentation Kinetics in Corn Roots (United States)

    Leopold, A. C.; Sack, F.


    Knowledge of the parameters of amyloplast sedimentation is crucial for an evaluation of proposed mechanisms of root graviperception. Early estimates of the rate of root amyloplast sedimentation were as low as 1.2 micron/min which may be too slow for many amyloplasts to reach the vicinity of the new lower wall within the presentation time. On this basis, Haberlandt's classical statolith hypothesis involving amyloplast stimulation of a sensitive surface near the new lower wall was questioned. The aim was to determine the kinetics of amyloplast sedimentation with reference to the presentation time in living and fixed corn rootcap cells as compared with coleoptiles of the same variety.

  2. Amyloplast movement and gravityperception in Arabidopsis endoderm (United States)

    Tasaka, M.; Saito, T.; Morita, M. T.

    Gravitropism of higher plant is a growth response regulating the orientation of organs elongation, which includes four sequential steps, the perception of gravistimulus, transduction of the physical stimulus to chemical signal, transmission of the signal, and differential cell elongation depending on the signal. To elucidate the molecular mechanism of these steps, we have isolated a number of Arabidopsis mutants with abnormal shoot gravitropic response. zig (zigzag)/sgr4(shoot gravitropism 4) shows little gravitropism in their shoots. Besides, their inflorescence stems elongate in a zigzag-fashion to bend at each node. ZIG encodes a SNARE, AtVTI11. sgr3 with reduced gravitropic response in inflorescence stems had a missense mutation in other SNARE, AtVAM3. These two SNAREs make a complex in the shoot endoderm cells that are gravity-sensing cells, suggesting that the vesicle transport from trans-Golgi network (TGN) to prevacuolar compartment (PVC) and/or vacuole is involved in gravitropism. Abnormal vesicular/vacuolar structures were observed in several tissues of both mutants. Moreover, SGR2 encodes phospholipase A1-like protein that resides in the vacuolar membrane. Endodermis-specific expression of these genes could complement gravitropism in each mutant. In addition, amyloplasts thought to be statoliths localized abnormally in their endoderm cells. These results strongly suggest that formation and function of vacuole in the endoderm cells are important for amyloplasts sedimentation, which is involved in the early process of shoot gravitropism. To reveal this, we constructed vertical stage microscope system to visualize the behavior of amyloplasts and vacuolar membrane in living endodermal cells. We hope to discuss the mechanism of gravity perception after showing their movements.

  3. Gravisensing: Ionic responses, cytoskeleton and amyloplast behavior (United States)

    Allen, N.; Chattaraj, P.; Collings, D.; Johannes, E.

    In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule disrupting drugs and modifiers of cytoplasmic pH, which is a key player in early gravitropic signaling. pHc was monitored in the cells composing the maize pulvinus before and after gravistimulation. pHc changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells, where plastids slowly accumulated became more basic. The results suggest that pHc has an important role in the early signaling pathways of maize stem gravitropism. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. Microtubule distributions in tip cells were monitored over time and seen to accumulate preferentially on the lower flank of the tip filaments 30 minutes after a 90 degree turn. Using a self-referencing Ca 2 + selective ion probe, we found that growing caulonemal filaments exhibit a Ca 2 + influx at the apical dome, similar to that reported previously for other tip growing cells. However, in

  4. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing. (United States)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  5. Metabolic Pathways of the Wheat (Triticum aestivum)Endosperm Amyloplast Revealed by Proteomics (United States)

    By definition, amyloplasts are plastids specialized for starch production. However, amyloplasts have a broader range of functions that are not widely recognized. A recent proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm suggested that they share many of the ...

  6. Major Proteins of the Amyloplast of Agar and Soil - Grown Potato Tubers

    DEFF Research Database (Denmark)

    Hald, Simon; Blennow, Andreas; Stensballe, Allan;

    available potato protein sequences. Some of these proteins were demonstrated to localize to the amyloplast stroma for the first time. The micro and mini tuber proteomes were very different. However, starch phosphorylase L-1 was particularly abundant in both proteomes. Moreover, disproportionating enzyme 1......In potato (Solanum tuberosum) tuber starch is synthesized and stored in amyloplasts. Amyloplasts were prepared from in vitro or agar-grown micro tubers and from soil-grown mini tubers and subjected to proteome analysis. The quality of amyloplasts was assessed by comparing amyloplast fractions and...... total tuber extracts by SDS-PAGE and the specific activities of marker enzymes for amyloplast, cytosol, mitochondria and the vacuole. SDS-PAGE separated amyloplast and starch granule proteins were in-gel digested with trypsin, analyzed by mass spectrometry, and identified by searches against presently...

  7. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L (United States)

    Moore, R.; Fondren, W. M.; Koon, E. C.; Wang, C. L.


    Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.

  8. Analysis of amyloplast dynamics involved in gravity sensing using a novel centrifuge microscope (United States)

    Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.

    Plants sense gravity and change their growth orientation, a phenomenon known as gravitropism. According to the starch-statolith hypothesis, sedimentation of high-density starch-filled plastids (amyloplasts) within endodermal cells appears to be involved in gravity sensing of Arabidop-sis shoots. Recent studies suggest, however, that amyloplasts are never static but continu-ously show dynamic and complicated movements due to interaction with vacuole/cytoskeleton. Therefore, it remains unclear what movement/state of amyloplasts is required for gravity sens-ing. To address this critical issue, we analyzed gravitropism and amyloplast dynamics under hypergravity condition where sedimentation by gravity is more dominant than other movements. Segments of Arabidopsis inflorescence stem showed a gravitropism in response to hypergrav-ity (10g) that had been applied perpendicularly to the growth axis for 30 s in a conventional centrifuge, suggesting that amyloplast dynamics during this short time period is involved in gravity sensing. Real-time imaging of amyloplasts during the 10g stimulation was performed using a novel centrifuge microscope (NSK Ltd, Japan): all optical devices including objective lens, light source (LED) and CCD camera are mounted on an AC motor, enabling bright-field imaging with a temporal resolution of 30 frames/sec during rotation. Almost all amyloplasts started to move toward 10g and some reached the one side of endodermal cell within 30 s. These results clearly support the starch-statolith hypothesis that redistribution of amyloplasts to gravity is important for gravity sensing. Furthermore, we analyzed the shoot gravitropic mutant, sgr2, that has non-sedimentable amyloplasts and shows little gravitropism at 1g. An obvious gravitropism was induced by 30g for 5 min where amyloplasts were moved to the hyper-gravity but not by 10g where amyloplasts were not moved. These results not only suggest that gravity sensing of Arabidopsis inflorescence stems is

  9. Metabolic pathways of the wheat (Triticum aestivum endosperm amyloplast revealed by proteomics

    Directory of Open Access Journals (Sweden)

    Dupont Frances M


    Full Text Available Abstract Background By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86 endosperm at 10 days after anthesis (DPA detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. Results Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. Conclusion The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.

  10. Frequency analysis of amyloplast movement in Arabidopsis suggests dynamic gravity sensing (United States)

    Hasenstein, K.; Gilroy, S.

    We investigated the motility of amyloplasts in root caps of Arabidopsis thaliana to analyze the interaction between the acto-myosin system and plastids In addition to sedimentation cytoskeletal activity appears to lift amyloplasts and may cause impinging of sedimenting amyloplasts onto the membrane system This activity may represent graviperception We analyzed the frequency of amyloplast motion by Fourier analysis based upon the position of amyloplasts in image sequences taken at 6 second intervals The frequency analysis showed a maximum at an average cycle of about 16 seconds 0 06 Hz for vertical and lateral displacement However amyloplast velocity was frequency independent Application of the actin-depolymerizing agent Latrunculin B 0 1 mu M reduced the maximum displacement but did not change the frequency DMSO-treated roots showed a similar reduction The frequency dependency was similar for cell from different positions within the root cap The data suggest that the saltatory motion of amyloplasts is a continuous process that is mediated by cytoskeletal events and is an integral part of gravisensing Therefore gravisensing may depend on the dynamic motion of statoliths rather than simple aggregation onto the lower cell membrane Supported by NASA grants NAG2-1423 NAG10-0190 KHH and NAG2-1594 NSF MCB 02-12099 SG

  11. An active role of the amyloplasts and nuclei of root statocytes in graviperception (United States)

    Kordyum, E.; Guikema, J.


    Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  12. Gravity-Induced Amyloplast Motion in Hypocotyl and Root Statocytes of Cress Seedlings (United States)

    Svegzdiene, D.; Rakleviciene, D.; Koryzeiene, D.


    Amyloplast motion was studied by the analysis of plastid positioning in hypocotyl endodermal and root columella cells of cress seedlings during a subsequent 6-min period of gravitropic stimulation at 90°. As compared with root statocytes, a more rapid sedimentation of amyloplasts was determined in endodermal cells with simultaneous sliding towards cell centre by comparable rate within the first minute. During the second minute, the plastids remained almost in the same position in hypocotyl statocytes while they shifted slightly downwards continuing intensively to slide along root ones. After the 6 min, their shift in the both directions was more pronounced in roots than in hypocotyls. The data allow that amyloplast motion is affected by the gravity in common with the elastic cytoskeleton forces, which pull actively the plastids along the cells of the both organs. However, a quantitative relation of these forces in hypocotyl and root statocytes differs significantly during the two first minutes of gravitropic stimulation.

  13. Mechanotransduction molecules in the plant gravisensory response: amyloplast/statolith membranes contain a beta 1 integrin-like protein (United States)

    Lynch, T. M.; Lintilhac, P. M.; Domozych, D.


    It has been hypothesized that the sedimentation of amyloplasts within root cap cells is the primary event in the plant gravisensory-signal transduction cascade. Statolith sedimentation, with its ability to generate weighty mechanical signals, is a legitimate means for organisms to discriminate the direction of the gravity vector. However, it has been demonstrated that starchless mutants with reduced statolith densities maintain some ability to sense gravity, calling into question the statolith sedimentation hypothesis. Here we report on the presence of a beta 1 integrin-like protein localized inside amyloplasts of tobacco NT-1 suspension culture, callus cells, and whole-root caps. Two different antibodies to the beta 1 integrin, one to the cytoplasmic domain and one to the extracellular domain, localize in the vicinity of the starch grains within amyloplasts of NT-1. Biochemical data reveals a 110-kDa protein immunoprecipitated from membrane fractions of NT-1 suspension culture indicating size homology to known beta 1 integrin in animals. This study provides the first direct evidence for the possibility of integrin-mediated signal transduction in the perception of gravity by higher plants. An integrin-mediated pathway, initiated by starch grain sedimentation within the amyloplast, may provide the signal amplification necessary to explain the gravitropic response in starch-depleted cultivars.

  14. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts


    Lv, Chenyan; Masuda, Taro; Yang, Haixia; Sun, Lei; Zhao, Guanghua


    We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Trans...

  15. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. (United States)

    Zhang, Long; Ren, Yulong; Lu, Bingyue; Yang, Chunyan; Feng, Zhiming; Liu, Zhou; Chen, Jun; Ma, Weiwei; Wang, Ying; Yu, Xiaowen; Wang, Yunlong; Zhang, Wenwei; Wang, Yihua; Liu, Shijia; Wu, Fuqing; Zhang, Xin; Guo, Xiuping; Bao, Yiqun; Jiang, Ling; Wan, Jianmin


    In cereal crops, starch synthesis and storage depend mainly on a specialized class of plastids, termed amyloplasts. Despite the importance of starch, the molecular machinery regulating starch synthesis and amyloplast development remains largely unknown. Here, we report the characterization of the rice (Oryza sativa) floury endosperm7 (flo7) mutant, which develops a floury-white endosperm only in the periphery and not in the inner portion. Consistent with the phenotypic alternation in flo7 endosperm, the flo7 mutant had reduced amylose content and seriously disrupted amylopectin structure only in the peripheral endosperm. Notably, flo7 peripheral endosperm cells showed obvious defects in compound starch grain development. Map-based cloning of FLO7 revealed that it encodes a protein of unknown function. FLO7 harbors an N-terminal transit peptide capable of targeting functional FLO7 fused to green fluorescent protein to amyloplast stroma in developing endosperm cells, and a domain of unknown function 1338 (DUF1338) that is highly conserved in green plants. Furthermore, our combined β-glucuronidase activity and RNA in situ hybridization assays showed that the FLO7 gene was expressed ubiquitously but exhibited a specific expression in the endosperm periphery. Moreover, a set of in vivo experiments demonstrated that the missing 32 aa in the flo7 mutant protein are essential for the stable accumulation of FLO7 in the endosperm. Together, our findings identify FLO7 as a unique plant regulator required for starch synthesis and amyloplast development within the peripheral endosperm and provide new insights into the spatial regulation of endosperm development in rice. PMID:26608643

  16. Kinetics of gravity-induced amyloplast sedimentation in statocytes of cress roots grown under fast clino-rotation, 1 g and after 180° inversion (United States)

    Svegzdiene, D.; Rakleviciene, D.; Gaina, V.

    In order to detail the relation between the initial positioning of statoliths and root graviresponsiveness, the movement of amyloplasts within root statocytes of cress ( Lepidium sativum L.) seedlings grown under fast clino-rotation (50 rpm) and vertically at 1 g or 180° inverted after growth at 1 g has been analyzed during a subsequent 6-min period of lateral (reoriented 90°) gravistimulation. The main parameters of statolith motion kinetics such as relative positions and motion velocities in transverse and longitudinal directions have been evaluated taking linear measurements of organelle position with respect to the lower longitudinal and distal wall in the cells of the 2nd-5th columella storeys. A significant discrepancy in the direction and velocity of statolith movement has been determined within the first and second minutes of root horizontal placement. Centrally or proximally located statoliths in clino-rotated or inverted root statocytes moved transversely to the lower longitudinal cell wall more quickly as compared with distally located ones in 1- g root cells. At the same time, the longitudinal displacement of proximally located statoliths towards the cell center has been determined, while this displacement of distally located plastids was significantly more pronounced. The longitudinal motion of amyloplasts grouped in the central cell part was negligible within this 2-min period. After the 6th minute of stimulation, the total downward shift of the mean relative position of statoliths amounted to 16.3% from the total cell width in clino-rotated root statocytes and 17.1% in the cells of inverted roots, while it equalled 13.3% in 1- g root statocytes. The total change of the relative longitudinal position of amyloplasts with respect to the distal cell wall remained almost unchanged in roots grown on the clinostat. In inverted roots, the initial longitudinal position of 56.2% from the total cell length has been shifted significantly to 47.8% and from 27

  17. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: intracellular targeting to the amyloplast.


    Singh, M. B.; Hough, T.; Theerakulpisut, P; Avjioglu, A; S. Davies; Smith, P. M.; Taylor, P.; Simpson, R. J.; Ward, L. D.; McCluskey, J


    We have identified a major allergenic protein from rye-grass pollen, tentatively designated Lol pIb of 31kDa and with pI 9.0. A cDNA clone encoding Lol pIb has been isolated, sequenced, and characterized. Lol pIb is located mainly in the starch granules. This is a distinct allergen from Lol pI, which is located in the cytosol. Lol pIb is synthesized in pollen as a pre-allergen with a transit peptide targeting the allergen to amyloplasts. Epitope mapping of the fusion protein localized the IgE...

  18. Kinetics of Gravity-induced Amyloplast Sedimentation in Cress Root Statocytes Formed under 1 g and on Fast-rotating Clinostat (United States)

    Svegzdiene, D.; Rakleviciene, D.; Gaina, V.

    The aim of the sudy was to compare the motion of a statolith complex in statocytes of roots grown vertically under 1 g and simulated weightlessness by fast-clinorotation (50 rpm) during lateral stimulation by the gravity vector; the experiments with cress (Lepidium sativum L.) on a centrifuge-clinostat device have been performed. Before gravistimulation, the statoliths are grouped in the distal region of 1g-root statocytes and at the center of statocytes in clino-rotated roots. Then roots were placed horizontally for increasing periods of time (1, 2, 4 or 6 min) and chemically fixed. Quantitative analysis of amyloplast movement in side-to-side and distal-to-proximal directions within statocytes of the 2nd to 5th statenchyma storeys was accomplished by light and electron microscopy. After the first minute of gravistimulation, the position of statolith complex in the 1g-statocytes has been changed by about 12.2% in side-to-side and 18.3% in distal-to-proximal direction versus its initial position. In roots grown on the clinostat, the plastids changed their initial position by 22.5% toward the lower longitudinal wall of the statocyte and negligibly (2.4%) -- toward the proximal cell wall during this stimulation period. Later, up to 2 min, the statoliths continued to displace following the alike trajectory in side-to-side by 36.6% as well as in distal-to-proximal direction by 34.4% in 1g-root statocytes versus their position occupied at 1 min, while they remained approximately at the same position in statocytes of clinostat-grown roots. During the period from 2 to 6 min, in the former roots a significant further shift (15.1%) parallel to the gravity vector and otherwise a reversible movement (- 13.3%) toward the distal wall of statolith complex were observed. However, within the same period of gravistimulation the statolith positioning in clinorotated-roots changed only slightly in side-to-side (4.8%) as well as in distal-to-proximal (2.1%) directions. The obtained

  19. Mutan produced in potato amyloplasts adheres to starch granules. (United States)

    Kok-Jacon, Géraldine A; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F


    Production of water-insoluble mutan polymers in Kardal potato tubers was investigated after expression of a full-length (GtfI) and a truncated mutansucrase gene referred to as GtfICAT (GtfI without glucan-binding domain) from Streptococcus downei. Subsequent effects on starch biosynthesis at the molecular and biochemical levels were studied. Expression of the GtfICAT gene resulted in the adhesion of mutan material on starch granules, which stained red with erythrosine, and which was hydrolysed by exo-mutanase. In addition, GtfICAT-expressing plants exhibited a severely altered tuber phenotype and starch granule morphology in comparison to those expressing the full-length GtfI gene. In spite of that, no structural changes at the starch level were observed. Expression levels of the sucrose-regulated, AGPase and GBSSI genes were down-regulated in only the GTFICAT transformants, showing that GtfICAT expression interfered with the starch biosynthetic pathway. In accordance with the down-regulated AGPase gene, a lower starch content was observed in the GTFICAT transformants. Finally, the rheological properties of the GTFICAT starches were modified; they showed a higher retrogradation during cooling of the starch paste. PMID:17129316

  20. Mutan produced in potato amyloplasts adheres to starch granules

    NARCIS (Netherlands)

    Kok-Jacon, G.A.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.


    Production of water-insoluble mutan polymers in Kardal potato tubers was investigated after expression of a full-length (GtfI) and a truncated mutansucrase gene referred to as GtfICAT (GtfI without glucan-binding domain) from Streptococcus downei. Subsequent effects on starch biosynthesis at the mol

  1. Effect of the change in statocyte polarity on calcium distribution: results from PolCa space experiment (United States)

    Legue, Valerie; Pereda, Veronica; Gerard, Joelle; Eche, Brigitte; Gasset, Gilbert; Chaput, Didier

    Plants are the ability to sense and to re-orient their growth in response to gravity. In roots, specialized sensory cells (called statocytes) perceive signal gravity and are the only cells that exhibit structural polarity with respect to gravity providing interactions with starch-containing plastids (amyloplasts) and the cortical endoplasmic reticulum (ER). Upon root reorientation, a displacement of amyloplasts is observed and is accompanied with a change in direct amyloplast-ER direct interaction in root cap cells. Even if amyloplasts are widely considered as gravity sensor, there is no clear evidence that a change in amyloplasts-ER interactions could lead to a transduction gravity signal. Previous space experiments clearly showed that amyloplasts inter-action with ER are not necessary to lead to a root re-orientation, suggesting that amyloplasts displacement mediate transduction events through cytoskeleton reorganisation and calcium-dependant pathways. The objective of the space experiment called PolCa is to dissect the effect of change in amyloplasts-ER interactions on calcium dependant pathways. Space conditions provide a unique opportunity to provide a change of structural polarity in statocytes without a gravistimulation. PolCa experiment has been conducted using Brassica napus seedlings, which submitted four different conditions: continuously on 1 g centrifuge or continuously in micrograv-ity conditions. Some seedlings germinated on centrifuge have been transferred during 10 min in microgravity conditions, leading to a loss of amyloplast-ER interactions through amyloplasts displacement. Others seedlings germinated in microgravity conditions have been transferred on centrifuge during 10 min. In this situation, we observed a return of amyloplasts-ER interactions. We analysed the localisation of free calcium after chemical fixation and calcium precipitation using potassium pyroantimonate in these four situations. The observation of calcium precipita-tions with

  2. ジャガイモ塊茎におけるプラスチド-アミロプラスト系の微細構造とデンプンの合成・蓄積に関する電子顕微鏡観察


    川崎, 通夫 / 松田, 智明 / 新田, 洋司; カワサキ, ミチオ / マツダ, トシアキ / ニッタ, ヨウジ; kAWASAKI, Michio / MATSUDA, Toshiaki / NAKAMURA, Yasunori / UENO, Osamu / TANIGUCHI, Mitsutaka / NITTA, Youji / MIYAKE, Hiroshi


    The starch accumulation process and the ultrastructure of the plastid-amyloplast system in potato tuber were observed by electron and light microscopes. Amyloplasts were slightly flat ovalshaped and contained a single starch grain. Even if they were lrge, their replications were observed. In the parenchyma cells around the phloem, the plastid-amyloplast system intensively replicated and grew larger with starch accumulation. As a result, much starch was accumulated in the parenchyma cells in t...

  3. Structural and Immunocytochemical Characterization of the Synthesis and Accumulation of Starch in Sweet Potato (Ipomoea batatas Lam.) Tuberous Root


    kAWASAKI, Michio / MATSUDA, Toshiaki / NAKAMURA, Yasunori / UENO, Osamu / TANIGUCHI, Mitsutaka / NITTA, Youji / MIYAKE, Hiroshi


    The structural changes in the plastid-amyloplast system in the parenchyma cells of sweet potato tuberous roots during thickening were examined by electron microscopy. In the tuberous roots, proplastids and plastids that contain starch granules propagated in young parenchyma cells adjacent to the meristem, but amyloplasts did not in parenchyma cells. It was suggested that the number of amyloplasts in a parenchyma cell is determined by the propagation of the proplastids and plastids. The form o...

  4. Characterization of potato plants overexpressing plastidic transporters involved in starch metabolism




    Kurzfassung in English Potato is one of the most important crops in the world. Starch is the most important carbohydrate used for food and feed purposes and represents the major resource for our diet. Potato tubers represent typical starch-storing storage sinks that accumulate high levels of starch in the amyloplasts. For starch synthesis in potato tubers, amyloplasts depend on the import of carbon and energy. Carbon enters the amyloplasts in form of glucose-6-phosphate via the GPT, and energ...


    NARCIS (Netherlands)



    Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma a

  6. Transcriptome Analysis Suggests That Starch Synthesis May Proceed via Multiple Metabolic Routes in High Yielding Potato Cultivars

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Høgh Petersen, Annabeth; Sønderkær, Mads;


    Background: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP...

  7. A new centrifuge microscope reveals that mobile plastids trigger gravity sensing in Arabidopsis inflorescence stems (United States)

    Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon


    The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with

  8. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays (United States)

    Moore, R.


    In order to determine what structural changes in graviperceptive cells are associated with onset of root gravicurvature, the redistribution of organelles in columella cells of horizontally-oriented, graviresponding roots of Zea mays has been quantified. Root gravicurvature began by 15 min after reorientation, and did not involve significant changes in the (i) volume of individual columella cells or amyloplasts, (ii) relative volume of any cellular organelle, (iii) number of amyloplasts per columella cell, or (iv) surface area of cellular location of endoplasmic reticulum. Sedimentation of amyloplasts began within 1 to 2 min after reorientation, and was characterized by an intensely staining area of cytoplasm adjacent to the sedimenting amyloplasts. By 5 min after reorientation, amyloplasts were located in the lower distal corner of columella cells, and, by 15 min after reorientation, overlaid the entire length of the lower cell wall. No consistent contact between amyloplasts and any cellular structure was detected at any stage of gravicurvature. Centrally-located nuclei initially migrated upward in columella cells of horizontally-oriented roots, after which they moved to the proximal ends of the cells by 15 min after reorientation. No significant pattern of redistribution of vacuoles, mitochondria, dictyosomes, or hyaloplasm was detected that correlated with the onset of gravicurvature. These results indicate that amyloplasts and nuclei are the only organelles whose movements correlate positively with the onset of gravicurvature by primary roots of this cultivar of Zea mays.

  9. The effect of 3-indolylacetic acid on the accumulation of starch in the root tissue of Cichorium intybus L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    U. Sobczyk


    Full Text Available The relation between IAA-induced formation of amyloplasts in callus cells of chicory root and the influence of IAA on sugar uptake from the medium was investigated. Experiments with 14C-sucrose showed that IAA increased the uptake of sucrose from the medium. The amyloplast-like structures were also observed in callus grown on medium without IAA, but containing high concentration of sucrose (9%. The possibility of IAA influence on the formation of amyloplasts by increasing the permeability of cells for sugar is discussed.

  10. Effect of Temperature on the Decomposition of Reserves during Germination and Early Growth of Rice Plants : An electron microscopic study


    ZAKARIA, Sabaruddin / MATSUDA, Toshiaki / TAJIMA, Shingo / NITTA, Youji


    Morphological changes in starch granules in endosperm cells of rice, cv. Cisadane (javanica) and cv. Koshihikari (japonica), during germination and early growth of seedlings at 17℃, ambient temperature (field condition, 16-24℃) and 38℃, respectively, were examined with scanning and transmission electron microscopes. With the treatment at 17℃, a groove-like structure appeared on the surface of amyloplasts at five days after seeding (DAS). After the amyloplast envelope disappeared and starch gr...

  11. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm. (United States)

    Toyosawa, Yoshiko; Kawagoe, Yasushi; Matsushima, Ryo; Crofts, Naoko; Ogawa, Masahiro; Fukuda, Masako; Kumamaru, Toshihiro; Okazaki, Yozo; Kusano, Miyako; Saito, Kazuki; Toyooka, Kiminori; Sato, Mayuko; Ai, Yongfeng; Jane, Jay-Lin; Nakamura, Yasunori; Fujita, Naoko


    Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production. PMID:26747287

  12. Gravity-regulated formation of the peg in developing cucumber seedlings (United States)

    Takahashi, H.; Scott, T. K.


    It has been proposed that peg formation in the vascular transition region (TR zone) between the hypocotyl and the root in Cucurbitaceae seedlings is a gravimorphogenetic phenomenon. Initiation of the peg became visible 36 h after imbibition when cucumber (Cucumis sativus L. cv. Burpee Hybrid II) seeds were germinated in a horizontal position at 24 degrees C in the dark. Simultaneously, sedimented amyloplasts (putative statoliths) were apparent in the sheath cells surrounding the vascular strands, and in the cortical cells immediately adjacent to them, in the TR zone. In contrast, the other cortical cells, some of which were destined to develop into the peg, contained amyloplasts which were not sedimented. These results suggest that the graviperception mechanism for peg formation may be like that of statoliths in shoot gravitropism. By 48 h following imbibition, the cells of the TR zone still had sedimented amyloplasts but had lost their sensitivity to gravity, possibly because of their maturation.

  13. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.


    Keywords: starch, digestion rate, broiler chickens, peas, tapiocaStarch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy source in broiler feeds. The properties of star

  14. Investigation of Starch Binding Domains for Improvement of Starch degradation

    DEFF Research Database (Denmark)

    Christiansen, Camilla

    Dansk resume Stivelse er planternes primære energilager og et vigtigt næringsmiddel for pattedyr,svampe og bakterier. Stivelse deponeres i højt organiserede semi-krystallinske stivelseskorn i plastider: kloroplaster i blade (transitorisk stivelse) og amyloplaster i lagerorganer som knolde. Stivel...

  15. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana (United States)

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.


    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  16. Breeding for improved and novel starch characteristics in potato

    NARCIS (Netherlands)

    Nazarian, F.; Kok-Jacon, G.A.; Ji, Q.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.


    Starch is the major form in which carbohydrates are stored and is present in almost all plant organs at one or another time during development. Storage starch is formed in amyloplasts as dense granules ranging in size from 1 to over 100 µ M. They are composed of an essential linear glucose polymer a

  17. In planta modification of potato starch granule biogenesis by different granule-bound fusion proteins

    NARCIS (Netherlands)

    Nazarian, F.


    Starch is composed of amylose and amylopectin and it is deposited in amyloplasts/choloroplasts as semi-crystalline granules. Many biosynthetic enzymes are involved in starch degradation and biosynthesis. Some microbial starch degrading enzymes have a Starch Binding Domain (SBD) which has affinity fo

  18. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays (United States)

    Moore, R.; McClelen, C. E.; Fondren, W. M.; Wang, C. L.


    We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.

  19. Changes in the distribution of plastids and endoplasmic reticulum during cellular differentiation in root caps of Zea mays (United States)

    Moore, R.; McClelen, C. E.


    In calyptrogen cells of Zea mays, proplastids are distributed randomly throughout the cell, and the endoplasmic reticulum (ER) is distributed parallel to the cell walls. The differentiation of calyptrogen cells into columella statocytes is characterized by the following sequential events: (1) formation of ER complexes at the distal and proximal ends of the cell, (2) differentiation of proplastids into amyloplasts, (3) sedimentation of amyloplasts onto the distal ER complex, (4) breakdown of the distal ER complex and sedimentation of amyloplasts to the bottom of the cell, and (5) formation of sheets of ER parallel to the longitudinal cell walls. Columella statocytes located in the centre of the cap each possess 4530 +/- 780 micrometers2 of ER surface area, an increase of 670 per cent over that of calyptrogen cells. The differentiation of peripheral cells correlates positively with (1) the ER becoming arranged in concentric sheets, (2) amyloplasts and ER becoming randomly distributed, and (3) a 280 per cent increase in ER surface area over that of columella statocytes. These results are discussed relative to graviperception and mucilage secretion, which are functions of columella and peripheral cells, respectively.

  20. Plastids and gravitropic sensing (United States)

    Sack, F. D.


    Data and theories about the identity of the mass that acts in gravitropic sensing are reviewed. Gravity sensing may have evolved several times in plants and algae in processes such as gravitropism of organs and tip-growing cells, gravimorphism, gravitaxis, and the regulation of cytoplasmic streaming in internodal cells of Chara. In the latter and in gravitaxis, the mass of the entire cell may function in sensing. But gravitropic sensing appears to rely upon the mass of amyloplasts that sediment since (i) the location of cells with sedimentation is highly regulated, (ii) such cells contain other morphological specializations favoring sedimentation, (iii) sedimentation always correlates with gravitropic competence in wild-type plants, (iv) magnetophoretic movement of rootcap amyloplasts mimics gravitropism, and (v) starchless and intermediate starch mutants show reduced gravitropic sensitivity. The simplest interpretation of these data is that gravitropic sensing is plastid-based.

  1. Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata (United States)

    Schwuchow, J. M.; Kern, V. D.; White, N. J.; Sack, F. D.


    Moss protonemata from several species are known to be gravitropic. The characterization of additional gravitropic species would be valuable to identify conserved traits that may relate to the mechanism of gravitropism. In this study, four new species were found to have gravitropic protonemata, Fissidens adianthoides, Fissidens cristatus, Physcomitrium pyriforme, and Barbula unguiculata. Comparison of upright and inverted apical cells of P. pyriforme and Fissidens species showed clear axial sedimentation. This sedimentation is highly regulated and not solely dependent on amyloplast size. Additionally, the protonemal tip cells of these species contained broad subapical zones that displayed lateral amyloplast sedimentation. The conservation of a zone of lateral sedimentation in a total of nine gravitropic moss species from five different orders supports the idea that this sedimentation serves a specialized and conserved function in gravitropism, probably in gravity sensing.

  2. Starch branching enzymes and their genes in Sorghum


    Mutisya, Joel


    Starch is an important raw material both for food and non-food purposes. It is synthesized and stored in source and sink tissues in plants. The starch deposited in amyloplasts of storage tissues possesses several physico-chemical properties, which makes it desirable for diverse applications. For industrial applications, starches high in either amylose or amylopectin are preferred in order to minimize chemical modification. The main purpose in our research is to understand starch synthesis in ...

  3. Kinetics of starch digestion and performance of broiler chickens


    Weurding, R.E.


    Keywords: starch, digestion rate, broiler chickens, peas, tapiocaStarch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy source in broiler feeds. The properties of starch from different origin vary condiderably and these properties determine its resistance to enzymatic digestion. The objective of the research project described in this thesis was to study starch digestion behaviour ...

  4. AcEST: BP913707 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000033_D04 578 Adiantum capillus-veneris mRNA. clone: YMU001_000033_D04. BP913707 - Show ... Q43093 Definition sp|Q43093|SSG2_PEA Granule-bound starch ... synthase 2, chloroplastic/amyloplastic OS=Pisum sa ... nts: (bits) Value sp|Q43093|SSG2_PEA Granule-bound starch ... synthase 2, chloroplasti... 78 3e-14 sp|Q43847|SSY ...

  5. AcEST: DK958797 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0002_P08 638 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0002_P08. 5' end seq ... 2627 Definition sp|O82627|SSG1_ANTMA Granule-bound starch ... synthase 1, chloroplastic/amyloplastic OS=Antirrhi ... s: (bits) Value sp|O82627|SSG1_ANTMA Granule-bound starch ... synthase 1, chloroplas... 280 3e-75 sp|Q43784|SSG1 ...

  6. AcEST: DK948928 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST38A01NGRL0004_J23 663 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0004_J23. 5' end seq ... _id P93568 Definition sp|P93568|SSY1_SOLTU Soluble starch ... synthase 1, chloroplastic/amyloplastic OS=Solanum ... gnments: (bits) Value sp|P93568|SSY1_SOLTU Soluble starch ... synthase 1, chloroplastic/am... 340 5e-93 sp|Q9FNF ...

  7. AcEST: DK956319 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0025_G22 554 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0025_G22. 5' end seq ... 3784 Definition sp|Q43784|SSG1_MANES Granule-bound starch ... synthase 1, chloroplastic/amyloplastic OS=Manihot ... s: (bits) Value sp|Q43784|SSG1_MANES Granule-bound starch ... synthase 1, chloroplas... 261 1e-69 sp|O82627|SSG1 ...

  8. AcEST: DK949461 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST38A01NGRL0006_A21 682 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0006_A21. 5' end seq ... _id Q9FNF2 Definition sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyloplastic OS=Arabidopsi ... gnments: (bits) Value sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyl... 353 5e-97 sp|P9356 ...

  9. AcEST: BP920115 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000133_B12 515 Adiantum capillus-veneris mRNA. clone: YMU001_000133_B12. BP920115 - Show ... _id Q43846 Definition sp|Q43846|SSY3_SOLTU Soluble starch ... synthase 3, chloroplastic/amyloplastic OS=Solanum ... gnments: (bits) Value sp|Q43846|SSY3_SOLTU Soluble starch ... synthase 3, chloroplastic/am... 61 2e-11 sp|Q6MAS9 ...

  10. AcEST: BP913307 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000028_G11 593 Adiantum capillus-veneris mRNA. clone: YMU001_000028_G11. BP913307 - Show ... _id Q43846 Definition sp|Q43846|SSY3_SOLTU Soluble starch ... synthase 3, chloroplastic/amyloplastic OS=Solanum ... gnments: (bits) Value sp|Q43846|SSY3_SOLTU Soluble starch ... synthase 3, chloroplastic/am... 199 9e-52 sp|P0327 ...

  11. AcEST: DK960515 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0007_K02 686 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0007_K02. 5' end seq ... 2857 Definition sp|Q42857|SSG1_IPOBA Granule-bound starch ... synthase 1, chloroplastic/amyloplastic OS=Ipomoea ... s: (bits) Value sp|Q42857|SSG1_IPOBA Granule-bound starch ... synthase 1, chloroplas... 214 5e-55 sp|Q00775|SSG1 ...

  12. AcEST: DK952743 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST38A01NGRL0014_O23 540 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0014_O23. 5' end seq ... _id Q9FNF2 Definition sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyloplastic OS=Arabidopsi ... gnments: (bits) Value sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyl... 262 7e-70 sp|P9356 ...

  13. AcEST: BP919574 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000126_F10 602 Adiantum capillus-veneris mRNA. clone: YMU001_000126_F10. BP919574 CL849Co ... _id Q9FNF2 Definition sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyloplastic OS=Arabidopsi ... gnments: (bits) Value sp|Q9FNF2|SSY1_ARATH Soluble starch ... synthase, chloroplastic/amyl... 290 3e-78 sp|P9356 ...

  14. AcEST: DK960531 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0007_K18 646 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0007_K18. 5' end seq ... 0775 Definition sp|Q00775|SSG1_SOLTU Granule-bound starch ... synthase 1, chloroplastic/amyloplastic OS=Solanum ... s: (bits) Value sp|Q00775|SSG1_SOLTU Granule-bound starch ... synthase 1, chloroplas... 173 8e-43 sp|Q43134|SSG1 ...

  15. Gravitropic mechanisms derived from space experiments and magnetic gradients. (United States)

    Hasenstein, Karl H.; Park, Myoung Ryoul


    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex

  16. In planta modification of potato starch granule biogenesis by different granule-bound fusion proteins


    Nazarian, F.


    Starch is composed of amylose and amylopectin and it is deposited in amyloplasts/choloroplasts as semi-crystalline granules. Many biosynthetic enzymes are involved in starch degradation and biosynthesis. Some microbial starch degrading enzymes have a Starch Binding Domain (SBD) which has affinity for the starch granules on its own. In our laboratory, expression of SBD alone or fused to other effector proteins has been demonstrated. In industry, starch is modified after harvesting by chemical,...

  17. Morphological Studies on the Mobilization of Reserves in Germinating Rice Seed : Decomposition process of starch granules


    ZAKARIA, Sabaruddin / MATSUDA, Toshiaki / NITTA, Youji


    The first step in the mobilization of the reserves in germinating rice seed was the decomposition of amylopllast envelopes in endosperm cells adjacent to scutellum.Destruction of amyloplast envelopes caused the separation of the starch granules.Small holes appeared on the surface of the released starch granule adjacent to scutellum at 3 days after imbibition(DAI).At later stages, the number and size of the holes increased on the surface of the starch granule.Ring-like structure in the interio...

  18. Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can after the morphology of amylose-free potato starch granules during biosynthesis


    Nazarian, F.; Kok-Jacon, G.A.; Vincken, J.P.; Q. JI; Suurs, L.C.J.M.; Visser, R.G.F.


    It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more ...

  19. Plastids and Carotenoid Accumulation. (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang


    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  20. Immunoelectron microscopic localization of calmodulin in corn root cells

    Institute of Scientific and Technical Information of China (English)



    Methods for the localization of plant calmodulin by immuno-gold and immuno-peroxidase electron microscopy have been developed. In both corn root-cap cells and meristematic cells, calmodulin was found to be localized in the nucleus, cytoplasm, mitochondria as well as in the cell wall, In the meristematic cells, calmodulin was distinctly localized on the plasma membrane, cytoplasmic face of rough endoplasmic rcticulum and polyribosomes. Characteristically, calmodulin was present in the amyloplasts of root-cap cells. The widespread distribution of calmodulin may reflect its plciotropic functions in plant cellular activities.

  1. Effects of inversion on plastid position and gravitropism in Ceratodon protonemata (United States)

    Schwuchow, J.; Sack, F. D.


    When dark-grown tip cells of protonemata of the moss Ceratodon purpureus are turned to the horizontal, plastids first sediment towards gravity in a specific zone and then the tip curves upward. To determine whether gravitropism and plastid sedimentation occur in other orientations, protonemata were reoriented to angles other than 90 degrees. Qualitative and quantitative light microscopic observations show that plastid sedimentation along the cell axis occurs in both upright and inverted cells. However, only some plastids fall and sedimentation is incomplete; plastids remain distributed throughout the length of the cell, and those plastids that sediment do not fall all the way to the bottom of the cell. Tip cells are gravitropic regardless of stimulation angle, and as in higher plants, the maximal rate of initial curvature is in response to a 120 degrees reorientation. Infrared videomicroscopy, time-lapse studies of living, inverted protonemata indicate that amyloplast sedimentation precedes upward curvature. Together, these data further support (i) the hypothesis that amyloplast sedimentation functions in gravitropic sensing in these cells, and (ii) the idea that gravity affected the evolution of cell organization.

  2. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine (United States)

    Kraft, T. F.; van Loon, J. J.; Kiss, J. Z.


    In order to study gravity effects on plant structure and function, it may become necessary to remove the g-stimulus. On Earth, various instruments such as clinostats have been used by biologists in an attempt to neutralize the effects of gravity. In this study, the position of amyloplasts was assayed in columella cells in the roots of Arabidopsis thaliana (L.) Heynh. seedlings grown in the following conditions: on Earth, on a two-dimensional clinostat at 1 rpm, on a three-dimensional clinostat (also called a random-positioning machine, or an RPM), and in space (true microgravity). In addition, the effects of these gravity treatments on columella cell area and plastid area also were measured. In terms of the parameters measured, only amyloplast position was affected by the gravity treatments. Plastid position was not significantly different between spaceflight and RPM conditions but was significantly different between spaceflight and the classical two-dimensional clinostat treatments. Flanking columella cells showed a greater susceptibility to changes in gravity compared to the central columella cells. In addition, columella cells of seedlings that were grown on the RPM did not exhibit deleterious effects in terms of their ultrastructure as has been reported previously for seedlings grown on a two-dimensional clinostat. This study supports the hypothesis that the RPM provides a useful simulation of weightlessness.

  3. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

    Directory of Open Access Journals (Sweden)

    Kacper Piotr Kaminski

    Full Text Available BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.

  4. Distribution of calmodulin in corn seedlings - Immunocytochemical localization in coleoptiles and root apices (United States)

    Dauwalder, M.; Roux, S. J.


    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.

  5. Molecular mechanisms of gravity perception and signal transduction in plants. (United States)

    Kolesnikov, Yaroslav S; Kretynin, Serhiy V; Volotovsky, Igor D; Kordyum, Elizabeth L; Ruelland, Eric; Kravets, Volodymyr S


    Gravity is one of the environmental cues that direct plant growth and development. Recent investigations of different gravity signalling pathways have added complexity to how we think gravity is perceived. Particular cells within specific organs or tissues perceive gravity stimulus. Many downstream signalling events transmit the perceived information into subcellular, biochemical, and genomic responses. They are rapid, non-genomic, regulatory, and cell-specific. The chain of events may pass by signalling lipids, the cytoskeleton, intracellular calcium levels, protein phosphorylation-dependent pathways, proteome changes, membrane transport, vacuolar biogenesis mechanisms, or nuclear events. These events culminate in changes in gene expression and auxin lateral redistribution in gravity response sites. The possible integration of these signalling events with amyloplast movements or with other perception mechanisms is discussed. Further investigation is needed to understand how plants coordinate mechanisms and signals to sense this important physical factor. PMID:26215561

  6. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress

    CERN Document Server

    Muratov, Alexander


    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubules arrays direct the growth and orientatio...

  7. Semi-automatic organelle detection on transmission electron microscopic images. (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Sato, Mayuko; Sawaki, Fumie; Kobayashi, Megumi; Nagata, Noriko; Toyooka, Kiminori; Hasezawa, Seiichiro


    Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the cellular level and the tissue level. For this purpose, it would be very useful to have a computer-assisted system to detect the structures of interest, such as organelles. Using our original image recognition framework CARTA (Clustering-Aided Rapid Training Agent), combined with procedures to highlight and enlarge regions of interest on the image, we have developed a successful method for the semi-automatic detection of plant organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks in transmission electron microscope images. Our proposed semi-automatic detection system will be helpful for labelling organelles in the interpretation and/or quantitative analysis of large-scale electron microscope imaging data. PMID:25589024

  8. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Progress report, [March 15, 1989--April 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Okita, T.W.


    The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of the gene that encodes for ADPglucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. During the last two years we have obtained information on the structure of this enzyme from both potato tuber and rice endosperm, using a combination of biochemical and molecular biological approaches. Moreover, we present evidence that this enzyme may be localized at discrete regions of the starch grain within the amyloplast, and plays a role in controlling overall starch biosynthesis in potato tubers.

  9. 高粱胚乳细胞与母体组织发育关系的研究%Investigation of Sorghum Endosperm Cell Development and the Relationship with Its Maternal Tissue

    Institute of Scientific and Technical Information of China (English)

    李栋梁; 荆彦平; 李小刚; 顾蕴洁; 王忠


    into aleurone cells in 11 DAP. Only 1 layer of aleurone cells formed in full ripe caryopsis. Besides commonly seen aleurone granules and globoids, some single amyloplasts were also found on ripe aleurone cells, circa. 3μm in diameter. Growth and development of endosperm cells also varied according to different locations, amyloplasts in cells surrounding embryo tended to have a slow growth rate and were loosely packed than other areas, making them floury endosperm compared to others’ corneous endosperms when finally matured. Amyloplasts constitution in subaleurone cells were quite composite, in a manner that mingles both aleurone and starchy endosperm cells. Amyloplast formation in starchy endosperm was unique, which has an “occurrence center” during initiation. Starch “grow” inside a tube-like plastid, and when mature, falls apart, leaving the mature amyloplast with an uneven oval shape. Starch/amyloplasts in mesocarp may not be exhausted approaching mature stage, and on the contrary, there seems to be a secondary growth in both quantity and diameter.[Conclusion] Development of starchy endosperm in sorghum KS-304 showed a similar pattern to the corn. Starch formation of amyloplasts in starchy endosperm followed a unique way and is independent of all other crop spiecies. Cells of mesocarp layer may act as an extra “sink” during later stages in caryopsis development.

  10. Gravitropism of cut shoots is mediated by oxidative processes: A physiological and molecular study (United States)

    Philosoph-Hadas, Sonia; Friedman, Haya; Meir, Shimon


    The signal transduction events occurring during shoot gravitropism are mediated through amyloplasts sedimentation, reorientation of actin filaments in the endodermis, and differential changes in level and action of auxin, associated with differential growth leading to shoot curvature. Since increase in reactive oxygen species (ROS) was shown to be associated with growth, we examined the possible use of antioxidants in controlling the gravitropic response, via their interaction with events preceding shoot bending. Reoriented snapdragon (Antirrhinum majus L.) spikes and tomato (Solanum lycopersicum cv. MicroTom) shoots showed a visual upward bending after a lag period of 3 or 5 h, respectively, which was inhibited by the antioxidants N-acetyl-cysteine (NAC) and reduced glutathione (GSH). This suggests the involvement of oxidative reactions in the process. The two antioxidants prevented the sedimentation of amyloplasts to the bottom of the endodermis cells following 0.5-5 h of snapdragon shoot reorientation, suggesting that oxidative reactions are involved already at a very early signal perception stage prior to the visual bending. In addition, a differential distribution in favor of the lower shoot side of various oxidative elements, including H2O2 concentrations and activity of the NADPH-oxidase enzyme, was observed during reorientation of snapdragon spikes. Application of the two antioxidants reduced the levels of these elements and abolished their differential distribution across the shoot. On the other hand, the activity of the antioxidative enzyme, superoxide dismutase (SOD), which was not differentially distributed across the shoot, increased significantly following application of the two antioxidants. The auxin redistribution in reoriented shoots was analyzed using transgenic tomato plants expressing the GUS reporter gene under the Aux/IAA4 promoter (a generous gift of M. Bouzayen, France). GUS response, detected in control shoots 4 h after their reorientation

  11. Statolith action by the numbers: Physics and feasbility (United States)

    Todd, Paul; Yoder, Thomas; Staehelin, L. Andrew


    All modern (and ancient) studies make it clear that statolith motion is required for gravisensing, and some evidence indicates a role for statolith-microfilament interaction. In this study two components of statolith action are considered quantitatively: (1) the movement of statoliths through the columella cell cytoplasm and (2) forces at the site of action of the statolith. (1) Statoliths move through the cytoplasm in the presence of viscous and elastic forces that may be considered separately. The viscous component may be characterized as a solution with a viscosity of approximately 40 centiPoise. Statoliths are deflected from perfectly vertical trajectories by various obstacles, including actin filaments, and their velocities are influenced by interactions between statoliths. Channeling flow is commonly observed, but this cannot be due to the breaking of actin filaments by the force of the sedimenting statolith, as about 600 pN force is required to break a filament, and the force due to gravity on the amyloplast is about 0.07 pN. Under least viscous conditions the randomly-directed Brownian diffusion velocity of the amyloplast is about 10% the sedimentation velocity. (2) Intimate association of statoliths with the cortical ER region requiring gravitational force is postulated. Thin-section micrographs clearly show an interface between the cortex and the central cytoplasm of the columella cell in vascular plant species that have been studied. Whether or not an exchange of chemical components is required, experiments, including observations in low gravity, have demonstrated that the statolith is shallowly embedded in this cortical region to the extent that deformation occurs consistent with Newton's third law. Relieving the gravitational force results in instantaneous motion of the amyloplast away from the cortex. The following inquiry was made concerning the physics at the interface between the statolith and the material of the cortical ER region. How much force

  12. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  13. Tropism in azalea and lily flowers (United States)

    Shimizu, M.; Tomita-Yokotani, K.; Nakamura, T.; Yamashita, M.

    Flowers have coevolved with pollinator animals. Some flowers have the up-down directional features in their form and orientation, which results the higher success of pollination under the influence of gravity. Azalea, Rhododendron pulchrum, flower responds against gravity, and orients the specific petal at its top. This petal with honey mark guides pollinator animals to nectary of the flower. Pistil and stamen bend upward by sensing gravity, and increase probability of their contact with pollinator. There was large sediment amyloplast found in sectioned tissue of style. In addition to this action of gravity, phototropic response was also observed at lesser degree, while the gravitational cue was removed by the 3D-clinorotation of the plant. In contrast to azalea, pistil of lily flower senses light in order to determine the direction of bending. Lily, Lilium cv. 'Casablanca', tepals open horizontally or slightly inclined downward. After its anthesis, pistil and stamen start to bend upward by light. Gravity induced no tropic response at all, evidenced by the experiment conducted under dark. Sediment amyloplast was not found in lily style. Phototropic response of pistil and stamen in lily was activated by blue light even at lower energy density. On the other hand, red light was not effective to induce the tropic response even with substantial energy density. This action spectrum of light agreed with those for the phototropism shown in coleoptile of monocotyledonous plants. Because the tropism of style was not hindered at removal of stigma, reception site for incident light is neither restricted to stigma nor its close vicinity, but distributes through style. The process of lily pistil elongation was analyzed in details to identify the site of its initiation and propagation of bending movement through the anthesis period. Elongation started at basal part of pistil and propagated towards its top after opening of perianth. Steep bending occurred at the basal zone of

  14. Graviperception of lentil seedling roots grown in space (Spacelab D1 Mission). (United States)

    Perbal, G; Driss-Ecole, D; Rutin, J; Salle, G


    The growth and graviresponsiveness of roots were investigated in lentil seedlings (Lens culinaris L. cv. Verte du Puy) grown (1) in microgravity, (2) on a 1 g centrifuge in space, (3) in microgravity and then placed on the 1 g centrifuge for 3 h, (4) on the ground. Dry seeds were hydrated in space (except for the ground control) and incubated for 25 h at 22 degrees C in darkness. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in a Biorack glove box. Root length was similar for seedlings grown in space and for the ground and the 1 g centrifuge controls. The direction of root growth in the microgravity sample deviated strongly from the initial orientation of the roots of the dry seeds. This deviation could be due to spontaneous curvatures similar to those observed on clinostats. When lentil seedlings were first grown in microgravity for 25 h and then placed on the 1 g centrifuge for 3 h, their roots bent strongly under the effect of the centrifugal acceleration. The amplitude of root curvature on the centrifuge was not significantly different from that observed on ground controls growing in the vertical position and placed in the horizontal position for 3 h. The gravisensitivity of statocytes differentiated in microgravity was similar to that of statocytes differentiated on earth. There were no qualitative differences in the ultrastructural features of the gravisensing cells in microgravity and in the 1 g centrifuge and ground controls. However, the distribution of statoliths in the gravisensing cells was different in microgravity: most of them were observed in the proximal part of these cells. Thus, these organelles were not distributed at random, which is in contradiction with results obtained with clinostats. The distal complex of endoplasmic reticulum in the statocytes was not in contact with the amyloplasts. Contact and pressure of amyloplasts on the tubules were not prerequisites for gravisensing. The results obtained

  15. Displacement of organelles in plant gravireceptor cells by vibrational forces and ultrasound. (United States)

    Kuznetsov, O.; Nechitailo, G.; Kuznetsov, A.

    Plant gravity perception can be studied by displacing statoliths inside receptor cells by forces other than gravity. Due to mechanical heterogeneity of statocytes various ponderomotive forces can be used for this purpose. In a plant subjected to non- symmetric vibrations statoliths experience inertial force proportional to the difference between their density and that of cytoplasm and to the instantaneous acceleration of the cell. This force causes cyclic motion of statoliths relative to cytoplasm and, depending on the profile of oscillations, can result in a net displacement of them (due to complex rheology of the cell interior), similar to sedimentation. This can be described as "vibrational" ponderomotive force acting on the statoliths. Vertically growing Arabidopsis seedlings, subjected to horizontal, sawtooth shaped oscillations (250 Hz, 1.5 mm amplitude), showed 17+/-2o root curvature toward and shoot curvature of 11+/-3o against the stronger acceleration. When the polarity of the oscillations was reversed, the direction of curvature of shoots and roots was also reversed. Control experiments with starchless mutants (TC7) produced no net curvature, which indicates that dense starch-filled amyloplasts are needed for the effect. These control experiments also eliminate touch-induced reactions or other side-effects as the cause of the curvature. Linum roots curved 25+/-7o . Ceratodon protonemata subjected to the same oscillations have shown displacement of plastids and curvature consistent with the pattern observed during graviresponse: positively gravitropic wwr mutant curved in the direction of the plastid displacement, WT curved in the opposite direction. Acoustic ponderomotive forces, originating from transfer of a sonic beam momentum to the medium due to sound scattering and attenuation in a mechanically heterogeneous system, also can displace statoliths. Vertical flax seedlings curved away from the ultrasonic source (800 kHz, 0.1 W/cm2 ) presumably as a

  16. Memorizing of Gravistimulus in apical protonemal cells of the moss Ceratodon purpureus (United States)

    Lesniak, Y. I.; Khorkavtsiv, O. Y.; Oksyniuk, U. A.; Demkiv, O. T.

    Moss protonemata sense and realize gravity by apical cells of stolones, the function of gravisensors being performed by amyloplasts which sediment on lower side of the cell wall. The pattern of amyloplasts distribution and dynamics of their sedimentation were described in detail in different moss species (Sack, 1991; 1997; Young, Sack, 1992; Chaban et al., 1998; Schwuchow et al., 2002). The pathways of gravity transduction to growth process remain, however, still-uncleared (Sack, 1997; Kern et al., 2001; Schwuchow et al., 2002). The processes of the perception and transduction of the gravistimulus in the apical cells were uncoupled experimentally. It has been shown in our experiments that susception of gravistimulus takes place under conditions of low temperature, while the growth of apical cells is blocked. Being, however, transferred into usual conditions gravistimulated protonemata realize their gravitropic bend. To receive such effect gravistimulation of different duration, from 15 min to 24 h, was conducted at 20C and the gravistimulated protonemata were then clinorotating for 8-20 h. Gravistimulus manifested itself in bending of tip zone of the stolons only in case of 8-20 h gravistimulation. 15-30 min was found to be uneffective, the stolons bends were not formed. Gravistimulation for 1 h and more proportionally the increased the bend angle. Probably, the gravistimulus may retain in cells for comparatively long time under low temperature being realized only under favourable conditions. The participation of growth substances, in particular that of IAA, in realization of gravistimulus in tip growing protonemal cells remains not quite clear. It has been established that realization of gravistimulus can be experimentally blocked by the inhibitors of calcium channels and pumps, respectively by 0.1--1.0 μ M of verapamil and 1.0--10.0 μ M of sodium orthovanadate. 0.1--1.0 μ M of exogenous IAA and α -NAA did not significantly influence the growth and gravi

  17. Space Magnets Attracting Interest on Earth: Applications of Physical and Biological Techniques In the Study of Gravisensing and Response System of Plants (United States)

    Hasenstein, Karl H.; Boody, April; Cox, David (Technical Monitor)


    The BioTube/Magnetic Field Apparatus (MFA) research is designed to provide insight into the organization and operation of the gravity sensing systems of plants and other small organisms. This experiment on STS-107 uses magnetic fields to manipulate sensory cells in plant roots, thus using magnetic fields as a tool to study gravity-related phenomena. The experiment will be located in the SPACEHAB module and is about the size of a household microwave oven. The goal of the experiment is to improve our understanding of the basic phenomenon of how plants respond to gravity. The BioTube/MFA experiment specifically examines how gravitational forces serve as a directional signal for growth in the low-gravity environment of space. As with all basic research, this study will contribute to an improved understanding of how plants grow and will have important implications for improving plant growth and productivity on Earth. In BioTube/MFA, magnetic fields will be used to determine whether the distribution of subcellular starch grains, called amyloplasts, within plant cells predicts the direction in which roots will grow and curve in microgravity.

  18. ATP-dependent molecular chaperones in plastids--More complex than expected. (United States)

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix


    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. PMID:25596449

  19. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. (United States)

    Hubbard, N L; Pharr, D M; Huber, S C


    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  20. Rape embryogenesis. IV. Appearance and disappearance of starch during embryo development

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska


    Full Text Available Starch appears first in the suspensor of the proembryo with two-cell apical part. It is observed in the embryo proper from the octant stage. At first it is visible in all the embryo cells in the form of minute transient grains which disappear during cell divisions. But the columella mother cells and their derivatives have persistent large grains. When the embryo turns green in the heart stage a gradual accumulation of storage starch begins and lasts to the end of embryogenesis. Storage starch grains appear first in the auter cortex layers of the hypocotyl where the largest grains are to be found later, and afterwards in all the other tissues. Starch is usually absent in the frequently dividing cells, but even there it appears in the form of minute grains after the end of cell divisions. Disappearance of starch starts when the intensive green colour of the seed coat begins to fade. The first to disappear are the smallest granules in the regions where they were noted latest. In the embryo axis the starch grains remain deposited longest in dermatogen and cortex cells in the lower hypocotyl part. They are visible there, still when the seed turns brown. In black seeds starch may be only found in the columella the cells of which throughout embryogenesis contain amyloplasts filled with starch. These grains disappear completely at the time when the seeds become dry.

  1. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. (United States)

    Muratov, Alexander; Baulin, Vladimir A


    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism. PMID:26422460

  2. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis (United States)

    MacCleery, S. A.; Kiss, J. Z.


    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  3. Female gametophyte and pollen tube of Epilobium palustre L.

    Directory of Open Access Journals (Sweden)

    Józef Bednara


    Full Text Available The monosporic, tetranucleate embryo sac of Epilobium palustre (Onagraceae develops from the micropylar megaspore in a linear tetrad. In mononucleate embryo sacs a peculiar chromatic structure associated with a nucleolus appears in the nucleus. This structure seems to be formed by fibrillar material and is not visible in the subsequant stages of development. A large amount of rough ER cisternae occurs in the late mononucleate stage, during the binucleate stage their contents become optically dense. It the early tetranucleate stage the amount of ER is small, it increases again in the developing synergids and central cell. Numerous amyloplasts present in the mononucleate embryo sac loose their starch grains and some are transformed into cup-shaped plastids or proplastids. They are passed on to each of the embryo sac cells. The growth of the pollen tube ceases immediately after the penetration through the filiform apparatus of a synergid. At the apex of the tube a pore is formed. At the last stages of the penetration the apical part of the pollen tube becomes separated by a transverse partition from the distal part of the tube. The contents of the both parts differ in their internal structure. The distal part contains cytoplasm with numerous organoids, while the apical part is mainly filled with spherical bodies.

  4. Role of phosphorylase in the mechanism of potato minituber storage cell changes during clinorotation (United States)

    Nedukha, O.; Shnyukova, E.

    The differences between the cytochemical reaction intensity and activity of phosphorylase (EC and carbohydrate content in storage parenchyma cells of Solanum tuberosum L. (cv Adreta) minitubers grown for 30 days in the horizontal clinostate (2 rev/min) and in the control have been studied by electroncytochemical and biochemical methods. It is established an acceleration of minitubers formation and storage parenchyma cell differentiation at clinorotation. Electroncytochemical investigation of phosphorylase activity localization in the storage parenchyma cells of minitubers grown in control and at clinorotation showed the product of the reaction as electron-dense precipitate was marked plastids. Intensity and density of precipitate was increase in stroma of plastids and on starch grain surface during of intensive growth of starch in amyloplast (on 10- and 20-days of the minituber formation) of clinorotated minitubers in comparison with that in the control. The precipitate amount was decreased in the plastids on 30 day of growth in both variants. Using biochemical methods it is found that activity of phosphorylase and content of mono- and disaccharide and also starch content changed in minitubers formed during clinorotation and in the control. Data obtained are discussed regarding the possible mechanism of phosphorylase activity change and the role of mono- and disaccharide in acceleration of storage organ formation during clinorotation.

  5. Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon (United States)

    Schwuchow, J.; Sack, F. D.


    Apical cells of protonemata of the moss Ceratodon purpureus are unusual among plant cells with sedimentation in that only some amyloplasts sediment and these do not fall completely to the bottom of vertical cells. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin D (CD) on plastid position were quantified. APM treatments of 30-60 min increased the plastid sedimentation that is normally seen along the length of untreated or control cells. Longer APM treatments often resulted in more dramatic plastid sedimentation, and in some cases almost all plastids sedimented to the lowermost point in the cell. In contrast, the microfilament inhibitor CD did not affect longitudinal plastid sedimentation compared to untreated cells, although it did disturb or eliminate plastid zonation in the tip. These data suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell. This demonstrates the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity.

  6. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  7. Complex physiological and molecular processes underlying root gravitropism (United States)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.


    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  8. Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation. (United States)

    Sree, K Sowjanya; Keresztes, Áron; Mueller-Roeber, Bernd; Brandt, Ronny; Eberius, Matthias; Fischer, Wolfgang; Appenroth, Klaus-J


    Cobalt (Co2+) inhibits vegetative growth of Lemna minor gradually from 1 μM to 100 μM. Fronds accumulated up to 21 mg Co2+ g(-1) dry weight at 10 μM external Co2+ indicating hyperaccumulation. Interestingly, accumulation of Co2+ did not decrease the iron (Fe) content in fronds, highlighting L. minor as a suitable system for studying effects of Co2+ undisturbed by Fe deficiency symptoms unlike most other plants. Digital image analysis revealed the size distribution of fronds after Co2+ treatment and also a reduction in pigmentation of newly formed daughter fronds unlike the mother fronds during the 7-day treatment. Neither chlorophyll nor photosystem II fluorescence changed significantly during the initial 4d, indicating effective photosynthesis. During the later phase of the 7-day treatment, however, chlorophyll content and photosynthetic efficiency decreased in the Co2+-treated daughter fronds, indicating that Co2+ inhibits the biosynthesis of chlorophyll rather than leading to the destruction of pre-existing pigment molecules. In addition, during the first 4d of Co2+ treatment starch accumulated in the fronds and led to the transition of chloroplasts to chloro-amyloplasts and amylo-chloroplasts, while starch levels strongly decreased thereafter. PMID:25840119

  9. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    Parviz Fasahat; Sadequr Rahman; Wickneswari Ratnam


    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world’s most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.

  10. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development.

    Directory of Open Access Journals (Sweden)

    Xurun Yu

    Full Text Available Although wheat (Triticum aestivum L. pericarp starch granule (PSG has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase, granule-bound starch synthase II (GBSS II, and α-amylase (AMY were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.

  11. Post-harvest light treatment increases expression levels of recombinant proteins in transformed plastids of potato tubers. (United States)

    Larraya, Luis M; Fernández-San Millán, Alicia; Ancín, María; Farran, Inmaculada; Veramendi, Jon


    Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non-photosynthetic plastids are generally discouraging. Here, we report the expression of two thioredoxin genes (trx f and trx m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately two to three orders of magnitude lower than in the leaf. However, we demonstrate that a simple post-harvest light treatment of microtubers developed in vitro or soil-grown tubers induces up to 55 times higher accumulation of the recombinant protein in just seven to ten days. After the applied treatment, the Trx f levels in microtubers and soil-grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for eight months maintained the capacity of increasing the foreign protein levels after the light treatment. Post-harvest cold induction (up to five times) at 4°C was also detected in microtubers. We conclude that plastid transformation and post-harvest light treatment could be an interesting approach for the production of foreign proteins in potato. PMID:26121393

  12. Auxin, ethylene and light in gravitropic growth: new insights (United States)

    Edelmann, Hg; Sabovljevic, A.; Njio, G.; Roth, U.

    The regulation mechanism of gravitropic differential plant growth is commonly divided into three sequential processes: the perception of the gravistimulus (generally attributed to amyloplast sedimentation), the transduction of the perceived signal (of which very little is known), and the adequate differential growth response (generally attributed to asymmetric auxin redistribution). The detailled mechanism is still unresolved and remains to be elucidated in significant parts. Employing 2D SDS-PAGE /Q-TOF amongst other methods and strategies we studied the effect of different auxins on gravitropism of coleoptiles and hypocotyls. We also analyzed the effects of light and ethylene (synthesis and perception) on gravitropic growth of primary shoots and roots and analyzed the protein pattern with respect to the observed physiological effects. In coleoptiles, under the applied experimental conditions the effect of 2,4-dichlorophenoxy acetic acid (2,4 D) on gravitropism differed from the effect of indolylacetic acid (IAA), which was similar to the one observed in sunflower hypocotyls. In roots, the relevance of ethylene for gravitropic differential growth and the capacity to evade mechanical barriers during horizontal gravistimulation was analyzed in detail. A special focus was addressed on the physiological significance of the root cap. We will show that the relevance of ethylene for gravitropism has hitherto been misjudged. Further new findings and their implications for the regulation mechanism of gravitropism will be presented and discussed. Kramer et al., (2003) J. Ex. Bot. 54, (393), 2723-2732 Edelmann, H.G., (2002) J. Ex. Bot. 53, (375), 1825-1828

  13. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. (United States)

    Yu, Xurun; Li, Bo; Wang, Leilei; Chen, Xinyu; Wang, Wenjun; Wang, Zhong; Xiong, Fei


    Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development. PMID:26394305

  14. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. (United States)

    Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence; Campbell, Raymond; Bramley, Peter M; Taylor, Mark; Fraser, Paul D


    To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4' β-oxygenase (crtW) and 3, 3' β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules. PMID:25845905

  15. Ionic signaling in plant responses to gravity and touch (United States)

    Fasano, Jeremiah M.; Massa, Gioia D.; Gilroy, Simon


    Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.

  16. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat. (United States)

    Smith, J D; Staehelin, L A; Todd, P


    White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not. PMID:11543182

  17. A bird’s-eye view of molecular changes in plant gravitropism using omics techniques

    Directory of Open Access Journals (Sweden)

    Oliver eSchüler


    Full Text Available During evolution, plants have developed mechanisms to adapt to a variety of environmental stresses, including drought, high salinity, changes in carbon dioxide levels and pathogens. Central signaling hubs and pathways that are regulated in response to these stimuli have been identified. In contrast to these well studied environmental stimuli, changes in transcript, protein and metabolite levels in response to a gravi¬tational stimulus are less well understood. Amyloplasts, localized in statocytes of the root tip, in meso¬phyll cells of coleoptiles and in the elongation zone of the growing internodes comprise statoliths in higher plants. Deviations of the statocytes with respect to the earthly gravity vector lead to a displacement of statoliths relative to the cell due to their inertia and thus to gravity perception. Down¬stream signaling events, including the conversion from the biophysical signal of sedi¬men¬tation of distinct heavy mass to a biochemical signal, however, remain elusive. More recently, technical advances, including clinostats, drop towers, parabolic flights, satellites and the International Space Station, allowed researchers to study the effect of altered gravity conditions - real and simulated micro- as well as hypergravity on plants. This allows for a unique opportunity to study plant responses to a purely anthropogenic stress for which no evolutionary program exists. Furthermore, the requirement for plants as food and oxygen sources during prolonged manned space explorations led to an increased interest in the identification of genes involved in the adaptation of plants to microgravity.Transcriptomic, proteomic, phosphoproteomic, and metabolomic profiling strategies provide a sensitive high-throughput approach to identify biochemical alterations in response to changes with respect to the influence of the gravitational vector and thus the acting gravitational force on the transcript, protein and metabolite level. This

  18. Comparison Analysis of Starch and Protein Expression Profiles on Cassava Tuberous Rootscv. SC8 and Its Tetraploid%华南8号木薯及其四倍体块根淀粉及蛋白表达谱的差异分析

    Institute of Scientific and Technical Information of China (English)

    安飞飞; 陈松笔; 李庚虎; 周锴; 李开绵


    [Objective]The aim of the study was to better understand the change of starch content, starch structure and its proteins regulatory mechanisms of cassava tuberous roots of diploid and its tetraploid.[Method]Tuberous roots of 10 months after planting were used as the materials, starch content was measured by weight in air and water, the proportion of amylose and amylopectin was determined by spectrophotometry, Excel 2013 and DPS v7.05 statistical software were used to analyze the data, the significant difference was determined by using Duncan method, the size, shape and number of amyloplast were observed by scanning electron microscopy, Western blot was used to verify some enzymes involved in starch synthesis and degradation, roots proteins of cassava tetraploid and diploid genotypes were excised and purified from 2D gels, Delta 2D software were used to analyze the different proteins with more than 2.0 fold changes and assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-TOF-MS/MS) were used to identify them, and the proteins were classified according to their functions combined with KEGG database.[Result]After chromosome doubling in tetraploid cassava, dry matter content, starch content and fresh roots weight were significantly decreased by 12.18%, 11.41%, and 35.34%, respectively. No significant difference was observed in amylase and amylopectin proportion. No significant difference in amyloplast morphology, mainly spherical, irregular sphere and ellipsoid also exist, the size was uniform, while the loose degree of amyloplast and space gap were increased, the number was decreased. The level of sucrose phosphate synthase (SPS) significantly decreased,β-amylase expression was increased, while the level of granule bound starch synthase I (GBSSI) was not changed. Twenty differential expressed protein spots were showed and analyzed by software, including 2 up-regulated spots and 18 down-regulated spots, 19 were successfully matched in

  19. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    International Nuclear Information System (INIS)

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increase with (1) currents between 8-35 mA, and (2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that (1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, (2) exogenously induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, (3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, (4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature and (5) electrically-induced curvature is apparently dependent on auxin transport. These result are discussed relative to a model to account for the lack of graviresponsiveness by these roots

  20. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis (United States)

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.


    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  1. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    Directory of Open Access Journals (Sweden)

    Blair Matthew W


    Full Text Available Abstract Background Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron storage protein in legumes was only detected in the amyloplasts of the seed embryo. Using the non-destructive micro-PIXE (Particle Induced X-ray Emission technique we show that the tissue in the proximity of the provascular bundles holds up to 500 μg g-1 of iron, depending on the genotype. In contrast to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean and a Mesoamerican genotype. Conclusions The presented results emphasize the importance of complementing research in model organisms with analysis in

  2. Ultrastructural features of Mimulus aurantiacus (Scrophulariaceae pollen tubes in vivo

    Directory of Open Access Journals (Sweden)

    Nuran Ekici


    Full Text Available The aim of this study is to give information on ultrastructure of in vivo pollen tubes of Mimulus aurantiacus which were collected from the Botanical Garden of the University of California at Berkeley. Materials were prepared according to electron microscopy methods and examined under Zeiss electron microscope. Four zones were examined in the pollen tubes of Mimulus aurantiacus. APICAL ZONE: Mitochondria, smooth endoplasmic reticulum, rough endoplasmic reticulum, dictyosomes and secretory vesicles were observed. SUBAPICAL ZONE: This area contained abundant rough endoplasmic reticulum and occasionally some smooth endoplasmic reticulum. The polysomes, mitochondria, proplastids that contain starch, small vacuoles and a few lipid bodies were detected. NUCLEAR ZONE: Both generative and vegetative cell nuclei lie in this zone. The vegetative cell nucleus was large and long. Rough endoplasmic reticulum, mitochondria, ribosomes, dictyosomes, and amyloplasts that are rich of starch were observed. VACUOLATION AND PLUG FORMATION ZONE: Cytoplasm of the tubes was full of large vacuoles. Few organelles such as mitochondria, dictyosome and rough endoplasmic reticulum were detected along their periphery.O objetivo deste estudo é informar sobre a ultraestrutura de tubos de pólen de Mimulus aurantiacus in vivo coletados no "Botanical Garden" da Universidade da Califórnia em Berkeley. O material foi preparado de acordo com os métodos de microscopia eletrônica e examinado em microscópio eletrônico Zeiss. Quatro zonas dos tubos de pólen de Mimulus aurantiacus foram examinadas. ZONA APICAL: foram observados mitocôndrias, retículo endoplasmático liso; retículo endoplasmático rugoso, dictiossomos e vesículas secretoras. ZONA SUBAPICAL: esta área continha retículo endoplasmático rugoso em abundância e, ocasionalmente, algum retículo endoplasmático liso. Foram detectados polissomos, mitocôndrias, proplastídeos que contêm amido, pequenos vacúolos e

  3. The potential of two Salix genotypes for radionuclide/heavy metal accumulation. A case study of Rovinari ash pit (Gorj District, Romania) (United States)

    Hernea, Cornelia; Neţoiu, Constantin; Corneanu, Gabriel; Crăciun, Constantin; Corneanu, Mihaela; Cojocaru, Luminiţa; Rovena Lăcătuşu, Anca; Popescu, Ion


    heavy metals and radionuclides, in comparison with Salix alba. In seedlings developed on ash waste dump, in leaf cells, the fine blocks of heterochromatin are dispersed in nucleus. The chloroplast with well developed grana and numerous plastoglobuls, are in active synthesis (being present 2 - 4 starch grains), some chloroplasts being transformed in amyloplast. In the mitochondria matrix, are present ferritin aggregates, with role in cell detoxification processes.

  4. Caracterização morfoanatômica de raiz e rizoma de Symphytum officinale L. (Boraginaceae Morpho-anatomical characterization of the root and rhizome of Symphytum officinale L. (Boraginaceae

    Directory of Open Access Journals (Sweden)

    Ana Cristina O. Toledo


    Full Text Available Symphytum officinale L. (Boraginaceae é uma erva perene conhecida como confrei, consólida-maior e erva-do-cardeal, empregada na fitoterapia como antiinflamatório, emoliente e anestésico suave de uso tópico, devido à ação da alantoína encontrada nos órgãos subterrâneos e na folha. Com a finalidade de contribuir com a identificação da planta medicinal e da droga vegetal, foram realizados estudos morfoanatômicos de raiz e rizoma, em estrutura secundária. O material botânico foi fixado e preparado de acordo com microtécnicas usuais. Os órgãos subterrâneos são semelhantes, fusiformes e mostram-se de cor amarela clara a negra. A raiz e o rizoma apresentam periderme e tecidos vasculares secundários semelhantes, mas diferem pela presença de xilema primário exarco na raiz e xilema primário endarco e medula parenquimática no rizoma. Numerosas células parenquimáticas contendo mucilagem e amiloplastos são observadas na raiz e no rizoma.Symphytum officinale L. (Boraginaceae is a perennial herb known as comfrey, gum plant or boneset, and it is employed topically as anti-inflammatory, emollient and mild anesthetic in phytotherapy, due to allantoin found in the underground organs and leaf. In order to contribute to the medicinal plant and vegetal drug identification, morpho-anatomical investigations of the root and rhizome, in secondary growth, were carried out. The botanical material was fixed and prepared according to usual microtechniques. The underground organs are alike, slender and yellow to black coloured. The root and the rhizome show similar periderm and secondary vascular tissues, yet they differ in that the root shows exarch primary xylem, while the rhizome presents endarch primary xylem and parenchymatous pith. Numerous parenchymatic cells which contain mucilage and amyloplasts are observed in the root and rhizome.

  5. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants (United States)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti


    signal is generated by the sedimentation of the amyloplasts. This induces a signal transduction pathway that promotes an auxin gradient across the root. The proteinogenic amino acid proline functions as a radical scavenger, electron sink, stabilizer of macromolecules, cell wall component and a metal chelation compound. In order to have most competent option for phytofilteration, the natural biodiversity out of aquatic ecosystem should be better studied. Screening of plants that produce natural chemicals whose structures are similar to the xenobiotic compounds should be the first step of any phytoremediation process. An experimental hydroponic-phytofilteration system with real effluent must give pragmatic information on the real detoxification capacity of the plants and allow determining the appropriate design and size of the future constructed wetland system to clean up the contaminated wastewater to reduce negative impact of eutrophication.

  6. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    those of the single mutants. We used this observation to design a genetic screen for the identification of new loci that contribute to the pgm gravity-signaling pathway. Two genetic enhancers of arg1-2 were identified this way, called mar1-1 and mar2-1. These mutations were shown to affect components of the protein-import complex found in the outer membrane of plastids. Interestingly, the columellar amyloplasts of arg1-2 mar2-1 mutant roots display wild-type ultra-structure, accumulate starch and sediment at wild-type rates upon gravistimulation. We conclude that the plastid outer envelope may contribute directly to gravity signal transduction within the statocytes.

  7. Himatanthus lancifolius (Müll. Arg. Woodson, Apocynaceae: estudo farmacobotânico de uma planta medicinal da Farmacopeia brasileira 1ª edição Himatanthus lancifolius (Müll. Arg. Woodson, Apocynaceae: morpho-anatomical study of a medicinal plant described in the Brazilian Pharmacopoeia 1st edition

    Directory of Open Access Journals (Sweden)

    Leopoldo C. Baratto


    Full Text Available Himatanthus lancifolius (Müll. Arg. Woodson é um arbusto nativo do Brasil, latescente, popularmente conhecido como agoniada e utilizado principalmente para distúrbios menstruais. O presente trabalho teve como objetivo caracterizar morfoanatomicamente a folha, o caule e a casca caulinar dessa planta medicinal, a fim de contribuir para o controle de qualidade e a autenticidade dessa espécie. O material vegetal foi fixado e submetido às microtécnicas usuais. A folha é simples, glabra e obovado-lanceolada. A epiderme é uniestratificada, revestida por cutícula estriada e possui estômatos anisocíticos na face abaxial. O mesofilo é dorsiventral. A nervura central é biconvexa e o pecíolo é circular, ambos apresentando feixes vasculares bicolaterais. Laticíferos, amiloplastos e idioblastos fenólicos estão presentes no parênquima fundamental da nervura central e do pecíolo. O sistema vascular do caule é tipicamente bicolateral. Laticíferos e idioblastos fenólicos ocorrem no córtex, no floema e na medula. Esses caracteres morfoanatômicos, em conjunto, podem ser utilizados como parâmetros para o controle de qualidade dessa espécie.Himatanthus lancifolius (Müll. Arg. Woodson is a Brazilian native shrub, laticiferous, popularly known as "agoniada" and it is mainly used for uterine disorders. The present work aimed to study the leaf, stem and stem bark morpho-anatomy of this medicinal plant, in order to contribute to its quality control and identification. The plant material was fixed and submitted to standard microtechniques. The leaf is simple, glabrous and obovate-lanceolate. The epidermis is uniseriate, coated with striated cuticle and it has anysocitic stomata on the abaxial surface. The mesophyll is dorsiventral. The midrib is biconvex and the petiole is circular, both presenting bicollateral vascular bundles. Laticiferous ducts, amyloplasts and phenolic idioblasts are found in ground parenchyma of the midrib and petiole. The

  8. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex (United States)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  9. Pharmacobotanic characterization of young stems and stem barks of Rauvolfia sellowii Müll. Arg., Apocynaceae

    Directory of Open Access Journals (Sweden)

    Leopoldo Clemente Baratto


    Full Text Available Rauvolfia sellowii Müll. Arg. (Apocynaceae, a Brazilian native tree rich in indole alkaloids, is known as "pau-pra-tudo" and popularly used as hypocholesterolemic, hypoglycemic and antihypertensive. The aim of this work was to study the anatomy of the young stems and stem barks of this medicinal plant, in order to contribute to the identification of the species as a drug. The plant material was fixed and prepared according to standard microtechniques. The young stems have remaining epidermis, but a suberified peridermis is evident. The phellogen is located in the cortical region, forming suber externally. Underneath the phellogen, lies the phelloderm and collenchymatic region. In the cortex, there are numerous laticifers and some fibers. There is an incomplete sclerenchymatic sheath, consisting of several groups of fibers and stone cells. The stem has internal phloem ordered as isolated groups side by side. Numerous laticifers, calcium oxalate crystals, idioblasts and amyloplasts are found in the cortex, phloem, xylem and pith. The stem bark has many layers of suber and cortical parenchyma, a sheath composed of fibers and stone cells totally lignified, and external phloem. These anatomical characteristic, taken together, can be used as quality control parameters for this species.Rauvolfia sellowii Müll. Arg. (Apocynaceae, uma árvore nativa brasileira rica em alcaloides indólicos, é conhecida como "pau-pra-tudo" e utilizada popularmente como hipocolesterolêmica, hipoglicêmica e anti-hipertensiva. O presente trabalho teve como objetivo caracterizar anatomicamente o caule jovem e a casca caulinar dessa planta medicinal, a fim de contribuir para a identificação e autenticidade da droga. O material vegetal foi fixado e submetido às microtécnicas usuais. O caule jovem possui epiderme remanescente, porém uma periderme suberificada é observada. O felogênio instala-se na região cortical, formando súber externamente. Subjacentes ao felog

  10. ``Rhizogenesis in vitro'' - as a model to study microgravity biological effects (United States)

    Bulavin, Iliya

    type. Statocytes preserved their polarity in control but it was disturbed under clinorotation due to amyloplast distribution in the cytoplasm whole volume and/or their localization in the cell center. Structural rearrangements occurred similarly in statocytes under their transformation in secretory cells in control and under clinorotation. A characteristic features of the root proper meristematic cells in the control and in the experiment are central nucleus location, the great diversity of a size and a shape of mitochondria and plastids, poorly ER development, the presence of some small ER-bodies. As cells passed in the DEZ, their size enlarged but a nucleus can preserve the central location. A quantity of ER-cistern, vacuoles, and ER-bodies increased also. Dictyosomes acquired polarity and produced many Golgi vesicles. In CEZ cells, a large vacuole occupied the cell center, and the cytoplasm with organelles was on the cell periphery. So, we can conclude that under clinorotation: 1) the structure of a cap and growth zones of A. thaliana wild type and scr mutant roots formed de novo in vitro as similar to that in control; 2) a gaviperceptive apparatus formed in both objects but did not function. The obtained data allow to propose the model “Rhizogenesis in vitro” for using in spaceflight experiments to study the influence of real microgravity on the cellular differentiation and basic processes.

  11. Preparation and identification of water-soluble calcium-binding protein from grape (Vitis vinifera L.) seeds%葡萄籽中水溶性钙结合蛋白的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    吕晨艳; 赵广华


    Calcium is an essential nutrient required for critical biological functions such as nerve conduction, muscle contraction, mitosis, blood coagulation, and structural support of the skeleton.Dietary calcium intake is of general interest for human beings, particularly for infants and young children, when growth is accelerated. Milk and milk products as effective calcium supplements are generally accepted by human race with their high bioavailability. However, less consumption of milk in industrialized countries leads to inadequate calcium intake. Therefore, it is important to explore an alternate source for calcium supplement. On the other hand, dried grape seeds are likewise rich in lipids (22.07%), carbohydrates (12.51%) and proteins (11.94%) (w/w) and grape seeds as by-product during juice production can be an alternative source of protein. Meanwhile, this study demonstrates that grape seeds are rich in calcium ((5.62±0.01) g/kg for embryonic cells and (6.32± 0.01) g/kg for intact grape seeds), which was identified by ICP-AES. The calcium was mainly distributed in the stroma of the amyloplasts and around the starch granules, which was observed under TEM (Transmission Electron Microscope). Further study indicates that water-soluble protein from grape (Vitis viniferaL.) seeds (WSPG) contained two major components, one of which was 11S globulin-like protein mainly responsible for the binding of calcium in WSPG and the other was a novel protein (Protein A). The calcium contents of protein isolate from each step were identified by ICP-AES as well. When a traditional alkali extraction and acid precipitation method was used for isolation of WSPG, many binding calcium ions were lost. It is worth noting that the protein composition of grape seed protein obtained by both 30%-50% (NH4)2SO4 sediment and the alkali extraction and acid precipitation method was nearly identical, which consisted of protein A and protein B at a ratio of 2 to 3, but the content of calcium in the