WorldWideScience

Sample records for alpha-smooth muscle actin

  1. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    Science.gov (United States)

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  2. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René

    2004-01-01

    Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial...... compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted....... Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal...

  3. Activation of the skeletal alpha-actin promoter during muscle regeneration.

    Science.gov (United States)

    Marsh, D R; Carson, J A; Stewart, L N; Booth, F W

    1998-11-01

    Little is known concerning promoter regulation of genes in regenerating skeletal muscles. In young rats, recovery of muscle mass and protein content is complete within 21 days. During the initial 5-10 days of regeneration, mRNA abundance for IGF-I, myogenin and MyoD have been shown to be dramatically increased. The skeletal alpha-actin promoter contains E box and serum response element (SRE) regulatory regions which are directly or indirectly activated by myogenin (or MyoD) and IGF-I proteins, respectively. We hypothesized that the skeletal alpha-actin promoter activity would increase during muscle regeneration, and that this induction would occur before muscle protein content returned to normal. Total protein content and the percentage content of skeletal alpha-actin protein was diminished at 4 and 8 days and re-accumulation had largely occurred by 16 days post-bupivacaine injection. Skeletal alpha-actin mRNA per whole muscle was decreased at day 8, and thereafter returned to control values. During regeneration at day 8, luciferase activity (a reporter of promoter activity) directed by -424 skeletal alpha-actin and -99 skeletal alpha-actin promoter constructs was increased by 700% and 250% respectively; however, at day 16, skeletal alpha-actin promoter activities were similar to control values. Thus, initial activation of the skeletal alpha-actin promoter is associated with regeneration of skeletal muscle, despite not being sustained during the later stages of regrowth. The proximal SRE of the skeletal alpha-actin promoter was not sufficient to confer a regeneration-induced promoter activation, despite increased serum response factor protein binding to this regulatory element in electrophoretic mobility shift assays. Skeletal alpha-actin promoter induction during regeneration is due to a combination of regulatory elements, at least including the SRE and E box.

  4. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  5. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Nielsen, M.J.; Nielsen, Signe Holm; Hansen, N.U.B.

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate...

  6. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    Science.gov (United States)

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue

  7. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    .8 and 3.0 microns/h, respectively. To knock out the alpha-sm actin protein, several antisense phosphorothioate oligodeoxynucleotide (ODNs) were tested. One of these, 3'UTI, which is complementary to a highly evolutionary conserved 3' untranslated (3'UT) sequence of alpha-sm actin mRNA, was found to block...... alpha-sm actin synthesis completely without affecting the synthesis of any other proteins as analyzed by two-dimensional gel electrophoresis. Targeting by antisense 3'UTI significantly increased motility compared with the corresponding sense ODN. alpha-Sm actin inhibition also led to the formation...

  8. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state.

    Science.gov (United States)

    Banerjee, Chaity; Hu, Zhongjun; Huang, Zhong; Warrington, J Anthony; Taylor, Dianne W; Trybus, Kathleen M; Lowey, Susan; Taylor, Kenneth A

    2017-12-01

    Myosin-based motility utilizes catalysis of ATP to drive the relative sliding of F-actin and myosin. The earliest detailed model based on cryo-electron microscopy (cryoEM) and X-ray crystallography postulated that higher actin affinity and lever arm movement were coupled to closure of a feature of the myosin head dubbed the actin-binding cleft. Several studies since then using crystallography of myosin-V and cryoEM structures of F-actin bound myosin-I, -II and -V have provided details of this model. The smooth muscle myosin II interaction with F-actin may differ from those for striated and non-muscle myosin II due in part to different lengths of important surface loops. Here we report a ∼6 Å resolution reconstruction of F-actin decorated with the nucleotide-free recombinant smooth muscle myosin-II motor domain (MD) from images recorded using a direct electron detector. Resolution is highest for F-actin and the actin-myosin interface (3.5-4 Å) and lowest (∼6-7 Å) for those parts of the MD at the highest radius. Atomic models built into the F-actin density are quite comparable to those previously reported for rabbit muscle actin and show density from the bound ADP. The atomic model of the MD, is quite similar to a recently published structure of vertebrate non-muscle myosin II bound to F-actin and a crystal structure of nucleotide free myosin-V. Larger differences are observed when compared to the cryoEM structure of F-actin decorated with rabbit skeletal muscle myosin subfragment 1. The differences suggest less closure of the 50 kDa domain in the actin bound skeletal muscle myosin structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.

    Science.gov (United States)

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.

  10. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  11. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  12. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2018-02-01

    Full Text Available Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction (p < 0.01. Cells differentiated in 5% oxygen conditions showed greater contraction effect (p < 0.01. Hypoxia influences differentiation of smooth muscle cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  13. Non-Straub type actin from molluscan catch muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shelud' ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.; Vyatchin, Ilya G.

    2016-05-27

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.

  14. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  15. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Michael J Herr

    Full Text Available The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.

  16. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    Science.gov (United States)

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  17. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  18. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.

    Science.gov (United States)

    Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.

  19. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis.

    Directory of Open Access Journals (Sweden)

    Wanming Zhao

    Full Text Available α-Smooth muscle actin (α-SMA is used as a marker for a subset of activated fibrogenic cells, myofibroblasts, which are regarded as important effector cells of tissue fibrogenesis. We address whether α-SMA-expressing myofibroblasts are detectable in fibrotic muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy (DMD, and whether the α-SMA expression correlates with the fibrogenic function of intramuscular fibrogenic cells. α-SMA immunostaining signal was not detected in collagen I (GFP-expressing cells in fibrotic muscles of ColI-GFP/mdx5cv mice, but it was readily detected in smooth muscle cells lining intramuscular blood vessel walls. α-SMA expression was detected by quantitative RT-PCR and Western blot in fibrogenic cells sorted from diaphragm and quadriceps muscles of the ColI-GFP/mdx5cv mice. Consistent with the more severe fibrosis in the ColI-GFP/mdx5cv diaphragm, the fibrogenic cells in the diaphragm exerted a stronger fibrogenic function than the fibrogenic cells in the quadriceps as gauged by their extracellular matrix gene expression. However, both gene and protein expression of α-SMA was lower in the diaphragm fibrogenic cells than in the quadriceps fibrogenic cells in the ColI-GFP/mdx5cv mice. We conclude that myofibroblasts are present in fibrotic skeletal muscles, but their expression of α-SMA is not detectable by immunostaining. The level of α-SMA expression by intramuscular fibrogenic cells does not correlate positively with the level of collagen gene expression or the severity of skeletal muscle fibrosis in the mdx5cv mice. α-SMA is not a functional marker of fibrogenic cells in skeletal muscle fibrosis associated with muscular dystrophy.

  20. Actin expression in some Platyhelminthe species.

    Science.gov (United States)

    Fagotti, A; Panara, F; Di Rosa, I; Simoncelli, F; Gabbiani, G; Pascolini, R

    1994-10-01

    Actin expression in some Platyhelminthe species was demonstrated by western-blotting and immunocytochemical analysis using two distinct anti-actin antibodies: the anti-total actin that reacts against all actin isoforms of higher vertebrates and the anti-alpha SM-1 that recognizes the alpha-smooth muscle (alpha SM) isotype of endothermic vertebrates (Skalli et al., 1986). Western-blotting experiments showed that all species tested, including some free-living Platyhelminthes (Tricladida and Rhabdocoela) and the parasitic Fasciola hepatica, were stained by anti-total actin antibody while only Dugesidae and Dendrocoelidae showed a positive immunoreactivity against anti-alpha SM-1. These results were confirmed by cytochemical immunolocalization using both avidin biotin conjugated peroxidase reaction on paraffin sections, and immunogold staining on Lowicryl 4KM embedded specimens. Our findings may contribute to the understanding of Platyhelminthes phylogeny.

  1. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  2. Release of muscle α-actin into serum after intensive exercise

    Directory of Open Access Journals (Sweden)

    A Martínez-Amat

    2010-12-01

    Full Text Available Purpose: To study the effects of high-level matches on serum alpha actin and other muscle damage markers in teams of rugby and handball players. Methods: Blood samples were drawn from 23 sportsmen: 13 rugby players and 10 handball players. One sample was drawn with the player at rest before the match and one immediately after the match. Immunoassays were used to determine troponin I, troponin T, LDH, and myoglobin concentrations. Western blot and densitometry were used to measure α-actin concentrations. Muscle injury was defined by a total CK value of > 500 IU/L (Rosalki method. Results: Mean pre- and post-match serum alpha-actin values were, respectively, 7.16 and 26.47 μg/ml in the handball group and 1.24 and 20.04 μg/ml in the rugby team. CPK, LDH and myoglobin but not troponin 1 levels also significantly differed between these time points. According to these results, large amounts of α-actin are released into peripheral blood immediately after intense physical effort. Possible cross-interference between skeletal and cardiac muscle damage can be discriminated by the combined use of α-actin and troponin I. Conclusion: The significant increase in alpha-actin after a high-level match may be a reliable marker for the early diagnosis and hence more effective treatment of muscle injury.

  3. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  4. A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis.

    Science.gov (United States)

    Sun, Yan; Yang, Zhan; Zheng, Bin; Zhang, Xin-Hua; Zhang, Man-Li; Zhao, Xue-Shan; Zhao, Hong-Ye; Suzuki, Toru; Wen, Jin-Kun

    2017-09-01

    Neuregulin-1 (NRG-1) includes an extracellular epidermal growth factor-like domain and an intracellular domain (NRG-1-ICD). In response to transforming growth factor-β1, its cleavage by proteolytic enzymes releases a bioactive fragment, which suppresses the vascular smooth muscle cell (VSMC) proliferation by activating ErbB (erythroblastic leukemia viral oncogene homolog) receptor. However, NRG-1-ICD function in VSMCs remains unknown. Here, we characterize the function of NRG-1-ICD and underlying mechanisms in VSMCs. Immunofluorescence staining, Western blotting, and quantitative real-time polymerase chain reaction showed that NRG-1 was expressed in rat, mouse, and human VSMCs and was upregulated and cleaved in response to transforming growth factor-β1. In the cytoplasm of HASMCs (human aortic smooth muscle cells), the NRG-1-ICD participated in filamentous actin formation by interacting with α-SMA (smooth muscle α-actin). In the nucleus, the Nrg-1-ICD induced circular ACTA2 (alpha-actin-2; circACTA2) formation by recruitment of the zinc-finger transcription factor IKZF1 (IKAROS family zinc finger 1) to the first intron of α-SMA gene. We further confirmed that circACTA2, acting as a sponge binding microRNA (miR)-548f-5p, interacted with miR-548f-5p targeting 3' untranslated region of α-SMA mRNA, which in turn relieves miR-548f-5p repression of the α-SMA expression and thus upregulates α-SMA expression, thereby facilitating stress fiber formation and cell contraction in HASMCs. Accordingly, in vivo studies demonstrated that the localization of the interaction of circACTA2 with miR-548f-5p is significantly decreased in human intimal hyperplastic arteries compared with normal arteries, implicating that dysregulation of circACTA2 and miR-548f-5p expression is involved in intimal hyperplasia. These results suggest that circACTA2 mediates NRG-1-ICD regulation of α-SMA expression in HASMCs via the NRG-1-ICD/circACTA2/miR-548f-5p axis. Our data provide a molecular

  5. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  6. The persistence of active smooth muscle in the female rat cervix through pregnancy.

    Science.gov (United States)

    Ferland, David J; Darios, Emma S; Watts, Stephanie W

    2015-02-01

    A controversy exists as to whether functional smooth muscle exists in the cervix before and during pregnancy, potentially continuous with the uterus. We hypothesized that cervical smooth muscle persists through pregnancy and is functional. Uteri and cervices were taken from female virgin, 11 day, and 20 day (near labor) pregnant rats. All experiments used the uterus as a positive control. Three different smooth muscle proteins (smooth muscle α-actin, SM-22α, and calponin-1) allowed immunohistochemical detection of the continuous nature of the smooth muscle from the vagina, cervix, and uterus. Tissues were also hung in isolated tissue baths for the measurement of isometric smooth muscle contraction. Uterine and cervical homogenates were also used in Western analyses to measure protein expression. Immunohistochemistry revealed there to be smooth muscle as validated by an expression of all 3 markers in the cervix. This smooth muscle was continuous with that of the vagina and uterus. Smooth muscle α-actin was detected in virgin tissue (291.3 ± 32.2 arbitrary densitometry units/β-actin), day 11 (416.8 ± 19.5), and day 20 pregnant tissue (293.0 ± 34.4). The virgin, day 11, and day 20 cervices contracted 2.18 ± 0.24 g, 1.46 ± 0.08 g, and 3.88 ± 0.49 g (respectively) to depolarizing KCl. Cervices contracted at day 20 to the cholinergic muscarinic agonist carbamylcholine (maximum, 133% ± 18.2% KCl contraction, n = 4). These findings strongly support that smooth muscle is present in the cervix through pregnancy and continuous with the uterus. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Eye features in three Danish patients with multisystemic smooth muscle dysfunction syndrome

    DEFF Research Database (Denmark)

    Moller, Hans Ulrik; Fledelius, Hans C; Milewicz, Dianna M

    2012-01-01

    A de novo mutation of the ACTA2 gene encoding the smooth muscle cell α-actin has been established in patients with multisystemic smooth muscle dysfunction syndrome associated with patent ductus arteriosus and mydriasis present at birth....

  8. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    Science.gov (United States)

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  9. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  10. Thomsen-Friedenreich (T) antigen as marker of myoepithelial and basal cells in the parotid gland, pleomorphic adenomas and adenoid cystic carcinomas. An immunohistological comparison between T and sialosyl-T antigens, alpha-smooth muscle actin and cytokeratin 14

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Christensen, M

    1995-01-01

    was the only marker of cells in solid undifferentiated areas of adenoid cystic carcinomas. Our study supports the view, that modified "myoepithelial" cells in the tumours consist of a mixture of basal cells and myoepithelial cells. None of the investigated structures was in itself an ideal marker......Controversy centres on the role and identification of myoepithelial (MEC) and basal cells in salivary gland tumours, and recent studies suggest that both basal cells and myoepithelial cells participate in the formation of salivary gland tumours. We have correlated the expression of different well......-known markers of normal MEC/basal cells (i.e. alpha-smooth muscle actin and cytokeratin 14) with T (Thomsen-Friedenreich) antigen and its sialylated derivative: sialosyl-T antigen,) in 17 normal parotid glands and in two tumour types with MEC participation (i.e pleomorphic adenomas (PA) and adenoid cystic...

  11. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  12. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Science.gov (United States)

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  13. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Juliane Brun

    Full Text Available The use of mesenchymal stromal cells (MSCs differentiated toward a smooth muscle cell (SMC phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2, transgelin (TAGLN, calponin (CNN1, and smooth muscle myosin heavy chain (SM-MHC; MYH11 according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion

  14. Expression of smooth muscle and non-muscle myosin heavy chain isoforms in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Rovner, A.S.; Murphy, R.A.; Owens, G.K.

    1986-01-01

    Immunocytochemical studies of cultured smooth muscle cells (SMCs) have disagreed on the nature of myosin expression. This investigation was undertaken to test for the presence of heterogeneous myosin heavy chain (MHC) isoforms in cell culture as a possible explanation for these results. Previously, Rovner et al. detected two MHCs in intact smooth muscles which differed in molecular weight by ca. 4000 daltons (SM1 and SM2) using a 3-4% acrylamide gradient SDS gel system. When sub-confluent primary cultures of rat aorta SMCs were assayed by this system, SM1 and SM2 were seen, along with large amounts of a third, unique MHC, NM, which closely resembled the MHC from human platelet in size and antigenicity. Data from 35 S-methionine autoradiograms showed that the log growth phase SMC cultures were producing almost exclusively NM, but the growth arrest, post-confluent cultures synthesized increased relative amounts of the SM MHC forms and contained comparable amounts of SM1, SM2, and NM. The same patterns of MHC synthesis were seen in sub-passaged SMCs. The expression of the SM-specific forms of myosin in quiescent, post-confluent cultures parallels that of smooth muscle actin suggesting that density induced growth arrest promotes cytodifferentiation in cultured vascular SMCs

  15. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François, E-mail: fberthia@rci.rutgers.edu

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  16. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-01-01

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β 1 (TGF-β 1 )-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β 1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β 1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β 1

  17. Establishment of artery smooth muscle cell proliferation model after subarachnoid hemorrhage in rats

    Directory of Open Access Journals (Sweden)

    Yu-jie CHEN

    2011-12-01

    Full Text Available Objective The current paper aims to simulate the effects of hemolytic products on intracranial vascular smooth muscle cell after subarachnoid hemorrhage(SAH,and probe into the molecular mechanism and strategy for the prevention and cure of vascular proliferation after SAH.Methods Thirty Sprague-Dawley rats were randomly divided into three groups,including sham-operated,24 h after SAH,and 72 h after SAH groups.The artificial hemorrhage model around the common carotid artery was established for the latter two groups.The animals were put to death after 24 h and 72 h to take the common carotid artery,and to measure the expression level of PCNA,SM-α-actin protein,and mRNA in the smooth muscle cell.Results The PCNA mRNA expression was significantly up-regulated in the 24-h group(P < 0.01.The expression in the 72-h group was lower than that of the 24-h group(P < 0.01,whereas it was still remarkably higher than that of the sham group(P < 0.01.The SM-α-actin mRNA expression in the smooth muscle cell in the 24-h and 72-h groups decreased compared with that of the Sham group(P < 0.05,whereas the 72-h group was significantly lower than that of the 24-h group(P < 0.05.The protein expression of PCNA and SM-α-actin showed a similar trend.Conclusion The current experiment simulates better effects of the hemolytic products on vascular smooth muscle cell after SAH.It also shows that artificial hemorrhage around the common carotid artery could stimulate vascular smooth muscle cell to change from contractile phenotype into synthetic phenotype,and improve it to proliferate.

  18. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    Directory of Open Access Journals (Sweden)

    Piechocki Marie P

    2008-04-01

    Full Text Available Abstract Background To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1 maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. Methods We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. Results The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. Conclusion This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving

  19. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    International Nuclear Information System (INIS)

    Piechocki, Marie P

    2008-01-01

    To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA) expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1) maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving strategies that can dually or differentially target the tumor and stromal

  20. Potentiation of contraction of rabbit airway smooth muscle by some cyclooxygenase products.

    Science.gov (United States)

    Armour, C L; Johnson, P R; Black, J L

    1988-06-01

    An alteration in smooth muscle sensitivity may be one of the mechanisms of the airway hyperresponsiveness observed in asthma. Indomethacin inhibits experimentally induced airway hyperresponsiveness. We thus examined the effects of the cyclooxygenase products PGD2, PGF2 alpha and a thromboxane A2 analogue U46619 on contractile responses of rabbit airway smooth muscle to histamine, carbachol and electrical field stimulation (EFS). PGD2 did not potentiate any contractile responses. When PGF2 alpha (1 microM) was administered 30 min before cumulative concentration-response curves to histamine and carbachol, no potentiation was observed. However, PGF2 alpha (1 microM) added immediately before EFS and bolus doses of histamine potentiated the contractile responses. U46619 increased the cumulative concentration-responses to both histamine and carbachol. The fact that we could alter smooth muscle sensitivity in vitro with PGF2 alpha and a thromboxane analogue suggests that these mediators may be involved in the airway hyperresponsiveness observed in asthma.

  1. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  2. CHARACTERIZATION OF TIGHTLY-ASSOCIATED SMOOTH MUSCLE MYOSIN-MYOSIN LIGHT CHAIN KINASE-CALMODULIN COMPLEXES*

    OpenAIRE

    Hong, Feng; Haldeman, Brian D.; John, Olivia A.; Brewer, Paul D.; Wu, Yi-Ying; Ni, Shaowei; Wilson, David P.; Walsh, Michael P.; Baker, Jonathan E.; Cremo, Christine R.

    2009-01-01

    A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by smooth muscle myosin light chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM (up-SMM) from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ~ 23–37% of that in gizzard tissue. Fifteen t...

  3. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  4. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle

    Science.gov (United States)

    Ali, Mehboob

    2015-01-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22. PMID:25617350

  5. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  6. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  7. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    OpenAIRE

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vi...

  8. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hiromichi [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Abe, Mitsuru; Ono, Koh [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Satoh, Noriko [Division of Metabolic Research, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Fujita, Masatoshi [Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kita, Toru [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Shimatsu, Akira [Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Hasegawa, Koji [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan)

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  9. Inhibition of 5-alpha-reductase activity induces stromal remodeling and smooth muscle de-differentiation in adult gerbil ventral prostate.

    Science.gov (United States)

    Corradi, Lara S; Góes, Rejane M; Carvalho, Hernandes F; Taboga, Sebastião R

    2004-06-01

    Prostatic differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Dihydrotestosterone, which is synthesized from testosterone by 5 alpha-reductase (5 alpha-r), is the active molecule triggering androgen action within the prostate. In the present work, we examined the effects of 5 alpha-reductase inhibition by finasteride in the ventral prostate (VP) of the adult gerbil, employing histochemical and electron microscopy techniques to demonstrate the morphological and organizational changes of the organ. After 10 days of finasteride treatment at a dose of 100 mg/kg/day, the prostatic complex (VP and dorsolateral prostate) absolute weight was reduced to about 18%. The epithelial cells became short and cuboidal, with less secretory blebs and reduced acid phosphatase activity. The luminal sectional area diminished, suggestive of decreased secretory activity. The stromal/epithelial ratio increased, the stroma becoming thicker but less cellular. There was a striking accumulation of collagen fibrils, which was accompanied by an increase in deposits of amorphous granular material adjacent to the basal lamina and in the clefts between smooth muscle cells (SMC). Additionally, the periacinar smooth muscle became loosely packed. Some SMC were atrophic and showed a denser array of the cytoskeleton, whereas other SMC had a highly irregular outline with numerous spine-like projections. The present data indicate that 5 alpha-r inhibition causes epithelial and stromal changes by affecting intra-prostatic hormone levels. These alterations are probably the result of an imbalance of the homeostatic interaction between the epithelium and the underlying stroma.

  10. Nuclear import mechanism for myocardin family members and their correlation with vascular smooth muscle cell phenotype.

    Science.gov (United States)

    Nakamura, Seiji; Hayashi, Ken'ichiro; Iwasaki, Kazuhiro; Fujioka, Tomoaki; Egusa, Hiroshi; Yatani, Hirofumi; Sobue, Kenji

    2010-11-26

    Myocardin (Mycd), which is essential for the differentiation of the smooth muscle cell lineage, is constitutively located in the nucleus, although its family members, myocardin-related transcription factors A and B (MRTF-A/B), mostly reside in the cytoplasm and translocate to the nucleus in response to Rho signaling. The mechanism for their nuclear import is unclear. Here we investigated the mechanism for the nuclear import of Mycd family members and demonstrated any correlation between such mechanism and the phenotype of vascular smooth muscle cells (VSMCs). In cultured VSMCs, the knockdown of importin β1 inhibited the nuclear import of Mycd and MRTF-A/B. Their NH(2)-terminal basic domain was identified as a binding site for importin α/β1 by in vitro analyses. However, Mycd had a higher affinity for importin α/β1 than did MRTF-A/B, even in the absence of G-actin, and Mycd affinity for importin α1/β1 was stronger than for any other importin α/β1 heterodimers. The binding of Mycd to importin α/β1 was insensitive to G-actin, whereas that of MRTF-A/B was differently inhibited by G-actin. In dedifferentiated VSMCs, the levels of importins α1 and β1 were reduced concomitant with down-regulation of Mycd, serum response factor, and smooth muscle cell markers. By contrast, in differentiated VSMCs, their expressions were up-regulated. Thus, the nuclear import of Mycd family members in VSMCs depends on importin α/β1, and their relative affinities for importin α/β1 heterodimers determine Mycd nuclear import. The expression of Mycd nuclear import machineries is related to the expression levels of VSMC phenotype-dependent smooth muscle cell markers.

  11. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Jin Yipeng

    2017-07-01

    Full Text Available Smooth muscle differentiated human adipose derived stem cells (hADSCs provide a crucial stem cell source for urinary tissue engineering, but the induction of hADSCs for smooth muscle differentiation still has several issues to overcome, including a relatively long induction time and equipment dependence, which limits access to abundant stem cells within a short period of time for further application. Three-dimensional (3D bioprinting holds great promise in regenerative medicine due to its controllable construction of a designed 3D structure. When evenly mixed with bioink, stem cells can be spatially distributed within a bioprinted 3D structure, thus avoiding drawbacks such as, stem cell detachment in a conventional cell-scaffold strategy. Notwithstanding the advantages mentioned above, cell viability is often compromised during 3D bioprinting, which is often due to pressure during the bioprinting process. The objective of our study was to improve the efficiency of hADSC smooth muscle differentiation and cell viability of a 3D bioprinted structure. Here, we employed the hanging-drop method to generate hADSC microtissues in a smooth muscle inductive medium containing human transforming growth factor β1 and bioprinted the induced microtissues onto a 3D structure. After 3 days of smooth muscle induction, the expression of α-smooth muscle actin and smoothelin was higher in microtissues than in their counterpart monolayer cultured hADSCs, as confirmed by immunofluorescence and western blotting analysis. The semi-quantitative assay showed that the expression of α-smooth muscle actin (α-SMA was 0.218 ± 0.077 in MTs and 0.082 ± 0.007 in Controls; smoothelin expression was 0.319 ± 0.02 in MTs and 0.178 ± 0.06 in Controls. Induced MTs maintained their phenotype after the bioprinting process. Live/dead and cell count kit 8 assays showed that cell viability and cell proliferation in the 3D structure printed with microtissues were higher at all time

  12. Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions.

    Science.gov (United States)

    Barcena de Arellano, Maria L; Gericke, Jessica; Reichelt, Uta; Okuducu, Ali Fuat; Ebert, Andreas D; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2011-10-01

    Smooth muscle cells (SMC) are common components of endometriotic lesions. SMC have been characterized previously in peritoneal, ovarian and deep infiltrating endometriotic lesions and adenomyosis. The aim of this retrospective study was to investigate the extent of differentiation in endometriosis-associated SMC (EMaSMC) in peritoneal endometriotic lesions. We obtained biopsies from peritoneal endometriotic lesions (n = 60) and peritoneal sites distant from the endometriotic lesion (n = 60), as well as healthy peritoneum from patients without endometriosis (control tissue, n = 10). These controls were hysterectomy specimens from patients without endometriosis or adenomyosis. Histopathological examination of peritoneal specimens using antibodies against oxytocin receptor (OTR), vasopressin receptor (VPR), smooth muscle myosin heavy chain (SM-MHC), estrogen receptor (ER) or progesterone receptor (PR) was performed. To identify SMC and their level of differentiation, antibodies for smooth muscle actin desmin and caldesmon were used. SMC were detected in all endometriotic lesions. SMC were more abundant in unaffected peritoneum of women with endometriosis (38%) compared with women without endometriosis (6%; P endometriosis.

  13. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    Science.gov (United States)

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  14. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-06-01

    Full Text Available Higher vertebrates (mammals and birds express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli  et al., 1986 . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  15. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  16. Impaired Bronchoprotection Is Not Induced by Increased Smooth Muscle Mass in Chronic Treatment In Vivo with Formoterol in Asthmatic Mouse Model

    Directory of Open Access Journals (Sweden)

    W Luo

    2014-09-01

    Full Text Available Objective: Inhaling β2-adrenoceptor agonist is first-line asthma treatment, which is used for both acute relief and prevention of bronchoconstriction. However, chronic use of β-agonists results in impaired bronchoprotection and increasing occurrences of severe asthma exacerbation, even death in clinical practice. The mechanism of β-adrenoceptor hyposensitivity has not been thoroughly elucidated thus far. Bronchial smooth muscle contraction induces airway narrowing and also mediates airway inflammation. Moreover, bronchial smooth muscle mass significantly increases in asthmatics. We aimed to establish an asthmatic model that demonstrated that formoterol induced impaired bronchoprotection and to see whether increased smooth muscle mass played a role in it. Methods: We combined routine allergen challenging (seven weeks with repeated application of formoterol, formoterol plus budesonide or physiological saline in allergen-sensitized BALB/c mouse. The bronchoprotection mediated by β-agonist was measured in five consecutive weeks. Smooth muscle mass was shown by morphometric analysis, and α-actin expression was detected by western blot. Results: The trend of bronchoprotection was wavy in drug interventional groups, which initially increased and then decreased. Chronic treatment with formoterol significantly impaired bronchoprotection. According to the morphometric analysis and α-actin expression, no significant difference was detected in smooth muscle mass in all groups. Conclusion: This experiment successfully established that a chronic asthmatic mouse model, which manifested typical features of asthmatic patients, with chronic use of formoterol, results in a loss of bronchoprotection. No significant difference was detected in smooth muscle mass in all groups, which implied some subcellular signalling changes may be the key points.

  17. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  18. Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK.

    Directory of Open Access Journals (Sweden)

    Jamie L Wilson

    Full Text Available Smooth muscle in the pulmonary artery of PAH subjects, both idiopathic and hereditary, is characterized by hyperplasia. Smooth muscle cells (HPASMC isolated from subjects with or without PAH retain their in vivo phenotype as illustrated by their expression of alpha-smooth muscle actin and expression of H-caldesmon. Both non PAH and PAH HPASMC display a lengthy, approximately 94h, cell cycle. The HPASMC from both idiopathic and hereditary PAH display an abnormal proliferation characterized by continued growth under non-proliferative, non-growth stimulated conditions. This effector independent proliferation is JNK and p38 MAP kinase dependent. Blocking the activation of either abrogates the HPASMC growth. HPASMC from non PAH donors under quiescent conditions display negligible proliferation but divide upon exposure to growth factors such as PDGF-BB or FGF2 but not EGF. This growth does not involve the MAP kinases. Instead it routes via the tyrosine kinase receptor through mTOR and then 6SK. In the PAH cells PDGF-BB and FGF2 augment the dysregulated cell proliferation, also through mTOR/6SK. Additionally, blocking the activation of mTOR also modulates the MAP kinase promoted dysregulated growth. These results highlight key alterations in the growth of HPASMC from subjects with PAH which contribute to the etiology of the disease and can clearly be targeted at various regulatory points for future therapies.

  19. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  20. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  1. ADAMTS9-Regulated Pericellular Matrix Dynamics Governs Focal Adhesion-Dependent Smooth Muscle Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy J. Mead

    2018-04-01

    Full Text Available Summary: Focal adhesions anchor cells to extracellular matrix (ECM and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM. : Mead et al. identify a proteolytic mechanism that actively maintains a pericellular microenvironment conducive to uterine smooth muscle activation prior to parturition. They show that pericellular matrix proteolysis by the secreted metalloprotease ADAMTS9 is crucial for maintenance of focal adhesions in uterine smooth muscle cells, and its absence impairs parturition. Keywords: metalloprotease, extracellular matrix, smooth muscle, proteoglycan, myometrium, parturition, uterus, focal adhesion, proteolysis, interference reflection microscopy

  2. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    Science.gov (United States)

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or

  3. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  4. Histone demethylase retinoblastoma binding protein 2 regulates the expression of α-smooth muscle actin and vimentin in cirrhotic livers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. [Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Medicine, Shandong University, Jinan (China); Wang, L.X. [Department of Pharmacology, School of Medicine, Shandong University, Jinan (China); Zeng, J.P. [Department of Biochemistry, School of Medicine, Shandong University, Jinan (China); Liu, X.J.; Liang, X.M.; Zhou, Y.B. [Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Medicine, Shandong University, Jinan (China)

    2013-09-06

    Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.

  5. Histone demethylase retinoblastoma binding protein 2 regulates the expression of α-smooth muscle actin and vimentin in cirrhotic livers

    International Nuclear Information System (INIS)

    Wang, Q.; Wang, L.X.; Zeng, J.P.; Liu, X.J.; Liang, X.M.; Zhou, Y.B.

    2013-01-01

    Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis

  6. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    International Nuclear Information System (INIS)

    Qiao, Yong; Tang, Chengchun; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-01-01

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K"+ channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  7. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  8. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-03-01

    Full Text Available Higher vertebrates express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli et al., 1986. We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAb anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-renewal in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  9. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  10. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  11. Reoxygenation of human coronary smooth muscle cells suppresses HIF-1{alpha} gene expression and augments radiation-induced growth delay and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, T.; Arab, A.; Bode, C.; Hehrlein, C. [Dept. of Cardiology, Univ. Clinic of Freiburg (Germany); Guttenberger, R. [Dept. of Radiotherapy, Univ. Clinic of Freiburg (Germany)

    2006-01-01

    Background and Purpose: Catheter-based coronary brachytherapy with {beta}- and {gamma}-radiation is an evidence-based method to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) and stent implantation, but the outcome may be PTCA are hypoxic. A lack of oxygen decreases the effect of low LET (linear energy transfer) irradiation. The authors assumed that reoxygenation of hypoxic human coronary smooth muscle cells (HCSMCs) improves the results of coronary brachytherapy. The expression of hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) gene, and the rates of growth and apoptosis of hypoxic and reoxygenated HCSMCs after {gamma}-iradiation were therefore analyzed. Material and Methods: An in vitro model of megacolonies of HCSMCs was developed. After exposure to chronic hypoxia the HCSMCs were irradiated with graded doses of 2, 4, 8, and 16 Gy using a {sup 60}Co source either under hypoxia (pO{sub 2}<3 mmHg) or after reoxygenation (pO{sub 2}{approx}150 mmHg). RT-PCR (reverse transcription-polymerase chain reaction) analysis was used to quantify HIF-1{alpha} gene expression and the growth of HCSMC megacolonies was measured serially. The oxygen enhancement ratio (OER) was calculate from the specific growth delay. Apoptosis of HCSMCs was quantified by counting cells with specific DNA strand breaks using the TUNEL assy. Results: HIF-1{alpha} gene expression was markedly suppressed in reoxygenated cells versus hypoxic cells 30 min after {gamma}-irradiation at all radiation doses (158{+-}46% vs. 1,675{+-}1,211%; p<0.01). Apoptosis was markedly increased in reoxygenated HCSMCs. The OER was 1.8(95% CI[confidence interval]1.3-2.4). Therefore, reoxygenated HCSMCs require 44% less radiation dose to achieve the equivalent biological radiation effect compared to hypoxic HCSMCs. Conclusion: Reoxygenation of coronary smooth muscle cells should be considered an option to increase efficacy of coronary brachytherapy. This could be used to reduce radiation dose

  12. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis

    OpenAIRE

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. A...

  13. Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries.

    Science.gov (United States)

    Eid, A H; Maiti, K; Mitra, S; Chotani, M A; Flavahan, S; Bailey, S R; Thompson-Torgerson, C S; Flavahan, N A

    2007-09-01

    Raynaud's phenomenon, which is characterized by intense cold-induced constriction of cutaneous arteries, is more common in women compared with men. Cold-induced constriction is mediated in part by enhanced activity of alpha(2C)-adrenoceptors (alpha(2C)-ARs) located on vascular smooth muscle cells (VSMs). Experiments were therefore performed to determine whether 17beta-estradiol regulates alpha(2C)-AR expression and function in cutaneous VSMs. 17beta-Estradiol (0.01-10 nmol/l) increased expression of the alpha(2C)-AR protein and the activity of the alpha(2C)-AR gene promoter in human cultured dermal VSMs, which was assessed following transient transfection of the cells with a promoter-reporter construct. The effect of 17beta-estradiol was associated with increased accumulation of cAMP and activation of the cAMP-responsive Rap2 GTP-binding protein. Transient transfection of VSMs with a dominant-negative mutant of Rap2 inhibited the 17beta-estradiol-induced activation of the alpha(2C)-AR gene promoter, whereas a constitutively active mutant of Rap2 increased alpha(2C)-AR promoter activity. The effects of 17beta-estradiol were inhibited by the estrogen receptor (ER) antagonist, ICI-182780 (1 micromol/l), and were mimicked by a cell-impermeable form of the hormone (estrogen:BSA) or by the selective ER-alpha receptor agonist 4,4',4'''-(4-propyl-[(1)H]-pyrazole-1,3,5-triyl)tris-phenol (PPT; 10 nmol/l) or the selective ER-beta receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nmol/l). Therefore, 17beta-estradiol increased expression of alpha(2C)-ARs by interacting with cell surface receptors to cause a cAMP/Rap2-dependent increase in alpha(2C)-AR transcription. In mouse tail arteries, 17beta-estradiol (10 nmol/l) increased alpha(2C)-AR expression and selectively increased the cold-induced amplification of alpha(2)-AR constriction, which is mediated by alpha(2C)-ARs. An estrogen-dependent increase in expression of cold-sensitive alpha(2C)-ARs may contribute

  14. Myocardial repair with long-term and low-dose administration of a nitric oxide synthesis inhibitor. Myofibroblasts, type III collagen and fibronectin

    Directory of Open Access Journals (Sweden)

    Pessanha Mônica Gomes

    1999-01-01

    Full Text Available OBJECTIVE: To study the healing process of the myocardium in hypertensive rats undergoing inhibition of nitric oxide synthesis. METHODS: Two groups of animals were studied: one received L-NAME, 12mg/kg/day, and the other was a control group. The presence of type III collagen, fibronectin, and alpha-smooth muscle actin-positive cells was assessed by immunohistochemistry. RESULTS: Fibronectin was seen in both early and late lesions, while type III collagen was seen mainly in areas of incomplete healing, situated among myocytes and around the intramyocardial branches of the coronary arteries. Areas representing early and late lesions showed a population of spindle-shaped cells. Immunohistochemistry showed that these cells were positive for alpha-smooth muscle actin. CONCLUSION: In the myocardium of hypertensive rats, the alpha-smooth muscle actin-positive cells are related to the accumulation of type III collagen and fibronectin in the areas of myocardial damage.

  15. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Gastric Smooth Muscle Hamartomas Mimicking Polyps in a Dog: A Case Description and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Marian A. Taulescu

    2013-01-01

    Full Text Available This report presents a case of two smooth muscle hamartomas of the stomach in a 10-year-old male Boxer. The clinical history of the animal was of chronic vomiting, weight loss, and intermittent gastric distension, and it died because of chronic and congestive heart failure. Gross, histology, and immunohistochemistry (IHC exams were performed. On necropsy, in the pyloric region of the stomach, two closely related polypoid growths between 10 and 15 mm in diameter were identified. On the cut sections, both polyps presented white to gray color, with homogenous architecture and well-defined limits. The thickness of the submucosal layer was seen to be increased to 1 cm. No other gastric alterations were identified by the necropsy exam. Histologically, both masses growth consisted of hyperplastic glands lined by foveolar epithelium, arranged in a papillary or branching pattern, and supported by a core of well-vascularised and marked smooth muscle tissue interspersed between glands. No dysplastic cells and mitotic figures were observed in these lesions. Immunohistochemistry revealed a strong cytoplasm labelling for smooth muscle actin of the bundles around the mucosal glands. To our knowledge, this is the first report of smooth muscle hamartomas mimicking multiple gastric polyps in dogs.

  17. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    Science.gov (United States)

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  18. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis.

    Science.gov (United States)

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. As observed in this case, when performing laparoscopic surgery in order to excise malignant tumors of intra-abdominal or pelvic organs, it can be difficult for surgeons to distinguish the metastatic tumors from benign nodular pelvic wall lesions, including endometriosis, based on the gross findings only. Therefore, an intraoperative frozen section biopsy of the pelvic wall nodules should be performed to evaluate the peritoneal involvement by malignant tumors. Moreover, this report implies that peritoneal endometriosis, as well as rectovaginal endometriosis, can clinically present as nodular lesions if obvious smooth muscle metaplasia is present. The pathological investigation of smooth muscle cells in peritoneal lesions can contribute not only to the precise diagnosis but also to the structure and function of smooth muscle cells and related cells involved in the histogenesis of peritoneal endometriosis.

  19. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  20. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  1. CD16(+) monocytes with smooth muscle cell characteristics are reduced in human renal chronic transplant dysfunction

    NARCIS (Netherlands)

    Boersema, M.; van den Born, Joost; van Ark, J.; Harms, Geertruida; Seelen, M. A.; van Dijk, M. C. R. F.; van Goor, H.; Navis, G. J.; Popa, E. R.; Hillebrands, J. L.

    In chronic transplant dysfunction (CTD), persistent (allo)immune-mediated inflammation eventually leads to tissue remodeling including neointima formation in intragraft arteries. We previously showed that recipient-derived neointimal alpha-SMA(+) smooth muscle-like cells are present in human renal

  2. A new paradigm for the role of smooth muscle cells in the human cervix.

    Science.gov (United States)

    Vink, Joy Y; Qin, Sisi; Brock, Clifton O; Zork, Noelia M; Feltovich, Helen M; Chen, Xiaowei; Urie, Paul; Myers, Kristin M; Hall, Timothy J; Wapner, Ronald; Kitajewski, Jan K; Shawber, Carrie J; Gallos, George

    2016-10-01

    Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly collagen with minimal cellular content, cervical smooth muscle cells are present in the cervix and can cause cervical tissue contractility. To understand why the internal os relaxes or why funneling occurs in some cases of premature cervical remodeling, we sought to evaluate cervical smooth muscle cell content and distribution throughout human cervix and correlate if cervical smooth muscle organization influences regional cervical tissue contractility. Using institutional review board-approved protocols, nonpregnant women cervix, whole cervical slices were obtained from the internal os, midcervix, and external os and immunostained with smooth muscle actin. To correlate tissue structure with function, whole slices from the internal and external os were stimulated to contract with 1 μmol/L of oxytocin in organ baths. In separate samples, we tested if the cervix responds to a common tocolytic, nifedipine. Cervical slices from the internal os were treated with oxytocin alone or oxytocin + increasing doses of nifedipine to generate a dose response and half maximal inhibitory concentration. Student t test was used where appropriate. Cervical tissue was collected from 41 women. Immunohistochemistry showed cervical smooth muscle cells at the internal and external os expressed mature smooth muscle cell markers and contraction-associated proteins. The cervix exhibited a gradient of cervical smooth muscle cells. The area of the internal os contained 50-60% cervical smooth muscle cells that were circumferentially organized in the periphery of the stroma, which may resemble a sphincter-like pattern. The external os contained approximately 10

  3. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  4. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  5. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-01-01

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs

  6. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China); The Third Hospital of Hebei Medical University, Shijazhuang (China); Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China); Wen, Jin-kun, E-mail: wjk@hebmu.edu.cn [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China)

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  7. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  8. Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.

    Science.gov (United States)

    Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won

    2018-07-01

    Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6  M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5  M or above elicited a significant relaxation response to 10 -6  M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.

  9. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  10. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns.

    Science.gov (United States)

    Thomas, James A; Deaton, Rebecca A; Hastings, Nicole E; Shang, Yueting; Moehle, Christopher W; Eriksson, Ulf; Topouzis, Stavros; Wamhoff, Brian R; Blackman, Brett R; Owens, Gary K

    2009-02-01

    Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.

  11. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    International Nuclear Information System (INIS)

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  12. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  13. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    Science.gov (United States)

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  14. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  15. Direct action of aldosterone on transmembrane 22Na efflux from arterial smooth muscle. Rapid and delayed effects

    International Nuclear Information System (INIS)

    Moura, A.M.; Worcel, M.

    1984-01-01

    Acute subcutaneous (s.c.) administration of aldosterone increases ex vivo 22 Na efflux from rat tail artery smooth muscle, which appears to be due to a specific action on mineralocorticoid receptors. Indeed, this effect is blocked by the antimineralocorticoid compounds RU 28318 [17 beta-hydroxy-3-oxo,7 alpha-propyl(17 alpha)-pregn 4-ene, 21 potassium carboxylate] and spironolactone. The specific glucocorticoid receptor agonist RU 26988 does not modify 22 Na efflux. The authors show here that aldosterone has, at physiological concentrations, a mineralocorticoid specific stimulating effect on passive and sodium pump dependent transmembrane movements of sodium from the rat tail artery smooth muscle. Aldosterone exerts two types of action on sodium transport: 1) a delayed stimulation of ouabain-dependent 22 Na efflux and ouabain-independent 22 Na efflux, which are completely blocked by actinomycin D; and 2) a very rapid increase of passive 22 Na efflux, which is insensitive to actinomycin D and therefore does not seem to depend on transcription of genomic information

  16. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Directory of Open Access Journals (Sweden)

    Bart Spronck

    Full Text Available In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  17. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Science.gov (United States)

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  18. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  19. Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells.

    Science.gov (United States)

    Niu, Honglin; Nie, Lei; Liu, Maodong; Chi, Yanqing; Zhang, Tao; Li, Ying

    2014-08-20

    Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and is associated with excessive cardiovascular morbidity and mortality. The angiotensin converting enzyme inhibitor (ACEI) benazepril has been shown to slow the progression of chronic renal disease and have beneficial effects in patients with a combination of chronic renal disease and cardiovascular disease. Transforming growth factor-β(1) (TGF-β(1)) plays a central role in the pathogenesis and progression of DN. Integrin-linked kinase (ILK) can modulate TGF-β(1)-induced glomerular mesangial cell (GMC) injury, which is a prominent characteristic of renal pathology in kidney diseases. As an integrin cytoplasmic-binding protein, ILK regulates fibronectin (FN) matrix deposition and the actin cytoskeleton. Smooth muscle α-actin (α-SMA) is involved in progressive renal dysfunction in both human and experimental renal disease. To explore the mechanisms of benazepril's reno-protective effects, we examined the expression of TGF-β(1), ILK, and α-SMA in GMC exposed to high glucose (HG) and in the kidneys of streptozotocin (STZ)-induced diabetic rats using real-time quantitative RT-PCR and western blot analysis. To elucidate the mechanism(s) of the effect of benazepril on GMC cellular processes, we assessed the effect of benazepril on Angiotensin II (Ang II) signalling pathways using western blot analysis. The expression of TGF-β(1), ILK, and α-SMA increased significantly in the diabetic group compared with the control group. Benazepril treatment inhibited the expression of these genes in DN but failed to rescue the same levels in the control group. Similar results were found in GMC treated with HG or benazepril. Ang II increased ERK and Akt phosphorylation in the HG group, and benazepril could not completely block these responses, suggesting that other molecules might be involved in the progression of DN. Our findings suggest that benazepril decreases ILK and α-SMA expression, at least in

  20. Uremia modulates the phenotype of aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Madsen, Marie; Pedersen, Annemarie Aarup; Albinsson, Sebastian

    2017-01-01

    the phenotype of aortic SMCs in vivo. METHODS: Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE(-/-)) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall. RESULTS: Induction...... of moderate uremia in ApoE(-/-) mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen...... in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2...

  1. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  2. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  3. Aortic endothelial and smooth muscle histamine metabolism. Relationship to aortic 125I-albumin accumulation in experimental diabetes

    International Nuclear Information System (INIS)

    Hollis, T.M.; Gallik, S.G.; Orlidge, A.; Yost, J.C.

    1983-01-01

    We studied rat aortic endothelial and smooth muscle cell de novo histamine synthesis mediated by histidine decarboxylase (HD) and the effects of its inhibition by alpha-hydrazinohistidine on the intracellular histamine content and intraaortic albumin accumulation in streptozotocin-induced diabetes. Diabetes was induced by a single jugular vein injection of streptozotocin (60 mg/kg, pH 4.5, ether anesthesia), with animals held 4 weeks following the overt manifestation of diabetes. Additional diabetic and nondiabetic rats received alpha-hydrazinohistidine (25 mg/kg, i.p. every 12 hours) during the last week; this had no effect on the severity of diabetes in any animal receiving streptozotocin. Data indicate that the aortic endothelial (EC) HD activity was increased more than 130% in the untreated diabetic group but was similar to control values in the diabetic group receiving alpha-hydrazinohistidine; similarily, the EC histamine content from diabetic aortas increased 127% over control values, but in EC from diabetic animals receiving alpha-hydrazinohistidine it was comparable to control values. Similar trends were observed for the subjacent aortic smooth muscle. In untreated diabetic animals the aortic 125I-albumin mass transfer rate was increased 60% over control values, while in diabetic animals receiving alpha-hydrazinohistidine the 125I-albumin mass transfer rate was essentially identical to controls. These data indicate that in streptozotocin diabetes there is an expansion of the inducible aortic histamine pool, and that this expansion is intimately related to the increased aortic albumin accumulation

  4. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    OpenAIRE

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed ...

  5. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    Science.gov (United States)

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  7. β-actin shows limited mobility and is only required for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle

    DEFF Research Database (Denmark)

    Madsen, Agnete Louise Bjerregaard; Knudsen, Jonas Roland; Henriquez-Olguin, Carlos

    2018-01-01

    Studies in skeletal muscle cell cultures suggest that the cortical actin cytoskeleton is a major requirement for insulin-stimulated glucose transport, implicating the β-actin isoform which, in many cell types, is the main actin isoform. However, it is not clear that β-actin plays such a role...... in mature mouse muscle under the majority of the tested conditions. Thus, our work reveals fundamental differences in the role of the cortical β-actin cytoskeleton in mature muscle compared to cell culture....

  8. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    In the present study, we tested whether the alpha(1A) subunit, which encodes a neuronal isoform of voltage-dependent Ca(2+) channels (VDCCs) (P-/Q-type), was present and functional in vascular smooth muscle and renal resistance vessels. By reverse transcription-polymerase chain reaction...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  9. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  10. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  11. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders

    Directory of Open Access Journals (Sweden)

    Ruolin Ma

    2018-03-01

    Full Text Available Gastrointestinal (GI motility disorders such as irritable bowel syndrome (IBS can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+ channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR, immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.

  12. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Jepsen, Pia Lørup; Boysen, Anders

    2017-01-01

    to actin. This interaction is present in regenerating myofibers of patients with Duchenne muscular dystrophy, polymyositis, and compartment syndrome. Analysis of the α-, β-, and γ-actin isoforms in SPARC knockout myoblasts reveals a changed expression pattern with dominance of γ-actin. In SPARC knockout......The cytoskeleton is an integral part of skeletal muscle structure, and reorganization of the cytoskeleton occurs during various modes of remodeling. We previously found that the extracellular matrix protein secreted protein acidic and rich in cysteine (SPARC) is up-regulated and expressed...... intracellularly in developing muscle, during regeneration and in myopathies, which together suggests that SPARC might serve a specific role within muscle cells. Using co-immunoprecipitation combined with mass spectrometry and verified by staining for direct protein-protein interaction, we find that SPARC binds...

  13. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  14. Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells.

    Science.gov (United States)

    Valladares, Francisco; Frías, Ignacio; Báez, Delia; García, Candelaria; López, Francisco J; Fraser, James D; Rodríguez, Yurena; Reyes, Ricardo; Díaz-Flores, Lucio; Bello, Aixa R

    2006-12-01

    Cellular and subcellular localization of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in uterine leiomyomas. Retrospective study. University of La Laguna (ULL) and Canary University Hospital (HUC). Premenopausal and postmenopausal women with uterine leiomyomas. Hysterectomy and myomectomy. Estrogen receptor alpha was only present in smooth muscle cells with variation in the subcellular location in different leiomyomas. Estrogen receptor beta was widely distributed in smooth muscle, endothelial, and connective tissue cells with nuclear location in all cases studied; variations were only found in the muscle cells for this receptor. Estrogens operate in leiomyoma smooth muscle cells through different receptors, alpha and beta. However they only act through the ERbeta in endothelial and connective cells.

  15. Immunodetection of Thyroid Hormone Receptor (Alpha1/Alpha2) in the Rat Uterus and Oviduct

    International Nuclear Information System (INIS)

    Öner, Jale; Öner, Hakan

    2007-01-01

    The aim of this study was to investigate the immunolocalization and the existence of thyroid hormone receptors (THR) (alpha1/alpha2) in rat uterus and oviduct. For this purpose 6 female Wistar albino rats found in estrous period were used. Tissue samples fixed in 10% neutral formalin were examined immunohistochemically. Sections were incubated with primary mouse-monoclonal THR (alpha1/alpha2) antibody. In uterus, THR (alpha1/alpha2) immunoreacted strongly with uterine luminal epithelium, endometrial gland epithelium and endometrial stromal cells and, moderately with myometrial smooth muscle. In oviduct, they were observed moderately in the epithelium of the tube and the smooth muscle cells of the muscular layer. In conclusion, the presence of THR in uterus and oviduct suggests that these organs are an active site of thyroid hormones

  16. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    Directory of Open Access Journals (Sweden)

    Sonia R Rosner

    Full Text Available Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  17. Toll-Like Receptor 9-Dependent AMPKα Activation Occurs via TAK1 and Contributes to RhoA/ROCK Signaling and Actin Polymerization in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    McCarthy, Cameron G; Wenceslau, Camilla F; Ogbi, Safia; Szasz, Theodora; Webb, R Clinton

    2018-04-01

    Traditionally, Toll-like receptor 9 (TLR9) signals through an MyD88-dependent cascade that results in proinflammatory gene transcription. Recently, it was reported that TLR9 also participates in a stress tolerance signaling cascade in nonimmune cells. In this noncanonical pathway, TLR9 binds to and inhibits sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 (SERCA2), modulating intracellular calcium handling, and subsequently resulting in the activation of 5'-AMP-activated protein kinase α (AMPK α ). We have previously reported that TLR9 causes increased contraction in isolated arteries; however, the mechanisms underlying this vascular dysfunction need to be further clarified. Therefore, we hypothesized that noncanonical TLR9 signaling was also present in vascular smooth muscle cells (VSMCs) and that it mediates enhanced contractile responses through SERCA2 inhibition. To test these hypotheses, aortic microsomes, aortic VSMCs, and isolated arteries from male Sprague-Dawley rats were incubated with vehicle or TLR9 agonist (ODN2395). Despite clear AMPK α activation after treatment with ODN2395, SERCA2 activity was unaffected. Alternatively, ODN2395 caused the phosphorylation of AMPK α via transforming growth factor β -activated kinase 1 (TAK1), a kinase involved in TLR9 inflammatory signaling. Downstream, we hypothesized that that TLR9 activation of AMPK α may be important in mediating actin cytoskeleton reorganization. ODN2395 significantly increased the filamentous-to-globular actin ratio, as well as indices of RhoA/Rho-associated protein kinase (ROCK) activation, with the latter being prevented by AMPK α inhibition. In conclusion, AMPK α phosphorylation after TLR9 activation in VSMCs appears to be an extension of traditional inflammatory signaling via TAK1, as opposed to SERCA2 inhibition and the noncanonical pathway. Nonetheless, TLR9-AMPK α signaling can mediate VSMC function via RhoA/ROCK activation and actin polymerization. Copyright © 2018 by The

  18. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  19. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    Science.gov (United States)

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  1. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  2. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  3. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  4. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Wada, Hiromichi; Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-01-01

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs

  5. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome

    NARCIS (Netherlands)

    Halim, Danny; Hofstra, Robert M. W.; Signorile, Luca; Verdijk, Rob M.; van der Werf, Christine S.; Sribudiani, Yunia; Brouwer, Rutger W. W.; van IJcken, Wilfred F. J.; Dahl, Niklas; Verheij, Joke B. G. M.; Baumann, Clarisse; Kerner, John; van Bever, Yolande; Galjart, Niels; Wijnen, Rene M. H.; Tibboel, Dick; Burns, Alan J.; Muller, Franoise; Brooks, Alice S.; Alves, Maria M.

    2016-01-01

    Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin gamma-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we

  6. Immunoreactivity for alpha-smooth muscle actin characterizes a potentially aggressive subgroup of little basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    G Faa

    2009-06-01

    Full Text Available Basal cell carcinoma (BCC is a very common malignant skin tumor that rarely metastatizes, but is often locally aggressive. Several factors, like large size (more than 3 cm, exposure to ultraviolet rays, histological variants, level of infiltration and perineural or perivascular invasion, are associated with a more aggressive clinical course. These morphological features seem to be more determinant in mideface localized BCC, which frequently show a significantly higher recurrence rate. An immunohistochemical profile, characterized by reactivity of tumor cells for p53, Ki67 and alpha-SMA has been associated with a more aggressive behaviour in large BCCs. The aim of this study was to verify if also little (less than 3 cm basal cell carcinomas can express immunohistochemical markers typical for an aggressive behaviour.

  7. Smooth muscle adaptation after intestinal transection and resection.

    Science.gov (United States)

    Thompson, J S; Quigley, E M; Adrian, T E

    1996-09-01

    Changes in motor function occur in the intestinal remnant after intestinal resection. Smooth muscle adaptation also occurs, particularly after extensive resection. The time course of these changes and their interrelationship are unclear. Our aim was to evaluate changes in canine smooth muscle structure and function during intestinal adaptation after transection and resection. Twenty-five dogs underwent either transection (N = 10), 50% distal resection (N = 10), or 50% proximal resection (N = 5). Thickness and length of the circular (CM) and longitudinal (LM) muscle layers were measured four and 12 weeks after resection. In vitro length-tension properties and response to a cholinergic agonist were studied in mid-jejunum and mid-ileum. Transection alone caused increased CM length in the jejunum proximal to the transection but did not affect LM length or muscle thickness. A 50% resection resulted in increased length of CM throughout the intestine and thickening of CM and LM near the anastomosis. Active tension of jejunal CM increased transiently four weeks after resection. Active tension in jejunal LM was decreased 12 weeks after transection and resection. Sensitivity of CM to carbachol was similar after transection and resection. It is concluded that: (1) Structural adaptation of both circular and longitudinal muscle occurs after intestinal resection. (2) This process is influenced by the site of the intestinal remnant. (3) Only minor and transient changes occur in smooth muscle function after resection. (4) Factors other than muscle adaptation are likely involved in the changes in motor function seen following massive bowel resection.

  8. Effect of Chronic High Altitude Hypoxia on Foetal and Maternal Juxta ...

    African Journals Online (AJOL)

    Pulmonary venous SMCs were also obtained from dissected 5th to 7th generation levels pulmonary veins (<0.5 mm). Fluorescence tagged antibodies against alpha smooth muscle actin (alpha SMA) and calponin respectively were used as markers to identify cellular structural differences by routine immunohistochemistry.

  9. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    Science.gov (United States)

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  10. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle

    International Nuclear Information System (INIS)

    Chadwick, C.C.; Saito, A.; Fleischer, S.

    1990-01-01

    The release of Ca 2+ from internal stores is requisite to muscle contraction. In skeletal muscle and heart, the Ca 2+ release channels (ryanodine receptor) of sarcoplasmic reticulum, involved in excitation-contraction coupling, have recently been isolated and characterized. In smooth muscle, inositol 1,4,5-trisphosphate (IP 3 ) is believed to mobilize Ca 2+ from internal stores and thereby modulate contraction. The authors describe the isolation of an IP 3 receptor from smooth muscle. Bovine aorta smooth muscle microsomes were solubilized with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, and the IP 3 receptor was purified by sucrose gradient centrifugation and column chromatography with heparin-agarose and wheat germ agglutinin-agarose. The receptor is an oligomer of a single polypeptide with a M r of 224,000 as determined by SDS/PAGE. Negative-staining electron microscopy reveals that the receptor is a large pinwheel-like structure having surface dimensions of ∼250 x 250 angstrom with fourfold symmetry. The IP 3 receptor from smooth muscle is similar to the ryanodine receptor with regard to its large size and fourfold symmetry, albeit distinct with regard to appearance, protomer size, and ligand binding

  11. Histological variations in myoepithelial cells and arrectores pilorum muscles among caudal, metatarsal and preorbital glands in Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884).

    Science.gov (United States)

    Ozaki, Nobuo; Suzuki, Masatsugu; Ohtaishi, Noriyuki

    2004-03-01

    The morphological characteristics of myoepithelial cells and arrectores pilorum muscles were investigated in caudal, metatarsal and preorbital glands of Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884) using immunohistochemistry for alpha-smooth muscle actin. In the metatarsal, preorbital and general skin glands, myoepithelial cell layers continuously embraced the secretory epithelium, while in the caudal gland, discontinuous myoepithelial cell rows surrounded the apocrine tubules. There was a trend that the widths of the myoepithelial cells of the caudal and preorbital glands appeared to be thinner than those of the metatarsal and general skin glands. In the metatarsal gland, the arrectores pilorum muscles were highly developed and considerably larger than those in other skin glands.

  12. Major vault protein in cardiac and smooth muscle.

    Science.gov (United States)

    Shults, Nataliia V; Das, Dividutta; Suzuki, Yuichiro J

    Major vault protein (MVP) is the major component of the vault particle whose functions are not well understood. One proposed function of the vault is to serve as a mechanism of drug transport, which confers drug resistance in cancer cells. We show that MVP can be found in cardiac and smooth muscle. In human airway smooth muscle cells, knocking down MVP was found to cause cell death, suggesting that MVP serves as a cell survival factor. Further, our laboratory found that MVP is S-glutathionylated in response to ligand/receptor-mediated cell signaling. The S-glutathionylation of MVP appears to regulate protein-protein interactions between MVP and a protein called myosin heavy chain 9 (MYH9). Through MYH9 and Vsp34, MVP may form a complex with Beclin-1 that regulates autophagic cell death. In pulmonary vascular smooth muscle, proteasome inhibition promotes the ubiquitination of MVP, which may function as a mechanism of proteasome inhibition-mediated cell death. Investigating the functions and the regulatory mechanisms of MVP and vault particles is an exciting new area of research in cardiovascular/pulmonary pathophysiology.

  13. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression

    Directory of Open Access Journals (Sweden)

    Cai Zailong

    2011-01-01

    Full Text Available Abstract Background Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4, is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. Methods A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Results Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3 decreased and, myosin regulatory light chain 9 isoform a (MYL-9 increased after Nogo-B knockdown. Conclusions These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert

  14. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    International Nuclear Information System (INIS)

    Alexander, J.J.; Miguel, R.; Graham, D.

    1991-01-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process

  15. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  16. EMMPRIN (CD147) Expression in Smooth Muscle Tumors of the Uterus.

    Science.gov (United States)

    Kefeli, Mehmet; Yildiz, Levent; Gun, Seda; Ozen, Fatma Z; Karagoz, Filiz

    2016-01-01

    Smooth muscle tumors of the uterus are the most common mesenchymal tumors of the gynecologic tract. The vast majority of these are benign leiomyomas that present no diagnostic difficulty. Because some benign smooth muscle tumors may degenerate and uncommon variants exist, the diagnosis can be challenging in some cases. The goal of this research was to investigate EMMPRIN expression in leiomyomas, leiomyoma variants, and leiomyosarcomas (LMS) to determine whether it has a potential role in differential diagnosis. EMMPRIN expression was investigated with immunohistochemistry in 103 uterine smooth muscle tumors, which included 19 usual leiomyomas, 52 leiomyoma variants, and 32 LMS. They were evaluated on the basis of staining extent, intensity, and also their combined score, and the groups were compared. EMMPRIN expression was present in 3 of 19 (15.7%) usual leiomyomas, 23 of 52 (44.3%) leiomyoma variants, and 28 of 32 (87.5%) LMS. There were statistically significant differences in staining extent and intensity, and also for their combined scores, between the LMS and benign groups. Although uterine smooth muscle tumors are usually diagnosed easily with conventional diagnostic criteria, the differentiation of LMS from some variants of leiomyoma can be challenging based soley on morphology. EMMPRIN may be a valuable immunohistochemical marker for differentiating LMS from benign smooth muscle tumors in problematic cases.

  17. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Castellot John J

    2003-11-01

    Full Text Available Abstract Background Vascular smooth muscle cell (VSMC hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. Results Using RNA interference (RNAi, we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2, an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell α-actin. Conclusions This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

  18. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  19. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  20. The small GTPase Rac1 is required for smooth muscle contraction

    DEFF Research Database (Denmark)

    Rahman, Awahan; Davis, Benjamin; Lövdahl, Cecilia

    2014-01-01

    The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle-specific, conditional, Rac1 knockout mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity, concentra...

  1. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles

    Directory of Open Access Journals (Sweden)

    Zsolt Sándor

    2018-04-01

    Full Text Available The dried flowers of Chamaemelum nobile (L. All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin, and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on

  2. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles.

    Science.gov (United States)

    Sándor, Zsolt; Mottaghipisheh, Javad; Veres, Katalin; Hohmann, Judit; Bencsik, Tímea; Horváth, Attila; Kelemen, Dezső; Papp, Róbert; Barthó, Loránd; Csupor, Dezső

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on other visceral

  3. Features of liver tissue remodeling in intestinal failure during and after weaning off parenteral nutrition.

    Science.gov (United States)

    Mutanen, Annika; Lohi, Jouko; Sorsa, Timo; Jalanko, Hannu; Pakarinen, Mikko P

    2016-09-01

    Intestinal failure is associated frequently with liver injury, which persists after weaning off parenteral nutrition. We compared features of liver remodeling in intestinal failure during and after weaning off parenteral nutrition. Liver biopsies and serum samples were obtained from 25 intestinal failure patients at a median age of 9.7 years (interquartile range: 4.6-18) and from age-matched control patients. Seven patients had been receiving parenteral nutrition for 53 months (22-160), and 18 patients had been weaned off parenteral nutrition 6.3 years (2.4-17) earlier, after having received parenteral nutrition for 10 months (3.3-34). Expression of alpha-smooth muscle actin, collagen 1, proinflammatory cytokines, growth factors, and matrix metalloproteinases (MMPs) was measured. Significant increases in immunohistochemical expression of alpha-smooth muscle actin and collagen 1 were observed predominantly in portal areas and were similar to increases seen in patients currently receiving parenteral nutrition and in patients weaned off parenteral nutrition. Gene and protein expressions of alpha-smooth muscle actin and collagen were interrelated. Gene expression of ACTA2, encoding alpha-smooth muscle actin, was increased only in patients who were receiving parenteral nutrition currently. Comparable upregulation of interleukin-1 (α and ß), epidermal growth factor, integrin-ß6, and MMP9 gene expression was observed in both patient groups, irrespective of whether they were receiving parenteral nutrition currently. Liver expression and serum levels of TIMP1 and MMP7 were increased only in the patients on parenteral nutrition currently but were not increased after weaning off parenteral nutrition. Intestinal failure is characterized by abnormal activation of hepatic myofibroblast and accumulation of collagen both during and after weaning off parenteral nutrition. Persistent transcriptional upregulation of proinflammatory and fibrogenic cytokines after weaning off

  4. Relaxation Responses of Trigonal Smooth Muscle from Rabbit by Alpha1-Adrenoceptor Antagonists Alfuzosin, Doxazosin and Tamsulosin

    Directory of Open Access Journals (Sweden)

    A. Karadeniz

    2008-01-01

    Full Text Available This study was performed to investigate the effects of alfuzosin, doxazosin and tamsulosin in vitro on trigone smooth muscle of rabbit. In this study, fifteen rabbits weighing 2.5 - 3 kg were used. One strip in the shape of a trigone was prepared for each of the isolated bladders. Firstly, an initial tension of 1 g was placed on each segment, and we waited for equilibration by constantly bubbling with 95% O2 and 5% CO2. Next, the determination level of electrical stimulation which created submaximal contraction and effective dosage were found for trigone and they were determined by applying different concentrations of phenylephrine (10-8 M, 10-7 M, 10-6 M, 10-5 M, respectively. Firstly 10-8 M dosage of alfuzosin (10-8 M, 10-7 M, 10-6 M, 10-5 M was added, then we waited for 20 min. Then, an effective dosage of phenylephrine (10-5 M was added into the solution and we waited for 7 min again. After this process, electrical stimulation was applied for the contraction of the tissue. After stimulation, the tissue was washed twice every two minutes and rested; we waited until the tissue reached its starting stretching value. The same processes were performed for the other dosages of alfuzosin (10-7 M, 10-6 M, 10-5 M, doxazosin (10-7 M, 10-6 M, 10-5 M and tamsulosin (10-7 M, 10-6 M, 10-5 M, respectively. In conclusion, when we compared the amplitudes of the responses of all concentrations of doxazosin, alfuzosin and tamsulosin in the trigone smooth muscle with amplitude of a response of effective concentration of phenylephrine, it was determined that the prevention level of contractions occurred after tamsulosin hydrochloride was higher than after alfuzosin hydrochloride and doxazosin mesylate. With these results, we showed that alfuzosin, doxazosin and tamsulosin inhibited noradrenalin-based contractions in the rabbit trigone smooth muscle and this result can be used both for in vitro and in vivo future studies.

  5. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    Directory of Open Access Journals (Sweden)

    Marion SB

    2014-03-01

    Full Text Available Sarah B Marion, Allen W MangelRTI Health Solutions, Research Triangle Park, NC, USAAbstract: For decades, it was believed that the diameter of gastrointestinal smooth muscle cells is sufficiently narrow, and that the diffusion of calcium across the plasma membrane is sufficient, to support contractile activity. Thus, depolarization-triggered release of intracellular calcium was not believed to be operative in gastrointestinal smooth muscle. However, after the incubation of muscle segments in solutions devoid of calcium and containing the calcium chelator ethylene glycol tetraacetic acid, an alternative electrical event occurred that was distinct from normal slow waves and spikes. Subsequently, it was demonstrated in gastrointestinal smooth muscle segments that membrane depolarization associated with this alternative electrical event triggered rhythmic contractions by release of intracellular calcium. Although this concept of depolarization-triggered calcium release was iconoclastic, it has now been demonstrated in multiple gastrointestinal smooth muscle preparations. On the basis of these observations, we investigated whether a rhythmic electrical and mechanical event would occur in aortic smooth muscle under the same calcium-free conditions. The incubation of aortic segments in a solution with no added calcium plus ethylene glycol tetraacetic acid induced a fast electrical event without corresponding tension changes. On the basis of the frequency of these fast electrical events, we pursued, contrary to what has been established dogma for more than three centuries, the question of whether the smooth muscle wall of the aorta undergoes rhythmic activation during the cardiac cycle. As with depolarization-triggered contractile activity in gastrointestinal smooth muscle, it was “well known” that rhythmic activation of the aorta does not occur in synchrony with the heartbeat. In a series of experiments, however, it was demonstrated that rhythmic

  6. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    International Nuclear Information System (INIS)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  7. Tumor necrosis factor-alpha enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells

    NARCIS (Netherlands)

    S. McKay (Sue); S.J. Hirst (Stuart); M. Bertrand-de Haas (Marion); J.C. de Jongste (Johan); H.C. Hoogsteden (Henk); P.R. Saxena (Pramod Ranjan); H.S. Sharma (Hari)

    2000-01-01

    textabstractAirway smooth muscle (ASM) is considered to be an end-target cell for the effects of mediators released during airway wall inflammation. Several reports suggest that activated ASM may be capable of generating various proinflammatory cytokines. We

  8. Fragmented esophageal smooth muscle contraction segments on high resolution manometry: a marker of esophageal hypomotility.

    Science.gov (United States)

    Porter, R F; Kumar, N; Drapekin, J E; Gyawali, C P

    2012-08-01

    Esophageal peristalsis consists of a chain of contracting striated and smooth muscle segments on high resolution manometry (HRM). We compared smooth muscle contraction segments in symptomatic subjects with reflux disease to healthy controls. High resolution manometry Clouse plots were analyzed in 110 subjects with reflux disease (50 ± 1.4 years, 51.5% women) and 15 controls (27 ± 2.1 years, 60.0% women). Using the 30 mmHg isobaric contour tool, sequences were designated fragmented if either smooth muscle contraction segment was absent or if the two smooth muscle segments were separated by a pressure trough, and failed if both smooth muscle contraction segments were absent. The discriminative value of contraction segment analysis was assessed. A total of 1115 swallows were analyzed (reflux group: 965, controls: 150). Reflux subjects had lower peak and averaged contraction amplitudes compared with controls (P value to HRM analysis. Specifically, fragmented smooth muscle contraction segments may be a marker of esophageal hypomotility. © 2012 Blackwell Publishing Ltd.

  9. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+](i and force suppression in forskolin-pretreated porcine coronary arteries.

    Directory of Open Access Journals (Sweden)

    Kyle M Hocking

    Full Text Available Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+]i and phosphorylation of myosin light chains (MLC. However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  10. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  11. Zyxin Is Involved In Regulation Of Mechanotransduction In Arteriole Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Zhe eSun

    2012-12-01

    Full Text Available Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC, we utilized atomic force microscopy (AFM to apply localized pulling forces to VSMC through a fibronectin (FN focal adhesion induced by a FN-coated bead on cell surface. Application of force with the AFM induced an increase of zyxin accumulation at the site of the FN-bead focal adhesion that accompanied the VSMC contractile response. Whereas, reduction of zyxin expression by using a zyxin-shRNA construct abolished the VSMC contractile response to AFM pulling forces, even though the zyxin-silenced VSMCs displayed increased adhesion to FN in both AFM adhesion assays and cell adhesion assays. The reduced zyxin expression significantly impaired cell spreading and reorganization of the actin cytoskeleton that could indicate a possible underlying reason for the loss of a contractile response to mechanical force. Consistent with these observations, zyxin silencing also resulted in reduced expression of Rac1, which plays an important role in the actin reorganization in VSMC, but increased TRIP6 and FAK expression, the latter being a major protein that promote cell adhesion. In conclusion, these data support an important enabling role for zyxin in VSMCs ability to mechanically respond to applied force.

  12. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Annegret Ulke-Lemée

    2010-05-01

    Full Text Available Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine; therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK and integrin-linked kinase (ILK are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.

  13. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of [ 3 H]-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the α1 and α2 chains of type I and the α1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells

  14. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  15. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression.

    Science.gov (United States)

    Woodruff, Prescott G; Dolganov, Gregory M; Ferrando, Ronald E; Donnelly, Samantha; Hays, Steven R; Solberg, Owen D; Carter, Roderick; Wong, Hofer H; Cadbury, Peggy S; Fahy, John V

    2004-05-01

    Bronchial hyperresponsiveness in mild to moderate asthma may result from airway smooth muscle cell proliferation or acquisition of a hypercontractile phenotype. Because these cells have not been well characterized in mild to moderate asthma, we examined the morphometric and gene expression characteristics of smooth muscle cells in this subgroup of patients with asthma. Using bronchial biopsies from 14 subjects with mild to moderate asthma and 15 control subjects, we quantified smooth muscle cell morphology by stereology and the expression of a panel of genes related to a hypercontractile phenotype of airway smooth muscle, using laser microdissection and two-step real-time polymerase chain reaction. We found that airway smooth muscle cell size was similar in both groups, but cell number was nearly twofold higher in subjects with asthma (p = 0.03), and the amount of smooth muscle in the submucosa was increased 50-83% (p 0.1). We conclude that airway smooth muscle proliferation is a pathologic characteristic of subjects with mild to moderate asthma. However, smooth muscle cells in mild to moderate asthma do not show hypertrophy or gene expression changes of a hypercontractile phenotype observed in vitro.

  16. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Zhang, Xiaoxi; Zhang, Xiaojun; Yuan, Jianbo; Du, Jiangli; Li, Fuhua; Xiang, Jianhai

    2018-04-01

    Actin is a multi-functional gene family that can be divided into muscle-type actins and non-muscle-type actins. In this study, 37 unigenes encoding actins were identified from RNA-Seq data of Pacific white shrimp, Litopenaeus vannamei. According to phylogenetic analysis, four and three cDNAs belong to cytoplasmic- and heart-type actins and were named LvActinCT and LvActinHT, respectively. 10 cDNAs belong to the slow-type skeletal muscle actins, and 18 belong to the fast-type skeletal muscle actins; they were designated LvActinSSK and LvActinFSK, respectively. Some muscle actin genes formed gene clusters in the genome. Multiple alternative transcription starts sites (ATSSs) were found for LvActinCT1. Based on the early developmental expression profile, almost all LvActins were highly expressed between the early limb bud and post-larval stages. Using LvActinSSK5 as probes, slow-type muscle was localized in pleopod muscle and superficial ventral muscle. We also found three actin genes that were down-regulated in the hemocytes of white spot syndrome virus (WSSV)- and Vibrio parahaemolyticus-infected L. vannamei. This study provides valuable information on the actin gene structure of shrimp, furthers our understanding of the shrimp muscle system and helps us develop strategies for disease control and sustainable shrimp farming.

  17. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    Science.gov (United States)

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  18. Regulation of GPCR-mediated smooth muscle contraction : implications for asthma and pulmonary hypertension

    NARCIS (Netherlands)

    Wright, D B; Tripathi, S; Sikarwar, A; Santosh, K T; Perez-Zoghbi, J; Ojo, O O; Irechukwu, N; Ward, J P T; Schaafsma, D

    Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as

  19. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    Science.gov (United States)

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  20. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    Science.gov (United States)

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  1. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  2. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hamster thecal cells express muscle characteristics

    International Nuclear Information System (INIS)

    Self, D.A.; Schroeder, P.C.; Gown, A.M.

    1988-01-01

    Contraction of the follicular wall about the time of ovulation appears to be a coordinated event; however, the cells that mediate it remain poorly studied. We examined the theca externa cells in the wall of hamster follicles for the presence of a functional actomyosin system, both in developing follicles and in culture. We used a monoclonal antibody (HHF35) that recognizes the alpha and gamma isoelectric variants of actin normally found in muscle, but not the beta variant associated with non-muscle sources, to evaluate large preovulatory follicles for actin content and composition. Antibody staining of sectioned ovaries showed intense circumferential reactivity in the outermost wall of developing follicles. Immunoblots from two-dimensional gels of theca externa lysates demonstrated the presence of the two muscle-specific isozymes of actin. Immunofluorescence of cultured follicular cells pulse-labeled with [3H] thymidine (for autoradiographic detection of DNA replication) revealed the presence, in many dividing cells, of actin filaments aligned primarily along the longitudinal axis of the cells. In cultures exposed to the calcium ionophore A23187 (10(-4) M) for varying periods (5 min to 1 h), contraction of many individual muscle-actin-positive cells was observed. Immunofluorescence of these cells, fixed immediately after ionophore-induced contraction, revealed compaction of the actin filaments. Our findings demonstrate that the cells of the theca externa contain muscle actins from an early stage and that these cells are capable of contraction even while proliferating in subconfluent cultures. They suggest that follicular growth may include a naturally occurring developmental sequence in which a contractile cell type proliferates in the differentiated state

  5. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription.

    Science.gov (United States)

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-12-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.

  6. Contraction of gut smooth muscle cells assessed by fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Yohei Tokita

    2015-03-01

    Full Text Available Here we discuss the development of a novel cell imaging system for the evaluation of smooth muscle cell (SMC contraction. SMCs were isolated from the circular and longitudinal muscular layers of mouse small intestine by enzymatic digestion. SMCs were stimulated by test agents, thereafter fixed in acrolein. Actin in fixed SMCs was stained with phalloidin and cell length was determined by measuring diameter at the large end of phalloidin-stained strings within the cells. The contractile response was taken as the decrease in the average length of a population of stimulated-SMCs. Various mediators and chemically identified compounds of daikenchuto (DKT, pharmaceutical-grade traditional Japanese prokinetics, were examined. Verification of the integrity of SMC morphology by phalloidin and DAPI staining and semi-automatic measurement of cell length using an imaging analyzer was a reliable method by which to quantify the contractile response. Serotonin, substance P, prostaglandin E2 and histamine induced SMC contraction in concentration-dependent manner. Two components of DKT, hydroxy-α-sanshool and hydroxy-β-sanshool, induced contraction of SMCs. We established a novel cell imaging technique to evaluate SMC contractility. This method may facilitate investigation into SMC activity and its role in gastrointestinal motility, and may assist in the discovery of new prokinetic agents.

  7. Effects of nifedipine on anorectal smooth muscle in vitro.

    Science.gov (United States)

    Cook, T A; Brading, A F; Mortensen, N J

    1999-06-01

    Glyceryl trinitrate reduces anal resting pressure and aids the healing of anal fissures. However, some patients develop tachyphylaxis and the fissure fails to heal, suggesting that other agents are needed. This study assesses the effects of nifedipine (a calcium channel antagonist) in modulating resting tone and agonist-induced contractions in human internal anal sphincter (IAS) and rectal circular muscle. Smooth muscle strips from the IAS and rectal circular muscle from ten patients undergoing surgical resection were mounted for isometric tension recording in a superfusion organ bath. The effects of noradrenaline and carbachol were assessed in the presence of various perfusates. LAS strips developed tone and spontaneous activity. Noradrenaline produced dose-dependent contractions. In calcium-free Krebs solution, tone and activity were abolished and no contractions were elicited in response to noradrenaline. Nifedipine also abolished tone and spontaneous activity, but contractions to noradrenaline were only slightly attenuated. In contrast, rectal smooth muscle strips developed spontaneous activity but no resting tone and contracted in response to carbachol. In calcium-free Krebs solution, the spontaneous activity and carbachol contractions were abolished. Addition of nifedipine to the perfusate abolished spontaneous activity and greatly reduced contractions. These data suggest that spontaneous activity and resting tone are dependent on extracellular calcium and flux across the cells. Agonist-induced contraction in the IAS is attributable mainly to the release of calcium from intracellular stores, whereas rectal circular smooth muscle depends principally on extracellular calcium entering the cell for contraction. The attenuation of contractions in both tissues and the abolition of resting tone in the IAS suggest that nifedipine may be useful in the management of patients with anorectal disorders.

  8. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    Science.gov (United States)

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  9. Expression profile and protein translation of TMEM16A in murine smooth muscle

    DEFF Research Database (Denmark)

    Davis, Alison J; Forrest, Abigail S; Jepps, Thomas Andrew

    2010-01-01

    Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) chan...

  10. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro

    1982-01-01

    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  11. Addition of urea and thiourea to electrophoresis sample buffer improves efficiency of protein extraction from TCA/acetone-treated smooth muscle tissues for phos-tag SDS-PAGE.

    Science.gov (United States)

    Takeya, Kosuke; Kaneko, Toshiyuki; Miyazu, Motoi; Takai, Akira

    2018-01-01

    Phosphorylation analysis by using phos-tag technique has been reported to be suitable for highly sensitive quantification of smooth muscle myosin regulatory light chain (LC 20 ) phosphorylation. However, there is another factor that will affect the sensitivity of phosphorylation analysis, that is, protein extraction. Here, we optimized the conditions for total protein extraction out of trichloroacetic acid (TCA)-fixed tissues. Standard SDS sample buffer extracted less LC 20 , actin and myosin phosphatase targeting subunit 1 (MYPT1) from TCA/acetone treated ciliary muscle strips. On the other hand, sample buffer containing urea and thiourea in addition to lithium dodecyl sulfate (LDS) or SDS extracted those proteins more efficiently, and thus increased the detection sensitivity up to 4-5 fold. Phos-tag SDS-PAGE separated dephosphorylated and phosphorylated LC 20 s extracted in LDS/urea/thiourea sample buffer to the same extent as those in standard SDS buffer. We have concluded that LDS (or SDS) /urea/thiourea sample buffer is suitable for highly sensitive phosphorylation analysis in smooth muscle, especially when it is treated with TCA/acetone. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    Science.gov (United States)

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  13. on Isolated Smooth Muscle Preparation in Rats

    African Journals Online (AJOL)

    Samuel Olaleye

    ABSTRACT. This study investigated the receptor effects of methanolic root extract of ... Phytochemical Analysis: Photochemistry of the methanolic extract was ... mounted with resting tension 0.5g in an organ bath containing .... Effects of extra cellular free Ca2+ and 0.5mM ... isolated smooth muscle by high K+ on the other.

  14. Hypoxia induces a phenotypic switch of fibroblasts to myofibroblasts through a MMP-2/TIMP mediated pathway: Implications for venous neointimal hyperplasia in hemodialysis access

    Science.gov (United States)

    Misra, Sanjay; Fu, Alex A.; Misra, Khamal D.; Shergill, Uday M.; Leof, Edward B; Mukhopadhyay, Debabrata

    2010-01-01

    Purpose Hemodialysis grafts fail because of venous neointimal hyperplasia formation caused by adventitial fibroblasts which have become myofibroblasts (α-smooth muscle actin positive cells) and migrate to the neointima. There is increased expression of hypoxia inducible factor-1 alpha (HIF-1α in venous neointimal hyperplasia formation in experimental animal model and clinical samples. We hypothesized that under hypoxic stimulus (HIF-1α fibroblasts will convert to myofibroblasts through a matrix metalloproteinase-2 (MMP-2) mediated pathway. Materials and methods Murine AKR-2B fibroblasts were made hypoxic or normoxic for 24, 48, and 72 hours. Protein expression for HIF-1α, α-smooth muscle actin, MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed to determine the kinetic changes of these proteins. Immunostaining for α-smooth muscle actin, collagen, and fibronectin was performed. Results At all time points, there was significantly increased expression of HIF-1α in the hypoxic fibroblasts when compared to normoxic fibroblasts (P<0.05). There was significantly increased expression α-smooth muscle actin at all time points which peaked by 48 hours in hypoxic fibroblasts when compared to normoxic fibroblasts (P<0.05). There was a significant increase in the expression of active MMP-2 by 48-72 hours and a significant increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) by 48-72 hours by hypoxic fibroblasts (P<0.05). By 72 hours, there was significant increase in TIMP-2 expression (P<0.05). Immunohistochemical analysis demonstrated increased expression for α-smooth muscle actin, collagen, and fibronectin as the length of hypoxia increased. Conclusions Under hypoxia, fibroblasts will convert to myofibroblasts through a MMP-2 mediated pathway which may provide insight into the mechanism of venous neointimal hyperplasia. PMID:20434368

  15. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki

    2015-01-01

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  16. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    2015-11-27

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  17. Therapeutic effect of Aloe vera and silver nanoparticles on acid-induced oral ulcer in gamma-irradiated mice.

    Science.gov (United States)

    El-Batal, Ahmed Ibrahim; Ahmed, Salwa Farid

    2018-02-05

    Radiation combined injury, a life-threatening condition, has higher mortality than simple radiation injury. The aim of the present study was to analyze the efficiency of Aloe vera and silver nanoparticles in improving the healing of ulcerated oral mucosa after irradiation. Thirty male Albino mice were divided into five groups: control, radiation, Aloe vera (AV), silver nanoparticles (NS), and AV+NS. The mice were exposed to whole body 6Gy gamma-radiation. After one hour, 20% acetic acid was injected into the submucosal layer of the lower lip for ulcer induction. The animals received topical treatment with the assigned substances for 5 days. Lip specimens were subjected to hematoxylin and eosin and anti alpha-smooth muscle actin immunohistochemical staining. Results demonstrated occurance of ulcer three days post irradiation in all groups except in the AV+NS group where only epithelial detachment was developed. After seven days, data revealed persistent ulcer in radiation group, and almost normal epithelium in the AV+NS group. A significant reduction of epithelial thickness was detected in all groups at the third day as compared to control. At the seventh day, only the AV+NS group restored the epithelial thickness. Area percent of alpha-smooth muscle actin expression was significantly decreased in radiation group at the third day followed by significant increase at the seventh day. However, all treatment groups showed significant increase in alpha-smooth muscle actin at the third day, which decreased to normal level at the seventh day. Our study demonstrated the efficiency of Aloe vera and silver nanoparticles in enhancing ulcer healing after irradiation.

  18. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  19. Animal model for angiotensin II effects in the internal anal sphincter smooth muscle: mechanism of action.

    Science.gov (United States)

    Fan, Ya-Ping; Puri, Rajinder N; Rattan, Satish

    2002-03-01

    Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).

  20. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.

    Science.gov (United States)

    Zhuge, Ronghua; Bao, Rongfeng; Fogarty, Kevin E; Lifshitz, Lawrence M

    2010-01-15

    Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.

  2. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  3. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity.

    Science.gov (United States)

    Armour, C L; Black, J L; Berend, N; Woolcock, A J

    1984-11-01

    The airway responsiveness of a group of 25 patients scheduled for lung resection was studied. 10 of 25 patients had a greater than or equal to 20% fall in FEV1 in response to inhaled methacholine (responders), with PD20 FEV1 values ranging from 0.6 to 7.3 mumol. Methacholine did not induce a 20% fall in FEV1 in 15 patients (non-responders). The sensitivity to carbachol and histamine of the bronchial smooth muscle resected from these patients was similar in tissue from responders and non-responders. There was no correlation between in vivo responsiveness to methacholine and in vitro sensitivity to carbachol or histamine. The volume of smooth muscle in some of these airway preparations was quantitated. There was a significant correlation between the maximum tension change in response to histamine and the volume of smooth muscle in each airway. There was no similar correlation for carbachol. The in vivo responsiveness to methacholine and in vitro sensitivity to histamine or carbachol was not related to the degree of inflammation in the airways studied. It is concluded that in vivo responsiveness cannot be explained in terms of smooth muscle sensitivity and that there may be differences between histamine and carbachol in the mechanism of contraction of airway smooth muscle.

  4. The Smooth Muscle of the Artery

    Science.gov (United States)

    1975-01-01

    of vascular smooth muscle are contrac- tion, thereby mediating vaso constriction, and the synthesis of the extracellular proteins and polysaccharides ...of the monosaccharides turned out to be different for instance from cornea to aorta (229, 283). In the conditions yed (4 hours incubation at 37 degrees... polysaccharides only. This glyco- protein is not very rich in sugar components (- 5Z) (228, 284), but is a very acidic protein (286). Fig.66 shows

  5. Doxazosin blocks the angiotensin II-induced smooth muscle cell DNA synthesis in the media, but not in the neointima of the rat carotid artery after balloon injury

    NARCIS (Netherlands)

    van Kleef, E. M.; Smits, J. F.; Schwartz, S. M.; Daemen, M. J.

    1996-01-01

    Infusion of angiotensin II (AngII) during the third and fourth week after balloon injury of the left common carotid artery of the rat induces smooth muscle cell (SMC) DNA synthesis. In this study we wanted to investigate whether alpha 1-adrenoreceptors are involved in AngII-induced SMC DNA synthesis

  6. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  7. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  8. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory

  9. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    Science.gov (United States)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  10. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  11. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    International Nuclear Information System (INIS)

    Nawrath, H.; Raschack, M.

    1987-01-01

    (-)-Desmethoxyverapamil [also known as (-)-devapamil or (-)-D888] has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and 45 Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and 45 Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle

  12. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  13. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-01-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  14. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  15. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    Science.gov (United States)

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  16. β-adrenergic relaxation of smooth muscle: differences between cells and tissues

    International Nuclear Information System (INIS)

    Scheid, C.R.

    1987-01-01

    The present studies were carried out in an attempt to resolve the controversy about the Na + dependence of β-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of β-adrenergic agents, including a stimulatory effect on 45 Ca efflux, were dependent on the presence of a normal transmembrane Na + gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of β-adrenergic agents was Na + independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na + dependence of β-adrenergic relaxation. They found that elimination of a normal Na + gradient abolished β-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of β-adrenergic relaxation may reflect inherent differences between tissues and cells

  17. Calcium-sensitivity of smooth muscle contraction in the isolated ...

    African Journals Online (AJOL)

    sensitivity of smooth muscle contraction were studied in the isolated perfused rat tail artery, employing the activators noradrenaline (NA) (3ìM) sand potassium chloride (KC1) (100mM). Experiments were conduced in Ca2+ - buffered saline.

  18. Synthetic smooth muscle in the outer blood plexus of the rhinarium skin of Lemur catta L.

    Science.gov (United States)

    Elofsson, Rolf; Kröger, Ronald H H

    2017-01-01

    The skin of the lemur nose tip (rhinarium) has arterioles in the outer vascular plexus that are endowed with an unusual coat of smooth muscle cells. Comparison with the arterioles of the same area in a number of unrelated mammalians shows that the lemur pattern is unique. The vascular smooth muscle cells belong to the synthetic type. The function of synthetic smooth muscles around the terminal vessels in the lemur rhinarium is unclear but may have additional functions beyond regulation of vessel diameter.

  19. Suppression of vascular smooth muscle cells' proliferation and ...

    African Journals Online (AJOL)

    This study aimed to determine the effects of valsartan on the proliferation and migration of isolated rat vascular smooth muscle cells (VSMCs) and the expression of phospho-p42/44 mitogen-activated protein kinase (MAPK) promoted by angiotensin II (Ang II). VSMCs from the rat thoracic aorta were cultured by ...

  20. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.

    Science.gov (United States)

    Nguyen, Thuy-Uyen; Bashur, Chris A; Kishore, Vipuil

    2016-03-17

    Application of tissue-engineered vascular grafts (TEVGs) for the replacement of small-diameter arteries is limited due to thrombosis and intimal hyperplasia. Previous studies have attempted to address the limitations of TEVGs by developing scaffolds that mimic the composition (collagen and elastin) of native arteries to better match the mechanical properties of the graft with the native tissue. However, most existing scaffolds do not recapitulate the aligned topography of the collagen fibers found in native vessels. In the current study, based on the principles of isoelectric focusing, two different types of elastin (soluble and insoluble) were incorporated into highly oriented electrochemically aligned collagen (ELAC) fibers and the effect of elastin incorporation on the mechanical properties of the ELAC fibers and smooth muscle cell (SMC) phenotype was investigated. The results indicate that elastin incorporation significantly decreased the modulus of ELAC fibers to converge upon that of native vessels. Further, a significant increase in yield strain and decrease in Young's modulus was observed on all fibers post SMC culture compared with before the culture. Real-time polymerase chain reaction results showed a significant increase in the expression of α-smooth muscle actin and calponin on ELAC fibers with insoluble elastin, suggesting that incorporation of insoluble elastin induces a contractile phenotype in SMCs after two weeks of culture on ELAC fibers. Immunofluorescence results showed that calponin expression increased with time on all fibers. In conclusion, insoluble elastin incorporated ELAC fibers have the potential to be used for the development of functional TEVGs for the repair and replacement of small-diameter arteries.

  1. [Observation on alpha-SMA during Erigeron Breviscapus (Vant) Hand-Mazz obstructs the evolution of carcinogenesis of golden hamster cheek pouch].

    Science.gov (United States)

    Zhou, C T; Zhang, S L; Ding, R Y; Hua, L; Zhong, W J

    2000-06-01

    To observe dynamically that Erigeron Breviscapus (Vant) Hand-Mazz (HEr) affects the expression of alpha-smooth muscle actin (alpha-SMA). To discuss the probable mechanism of obstructing leukoplakia carcinogenesis of this medicine. 120 golden hamsters were randomly divided into model group (48), HEr group (48) and control group (6). HEr was applied to obstruct the evolution of carcinogenesis of golden hamster cheek pouch. Immunohistochemistry was used to detect the expression level of alpha-SMA with cheek pouch specimen that besmears DMBA in 4-9 weeks. Results were compared with model group. Vessel density dyed with alpha-SMA continuously of HEr group was 65.76 significantly higher than that of model group 42.12 (P<0.001). High classification cases in HEr group were much more than model group when cases were divided into five groups as follow: 100%, 50%, 20%, 10%, 3% (P<0.01). HEr can raise the expression level of alpha-SMA exactly during the evolution of leukoplakia carcinogenesis of golden hamster, which shows that this medicine obstructs carcinogenesis by keeping the normal physiological function of vascular myoepithelial cell and integrity of vascular basement membrane.

  2. Transversal stiffness and beta-actin and alpha-actinin-4 content of the M. soleus fibers in the conditions of a 3-day reloading after 14-day gravitational unloading.

    Science.gov (United States)

    Ogneva, I V

    2011-01-01

    The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.

  3. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  4. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    Science.gov (United States)

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.

  5. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels

    Directory of Open Access Journals (Sweden)

    Lurbe Empar

    2009-04-01

    Full Text Available Abstract Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67 and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0 have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p 2, p Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.

  6. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  7. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    International Nuclear Information System (INIS)

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of [ 35 S]-sodium sulfate and [ 3 H]-serine or [ 3 H]-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of 35 S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect

  8. The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels.

    Science.gov (United States)

    Naito, Shokichi; Pippin, Jeffrey W; Shankland, Stuart J

    2014-11-06

    Studies have shown in several diseases initially affecting podocytes, that the neighboring glomerular parietal epithelial cells (PECs) are secondarily involved. The PEC response might be reparative under certain circumstances, yet injurious under others. The factors governing these are not well understood. We have shown that SM22α, an actin-binding protein considered a marker of smooth muscle differentiation, is upregulated in podocytes and PECs in several models of podocyte disease. However, the impact of SM22α levels on PECs is not known. Experimental glomerular disease, characterized by primary podocyte injury, was induced in aged-matched SM22α+/+ and SM22α-/-mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody. Immunostaining methods were employed on days 7 and 14 of disease. The number of PEC transition cells, defined as cells co-expressing a PEC protein (PAX2) and podocyte protein (Synaptopodin) was higher in diseased SM22α-/-mice compared with SM22α+/+mice. WT1 staining along Bowman's capsule is higher in diseased SM22α-/-mice. This was accompanied by increased PEC proliferation (measured by ki-67 staining), and an increase in immunostaining for the progenitor marker NCAM, in a subpopulation of PECs in diseased SM22α-/-mice. In addition, immunostaining for vimentin and alpha smooth muscle actin, markers of epithelial-to-mesenchymal transition (EMT), was lower in diseased SM22α-/-mice compared to diseased SM22α+/+mice. SM22α levels may impact how PECs respond following a primary podocyte injury in experimental glomerular disease. Absent/lower levels favor an increase in PEC transition cells and PECs expressing a progenitor marker, and a lower EMT rate compared to SM22α+/+mice, where SM22 levels are markedly increased in PECs.

  9. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    Science.gov (United States)

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  10. Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Moesgaard, S. G.; Rasmussen, C. E.

    2015-01-01

    suggested. In an age-matched population of dogs with non-clinical and clinical MMVD, the objectives were to investigate (1) gene expression of 5-HT2AR and 5-HT2BR, (2) protein expression and spatial relationship of 5-HT2AR, 5-HT2BR and MF in the mitral valve (MV) and the cardiac anterior papillary muscle...... (AP) and (3) serum 5-HT concentrations. Gene expression of 5-HT2BR was significantly higher in MV and AP among dogs with clinical MMVD. This was not found for 5-HT2BR protein expression, though association of 5-HT2BR with myxomatous pathology and co-localization of 5-HT2BR and MF in MV and AP support...

  11. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    Science.gov (United States)

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  12. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    Science.gov (United States)

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  13. Laboratory practical to study the differential innervation pathways of urinary tract smooth muscle.

    Science.gov (United States)

    Rembetski, Benjamin E; Cobine, Caroline A; Drumm, Bernard T

    2018-06-01

    In the mammalian lower urinary tract, there is a reciprocal relationship between the contractile state of the bladder and urethra. As the bladder fills with urine, it remains relaxed to accommodate increases in volume, while the urethra remains contracted to prevent leakage of urine from the bladder to the exterior. Disruptions to the normal contractile state of the bladder and urethra can lead to abnormal micturition patterns and urinary incontinence. While both the bladder and urethra are smooth-muscle organs, they are differentially contracted by input from cholinergic and sympathetic nerves, respectively. The laboratory practical described here provides an experiential approach to understanding the anatomy of the lower urinary tract. Several key factors in urinary tract physiology are outlined, e.g., the bladder is contracted by activation of the parasympathetic pathway via cholinergic stimulation on muscarinic receptors, whereas the urethra is contracted by activation of the sympathetic pathway via adrenergic stimulation on α 1 -adrenoceptors. This is achieved by measuring the force generated by bladder and urethra smooth muscle to demonstrate that acetylcholine contracts the smooth muscle of the bladder, whereas adrenergic agonists contract the urethral smooth muscle. An inhibition of these effects is also demonstrated by application of the muscarinic receptor antagonist atropine and the α 1 -adrenergic receptor blocker phentolamine. A list of suggested techniques and exam questions to evaluate student understanding on this topic is also provided.

  14. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  15. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelin B (ET B ) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ET B receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ET B receptors were selectively deleted from smooth muscle by crossing floxed ET B mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ET B deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ET B was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ET B -mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ET B -mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ET B knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ET B blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ET B -mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ET B knockout mice. In the absence of other pathology, ET B receptors in vascular smooth muscle make a small but significant contribution to ET B -dependent regulation of BP. These ET B receptors have no effect on vascular contraction or neointimal remodeling. © 2016 The Authors.

  16. Anti-actin IgA antibodies in severe coeliac disease.

    Science.gov (United States)

    Granito, A; Muratori, P; Cassani, F; Pappas, G; Muratori, L; Agostinelli, D; Veronesi, L; Bortolotti, R; Petrolini, N; Bianchi, F B; Volta, U

    2004-08-01

    Anti-actin IgA antibodies have been found in sera of coeliacs. Our aim was to define the prevalence and clinical significance of anti-actin IgA in coeliacs before and after gluten withdrawal. One hundred and two biopsy-proven coeliacs, 95 disease controls and 50 blood donors were studied. Anti-actin IgA were evaluated by different methods: (a) antimicrofilament positivity on HEp-2 cells and on cultured fibroblasts by immunofluorescence; (b) anti-actin positivity by enzyme-linked immuosorbent assay (ELISA); and (c) presence of the tubular/glomerular pattern of anti-smooth muscle antibodies on rat kidney sections by immunofluorescence. Antimicrofilament IgA were present in 27% of coeliacs and in none of the controls. Antimicrofilament antibodies were found in 25 of 54 (46%) coeliacs with severe villous atrophy and in three of 48 (6%) with mild damage (P < 0.0001). In the 20 patients tested, antimicrofilaments IgA disappeared after gluten withdrawal in accordance with histological recovery. Our study shows a significant correlation between antimicrofilament IgA and the severity of intestinal damage in untreated coeliacs. The disappearance of antimicrofilament IgA after gluten withdrawal predicts the normalization of intestinal mucosa and could be considered a useful tool in the follow-up of severe coeliac disease.

  17. Intermediate filaments in smooth muscle from pregnant and non-pregnant human uterus.

    OpenAIRE

    Leoni, P; Carli, F; Halliday, D

    1990-01-01

    The intermediate filament proteins desmin and vimentin from pregnant and non-pregnant uterine muscle and smooth-muscle cells in culture were analysed using SDS/PAGE. The desmin content in uterine muscle increases dramatically during pregnancy, whereas vimentin remains unchanged or changes very little. When muscle cells are kept in culture, a considerable increase in vimentin content is observed as compared with vimentin in freshly isolated non-pregnant uterine tissue. Our results strengthen t...

  18. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle......Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle...

  19. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Elia, Artemis; Charalambous, Fotini [Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678 Nicosia (Cyprus); Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy [Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledge about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8

  20. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.

    Science.gov (United States)

    Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ

    2010-08-01

    PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.

  1. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  2. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement.

    Science.gov (United States)

    Hamelet, Julien; Maurin, Nicole; Fulchiron, Romain; Delabar, Jean-Maurice; Janel, Nathalie

    2007-10-01

    Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To investigate the role of hyperhomocysteinemia in lung injury and pulmonary fibrosis, we analyzed the lung of CBS-deficient mice, a murine model of severe hyperhomocysteinemia. The degree of lung injury was assessed by histologic examination. Analysis of profibrogenic factors was performed by real-time quantitative reverse transcription-polymerase chain reaction. CBS-deficient mice develop fibrosis and air space enlargement in the lung, concomitant with an enhanced expression of heme oxygenase-1, pro(alpha)1 collagen type I, transforming growth factor-beta1 and alpha-smooth muscle actin. However, lung fibrosis was found in the absence of increased inflammatory cell infiltrates as determined by histology, without changes in gene expression of proinflammatory cytokines TNFalpha and interleukin 6. The increased expression of alpha-smooth muscle actin and transforming growth factor-beta1 emphasizes the role of myofibroblasts differentiation in case of lung fibrosis due to CBS deficiency in mice.

  3. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad

    2013-10-01

    To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.

  4. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chanjae Park

    2011-04-01

    Full Text Available Smooth muscle cells (SMCs express a unique set of microRNAs (miRNAs which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF, and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract.

  5. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  6. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    International Nuclear Information System (INIS)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N G -nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats

  7. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  8. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  9. TNFSF14 (LIGHT Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and TGF-β

    Directory of Open Access Journals (Sweden)

    Ricardo da Silva Antunes

    2018-03-01

    Full Text Available The cytokine TNFSF14 [homologous to Lymphotoxin, exhibits Inducible expression and competes with HSV Glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT] has been shown in mouse models to be important for development of lung tissue remodeling that is characteristic of asthma, idiopathic pulmonary fibrosis (IPF, and systemic sclerosis (SSc. However, its cellular targets are not fully delineated. In the present report, we show that LTβR and HVEM, the receptors for LIGHT, are constitutively expressed in primary human lung fibroblasts (HLFs. We asked whether LIGHT could promote inflammatory and remodeling-relevant activity in HLFs and how this was similar to, or distinct from, IL-13 or TGF-β, two cytokines strongly implicated in the pathogenesis of asthma, IPF, and SSc. Accumulation of myofibroblasts expressing alpha smooth muscle actin is a feature of lung inflammatory diseases. LIGHT promoted cell cycle progression and proliferation of HLFs, but not alpha smooth muscle actin expression. In contrast, TGF-β upregulated alpha smooth muscle actin but did not drive their proliferation. LIGHT also increased the gene or protein expression of a number of proinflammatory mediators, including ICAM-1 and VCAM-1, IL-6 and GM-CSF, the chemokines CCL5 and 20, and CXCL5, 11, and 12, and lung remodeling-associated proteinases MMP-9 and ADAM8. These were dependent on LTβR but not HVEM. LIGHT displayed overlapping and synergistic activities with IL-13 for a number of the activities, but LIGHT additionally enhanced the gene expression of several molecules, including the innate cytokines IL-33 and TSLP, which were not upregulated by IL-13. Our results highlight the varied and pleiotropic effects of LIGHT in HLFs. LIGHT might then be a therapeutic target for modulation of inflammation and remodeling associated with asthma and other similar diseases of the lung that involve fibroblasts.

  10. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle.

    Science.gov (United States)

    Xiao, Hong-Tao; Liao, Zhi; Meng, Xian-Min; Yan, Xiao-Yan; Chen, Shu-Jie; Mo, Zheng-Ji

    2009-07-01

    The aim was to characterize the effect of penehyclidine hydrochloride, which mediates the relaxation of guinea-pig isolated gastrointestinal smooth muscle, on muscarinic receptor subtypes. Radioimmune assay was used to determine cAMP levels in isolated guinea-pig gastrointestinal smooth muscle to compare the selective effects of penehyclidine hydrochloride on muscarinic receptor subtypes. The results indicated that the relaxing effect of penehyclidine hydrochloride on isolated gastrointestinal smooth muscle contraction induced by acetylcholine was stronger than that of atropine (based on PA2 values). In the radioimmune assay, penehyclidine hydrochloride increased the cAMP content in isolated guinea-pig stomach smooth muscle and decreased the cAMP content in isolated guinea-pig intestinal smooth muscle, but the difference was not statistically significant at a dose of 10 mumol/l. The results suggest that penehyclidine hydrochloride has little or no effect on M2 receptor subtypes in guinea-pig gastrointestinal smooth muscle.

  11. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.

    Directory of Open Access Journals (Sweden)

    Kohei Iwase

    Full Text Available We examined the movement of an actin filament sliding on a mixture of normal and genetically modified myosin molecules that were attached to a glass surface. For this purpose, we used a Dictyostelium G680V mutant myosin II whose release rates of Pi and ADP were highly suppressed relative to normal myosin, leading to a significantly extended life-time of the strongly bound state with actin and virtually no motility. When the mixing ratio of G680V mutant myosin II to skeletal muscle HMM (heavy myosin was 0.01%, the actin filaments moved intermittently. When they moved, their sliding velocities were about two-fold faster than the velocity of skeletal HMM alone. Furthermore, sliding movements were also faster when the actin filaments were allowed to slide on skeletal muscle HMM-coated glass surfaces in the motility buffer solution containing G680V HMM. In this case no intermittent movement was observed. When the actin filaments used were copolymerized with a fusion protein consisting of Dictyostelium actin and Dictyostelium G680V myosin II motor domain, similar faster sliding movements were observed on skeletal muscle HMM-coated surfaces. The filament sliding velocities were about two-fold greater than the velocities of normal actin filaments. We found that the velocity of actin filaments sliding on skeletal muscle myosin molecules increased in the presence of a non-motile G680V mutant myosin motor.

  12. Smooth muscle antibodies and type 1 autoimmune hepatitis.

    Science.gov (United States)

    Muratori, Paolo; Muratori, Luigi; Agostinelli, Daniela; Pappas, Georgios; Veronesi, Lorenza; Granito, Alessandro; Cassani, Fabio; Terlizzi, Paolo; Lenzi, Marco; Bianchi, Francesco B

    2002-12-01

    Smooth muscle antibodies (SMA) characterize type 1 autoimmune hepatitis. Our aim was to evaluate sensitivity and specificity of different immunofluorescence substrates for the detection of SMA. Sera from 55 patients with type 1 AIH 20 with primary biliary cirrhosis, 20 with HCV-related chronic hepatitis and 25 blood donors were studied for SMA and anti-microfilaments reactivity by immunofluorescence on rat tissue sections, cultured fibroblasts and commercially available HEp-2 cells (collectively revealing the so called anti-actin pattern), and for the XR1 system by counterimmunoelectrophoresis. SMA was classified on the basis of its immunofluorescence pattern (V--vessels, G--glomerular, T--tubular). As further control group, we studied 26 patients with a diagnosis other than AIH, selected on the basis of a SMA-non-T/XR1 positivity. In patients with AIH the SMA-T pattern on rodent tissue, and anti-MF on fibroblasts and on HEp-2 cells were present in 80, 82 and 80%, respectively. Five out of 11 SMA-non T positive AIH patients were anti-MF positive. None of the pathological and healthy controls was positive for SMA-T or anti-MF reactivity. XR1 system was present in 84% of AIH patients and in 5% of pathological controls (p = 0.01). Two out of 26 SMA-non-T/XR1 positive sera were positive for anti-MF by fibroblasts and HEp-2 cells. A significant correlation was found between SMA-T pattern and anti-MF reactivity; no correlation was found between XR1 system and SMA-T pattern or anti-MF reactivity. SMA-T pattern is highly sensitive and specific first diagnostic test for type 1 AIH; anti-MF can be used as additional tool for the diagnosis, particularly when, despite the absence of the SMA-T pattern, AIH is strongly suspected.

  13. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  14. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  15. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.

    Directory of Open Access Journals (Sweden)

    Mingming Yang

    Full Text Available Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter.

  16. Effect of an Ethanol Extract of Scutellaria baicalensis on Relaxation in Corpus Cavernosum Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2012-01-01

    Full Text Available Aims of study. The aim of the present study was to investigate whether an ethanol extract of Scutellaria baicalensis (ESB relaxes penile corpus cavernosum muscle in organ bath experiments. Materials and methods. Changes in tension of cavernous smooth muscle strips were determined by penile strip chamber model and in penile perfusion model. Isolated endothelium-intact rabbit corpus cavernosum was precontracted with phenylephrine (PE and then treated with ESB. Results. ESB relaxed penile smooth muscle in a dose-dependent manner, and this was inhibited by pre-treatment with NG-nitro-l-arginine methyl ester (l-NAME, a nitric oxide (NO synthase inhibitor, and 1H-[1, 2, 4]-oxadiazolo-[4,3-α]-quinoxalin-1-one (ODQ, a soluble guanylyl cyclase (sGC inhibitor. ESB-induced relaxation was significantly attenuated by pretreatment with tetraethylammonium (TEA, a nonselective K+ channel blocker, and charybdotoxin, a selective Ca2+-dependent K+ channel inhibitor. ESB increased the cGMP levels of rabbit corpus cavernosum in a concentration-dependent manner without changes in cAMP levels. In a perfusion model of penile tissue, ESB also relaxed penile corpus cavernosum smooth muscle in a dose-dependent manner. Conclusion. Taken together, these results suggest that ESB relaxed rabbit cavernous smooth muscle via the NO/cGMP system and Ca2+-sensitive K+ channels in the corpus cavernosum.

  17. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  18. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  19. Molecular Expression and Pharmacological Evidence for a Functional Role of Kv7 Channel Subtypes in Guinea Pig Urinary Bladder Smooth Muscle

    Science.gov (United States)

    Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284

  20. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Dybboe, Rie; Hansen, Christina Neigaard

    2015-01-01

    SF and RP was measured in relation to ageing, muscle atrophy, and different muscle fiber type composition, respectively. A stronger linearity of SF and β-actin compared with GAPDH and α-tubulin was observed. The methodological variation was relatively low in all four methods (4-11%). Protein level...... [β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and α-tubulin], as well as TP loaded measured by Stain-Free technology (SF) as normalization tool were tested. This was done using skeletal muscle samples from men subjected to physiological conditions often investigated in applied...... physiology where the intervention has been suggested to impede normalization (ageing, muscle atrophy, and different muscle fiber type composition). The linearity of signal and the methodological variation coefficient was obtained. Furthermore, the inter- and intraindividual variation in signals obtained from...

  1. Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells.

    OpenAIRE

    Marsh, K. A.; Hill, S. J.

    1992-01-01

    1. Bovine tracheal smooth muscle cells were established in culture to study agonist-induced phosphoinositide (PI) hydrolysis in this tissue. 2. Bradykinin (0.1 nM-10 microM) evoked a concentration-dependent increase (log EC50 (M) = -9.4 +/- 0.2; n = 8) in the accumulation of total [3H]-inositol phosphates in cultured tracheal smooth muscle cells whereas the selective B1 receptor agonist des-Arg9-bradykinin (10 microM) was significantly less effective (16% of bradykinin maximal response; relat...

  2. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  3. Primary intraosseous smooth muscle tumor of uncertain malignant potential: original report and molecular characterization

    Directory of Open Access Journals (Sweden)

    Lauren Kropp

    2016-11-01

    Full Text Available We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive followup is warranted for this potentially life-threatening neoplasm.

  4. Primary Intraosseous Smooth Muscle Tumor of Uncertain Malignant Potential: Original Report and Molecular Characterization.

    Science.gov (United States)

    Kropp, Lauren; Siegal, Gene P; Frampton, Garrett M; Rodriguez, Michael G; McKee, Svetlana; Conry, Robert M

    2016-11-17

    We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP) which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive follow-up is warranted for this potentially life-threatening neoplasm.

  5. Effect of gamma rays on electrically evoked contractions of non-vascular smooth muscles (rat vas deferens)

    International Nuclear Information System (INIS)

    Azroony, R.; Ksies, F.; Alya, G.

    2002-10-01

    We have tried, in this experiment, to study the modifications of non-vascular smooth muscles contraction induced via gamma rays. Smooth muscular fibers were isolated from the vas deferens of an adult rat and contractions were electrically evoked. Our results show that irradiation activates the VOC (Voltage Operated Channel) type of ionic channels which causes an increasing in the inward flux of Ca 2+ and then causes an increasing in the inner calcium concentration [Ca 2] i, the matter which means an increasing in the force of muscular contraction. Concerning to the response of vas deferens smooth muscles to the activation of membrane receptors, we have tried to study the effects of gamma rays on activating adrenergic and cholinergic receptors, also, we have tried to show the effects of different doses of gamma rays (1, 3, 5, 7 Gy) on regulating the contractile response of this type of smooth muscles. And results show that: - Irradiation increases contraction force, mediated by adrenergic and cholinergic receptors, in a dose dependent manner, with E m ax 1 Gy m axc 3 Gy m ax 5 Gy m ax 7 Gy. There is an important shift on irradiated rats (3, 5, 7 Gy) where the maximum effect of Acetylcholine (E m ax) can be obtained in lower concentrations of Acetylcholine. These results mean that irradiation activates the inward flux of Ca 2+ through the ROC (Receptors Operated Channels) type of ionic channels, which rely, in their activation, on activating the membrane receptors. By comparing these results with the effects of gamma rays on activating vascular adrenergic and cholinergic receptors, we concluded that: Non-vascular smooth muscles (vas deferens) are less sensitive to irradiation in comparing with vascular smooth muscles (venae portal hepatica), and irradiation increases the sensitivity of cholinergic receptors to acetylcholine in the smooth muscular fibers of vas deferens while; if decreases this sensitivity in the smooth muscular fibers of venae portal hepatica

  6. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    Science.gov (United States)

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    Interleukin-6 (IL-6) overexpression played an important role in the pathogenesis of thoracic aortic dissection (TAD). Our previous study found enhanced autophagy accompanying with contractile proteins α smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α) degradation in TAD aortic vascular smooth muscle cells (VSMCs). Autophagy is an important way for intracellular proteins degradation, while IL-6 has been found as a contributing factor of autophagy in some cancers. These indicated IL-6 might contribute to the occurrence of TAD by promoting autophagy-induced contractile proteins degradation, which has not been investigated. The aim of the present study is to verify this hypothesis and investigate the mechanism of it. We collected 10 TAD and 10 control aortic specimens from patients underwent TAD surgical repair and coronary artery bypass grafting, respectively. Quantitative real-time polymerase chain reaction was used to detect mRNA expression. Protein expression level was assessed by enzyme-linked immunosorbent assay, western blot, and immunohistochemistry. Microtubule-associated protein 1 light chain 3 beta overexpression adenovirus with green and red fluorescent protein tags and transmission electron microscopy were used to detect autophagy level in VSMCs. 3-Methyladenine (3-MA) and chloroquine were used to block autophagy in human VSMCs. Experiment results showed that the expression of IL-6 was significantly increased accompanying with up-regulated autophagy in TAD aortic wall compared with controls. In vitro results showed that IL-6 stimulation decreased the expression of VSMCs contractile proteins α-SMA and SM22α accompanying with up-regulated autophagy. Blocking autophagy with 3-MA or chloroquine inhibited IL-6 induced α-SMA and SM22α degradation. Further investigation showed that autophagy-related 4B cysteine peptidase (ATG4B) was significantly overexpressed in TAD aortic wall and played important role in IL-6 induced autophagy up

  7. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  8. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  9. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle.

    Science.gov (United States)

    Mazelet, Lise; Parker, Matthew O; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric

  10. 42日龄湘东黑山羊瘤胃平滑肌细胞的分离培养和鉴定%Separation, Culture and Identification of Ruminal Smooth Muscle Cells of Xiangdong Black Goats Aged 42 Days

    Institute of Scientific and Technical Information of China (English)

    刘思乐; 康劲翮; 谭支良; 王征

    2015-01-01

    本研究旨在建立山羊瘤胃平滑肌细胞的体外培养模型。采集42日龄山羊的瘤胃肌肉组织,采用胶原酶消化法进行了山羊瘤胃平滑肌细胞的体外培养。通过光学显微镜观察了原代培养和传代培养阶段的细胞形态,采用细胞计数法检测了第5代山羊瘤胃平滑肌细胞的生长曲线及第1~11代细胞生长活性,采用细胞免疫荧光法对细胞进行了鉴定,采用蛋白质印迹( West-ern blotting)技术检测平滑肌细胞特异表达的α肌动蛋白(α-actin)在各代次细胞中的表达。结果表明,经0.20%Ⅱ型胶原酶消化获得的原代培养山羊瘤胃平滑肌细胞于培养1 d后开始贴壁生长,2 d开始进入对数期生长,呈典型的“波峰”状生长,5 d进入平台期,第5代细胞生长活性达到最高;免疫荧光染色显示胞浆内α-actin阳性表达,各代次间细胞α-actin表达稳定,表达量无显著差异(P>0.05)。试验表明,应用0.20%Ⅱ型胶原酶消化法可成功获得山羊瘤胃平滑肌细胞,为进一步研究营养物质对山羊瘤胃功能的影响提供了理想的细胞模型。%The present study was carried out to establish a culture method for ruminal smooth muscle cells of goat. Ruminal smooth muscle tissue of goats ( 42 days of age) was collected, and ruminal smooth muscle cells was cultured in vitro by the method of collagenase digestion. The morphology of cells at the stages of primary culture and subculture was observed under the optical microscope, the growth curve of the 5th generation and the growth activity curve of generations of ruminal smooth muscle cells were tested using the cell counting method. Meanwhile, the ruminal smooth muscle cells were identified using cell immune fluorescence method, and the expression ofα-actin in generations (1st to 11th) cells was detected using the Western blotting. The re-sults showed that the primary cultured ruminal smooth muscle cells of goats obtained by digestion of 0. 20

  11. 31P-nuclear magnetic resonance analysis of extracts of vascular smooth muscle

    International Nuclear Information System (INIS)

    Barron, J.T.; Messer, J.V.; Glonek, Thomas

    1986-01-01

    31 P-nuclear magnetic resonance spectroscopy was used to assess phosphate metabolites in perchloric acid extracts of rabbit aorta. In addition to the high energy phosphates, several other phosphorus compounds were detected and quantified. Most notable was the presence of a prominent phosphomonoester compound appearing at a chemical shift of 3.86 delta. This compound constituted 26% of the total extractable tissue phosphorus and is tentatively identified as ribose-5-phosphate, a pentose phosphate pathway intermediate. While ATP and phosphocreatine did not change during glucose and oxygen deprivation or during prolonged muscle contraction, the 3.86delta phosphate decreased significantly. Furthermore, theophylline, an agent that increases intracellular cAMP, also decreased the level of the 3.86 delta phosphate. These results are consistent with the concept that intermediate metabolism sustains high energy phosphate pools in vascular smooth muscle in the steady state under various conditions. The pentose phosphate pathway may play an important role in vascular smooth muscle metabolism. (author)

  12. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  13. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    OpenAIRE

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene ex...

  14. Secondary reduction of alpha7B integrin in laminin alpha2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle.

    Science.gov (United States)

    Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T

    1999-03-01

    The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even

  15. Estimation of airway smooth muscle stiffness changes due to length oscillation using artificial neural network.

    Science.gov (United States)

    Al-Jumaily, Ahmed; Chen, Leizhi

    2012-10-07

    This paper presents a novel approach to estimate stiffness changes in airway smooth muscles due to external oscillation. Artificial neural networks are used to model the stiffness changes due to cyclic stretches of the smooth muscles. The nonlinear relationship between stiffness ratios and oscillation frequencies is modeled by a feed-forward neural network (FNN) model. The structure of the FNN is selected through the training and validation using literature data from 11 experiments with different muscle lengths, muscle masses, oscillation frequencies and amplitudes. Data pre-processing methods are used to improve the robustness of the neural network model to match the non-linearity. The validation results show that the FNN model can predict the stiffness ratio changes with a mean square error of 0.0042. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    International Nuclear Information System (INIS)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-01-01

    Highlights: ► Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. ► Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. ► It is a widely believed that MYL2 is a poor substrate for smMLCK. ► In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. ► Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca 2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis–Menten V max and K M for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  17. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  18. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  19. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  20. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  1. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  2. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    Science.gov (United States)

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  3. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    Science.gov (United States)

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  4. Heterogeneity of smooth muscle cells in tunica media of aorta in ...

    African Journals Online (AJOL)

    ... of the tunica media of goat aorta are phenotypically heterogeneous and run in multiple directions. These characteristics probably confer mechanical strength and functional plasticity to the aortic wall. Designers of aortic substitutes should bear this in mind. Keywords: Vascular, Smooth Muscle Cells, Heterogeneity, Aorta ...

  5. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  6. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  7. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  8. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  9. Mast cell numbers in airway smooth muscle and PC(20)AMP in asthma and COPD

    NARCIS (Netherlands)

    Liesker, J. J. W.; ten Hacken, N. H. T.; Rutgers, S. R.; Zeinstra-Smith, M.; Postma, D. S.; Timens, W.

    Introduction: Most patients with asthma and many patients with COPD show bronchial hyperresponsiveness to adenosine (BHRAMP). BHRAMP may be caused by release of mast cell histamine, which induces smooth muscle contraction. Aim of the study: To evaluate whether mast cell numbers in airway smooth

  10. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  11. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    Energy Technology Data Exchange (ETDEWEB)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin; Seker, Sukran; Durkut, Serap; Dalva, Klara; Elçin, Yaşar Murat, E-mail: elcinmurat@gmail.com

    2017-03-15

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety of inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and interpretation

  12. Uremia does not affect neointima formation in mice

    DEFF Research Database (Denmark)

    Aarup, Annemarie; Nielsen, Carsten H; Bisgaard, Line S

    2017-01-01

    Atherosclerotic cardiovascular disease is a major complication of chronic kidney disease (CKD). CKD leads to uremia, which modulates the phenotype of aortic smooth muscle cells (SMCs). Phenotypic modulation of SMCs plays a key role in accelerating atherosclerosis. We investigated the hypothesis...... that uremia potentiates neointima formation in response to vascular injury in mice. Carotid wire injury was performed on C57BL/6 wt and apolipoprotein E knockout (Apoe-/-) mice two weeks after induction of uremia by 5/6 nephrectomy. Wire injury led to neointima formation and downregulation of genes encoding...... classical SMC markers (i.e., myocardin, α-smooth muscle actin, SM22-alpha, and smooth muscle myosin heavy chain) in both wt and Apoe-/-mice. Contrary to our expectations, uremia did not potentiate neointima formation, nor did it affect intimal lesion composition as judged from magnetic resonance imaging...

  13. Oxygen mediates vascular smooth muscle relaxation in hypoxia.

    Directory of Open Access Journals (Sweden)

    Jessica Dada

    Full Text Available The activation of soluble guanylate cyclase (sGC by nitric oxide (NO and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2 on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (YC-1 was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2 had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.

  14. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    Directory of Open Access Journals (Sweden)

    Neerupma Silswal

    2012-01-01

    Full Text Available We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα agonists using isolated mouse aortas and middle cerebral arteries (MCAs. The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC, and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response.

  15. Role of cyclic GMP in cells with the properties of smooth muscle cultured from the rat myometrium

    International Nuclear Information System (INIS)

    Krall, J.F.; Morin, A.

    1986-01-01

    Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated 45 Ca 2+ from the medium. Ca 2+ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca 2+ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-medicated functions that reflected some neurotransmitter-sensitive properties of uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the β-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca 2+ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture

  16. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  17. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  18. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  20. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    Science.gov (United States)

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  1. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    Science.gov (United States)

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  2. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10......Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...

  3. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    Science.gov (United States)

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Microtubule Regulation of Kv7 Channels Orchestrates cAMP-Mediated Vasorelaxations in Rat Arterial Smooth Muscle

    DEFF Research Database (Denmark)

    Lindman, Johanna; Khammy, Makhala M; Lundegaard, Pia R

    2018-01-01

    Microtubules can regulate GPCR (G protein-coupled receptor) signaling in various cell types. In vascular smooth muscle, activation of the β-adrenoceptor leads to production of cAMP to mediate a vasorelaxation. Little is known about the role of microtubules in smooth muscle, and given the importance...... of renal and mesenteric arteries that the microtubule stabilizer, paclitaxel, prevented. Sharp microelectrode experiments showed that colchicine treatment caused increased hyperpolarization of mesenteric artery segments in response to isoprenaline. Application of the Kv7 channel blocker, XE991, attenuated...

  5. The length dependence of the series elasticity of pig bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1988-01-01

    textabstractStrips of urinary bladder smooth muscle were subjected to a series of quick release measurements. Each measurement consisted of several releases and resets to the original length, made during one contraction. The complete length-force characteristic of series elasticity was quantified by

  6. Preliminary investigations on the effects of a Strongylus vulgaris larval extract, mononuclear factors and platelet factors on equine smooth muscle cells in vitro.

    Science.gov (United States)

    Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C

    1989-01-01

    Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.

  7. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats.

    Directory of Open Access Journals (Sweden)

    Shoichiro Otsuki

    Full Text Available We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD. Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78. Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.

  8. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  9. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  10. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    NARCIS (Netherlands)

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact

  11. Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration

    NARCIS (Netherlands)

    Taher, Taher E. I.; Derksen, Patrick W. B.; de Boer, Onno J.; Spaargaren, Marcel; Teeling, Peter; van der Wal, Allard C.; Pals, Steven T.

    2002-01-01

    A key event in neointima formation and atherogenesis is the migration of vascular smooth muscle cells (VSMCs) into the intima. This is controlled by cytokines and extracellular matix (ECM) components within the microenvironment of the diseased vessel wall. At present, these signals have only been

  12. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  13. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles

    OpenAIRE

    Zsolt Sándor; Javad Mottaghipisheh; Katalin Veres; Judit Hohmann; Tímea Bencsik; Attila Horváth; Dezső Kelemen; Róbert Papp; Loránd Barthó; Dezső Csupor; Dezső Csupor

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth mu...

  14. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    Science.gov (United States)

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  15. Hydro-ethanolic Extract of Portulaca oleracea Affects Beta-adrenoceptors of Guinea Pig Tracheal Smooth Muscle

    Science.gov (United States)

    Boskabady, Mohammad Hossein; Hashemzehi, Milad; Khazdair, Mohammad Reza; Askari, Vahid Reza

    2016-01-01

    Thestimulatory effect of the extract of Portulaca oleracea (P. olerace) on β-adrenoceptor of tracheal smooth muscle was examined.To examine β-adrenoceptor stimulatory effect, concentration response curve to isoprenaline was obtained in pre-contracted tracheal smooth muscle in the presence of three concentrations of aqueous-ethanolic extract, propranolol, and saline. Values of EC50 (the effective concentration of isoprenaline, causing 50% of maximum response) and dose ratio-1(CR-1) were measured. This effect was tested innon-incubated tracheal smooth muscle (group 1) and incubated tissues with chlorpheniramine (group 2). Concentration-response curves to isoprenaline in the presence of two higher concentrations of the extract in group 1 and all three concentrations in group 2 showed leftward shifts compared to isoprenaline curves produced in the presence of saline in both groups. EC50 obtained in the presence of propranolol was significantly higher than that of saline in both groups of experiments (p<0.05 for both cases). However, the EC50 obtained in the presence of two higher concentrations of the extract in group 1 and lower concentration in group 2 were non-significantly but those obtained of medium and high extract concentrations in the group 2 were significantly (p<0.05 for both cases)lower than those of saline. The values of (CR-1) obtained in the presence of all concentrations of the extract in groups1 and 2 were significantly lower than that of propranolol (p<0.05 to p<0.001).The results indicated a stimulatory effect of the P. olerace extract on ß 2-adrenoceptors of tracheal smooth muscle. PMID:28243284

  16. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  17. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Galbo, H

    1982-01-01

    The role of alpha- and beta-adrenergic receptor stimulation for the effect of epinephrine on muscle glycogenolysis, glucose- and oxygen uptake and muscle performance was studied in the perfused rat hindquarter at rest and during electrical stimulation (60 contractions/min). Adrenergic stimulation...... was obtained by epinephrine in a physiological concentration (2.4 X 10(-8) M) and alpha- and beta-adrenergic blockade by 10(-5) M phentolamine and propranolol, respectively. Epinephrine enhanced net glycogenolysis during contractions most markedly in slow-twitch red fibers. In these fibers the effect...... was mediated by alpha- as well as by beta-adrenergic stimulation, the latter involving production of cAMP, phosphorylase activation and synthase inactivation. In contrast, in fast-twitch fibers only beta-adrenergic mechanisms were involved in the glycogenolytic effect of epinephrine. Moreover, inactivation...

  18. Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation

    International Nuclear Information System (INIS)

    Hirst, D.G.; Denekamp, J.; Hobson, B.

    1980-01-01

    A continuous tritium labelling technique was employed to study the effects of external β-radiation on the proliferation of endothelial cells and smooth muscle cells in the mesenteric arterioles of mice. Calculations showed very long turnover times for the two cell populations in control animals (> 2 years for endothelium and > 3 years for smooth muscle). After single doses of 20 and 45 Gy, no significant increase in endothelial proliferation was seen except at 3 weeks. No significant increase in labelling was observed in smooth muscle up to 48 weeks after irradiation. These labelling data have been compared with the pattern of cell depletion of the irradiated endothelium. It was concluded that the depletion was much earlier than expected for a slowly proliferating tissue, if all the cells were cycling very slowly. Such an early depletion is, however, consistent with cell death resulting from a small proportion of the cells having a short cell cycle. The recovery of the endothelial cell numbers between 9 and 12 months was not accompanied by a rise in the fraction of labelled cells. It is suggested that repopulation may occur from outside the treated area. (author)

  19. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-01-01

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [ 35 S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  20. [Structure and function of suburothelial myofibroblasts in the human urinary bladder under normal and pathological conditions].

    Science.gov (United States)

    Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.

  1. Adverse effects of cyclosporine A on HSP25, alpha B-crystallin and myofibrillar cytoskeleton in rat heart

    International Nuclear Information System (INIS)

    Stacchiotti, Alessandra; Bonomini, Francesca; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita

    2009-01-01

    Cyclosporine (CsA) is a universally used immunosuppressive drug which induces adverse side effects in several organs, but its impact on the heart is still controversial. Small heat shock proteins (sHSPs), such as HSP25 and alpha B-crystallin, are cytoprotective stress proteins exceptionally represented in the heart. They act as myofibrillar chaperones that help actin and desmin to maintain their optimum configuration and stability, thereby antagonizing oxidative damage. The present study examined: (1) the cardiac distribution and abundance of HSP25 and alpha B-crystallin in rats receiving CsA at a therapeutic dosage (15 mg/kg/day) for 42 days and 63 days; (2) the presence of myofibrillar proteins, such as actin, alpha-actinin and desmin following the CsA treatments; (3) the subcellular effects of prolonged CsA exposure on the cardiomyocytes by histopathology and transmission electron microscopy. After 63 days CsA intake, sHSPs translocated from a regular sarcomeric pattern to peripheral sarcolemma and intercalated discs, together with actin and desmin. In contrast, the sarcomeric alpha-actinin pattern did not change in all experimental groups. The abundance of actin and HSP25 was unchanged in every time point of treatment while after 63 days CsA, alpha B-crystallin and desmin levels significantly decreased. Furthermore CsA induced fibrosis, irregular sarcomeric alignment and damaged desmosomes. These findings indicate that following prolonged CsA exposure, the cardiac muscle network was affected. In particular, the translocation of sHSPs to intercalated discs merits special consideration as a direct compensatory mechanism to limit CsA cardiotoxicity.

  2. Relaxation of soman-induced contracture of airway smooth muscle in vitro. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, M.G.; Moore, D.H.; Adler, M.

    1992-12-31

    A possible role for beta-adrenergic agonists in the management of bronchoconstriction resulting from exposure to anticholinesterase compounds was investigated in vitro in canine tracheal smooth muscle. Norepinephrine, salbutamol and isoproterenol produced partial relaxation of soman-induced contractures. However, the relaxation induced was not sustained; muscle tensions returned to pretreatment levels within minutes despite the continued presence of beta-agonists. Increasing cAMP levels with the non beta-agonist bronchodilators such as thoophylline, a phosphodiesterase inhibitor, or forskolin, a specific stimulator of adenylate cyclase, resulted in more complete and longer lasting relaxation, suggesting that beta-adrenoceptor desensitization may contribute to the failure by beta-agonists to produce sustained relaxation. Nerve agents, Soman, Toxicity, Airway smooth muscle, In vitro, Physiology, Effects.

  3. [3H]QNB binding and contraction of rabbit colonic smooth muscle cells

    International Nuclear Information System (INIS)

    Ringer, M.J.; Hyman, P.E.; Kao, H.W.; Hsu, C.T.; Tomomasa, T.; Snape, W.J. Jr.

    1987-01-01

    The authors used radioligand binding and studies of cell contraction to characterize muscarinic receptors on dispersed smooth muscle cells from rabbit proximal and distal colon. Cells obtained after serial incubations in collagenase were used to measure binding of tritiated quinuclidinyl benzilate ([ 3 H]QNB). At 37 degree C, specific [ 3 H]QNB binding was saturable and linearly related to cell number. Nonlinear regression analysis was used to determine the affinity of [ 3 H]QNB for its receptor. The IC 50 for the muscarinic agonists bethanechol and oxotremorine were 80 and 0.57 μM, respectively. Hill coefficients were 0.67 for both, suggesting more complex interaction involving receptors of different affinities. In studies of cell contraction, bethanechol stimulated a dose-dependent decrease in cell length with half the maximal contraction occurring at 100 pM. These results suggest that (1) contraction is mediated by binding of bethanechol to M 2 -muscarinic receptors and that (2) there are a large number of spare receptors in colonic smooth muscle

  4. Pulmonary Metastases of a Uterine Smooth Muscle Tumour with Undefined Malignancy Potential.

    Science.gov (United States)

    Esch, M; Teschner, M; Braesen, J-H

    2014-03-01

    Smooth muscle neoplasms with atypical proliferative behaviour, but without clear histopathological malignancy represent a diagnostic and therapeutic challenge, as distinction from a sarcoma can be difficult and no guaranteed treatment recommendations are available due to the rarity of these changes. In the event of uncertain primary histology, even metastases cannot be assessed as malignancy criteria, but may contribute to the clarification of the histology. Similarities with other smooth muscle proliferations, such as lymphangioleiomyomatosis, are striking. The diagnostic difficulties and treatment options are explained based on the example of a 59-year-old patient, in whom a retroperitoneal mass and pulmonary lesion of such a tumour occurred 4 years after a hysterectomy. Even though the genesis and histological diagnostics have not been conclusively clarified, slow growth and a low recurrence rate for post-menopausal patients allow for a wait-and-see approach, whereby the option for anti-hormonal treatment exists in the event of positive evidence of hormone receptors.

  5. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle

    DEFF Research Database (Denmark)

    Adhihetty, Peter J; Uguccioni, Giulia; Leick, Lotte

    2009-01-01

    Mitochondria are critical for cellular bioenergetics, and they mediate apoptosis within cells. We used whole body peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) knockout (KO) animals to investigate its role on organelle function, apoptotic signaling, and cytochrome......-c oxidase activity, an indicator of mitochondrial content, in muscle and other tissues (brain, liver, and pancreas). Lack of PGC-1alpha reduced mitochondrial content in all muscles (17-44%; P liver, and pancreas. However, the tissue expression of proteins involved...

  6. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  7. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/Wv mice

    Science.gov (United States)

    Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.

    2014-01-01

    The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836

  8. In vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus.

    Science.gov (United States)

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.

  9. Effects of Gymnodinium breve toxin on the smooth muscle preparation of guinea-pig ileum

    Science.gov (United States)

    Grunfeld, Y.; Spiegelstein, M.Y.

    1974-01-01

    1 The effects of Gymnodinium breve neurotoxin (GT) on smooth muscles were studied using the guinea-pig isolated ileum. 2 The toxin caused strong spasmogenic effects at 1-4 μg/ml, characterized by prolonged tonic contraction with superimposed pronounced pendular movements. Tachyphylaxis was observed upon administration of successive doses. 3 Atropine blocked the contractile response elicited by GT, whereas mepyramine and hexamethonium failed to do so. These findings tentatively suggested a cholinergic involvement at a post-ganglionic site of action. 4 In the presence of tetrodotoxin the effects of GT were abolished, excluding direct action of the toxin on the smooth muscle. 5 It is concluded that GT exerts its spasmogenic effects through stimulation of the post-ganglionic cholinergic nerve fibres. PMID:4155337

  10. Smooth Muscle Tumor Originating in the Pleura: A Case Report and Updated Literature Review

    Directory of Open Access Journals (Sweden)

    Santiago Fabián Moscoso Martínez

    2016-01-01

    Full Text Available Smooth muscle tumors (SMTs of the pleura are exceptionally rare. At present and to the best of these authors’ knowledge, there are only 17 cases reported in the literature. We describe a case of a 51-year-old woman who complained of left sided pleuritic chest pain. Further, computed tomography (CT revealed a left sided localized pleural-based mass involving the 9th rib. She underwent an interventional radiology guided percutaneous core biopsy of the lesion, which disclosed a “Smooth Muscle Tumor of Undetermined Malignant Potential (SMT-UMP.” A video-assisted thoracoscopic surgery (VATS was performed for diagnosis and treatment purposes. Resections of the pleural-based mass and 9th rib were performed. SMT-UMP was the definitive diagnosis.

  11. EZH2-mediated α-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs.

    Science.gov (United States)

    Chen, Rong; Kong, Peng; Zhang, Fan; Shu, Ya-Nan; Nie, Xi; Dong, Li-Hua; Lin, Yan-Ling; Xie, Xiao-Li; Zhao, Li-Li; Zhang, Xiang-Jian; Han, Mei

    2017-06-15

    Recent studies have revealed that long non-coding RNAs (lncRNAs) participate in vascular homeostasis and pathophysiological conditions development. But still very few literatures elucidate the regulatory mechanism of non-coding RNAs in this biological process. Here we identified lncRNA taurine up-regulated gene 1 (TUG1) in rat vascular smooth muscle cells (VSMCs), and got 4612bp nucleotide sequence. The expression level of TUG1 RNA was increased in synthetic VSMCs by real-time PCR analysis. Meanwhile, the expression of enhancer of zeste homolog 2 (EZH2) (TUG1 binding protein) increased in cytoplasm of VSMCs under the same conditions. Immunofluoresce analysis displayed the colocalization of EZH2 with α-actin in cytoplasm and F-actin in cell edge ruffles. This leads us to hypothesize the existence of cytoplasmic TUG1/EZH2/α-actin complex. Using RNA pull down assay, we found that TUG1 interacted with both EZH2 and α-actin. Disruption of TUG1 abolished the interaction of EZH2 with α-actin, and accelerated depolymerization of F-actin in VSMCs. Based on EZH2 methyltransferase activity and the potential methylation sites in α-actin structure, we revealed that α-actin was lysine-methylated. Furthermore, the methylation of α-actin was inhibited by knockdown of TUG1. In conclusion, these findings partly suggested that EZH2-mediated methylation of α-actin may be dependent on TUG1, and thereby promotes cortex F-actin polymerization in synthetic VSMCs. Copyright © 2017. Published by Elsevier B.V.

  12. Mixed endometrial stromal and smooth muscle tumor: report of a case with focal anaplasia and early postoperative lung metastasis.

    Science.gov (United States)

    Shintaku, Masayuki; Hashimoto, Hiromi

    2013-04-01

    A rare case of a mixed endometrial stromal and smooth muscle tumor arising in the uterus of a 74-year-old woman is reported. The patient underwent hysterectomy for an enlarging uterine mass, and a large intramural tumor, showing marked central hyaline necrosis with calcification, was found. The tumor consisted of an admixture of a low-grade endometrial stromal sarcoma (ESS) and a fascicular proliferation of spindle cells suggesting smooth muscle differentiation, and a characteristic 'star-burst' appearance was found. In the ESS region, there were a few small foci of anaplasia where large polygonal cells with atypical nuclei and abundant eosinophilic cytoplasm proliferated, and the proliferative activity was locally increased in these foci. A small metastatic nodule appeared in the lung nine months after the hysterectomy, and the resected metastatic lesion showed features of anaplastic spindle cell sarcoma which was immunoreactive for CD10 but not for smooth muscle markers. Mixed endometrial stromal and smooth muscle tumors should be regarded as malignant neoplasms with the potential for hematogenous metastasis, particularly when they contain foci of cellular anaplasia. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  13. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    Science.gov (United States)

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Niu Huanzhang; Teng Gaojun; Wang Zihao; Zhang Dongsheng; Fang Juanjuan

    2007-01-01

    Objective: To investigate the effect of arsenic trioxide (As 2 O 3 ) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As 2 O 3 . Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As 2 O 3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As 2 O 3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P 2 O 3 , normal drug form of As 2 O 3 and control group of cells without As 2 O 3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  15. Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics.

    Science.gov (United States)

    Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro

    2015-12-01

    and reproducible method of generating functional vascular smooth muscle cells. ©AlphaMed Press.

  16. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...

  17. Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats

    Directory of Open Access Journals (Sweden)

    Graziele Halmenschlager

    2017-10-01

    Conclusion: Normal testosterone levels maintain CC smooth muscle content and do not influence elastic fibers, collagen content and apoptotic index. Further studies should be performed in order to investigate the mechanisms by which androgen mediates its effects on CC structure.

  18. Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling

    NARCIS (Netherlands)

    Gosens, Reinout; Bos, I.S.; Zaagsma, Hans; Meurs, Herman

    2005-01-01

    Rationale: Recent findings have demonstrated that muscarinic M-3 receptor stimulation enhances airway smooth muscle proliferation to peptide growth factors in vitro. Because both peptide growth factor expression and acetylcholine release are known to be augmented in allergic airway inflammation, it

  19. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  1. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury.

    Science.gov (United States)

    Thyberg, J

    1998-07-01

    Smooth muscle cells build up the media of mammalian arteries and constitute one of the principal cell types in atherosclerotic and restenotic lesions. Accordingly, they show a high degree of plasticity and are able to shift from a differentiated, contractile phenotype to a less differentiated, synthetic phenotype, and then back again. This modulation occurs as a response to vascular injury and includes a prominent structural reorganization with loss of myofilaments and formation of an extensive endoplasmic reticulum and a large Golgi complex. At the same time, the expression of cytoskeletal proteins and other gene products is altered. As a result, the cells lose their contractility and become able to migrate from the media to the intima, proliferate, and secrete extracellular matrix components, thereby contributing to the formation of intimal thickenings. The mechanisms behind this change in morphology and function of the smooth muscle cells are still incompletely understood. A crucial role has been ascribed to basement membrane proteins such as laminin and collagen type IV and adhesive proteins such as fibronectin. A significant role is also played by mitogenic proteins such as platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF). An improved knowledge of the regulation of smooth muscle differentiated properties represents an important part in the search for new methods of prevention and treatment of vascular disease.

  2. Potassium and ANO1/TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis

    Science.gov (United States)

    Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J

    2012-01-01

    BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103

  3. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    Science.gov (United States)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  4. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  5. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  6. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture.

    Science.gov (United States)

    Wallace, Charles S; Strike, Sophie A; Truskey, George A

    2007-09-01

    Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.

  7. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  8. Effect of aqueous extract of mango kernel (Mangifera Indica on basal activity of virgin rat uterine smooth muscle: role of muscarinic receptors

    Directory of Open Access Journals (Sweden)

    Mehdi Noureddini

    2017-04-01

    Full Text Available Background: Mango belongs to the Anacardiaceae and the extracts from its stems, leaves, fruit and kernel are reported to affect smooth muscle contractility. We studied the role of cholinergic muscarinic receptors for the effects of aqueous extract of mango kernel (Mangifera indica on the basal activity of virgin rat uterine smooth muscle. Materials and Methods: In this experimental study, mid-sections (n=24 of the uterine of healthy virgin rats were placed in an organ bath containing carbonated Tyrode’s solution under 1 g tension. The cumulative effects of the aqueous extracts of mango kernel (0.002, 0.02, 0.2, 2, 20, 200, and 2000 μg/mL or extract vehicle (Tyrode’s solution in the presence or absence of atropine were examined by isometric method using the strength, frequency and contractile activity of uterine smooth muscle. Results: The cumulative concentrations (0.002-20 µg/ml of mango kernel aqueous extract was significantly decreased the strength, frequency and contractile activity of uterine smooth muscle, but the contractile activity was returned to the basal level at the concentrations of 200 and 2000 µg/ml. Atropine (1 µM could not significantly change the effects of cumulative use of extract on the strength and contractile activity of uterine smooth muscle, but it significantly enhanced the contractile frequency at low concentrations. Conclusion: The effects of aqueous extract of mango kernel on the activity of the uterine smooth muscle might not be through cholinergic muscarinic receptors and atropine could enhance the effects of the extract on frequency through other receptors.

  9. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Gong

    Full Text Available To investigate the effects of four strains, generally used in clinic, including Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis, and their related products on human colonic smooth muscle in vitro.Human colonic circular muscle strips obtained from disease-free margins of resected segments from 25 patients with colorectal cancer were isometrically examined in a constant-temperature organ bath and exposed to different concentrations of living bacteria, sonicated cell fractions and cell-free supernatant (CFS. The area under the curve (AUC representing the contractility of smooth muscle strips was calculated.(1 The four living probiotics inhibited the contractility of human colonic muscle strips only at high concentration (1010 CFUs/mL, all P0.05.Four common probiotics related products, including the sonicated cell fractions and the CFS, obviously inhibited human colonic smooth muscles strips contraction in a dose-dependent manner. Only high concentration living probiotics (1010 CFUs/mL can inhibit the colonic smooth muscles strips contraction. The NO pathway may be partly involved in the inhibitory effect of CFS from Streptococcus thermophilus and Enterococcus faecalis.

  10. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Meera C. Viswanathan

    2017-09-01

    Full Text Available Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.

  11. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  12. [Mg2+, ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties].

    Science.gov (United States)

    Veklich, T O; Mazur, Iu Iu; Kosterin, S O

    2015-01-01

    Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Ca2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Ca2+ concentration in cytoplasm is Mg2+, ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change Mg2+, ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca(2+)-pump. Stuctural oganization, kinetical properties and molecular biology are considered.

  13. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  14. Microscopic changes induced by Cr-VI in smooth muscles of albino mice

    International Nuclear Information System (INIS)

    Nabeel, H.

    2007-01-01

    Chromium is believed to be an essential trace element in human nutrition. Evidence suggests that it plays an important role in normal carbohydrate metabolism. It was found that patients receiving long-term total parenteral nutrition (TPN) without chromium developed glucose intolerance, weight loss and peripheral neuropathy Chromium is present in a normal diet at trace (but essential) levels. Occupational exposure is related to the industrial uses of chrome compounds in production and use of steels, pigments, leather tanning and wood preservation solutions, plating chemicals, and cement. Toxicity is predominantly associated with industrial exposures. Hexavalent chromium compounds appear to have greatest toxicity and almost all tissues of body are affected. To evaluate the effects on smooth muscles, present study was carried out. The mice of experimental group (2wks, 4wks, 6wks ,and 8wks) were injected Potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/) intraperitoneally according to experimental design. The drug caused slight to marked inflammation of smooth muscle fibers and vaculations of nuclei was also observed indicating degenerative changes. (author)

  15. Mg(2+,ATP-dependent plasma membrane calcium pump of smooth muscle cells. ІІ. Regulation of activity

    Directory of Open Access Journals (Sweden)

    T. О. Veklich

    2015-04-01

    Full Text Available Plasma membrane Ca2+-pump is one of key proteins, which takes part in Ca2+ exchange in smooth muscle cells. It has a lot of diverse functions from control of basal cytoplasmal Ca2+ concentration to regulation of proteins involved in Ca2+-dependent signal pathway. Ca2+ pump function is often depen­dent on the isoform or even form of alternative splicing. Allowing for a variety of Ca2+-pump functions and properties, which were reviewed in detail in the first part of our review article cycle (Ukr. Biochem. J., 2015; 87(1, the precise control of the mentioned pump activity is very important for cell functioning­. The other part of this article is dedicated to different regulation factors of smooth muscle plasma membrane Ca2+-pump activity: endogenous and exo­genous, biotic and abiotic factors. Special attention is given to literature data and own results about design and the search of selective plasma membrane Ca2+-pump inhibitor which would allow examining its functioning in smooth muscle cells more meticulously.

  16. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, H; Leusink, J; Bos, I Sophie T; Zaagsma, J; Meurs, H

    2006-01-01

    Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production - due to competition with neuronal

  17. Smooth muscle cell phenotypic switching in stroke.

    Science.gov (United States)

    Poittevin, Marine; Lozeron, Pierre; Hilal, Rose; Levy, Bernard I; Merkulova-Rainon, Tatiana; Kubis, Nathalie

    2014-06-01

    Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.

  18. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex

    Science.gov (United States)

    Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.

    2010-01-01

    SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990

  19. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE binds to alpha-actinin 1: novel pathways in skeletal muscle?

    Directory of Open Access Journals (Sweden)

    Shira Amsili

    Full Text Available BACKGROUND: Hereditary inclusion body myopathy (HIBM is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. METHODOLOGY/PRINCIPAL FINDINGS: We used a Surface Plasmon Resonance (SPR-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. CONCLUSIONS/SIGNIFICANCE: The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM.

  20. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis

    NARCIS (Netherlands)

    Hillebrands, JL; van den Hurk, BMH; Klatter, FA; Popa, ER; Nieuwenhuis, P; Rozing, J

    2000-01-01

    Background: Coronary artery disease is today's most important post-heart transplantation problem after the first perioperative year. Histologically, coronary artery disease is characterized by transplant arteriosclerosis. The current view on this vasculopathy is that vascular smooth muscle (VSM)

  1. Retigabine diminishes the effects of acetylcholine, adrenaline and adrenergic agonists on the spontaneous activity of guinea pig smooth muscle strips in vitro.

    Science.gov (United States)

    Apostolova, Elisaveta; Zagorchev, Plamen; Kokova, Vesela; Peychev, Lyudmil

    2017-03-01

    The aim of this study is to evaluate the effect of retigabine on the smooth muscle response to acetylcholine, adrenaline, α-and β-adrenoceptor agonists. We studied the change in the spontaneous smooth muscle contraction of guinea pig gastric corpus strips before and after 20-min treatment with 2μM retigabine. We also evaluated the effect of retigabine on the smooth muscle response to 10μM acetylcholine, 1 and 10μM adrenaline, 1μM methoxamine, 0.1μM p-iodoclonidine and 10μM isoproterenol. We observed a significant reduction in the effects of all studied mediators and agonists when they were added to organ baths in the presence of retigabine. Retigabine diminished the effect of acetylcholine on the spontaneous smooth muscle activity. The effect was fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the role of KCNQ channels in the registered changes. The increase in the contraction force after adding of 1μM adrenaline, methoxamine, and 0.1μM p-iodoclonidine was also significantly smaller in presence of retigabine. However, comparing the effect of 10μM adrenaline on the contractility before and after treatment with retigabine, we observed increased contractility when retigabine was present in the organ baths. A possible explanation for the observed diminished effects of mediators and receptor agonists is that the effect of retigabine on smooth muscle contractility is complex. The membrane hyperpolarization, the interaction between Kv7 channels and adrenoceptors, and the influence on signaling pathways may contribute to the summary smooth muscle response. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Histochemical and immunohistochemical analyses of the myocardial scar fallowing acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Tatić Vujadin

    2012-01-01

    Full Text Available Background/Aim. The heart has traditionally been considered as a static organ without capacity of regeneration after trauma. Currently, the more and more often asked question is whether the heart has any intrinsic capacities to regenerate myocytes after myocardial infarction. The aim of this study was to present the existence of the preserved muscle fibers in the myocardial scar following myocardial infarction as well as the presence of numerous cells of various size and form that differently reacted to the used immunohistochemical antibodies. Methods. Histological, histochemical and immunohistochemical analyses of myocardial sections taken from 177 patients who had died of acute myocardial infarction and had the myocardial scar following myocardial infarction, were carried out. More sections taken both from the site of acute infarction and scar were examined by the following methods: hematoxylin-eosin (HE, periodic acid schiff (PAS, PAS-diastasis, Masson trichrom, Malory, van Gieson, vimentin, desmin, myosin, myoglobin, alpha actin, smoth muscle actin (SMA, p53, leukocyte common antigen (LCA, proliferating cell nuclear antigen (PCNA, Ki-67, actin HHF35, CD34, CD31, CD45, CD45Ro, CD8, CD20. Results. In all sections taken from the scar region, larger or smaller islets of the preserved muscle fibers with the signs of hypertrophy were found. In the scar, a large number of cells of various size and form: spindle, oval, elongated with abundant cytoplasm, small with one nucleus and cells with scanty cytoplasm, were found. The present cells differently reacted to histochemical and immunohistochemical methods. Large oval cells showed negative reaction to lymphocytic and leukocytic markers, and positive to alpha actin, actin HHF35, Ki-67, myosin, myoglobin and desmin. Elongated cells were also positive to those markers. Small mononuclear cells showed positive reaction to lymphocytic markers. Endothelial and smooth muscle cells in the blood vessel walls

  3. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-01-01

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A 2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy

  4. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  5. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  6. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis.

    Science.gov (United States)

    Anjum, Irfan; Denizalti, Merve; Kandilci, Hilmi Burak; Durlu-Kandilci, Nezahat Tugba; Sahin-Erdemli, Inci

    2017-11-05

    Interstitial cystitis is a chronic disease characterized by lower abdominal pain and some nonspecific symptoms including an increase in urinary frequency and urgency. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that controls smooth muscle tone via G-protein coupled receptors (S1P 1-3 receptors). S1P production is known to take place both in physiological states and some pathological situations, such as in overactive bladder syndrome. The intracellular mechanism of S1P-induced contractile response was investigated in β-escin permeabilized detrusor smooth muscle of rats having cyclophosphamide-induced cystitis. The bladder was isolated from rats and detrusor smooth muscle strips were permeabilized with β-escin. S1P (50µM)-induced contraction and calcium sensitization response were significantly increased in cystitis. S1P-induced augmented contractile response was inhibited by S1P 2 receptor antagonist JTE-013 and S1P 3 receptor antagonist suramin. S1P 2 receptor protein expressions were increased in cystitis, where no change was observed in S1P 3 expressions between control and cystitis groups. S1P-induced contraction was reduced by Rho kinase (ROCK) inhibitor Y-27632 and protein kinase C (PKC) inhibitor GF-109203X in both control and cystitis group. S1P-induced increased calcium sensitization response was decreased by ROCK inhibitor and PKC inhibitor in cystitis. Our findings provide the first evidence that interstitial cystitis triggers S1P-induced increase in intracellular calcium in permeabilized detrusor smooth muscle of female rats. Both S1P 2 and S1P 3 receptors are involved in S1P mediated enhanced contractile response. The augmentation in S1P-induced contraction in interstitial cystitis involves both PKC and ROCK pathways of calcium sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weiping, E-mail: weiping.qin@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Department of Rehabilitation Medicine, Mount Sinai School of Medicine, NY (United States); Cardozo, Christopher, E-mail: Chris.Cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Department of Rehabilitation Medicine, Mount Sinai School of Medicine, NY (United States)

    2010-12-17

    Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis, REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius

  9. Functional Modeling of the Shift in Cellular Calcium Dynamics at the Onset of Synchronization in Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Postnov, D E; Brings Jacobsen, J C; von Holstein-Rathlou, Niels-Henrik

    2011-01-01

    In the present paper we address the nature of synchronization properties found in populations of mesenteric artery smooth muscle cells. We present a minimal model of the onset of synchronization in the individual smooth muscle cell that is manifested as a transition from calcium waves to whole......-cell calcium oscillations. We discuss how different types of ion currents may influence both amplitude and frequency in the regime of whole-cell oscillations. The model may also explain the occurrence of mixed-mode oscillations and chaotic oscillations frequently observed in the experimental system....

  10. Intestinal smooth muscle response to chronic obstruction : possible applications in jejunoileal atresia.

    Science.gov (United States)

    Cloutier, R

    1975-02-01

    Hyperplasia is the main change occurring in intestinal smooth muscle above a chronic obstruction and explains the functional obstruction seen in the proximal bowel of a jejunoileal atresia. With an experimental model in dogs, this hyperplasia has been shown to be reversible. However, changes are extreme in atresia, and experiments in animals with induced atresia will best evaluate various kinds of treatment.

  11. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  12. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    . To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hi......PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize...

  13. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    NARCIS (Netherlands)

    Bartolini, B.; Thelin, M.A.; Svensson, L.; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS

  14. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    Science.gov (United States)

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    International Nuclear Information System (INIS)

    McCarthy, L.; Van Halen, R.G.; St Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-01-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 μM T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by [ 3 H]thymidine incorporation or cell number. The IC 50 for T was approximately 5 μM. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 μg/ml cholesterol or 130 μg/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo

  16. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, L.; Van Halen, R.G.; St. Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 ..mu..M T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by (/sup 3/H)thymidine incorporation or cell number. The IC/sub 50/ for T was approximately 5 ..mu..M. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 ..mu..g/ml cholesterol or 130 ..mu..g/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo.

  17. VRP09 Reduction of Corneal Scarring Following Blast and Burn Injuries to Cornea Using siRNAs Targeting TGFb and CTGF

    Science.gov (United States)

    2013-03-01

    aSMA ) synthesis. Second, we proposed to develop an advanced ex vivo organ culture system using viable explants of rabbit corneas, and assess the...effect of the most effective triple siRNA combination for reduction of target genes, collagen and alpha smooth muscle actin ( aSMA ) in rabbit corneas...targeting three key genes (TGFb, TGFbRII, and CTGF) that synergistically reduces the level of mRNAs for type I collagen gene and aSMA by >95% without

  18. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  19. Morphology of the lateral pterygoid muscle associated to the mandibular condyle in the human prenatal stage.

    Science.gov (United States)

    Carranza, Miriam L; Carda, Carmen; Simbrón, Alicia; Quevedo, María C Sánchez; Celaya, Gabriela; de Ferraris, Maria Elsa Gómez

    2006-01-01

    The lateral pterygoid muscle (LPM) inserts at the condyle and the articular disc and plays a central role in mandibular movement via the Temporomandibular Articular Complex. The aim of this study was to examine the association between the morphology of LPM muscular fascicles and the degree of mineralization of the mandibular condyle in the prenatal stage employing structural, ultrastructural and microanalytical evaluation. Sixteen human fetuses at 11-37 weeks of gestation, with no apparent pathology and resulting from spontaneous abortions, were included in the study. Samples from lateral pterygoid muscle and the mandibular condyle were processed for light microscopy and electron microscopy and microanalysis. Desmin immunolabeling (dilution 1: 25 Dako) and alpha sarcomeric actin immunolabeling (dilution 1:50 Dako) employing the avidin-biotin system were used in paraffin embedded samples. Contralateral samples were examine by transmission electron microscopy. Four condyles (at 17-21 weeks of gestation) were used to measure the relative content of calcium and phosphorous employing the X-ray diffraction microanalytical technique. At 11-16 weeks of gestation, the LPM was composed of secondary myotubes associated to satellite cells and nerve fibers. At 18 weeks, the muscle exhibited multiple compact fascicles and the condyle showed a thin, external, subperiostal mineralized layer with few central bone spicules. At 20 weeks, at the site of insertion of the LPM, the bone trabeculae of the condyle contained an electrondense matrix with abundant mineralization nuclei. At 17-21 weeks of gestation no significant variations in the contents of phosphorous and calcium were observed. At 24 weeks, transmission electron calcium and microscopy studies revealed a marked increase in the functional units of the muscle fascicles. Also, at this age muscle fibers exhibited differences in the expression of desmin and alpha sarcomeric actin. At 37 weeks the muscle became multipennate in

  20. Resveratrol blocks interleukin-18-EMMPRIN cross-regulation and smooth muscle cell migration

    OpenAIRE

    Venkatesan, Balachandar; Valente, Anthony J.; Reddy, Venkatapuram Seenu; Siwik, Deborah A.; Chandrasekar, Bysani

    2009-01-01

    Vascular smooth muscle cell (SMC) migration is an important mechanism in atherogenesis and postangioplasty arterial remodeling. Previously, we demonstrated that the proinflammatory cytokine interleukin (IL)-18 is a potent inducer of SMC migration. Since extracellular matrix metalloproteinase inducer (EMMPRIN) stimulates ECM degradation and facilitates cell migration, we investigated whether IL-18 and EMMPRIN regulate each other's expression, whether their cross talk induces SMC migration, and...

  1. α-Trinositol inhibits FGF-stimulated growth of smooth muscle and breast cancer cells

    International Nuclear Information System (INIS)

    Siren, Matti J.; Vainiomaeki, Maija; Vaeaenaenen, Kalervo; Haerkoenen, Pirkko

    2004-01-01

    α-Trinositol (D-myo-inositol-1,2,6-trisphosphate), an isomer of the intracellular messenger IP 3 , has been studied for its anti-inflammatory and other effects in animal experiments and in human. The mechanisms of action remain unknown. Several human pathologies are associated with uncontrolled production of fibroblast growth factors (FGFs). FGF-2 induces vascular smooth muscle cell proliferation, which contributes to restenosis after coronary balloon angioplasty. The expression of several FGFs is also increased in tumors. We studied the effects of the water- and lipid-soluble derivatives of α-trinositol on the FGF-2- and/or FGF-8-induced proliferation of human pulmonary artery smooth muscle cells (HPASMC) and S115 mouse breast cancer cells. α-Trinositol decreased the FGF-mediated proliferation of HPASMC and S115 cells. Membrane permeability did not seem obligatory since the lipid-soluble form of α-trinositol was less effective than the water-soluble derivative. These results suggest a new biological function for certain phosphoinositides in the modulation of FGF-regulated processes

  2. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  3. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    DEFF Research Database (Denmark)

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor pot...

  4. Ayurvedic preparation of Zingiber officinale Roscoe: effects on cardiac and on smooth muscle parameters.

    Science.gov (United States)

    Leoni, Alberto; Budriesi, Roberta; Poli, Ferruccio; Lianza, Mariacaterina; Graziadio, Alessandra; Venturini, Alice; Broccoli, Massimiliano; Micucci, Matteo

    2017-08-28

    The rhizome of the Zingiber officinale Roscoe, a biennial herb growing in South Asia, is commonly known as ginger. Ginger is used in clinical disorders, such as constipation, dyspepsia, diarrhoea, nausea and vomiting and its use is also recommended by the traditional medicine for cardiopathy, high blood pressure, palpitations and as a vasodilator to improve the circulation. The decoction of ginger rhizome is widely used in Ayurvedic medicine. In this papery by high-performance liquid chromatography, we have seen that its main phytomarkers were 6-gingerol, 8-gingerol and 6-shogaol and we report the effects of the decoction of ginger rhizome on cardiovascular parameters and on vascular and intestinal smooth muscle. In our experimental models, the decoction of ginger shows weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on ileum is greater than on aorta: EC 50  = 0.66 mg/mL versus EC 50  = 1.45 mg/mL.

  5. Pulmonary lymphangioleiomyomatosis - a case report

    Directory of Open Access Journals (Sweden)

    Chun-Jie Li

    2015-01-01

    Full Text Available Pulmonary lymphangioleiomyomatosis (PLAM is a rare disease, occurs in 16-68-year-old women, especially in women of childbearing age. High-resolution computed tomography would be useful for diagnosis of PLAM. Immunohistochemistry of  smooth muscle actin (SMA and HMB-45 smooth muscle cells was positive for smooth muscle cells. Progesterone receptor and estrogen receptor in some smooth muscle cells were positive for some smooth muscle cells. HMB-45-positive diagnosis of the disease is more important.

  6. The nature of the globular- to fibrous-actin transition.

    Science.gov (United States)

    Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro

    2009-01-22

    Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.

  7. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Science.gov (United States)

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  8. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK......, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2......-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose...

  9. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles.

    Science.gov (United States)

    Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish

    2002-08-01

    We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.

  10. LC/MS/MS data analysis of the human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor

    Directory of Open Access Journals (Sweden)

    Craig C. Ulrich

    2015-09-01

    Full Text Available The data described in this article is the subject of an article in the American Journal of Physiology: Cell Physiology, titled “The Human Uterine Smooth Muscle S-nitrosoproteome Fingerprint in Pregnancy, Labor, and Preterm Labor” (doi:10.1152/ajpcell.00198.2013 (Ulrich et al., 2013 [1]. The data described is a large scale mass spectrometry data set that defines the human uterine smooth muscle S-nitrosoproteome differences among laboring, non-laboring, preterm laboring tissue after treatment with S-nitrosoglutathione.

  11. Smooth muscle enfoldment internal sphincter construction after intersphincteric resection for rectal cancer.

    Directory of Open Access Journals (Sweden)

    Heiying Jin

    Full Text Available To assess smooth muscle enfoldment and internal sphincter construction (SMESC for improvement of continence after intersphincteric resection (ISR for rectal cancer.Twenty-four Bama miniature pigs were randomly divided into a conventional ISR group and experimental SMESC group, with 12 pigs in each group. The proximal sigmoid colon was anastomosed directly to the anus in the ISR group. In the SMESC group, internal sphincter construction was performed. At 12 weeks before and after surgery, rectal resting pressure and anal canal length were assessed. Three-dimensional ultrasound was used to determine the thickness of the internal sphincter. After the animals were sacrificed, the rectum and anus were resected and pathological examinations were performed to evaluate the differences in sphincter thickness and muscle fibers.All 24 animals in the SMESC group and the ISR group survived the surgery. Twelve weeks post-surgery, the rectal resting pressure, length of the anal high-pressure zone and the postoperative internal sphincter thickness for the ISR group were significantly lower than for the SMESC group. There was a thickened area (about 2 cm above the anastomotic stoma among animals from the SMESC group; in addition, the smooth muscles were significantly enlarged and enfolded when compared to the ISR group.This animal model study shows that the SMESC procedure achieved acceptable reconstruction of the internal anal neo-sphincter (IAN/S, without increasing surgical risk. However, the findings in this experimental animal model must be confirmed by clinical trials to determine the safety and efficacy of this procedure in clinical practice.

  12. Smooth muscle enfoldment internal sphincter construction after intersphincteric resection for rectal cancer.

    Science.gov (United States)

    Jin, Heiying; Zhang, Bei; Yao, Hang; Du, Yonghong; Wang, Xiaofeng; Leng, Qiang

    2014-01-01

    To assess smooth muscle enfoldment and internal sphincter construction (SMESC) for improvement of continence after intersphincteric resection (ISR) for rectal cancer. Twenty-four Bama miniature pigs were randomly divided into a conventional ISR group and experimental SMESC group, with 12 pigs in each group. The proximal sigmoid colon was anastomosed directly to the anus in the ISR group. In the SMESC group, internal sphincter construction was performed. At 12 weeks before and after surgery, rectal resting pressure and anal canal length were assessed. Three-dimensional ultrasound was used to determine the thickness of the internal sphincter. After the animals were sacrificed, the rectum and anus were resected and pathological examinations were performed to evaluate the differences in sphincter thickness and muscle fibers. All 24 animals in the SMESC group and the ISR group survived the surgery. Twelve weeks post-surgery, the rectal resting pressure, length of the anal high-pressure zone and the postoperative internal sphincter thickness for the ISR group were significantly lower than for the SMESC group. There was a thickened area (about 2 cm) above the anastomotic stoma among animals from the SMESC group; in addition, the smooth muscles were significantly enlarged and enfolded when compared to the ISR group. This animal model study shows that the SMESC procedure achieved acceptable reconstruction of the internal anal neo-sphincter (IAN/S), without increasing surgical risk. However, the findings in this experimental animal model must be confirmed by clinical trials to determine the safety and efficacy of this procedure in clinical practice.

  13. PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Leone Teresa C

    2005-01-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha-/- mice. With age, the PGC-1alpha-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  14. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  15. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    Science.gov (United States)

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  17. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  18. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Soon-Youn Choi

    Full Text Available Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4. The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3 and decreased the expression of dickkopf-related protein-1 (DKK-1 in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  19. Tissue remodeling and nonendometrium-like menstrual cycling are hallmarks of peritoneal endometriosis lesions.

    Science.gov (United States)

    Sohler, Florian; Sommer, Anette; Wachter, David L; Agaimy, Abbas; Fischer, Oliver M; Renner, Stefan P; Burghaus, Stefanie; Fasching, Peter A; Beckmann, Matthias W; Fuhrmann, Ulrike; Strick, Reiner; Strissel, Pamela L

    2013-01-01

    We identified differentially expressed genes comparing peritoneal endometriosis lesions (n = 18), eutopic endometrium (n = 17), and peritoneum (n = 22) from the same patients with complete menstrual cycles using microarrays (54 675 probe sets) and immunohistochemistry. Peritoneal lesions and peritoneum demonstrated 3901 and 4973 significantly differentially expressed genes compared to eutopic endometrium, respectively. Peritoneal lesions significantly revealed no correlation with a specific menstrual cycle phase by gene expression and histopathology, exhibited low expressed proliferation genes, and constant levels of steroid hormone receptor genes. Tissue remodeling genes in cytoskeleton, smooth muscle contraction, cellular adhesion, tight junctions, and O-glycan biosynthesis were the most significant to lesions, including desmin and smooth muscle myosin heavy chain 11. Protein expression and location of desmin, alpha-actin, and h-caldesmon in peritoneal lesions discriminated between smooth muscle hyperplasia and metaplasia. Peritoneal lesions demonstrate no menstrual cycle phasing but constant steroid hormone receptor expression where a slow but steady growth is linked with tissue remodeling. Our study contributes to the molecular pathology of peritoneal endometriosis and will help to identify clinical targets for treatment and management.

  20. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype

    NARCIS (Netherlands)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic

  1. Lower lid entropion secondary to treatment with alpha-1a receptor antagonist: a case report

    Directory of Open Access Journals (Sweden)

    Simcock Peter

    2010-03-01

    Full Text Available Abstract Introduction The use of alpha-1a receptor antagonists (tamsulosin is widely accepted in the treatment of benign prostatic hypertrophy (BPH. It has previously been implicated as a causative agent in intra-operative floppy iris syndrome due to its effects on the smooth muscle. We report a case of lower lid entropion that may be related to a patient commencing treatment of tamsulosin. Case presentation A 74-year-old Caucasian man was started on alpha 1-a receptor antagonist (Tamsulosin treatment for benign prostatic hypertrophy. Eight days later, he presented to the ophthalmology unit with a right lower lid entropion which was successfully treated surgically with a Weiss procedure. Conclusion We report a case of lower lid entropion that may be secondary to the recent use of an alpha-1a blocker (tamsulosin. This can be explained by considering the effect of autonomic blockade on alpha-1 receptors in the Muller's muscle on a patient that may already have an anatomical predisposition to entropion formation due to a further reduction in muscle tone.

  2. Bitter Taste Receptors in The Wrong Place: Novel Airway Smooth Muscle Targets For Treating Asthma

    OpenAIRE

    Liggett, Stephen B.

    2014-01-01

    There is a need to expand the classes of drugs used to treat obstructive lung diseases to achieve better outcomes. With only one class of direct bronchodilators (β-agonists), we sought to find receptors on human airway smooth muscle (ASM) that act via a unique mechanism to relax the muscle, have a diverse agonist binding profile to enhance the probability of finding new therapeutics, and relax ASM with equal or greater efficacy than β-agonists. We have found that human and mouse ASM express s...

  3. Influence of 103Pd radioactive stent on apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu Yingmei; Wu Wei; Chen Xiaochao; Zhang Xuming; Wang Jingfeng; Wei Yulin; Yang Li

    2003-01-01

    Objective: To evaluate the influence of 103 Pd radioactive stent on apoptosis and its relative genes bcl-2 and bax in injured vascular media smooth muscle cells of rabbit abdominal arteries and to investigate the mechanism of 103 Pd radioactive stent for preventing restenosis after angioplasty. Methods: Fifty male New Zealand rabbits were randomized into stent group and 103 Pd stent group. Each group was subdivided into 5 sub-groups. Control group was set up. The study arteries were harvested at 3, 7, 14, 28 and 56 d after stenting and the pathomorphology, apoptosis analysis and in situ hybridization were performed to evaluate the expression of bcl-2 and bax mRNA. Results: The severity of the restenosis in 103 Pd stent group was less than that of stent group. It was most obvious at the 56th day (P 103 Pd stent group had much more apoptosis of vascular smooth muscle cells than stent group did and reached the peak at the 7th day, (14.72±0.53)% vs (12.42±1.13)% (P 103 Pd stent group was much lower than that of stent group at 3 to 28 d. The difference was most obvious at the 28th day after stenting, (18.43± 0.67)% vs (21.55±0.93)% (P 103 Pd stent group was higher than that of stent group, the peak was at the 7th day, (11.17±0.94)% vs (9.30±1.01)%. The ratio of bcl-2/bax in 103 Pd stent group was much lower than that of stent group at 3 to 28 d. Linear correlation analysis showed that there was significant negative correlation between bcl-2 mRNA and apoptosis. Between bax mRNA and apoptosis, the positive correlation was found (P 103 Pd radioactive stent induced more significant apoptosis in vascular media smooth muscle cells by promoting the expression of apoptosis related genes and relieved the expanding of restenosis

  4. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Wojtaszewski, Jørgen F P; Johansen, Sune T.

    2008-01-01

    The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed....... Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared...

  5. Involvement of Rac1 and the actin cytoskeleton in insulin- and contraction-stimulated intracellular signaling and glucose uptake in mature skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke

    understood. The aim of the current PhD was therefore to investigate the involvement of Rac1 and the actin cytoskeleton in the regulation of insulin- and contraction-stimulated glucose uptake in mature skeletal muscle. The central findings of this PhD thesis was that Rac1 was activated by both insulin...

  6. Primary rhabdomyosarcoma of the sacrum: a case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Hakozaki, Michiyuki [Fukushima Medical University School of Medicine, Department of Orthopaedic Surgery, Fukushima (Japan); Fukushima Medical University School of Medicine, First Department of Pathology, Fukushima (Japan); Hojo, Hiroshi; Kuze, Tetsuo; Abe, Masafumi [Fukushima Medical University School of Medicine, First Department of Pathology, Fukushima (Japan); Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi [Fukushima Medical University School of Medicine, Department of Orthopaedic Surgery, Fukushima (Japan); Kikuta, Atsushi [Fukushima Medical University School of Medicine, Department of Pediatrics, Fukushima (Japan); Qualman, Stephen J. [Ohio Children' s Hospital and Ohio State University School of Medicine, Department of Laboratory Medicine and IRSG Pathology Center, Columbus, OH (United States)

    2008-07-15

    We describe herein a rare case of primary rhabdomyosarcoma (RMS) occurring in the sacrum. A 16-year-old woman presented with a 2-month history of pain in bilateral buttocks and posterior thighs. Computed tomography showed a primary tumor with bone destruction in the 2nd sacral vertebra and invasion to the 1st to 3rd vertebrae and retroperitoneal space. Histological examination of the tumor showed proliferation of spindle-shaped cells intermingled with rhabdomyoblasts in a fascicular and storiform growth pattern. Tumor cells showed immunoreactivity for vimentin, desmin, muscle-specific actin, sarcomeric actin, {alpha}-smooth muscle actin and CD99, and partial immunoreactivity for myoD1, myf-4, myogenin and myoglobin. Reverse transcription polymerase chain reaction demonstrated expression of myoD1. On the basis of the aforementioned findings, a poorly differentiated spindle cell variant of embryonal RMS was diagnosed. The patient underwent combined therapy with chemotherapy and radiotherapy, but died 17 months after incisional biopsy. The present case is instructive in differential diagnosis of primary bone tumors, and the possibility of skeletal RMS needs to be considered. (orig.)

  7. Comparison of angiotensin II (Ang II) effects in the internal anal sphincter (IAS) and lower esophageal sphincter smooth muscles.

    Science.gov (United States)

    Rattan, Satish; Fan, Ya-Ping; Puri, Rajinder N

    2002-03-22

    Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.

  8. A Novel Alpha Cardiac Actin (ACTC1 Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects.

    Directory of Open Access Journals (Sweden)

    Céline Augière

    Full Text Available A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects, conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.A set of 399 poly(AC markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1 among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys and p.(Met125Val which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser,p.(Asp313His and p.(Arg314His which result in diverse cardiomyopathies and are located in a totally different interaction surface.Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.

  9. Mechanism of soman-induced contractions in canine tracheal smooth muscle. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Adler, M.; Moore, D.H.; Filbert, M.G.

    1992-12-31

    The actions of the irreversible organophosphorus cholinesterase (ChE) inhibitor soman were investigated on canine trachea smooth muscle in vitro. Concentrations of soman > or - 1 nM increased the amplitude and decay of contractions elicited by electric field stimulation. The effect on decay showed a marked dependence on stimulation frequency, undergoing a 2.4-fold increase between 3 and 60 Hz. Soman also potentiated tensions due to bath applied acetylcholine (ACh). Little or no potentiation was observed for contractions elicited by carbamylcholine, an agonist that is not hydrolyzed by ChE. Concentration of soman > or - 3 nM led to the appearance of sustained contractures. These contractures developed with a delayed onset and were well correlated with ChE activity. Alkylation of muscarinic receptors by propylbenzilylcholine mustard antagonized the actions of soman on both spontaneous and electrically-evoked muscle contractions. The results are consistent with a mechanism in which the toxic actions of soman are mediated by accumulation of neurally-released ACh secondary to inhibition of ChE activity. An important factor in this accumulation is suggested to be the buffering effect of the muscarinic receptors on the efflux of ACh from the neuroeffector junction. Tracheal smooth muscle, Cholinesterase inhibitors, Muscarinic receptor, Soman, Organophosphate.

  10. Induction of human airway hyperresponsiveness by tumour necrosis factor-alpha.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1995-09-15

    Tumour necrosis factor-alpha (TNF alpha) is implicated in the pathogenesis of asthma; however, little is known of its direct effect on smooth muscle reactivity. We investigated the effect of TNF alpha on the responsiveness of human bronchial tissue to electrical field stimulation in vitro. Incubation of non-sensitized tissue with 1 nM, 3 nM and 10 nM TNF alpha significantly increased responsiveness to electrical field stimulation (113 +/- 8, 110 +/- 4 and 112 +/- 2% respectively) compared to control (99 +/- 2%) (P 0.05) nor were responses to exogenous acetylcholine (93 +/- 4% versus 73 +/- 7%, n = 3, P = 0.38). These results show that TNF alpha causes an increase in responsiveness of human bronchial tissue and that this occurs prejunctionally on the parasympathetic nerve pathway. This is the first report of a cytokine increasing human airway tissue responsiveness.

  11. Regional Variation Is Present in Elbow Capsules after Injury

    OpenAIRE

    Germscheid, Niccole M.; Hildebrand, Kevin A.

    2006-01-01

    Myofibroblast numbers and α-smooth muscle actin expression are increased in anterior joint capsules of patients with posttraumatic elbow contractures. The purpose of our study was to determine whether these changes occur regionally or throughout the entire joint capsule. We hypothesized that the α-smooth muscle actin mRNA expression and the myofibroblast numbers in posterior joint capsules would be elevated in elbows obtained from patients with posttraumatic joint contractures compared with j...

  12. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    Science.gov (United States)

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  13. The Effect of Experimental Hyperthyroidism on Characteristics of Actin-Myosin Interaction in Fast and Slow Skeletal Muscles.

    Science.gov (United States)

    Kopylova, G V; Shchepkin, D V; Bershitsky, S Y

    2018-05-01

    The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin-myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.

  14. NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries

    DEFF Research Database (Denmark)

    Zheng, Jian-Pu; Zhang, Yaping; Edvinsson, Lars

    2010-01-01

    Vascular smooth muscle cells (SMC) endothelin type B (ET(B)) receptor upregulation results in strong vasoconstriction and reduction of local blood flow. We hypothesizes that the underlying molecular mechanisms involve transcriptional factor nuclear factor-kappaB (NF-kappaB) pathway. ET(B) recepto...

  15. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  16. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  17. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  18. Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists.

    Science.gov (United States)

    Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B

    2012-05-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.

  19. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  20. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Science.gov (United States)

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  1. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways

    DEFF Research Database (Denmark)

    Xu, C.B.; Zheng, J.P.; Zhang, W.

    2008-01-01

    Cigarette smoke is a strong risk factor for cardiovascular disease. However, the underlying molecular mechanisms that lead to cigarette smoke-associated cardiovascular disease remain elusive. With functional and molecular methods, we demonstrate for the first time that lipid-soluble cigarette smoke...... particles (dimethylsulfoxide-soluble cigarette smoke particles; DSP) increased the expression of endothelin type B (ET(B)) receptors in arterial smooth muscle cells. The increased ET(B) receptors in arterial smooth muscle cells was documented as enhanced contractility (sensitive myograph technique...

  2. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  3. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    Science.gov (United States)

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  4. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    Science.gov (United States)

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  5. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    OpenAIRE

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidizati...

  6. Purification and partial characterization of glycosaminoglycans and proteoglycans from cultured rabbit smooth muscle cells

    International Nuclear Information System (INIS)

    Sabatino, R.D.

    1985-01-01

    Glycosaminoglycans synthesized by cultured rabbit smooth muscle cells were isolated after incorporation of [ 3 H]-glucosamine into glycosaminoglycans in the presence or absence of 10% fetal bovine serum. Glycosaminoglycans were quantitated by two-dimensional electrophoresis after proteolytic digestion of the cell layers and media. The results show that the presence of serum has no effect on the chondroitin sulfate, heparan sulfate and dermatan sulfate content of the cell layers. The incorporation of [ 3 H]-glucosamine into hyaluronic acid of the cell layers was three times higher in the presence of serum. In the medium , the quantity of hyaluronic was two times higher in the presence of serum while the other glycosaminoglycans remained unchanged. The incorporation of [ 3 H]-glucosamine into hyaluronic acid was unaffected by the presence of serum. Specific proteoglycans were isolated from medium after with [ 35 S]-sulfate and [ 3 H]-serine by isopycnic ultracentrifugation and chromatography on Sepharose CL-4B and DEAE-cellulose. Preparations contained a chondroitin sulfate proteoglycan, a condroitin sulfate-dermatan sulfate proteoglycan and a heparan sulfate proteoglycan. Glycosaminoglycans and proteoglycans synthesized by rabbit aorta smooth muscle cells are similar to those from human aorta

  7. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  8. Female Longitudinal Anal Muscles or Conjoint Longitudinal Coats Extend into the Subcutaneous Tissue along the Vaginal Vestibule: A Histological Study Using Human Fetuses

    Science.gov (United States)

    Arakawa, Takashi; Abe, Hiroshi; Rodríguez-Vízquez, Jose Francisco; Murakami, Gen; Sugihara, Kenichi

    2013-01-01

    Purpose It is still unclear whether the longitudinal anal muscles or conjoint longitudinal coats (CLCs) are attached to the vagina, although such an attachment, if present, would appear to make an important contribution to the integrated supportive system of the female pelvic floor. Materials and Methods Using immunohistochemistry for smooth muscle actin, we examined semiserial frontal sections of 1) eleven female late-stage fetuses at 28-37 weeks of gestation, 2) two female middle-stage fetus (2 specimens at 13 weeks), and, 3) six male fetuses at 12 and 37 weeks as a comparison of the morphology. Results In late-stage female fetuses, the CLCs consistently (11/11) extended into the subcutaneous tissue along the vaginal vestibule on the anterior side of the external anal sphincter. Lateral to the CLCs, the external anal sphincter also extended anteriorly toward the vaginal side walls. The anterior part of the CLCs originated from the perimysium of the levator ani muscle without any contribution of the rectal longitudinal muscle layer. However, in 2 female middle-stage fetuses, smooth muscles along the vestibulum extended superiorly toward the levetor ani sling. In male fetuses, the CLCs were separated from another subcutaneous smooth muscle along the scrotal raphe (posterior parts of the dartos layer) by fatty tissue. Conclusion In terms of topographical anatomy, the female anterior CLCs are likely to correspond to the lateral extension of the perineal body (a bulky subcutaneous smooth muscle mass present in adult women), supporting the vaginal vestibule by transmission of force from the levator ani. PMID:23549829

  9. Peptides PHI and VIP: comparison between vascular and nonvascular smooth muscle effect in rabbit uterus

    International Nuclear Information System (INIS)

    Bardrum, B.; Ottesen, B.; Fahrenkrug, J.

    1986-01-01

    The distribution and effects of the two neuropeptides, vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine amide (PHI), on vascular and nonvascular smooth muscle in the urogenital tract of nonpregnant rabbit female, were investigated. Immunoreactive VIP and PHI were present in all regions except the ovary with the highest concentration in the uterin cervix. By using in vitro tension recordings of myometrial specimens, it was demonstrated that both peptides displayed a dose-dependent inhibition of the mechanical activity. The dose-response curves of VIP and PHI were superimposable with and ID 50 of 3 x 10 -8 mol/l, and their combined effect was additive. In addition, the influence of the two peptides on myometrial blood flow (MBF) was investigated by the xenon-133 washout technique. Both peptides were found to increase MBF with the same potency and efficacy. Their combined effect was additive. In conclusion VIP and PHI are present in the rabbit urogenital tract, and the two peptides are equipotent inhibitors of mechanical nonvascular and vascular smooth muscle activity in the uterus

  10. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions

    NARCIS (Netherlands)

    D.C. MacLeod (Donald); B.H. Strauss (Bradley); J. Escaned (Javier); V.A.W.M. Umans (Victor); R-J. van Suylen (Robert-Jan); A. Verkerk (Anton); P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); M. de Jong (Marcel)

    1994-01-01

    textabstractOBJECTIVES. The purpose of this study was to examine the proliferative capacity and extracellular matrix synthesis of human coronary plaque cells in vitro. BACKGROUND. Common to both primary atherosclerosis and restenosis are vascular smooth muscle cell proliferation and production of

  11. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle.

    Science.gov (United States)

    West, Adrian R; Zaman, Nishat; Cole, Darren J; Walker, Matthew J; Legant, Wesley R; Boudou, Thomas; Chen, Christopher S; Favreau, John T; Gaudette, Glenn R; Cowley, Elizabeth A; Maksym, Geoffrey N

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.

  12. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  13. Adenovirus-assisted lipofection: efficient in vitro gene transfer of luciferase and cytosine deaminase to human smooth muscle cells.

    Science.gov (United States)

    Kreuzer, J; Denger, S; Reifers, F; Beisel, C; Haack, K; Gebert, J; Kübler, W

    1996-07-01

    Smooth muscle cells (SMC) are a central cell type involved in multiple processes of coronary artery diseases including restenosis and therefore are major target cells for different aspects of gene transfer. Previous attempts to transfect primary arterial cells using different techniques like liposomes, CaPO4 and electroporation resulted in only low transfection efficiency. The development of recombinant adenoviruses dramatically improved the delivery of foreign genes into different cell types including SMC. However, cloning and identification of recombinants remain difficult and time-consuming techniques. The present study demonstrates that a complex consisting of reporter plasmid encoding firefly luciferase (pLUC), polycationic liposomes and replication-deficient adenovirus was able to yield very high in vitro transfection of primary human smooth muscle cells under optimized conditions. The technique of adenovirus-assisted lipofection (AAL) increases transfer and expression of plasmid DNA in human smooth muscle cells in vitro up to 1000-fold compared to lipofection. To verify the applicability of AAL for gene transfer into human smooth muscle cells we studied a gene therapy approach to suppress proliferation of SMC in vitro, using the prokaryotic cytosine deaminase gene (CD) which enables transfected mammalian cells to deaminate 5-fluorocytosine (5-FC) to the highly toxic 5-fluorouracil (5-FU). The effect of a transient CD expression on RNA synthesis was investigated by means of a cotransfection with a RSV-CD expression plasmid and the luciferase reporter plasmid. Western blot analysis demonstrated high expression of CD protein in transfected SMC. Cotransfected SMC demonstrated two-fold less luciferase activity in the presence of 5-FC (5 mmol/l) after 48 h compared to cells transfected with a non-CD coding plasmid. The data demonstrate that a transient expression of CD could be sufficient to reduce the capacity of protein synthesis in human SMC. This simple and

  14. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2006-01-01

    Full Text Available Abstract Background Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO production – due to competition with neuronal NO-synthase (nNOS for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR, leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 μM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 μM. Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM. Results At 6 h after ovalbumin-challenge (after the EAR, EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P P P Conclusion The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.

  15. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    Science.gov (United States)

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  16. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFα-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    International Nuclear Information System (INIS)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFα)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFα-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFα hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  17. Muscarinic receptors, nitric oxide formation and cyclooxygenase pathway involved in tracheal smooth muscle relaxant effect of hydro-ethanolic extract of Lavandula angustifolia flowers.

    Science.gov (United States)

    Naghdi, Farzaneh; Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Bakhshesh, Morteza

    2018-06-01

    Lavandula angustifolia (L. angustifolia) Mill. (Common name Lavender) is used in traditional and folk medicines for the treatment of various diseases including respiratory disorders worldwide. The relaxant effect of the plant on the smooth muscle of some tissues was shown previously. The present study has investigated the role of different receptors and pathways in the relaxant effect of L. angustifolia on tracheal smooth muscle. Cumulative concentrations of the hydro-ethanolic extract of L. angustifolia flowers (0.5, 1, 2 and 4 mg/ml) were added on pre-contracted tracheal smooth muscle by methacholine (10 μM) or KCl (60 mM) on non-preincubated or preincubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, ω-nitro-L-arginine methyl ester (L-NAME) and papaverine. The results compared with of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 ml) as negative control. The extract showed concentration-dependent relaxant effects in non-preincubated tracheal smooth muscle contracted by KCl and methacholine (p effect ofL. angustifolia was not significantly different between non-preincubated and preincubated tissues with chlorpheniramine, propranolol, diltiazem, glibenclamide, and papaverine. However, two higher concentrations of L. angustifolia in preincubated tissues with L-NAME (p effects than non-preincubated tissues. The EC 50 values of L. angustifolia in tissues preincubated with indomethacin was significantly higher than non-preincubated trachea (p effects of three first concentrations of the extract on KCl and methacholine-induced muscle contraction were significantly lower than those of theophylline (p effect ofL. angustifolia that was lower than the effect of theophylline. The possible mechanisms of relaxant effect of this plant on tracheal smooth muscle are muscarinic receptors blockade, inhibition of cyclooxygenase pathways and/or involvement of nitric oxide production

  18. Nonparenchymal cells cultivated from explants of fibrotic liver resemble endothelial and smooth muscle cells from blood vessel walls

    International Nuclear Information System (INIS)

    Voss, B.; Rauterberg, J.; Pott, G.; Brehmer, U.; Allam, S.; Lehmann, R.; von Bassewitz, D.B.

    1982-01-01

    Tissue specimens from human fibrotic liver obtained by needle biopsy were cultured. Two cell types emerged from the tissue explants. From their morphology and biosynthetic products they resembled smooth muscle cells and endothelial cells from blood vessel walls. In the endothelial cells, factor VIII-associated protein was demonstrated by indirect immunofluorescence. Synthesis of collagen types I and III, basement membrane collagen types IV and V, and fibronectin by both cell types was observed by immunofluorescence microscopy. Homogeneous cultures of smooth muscle cells were observed in subcultures. After incubation with [ 14 C]glycine, collagen was isolated and characterized by CM cellulose chromatography, and consisted mainly of types I and III. These data suggest involvement of mesenchymal cells in hepatic fibrosis; they presumably originate from blood vessel or sinusoidal walls

  19. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  20. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice

    NARCIS (Netherlands)

    Rensen, Sander S.; Niessen, Petra M.; van Deursen, Jan M.; Janssen, Ben J.; Heijman, Edwin; Hermeling, Evelien; Meens, Merlijn; Lie, Natascha; Gijbels, Marion J.; Strijkers, Gustav J.; Doevendans, Pieter A.; Hofker, Marten H.; de Mey, Jo G. R.; van Eys, Guillaume J.

    2008-01-01

    Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-)

  1. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  2. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  3. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction

    DEFF Research Database (Denmark)

    Burns, Jorge S; Kristiansen, Malthe; Kristensen, Lars P

    2011-01-01

    . Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells...... of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization....

  4. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    International Nuclear Information System (INIS)

    Morioka, Kiyokazu; Matsuzaki, Toshiyuki; Takata, Kuniaki

    2006-01-01

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  5. Neuronally mediated contraction responses of guinea-pig stomach smooth muscle preparations: modification by benzamide derivatives does not reflect a dopamine antagonist action.

    Science.gov (United States)

    Costall, B; Naylor, R J; Tan, C C

    1984-06-15

    The actions of the substituted benzamide derivatives metoclopramide, clebopride, YM-09151-2, tiapride, (+)- and (-)-sulpiride and (+)- and (-)-sultopride, and the dopamine antagonists haloperidol and domperidone, were studied on the responses to field stimulation (0.125-10 Hz) of smooth muscle strips taken from cardia, fundus, body and antral regions of the longitudinal and circular muscle of guinea-pig stomach. Field stimulation of the longitudinal strips caused contraction responses which were antagonised by atropine (but not by prazosin, yohimbine, propranolol or methysergide) to indicate a muscarinic cholinergic involvement. Antagonism of the contractions revealed or enhanced relaxation responses mediated via unidentified mechanisms (resistant to cholinergic and adrenergic antagonists). Metoclopramide enhanced the field stimulation-induced contractions of the stomach smooth muscle preparations via atropine sensitive mechanisms but failed to attenuate the field stimulation-induced relaxation responses. Clebopride's action closely followed that of metoclopramide but YM-09151-2 only enhanced the contraction responses of the longitudinal muscle preparations. Other dopamine antagonists, (+)- and (-)-sulpiride, (+)- and (-)-sultopride, tiapride, haloperidol and domperidone failed to facilitate contraction to field stimulation of any stomach tissue. Thus, the actions of metoclopramide, clebopride and YM-09151-2 to facilitate contraction to field stimulation of stomach smooth muscle are mediated via a muscarinic cholinergic mechanism and are not the consequence of an antagonism at any recognisable dopamine receptor.

  6. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková-Slepičková, N.; Bačáková, Lucie; Švindrych, Zdeněk; Slepička, P.; Bačáková, Markéta; Lisá, Věra; Švorčík, V.

    2013-01-01

    Roč. 2013, č. 2013 (2013), s. 371430 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biotechnology * tissue replacements * vascular smooth muscle cells * adhesion * modification Subject RIV: JJ - Other Materials

  7. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  8. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    We have previously demonstrated the presence of a cyclic GMP (cGMP)-dependent calcium-activated inward current in vascular smooth-muscle cells, and suggested this to be of importance in synchronizing smooth-muscle contraction. Here we demonstrate the characteristics of this current. Using......M) in the pipette solution. The current was found to be a calcium-activated chloride current with an absolute requirement for cyclic GMP (EC50 6.4 microM). The current could be activated by the constitutively active subunit of PKG. Current activation was blocked by the protein kinase G antagonist Rp-8-Br-PET-cGMP...... differed from those of the calcium-activated chloride current in pulmonary myocytes, which was cGMP-independent, exhibited a high sensitivity to inhibition by niflumic acid, was unaffected by zinc ions, and showed outward current rectification as has previously been reported for this current. Under...

  9. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and

  10. Ultraviolet light-irradiated collagen III modulates expression of cytoskeletal and surface adhesion molecules in rat aortic smooth muscle cells in vitro

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Lisá, Věra; Kubínová, Lucie; Wilhelm, J.; Novotná, J.; Eckhardt, Adam; Herget, J.

    2002-01-01

    Roč. 440, č. 1 (2002), s. 50-62 ISSN 0945-6317 R&D Projects: GA ČR GA305/97/S070; GA MŠk LN00A069 Grant - others:GA UK(XC) 188/98/C Institutional research plan: CEZ:AV0Z5011922 Keywords : integrins * focal adhesion proteins * alpha-actin Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.045, year: 2002

  11. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-01-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ m ) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  12. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  13. EFFECT OF STENT ABSORBED c-myc ANTISENSE OLIGODEOXYNUCLEOTIDE ON SMOOTH MUSCLE CELLS APOPTOSIS IN RABBIT CAROTID ARTERY

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 崔翰斌; 徐仓宝; 朱参战

    2002-01-01

    Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN (n=16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group(P<0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.

  14. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  15. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    International Nuclear Information System (INIS)

    Timraz, Sara B.H.; Farhat, Ilyas A.H.; Alhussein, Ghada; Christoforou, Nicolas; Teo, Jeremy C.M.

    2016-01-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  16. Generalized smooth muscle hamartoma with multiple congenital anomalies without the "Michelin tire baby" phenotype.

    Science.gov (United States)

    Janicke, Elise C; Nazareth, Michael R; Rothman, Ilene L

    2014-01-01

    We report a patient with generalized smooth muscle hamartoma who presented with many of the variety of congenital anomalies that have been reported in babies with multiple symmetric circumferential rings of folded skin known as Michelin tire baby (MTB) syndrome, but our patient did not show the MTB phenotype. This constellation of findings in the absence of the MTB phenotype has not been previously reported. © 2014 Wiley Periodicals, Inc.

  17. Effect of hypertensive rat plasma on ion transport of cultured vascular smooth muscle

    International Nuclear Information System (INIS)

    Magargal, W.W.; Overbeck, H.W.

    1986-01-01

    We layered fresh, unprocessed plasma from healthy rats with early (less than or equal to 7 days) or benign, chronic (greater than 3 wk) one-kidney, one-clip hypertension and from paired one-kidney normotensive control rats over confluent primary-cultured rat aortic smooth muscle cells. Plasma from all rats increased cellular ouabain-sensitive 86 Rb + uptake and sodium content and decreased ouabain-insensitive 86 Rb + uptake compared with uptakes and content in the presence of balanced salt solution (P less than 0.01). Cells incubated in the presence of plasma from rats with early (P less than 0.02) or chronic hypertension (P less than 0.01) had significantly reduced ouabain-sensitive 86 Rb + uptake when compared with cells incubated in normotensive plasma, but their intracellular Na+ contents were not lower. We no longer detected this uptake difference when chronic hypertensives drank 0.9% NaCl instead of water. Plasma from hypertensive rats also altered ouabain-insensitive 86 Rb + uptake by the cultured cells. These findings of this new, reproducible, and specific assay system support the hypothesis that plasma factors inhibit the membrane sodium-potassium pump in vascular smooth muscle cells in this form of hypertension. The abnormality occurs in both early and chronic stages, but may not be related to sodium intake. The data also provide evidence for plasma factors in hypertension altering membrane K+ permeability

  18. The Integrin-blocking Peptide RGDS Inhibits Airway Smooth Muscle Remodeling in a Guinea Pig Model of Allergic Asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Gosens, Reinoud; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Rationale: Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyper-responsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in

  19. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  20. Effects of gamma rays on rat vascular smooth muscle fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ghassan, A [Radio-Biology and Health Dept. Syrian Atomic Energy Commission, (Syrian Arab Republic)

    1995-10-01

    Modifications of the Vasomotoricity induced by gamma rays have been investigated. Vascular smooth muscle fibres (VSMF) of rat portal vein have been used in this study. Irradiation procedures using a {sup 60} Co source have been carried out as follows: - Whole body irradiation. - Irradiation of isolated portal vein and isolated VSMF. Our results show that : 1-irradiation reduces the functional competition between Mg{sup 2+} and Ca{sup 2+}, thus hyper magnetic Krebs solutions have a negligible effect on irradiated VSMF. 2- irradiation activates Ca{sup 2+} influx into the VSMF. Thus the effect of hypocalcemic solutions on irradiated VSMF is minor compared with control. 3- Hyperpotassic solutions provoke titanic contractions with high amplitude on the irradiated VSMF compared with control. 5 figs.

  1. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  2. Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal

    DEFF Research Database (Denmark)

    Huizinga, Jan D; Lammers, Wim J E P; Mikkelsen, Hanne B

    2010-01-01

    The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contrac......The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence...

  3. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  4. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Kumakura, Michiko; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-01-01

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  5. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  6. The extracellular matrix deposited by asthmatic airway smooth muscle cells in a resting state reflects a healthy matrix

    NARCIS (Netherlands)

    Harkness, Louise; Ashton, Anthony; Burgess, Janette

    2015-01-01

    Introduction: The remodelled asthmatic airway features an altered extracellular matrix (ECM) & increased vasculature. Previous studies found asthmatic (A) airway smooth muscle cells (ASMCs) to deposit an ECM with enhanced bioactivity. These studies however investigated ECM deposited in the presence

  7. Sphingosine-1-phosphate regulates RGS2 and RGS16 mRNA expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; Hajji, Najat; van Loenen, Pieter B.; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Regulator of G protein signalling (RGS) protein expression is altered under growth promoting conditions in vascular smooth muscle cells (VSMCs). Since sphingosine-1-phosphate (S1P) is an important growth stimulatory factor, we investigated whether stimulation of VSMCs with S1P results in alterations

  8. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    International Nuclear Information System (INIS)

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-01

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe −/− mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe −/− mice. In conclusion, statins mediate anti-atherogenic effects through PPAR

  9. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Directory of Open Access Journals (Sweden)

    Rushendhiran Kesavan

    Full Text Available Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs, PDGF-BB (20 ng/ml induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml. The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA. Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  10. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Science.gov (United States)

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  11. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    Science.gov (United States)

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  12. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  13. Generation of an efficient artificial promoter of bovine skeletal muscle α-actin gene (ACTA1) through addition of cis-acting element.

    Science.gov (United States)

    Hu, Qian; Tong, Huili; Zhao, Dandan; Cao, Yunkao; Zhang, Weiwei; Chang, Shuwei; Yang, Yu; Yan, Yunqin

    2015-03-01

    The promoter of skeletal muscle α-actin gene (ACTA1) is highly muscle specific. The core of the bovine ACTA1 promoter extends from +29 to -233, about 262 base pairs (bp), which is sufficient to activate transcription in bovine muscle satellite cells. In this study, analysis by PCR site-specific mutagenesis showed that the cis-acting element SRE (serum response element binding factor) was processed as a transcriptional activator. In order to enhance the bovine ACTA1 promoter's activity, we used a strategy to modify it. We cloned a fragment containing three SREs from the promoter of ACTA1, and then one or two clones were linked upstream of the core promoter (262 bp) of ACTA1. One and two clones increased the activity of the ACTA1 promoter 3-fold and 10-fold, respectively, and maintained muscle tissue specificity. The modified promoter with two clones could increase the level of ACTA1 mRNA and protein 4-fold and 1.1-fold, respectively. Immunofluorescence results showed that green fluorescence of ACTA1 increased. Additionally, the number of total muscle microfilaments increased. These genetically engineered promoters might be useful for regulating gene expression in muscle cells and improving muscle mass in livestock.

  14. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration

    International Nuclear Information System (INIS)

    Chen, Xueran; Yang, Haoran; Zhang, Shangrong; Wang, Zhen; Ye, Fang; Liang, Chaozhao; Wang, Hongzhi; Fang, Zhiyou

    2017-01-01

    Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.

  15. Effects of andrographolide on intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats.

    Science.gov (United States)

    Khamphaya, Tanaporn; Chansela, Piyachat; Piyachaturawat, Pawinee; Suksamrarn, Apichart; Nathanson, Michael H; Weerachayaphorn, Jittima

    2016-10-15

    Cholestasis is a cardinal manifestation of liver diseases but effective therapeutic approaches are limited. Therefore, alternative therapy for treating and preventing cholestatic liver diseases is necessary. Andrographolide, a promising anticancer drug derived from the medicinal plant Andrographis paniculata, has diverse pharmacological properties and multi-spectrum therapeutic applications. However, it is unknown whether andrographolide has a hepatoprotective effect on intrahepatic cholestasis. The aims of this study were to investigate the protective effect and possible mechanisms of andrographolide in a rat model of acute intrahepatic cholestasis induced by alpha-naphthylisothiocyanate (ANIT). Andrographolide was administered intragastrically for four consecutive days, with a single intraperitoneal injection of ANIT on the second day. Liver injury was evaluated biochemically and histologically together with hepatic gene and protein expression analysis. Rats pretreated with andrographolide prior to ANIT injection demonstrated lower levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, as well as bilirubin and bile acids as compared to rats treated with ANIT alone. Andrographolide also decreased the incidence and extent of periductular fibrosis and bile duct proliferation. Analysis of protein expression in livers from andrographolide-treated cholestatic rats revealed markedly decreased expression of alpha-smooth muscle actin and nuclear factor kappa-B (NF-κB). In conclusion, andrographolide has a potent protective property against ANIT-induced cholestatic liver injury. The mechanisms that underlie this protective effect are mediated through down-regulation of NF-κB expression and inhibition of hepatic stellate cell activation. These findings suggest that andrographolide could be a promising therapeutic option in prevention and slowing down the progression of cholestatic liver diseases. Copyright

  16. PGC-1{alpha} is required for AICAR induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Fentz, Joachim; Biensø, Rasmus S

    2010-01-01

    We tested the hypothesis that repeated activation of AMPK induces mitochondrial and glucose membrane transporter gene/protein expression via a peroxisome proliferator activated receptor Upsilon co-activator (PGC)-1alpha dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild...... GLUT4, cytochrome c oxidase (COX)I and cytochrome (cyt) c protein expression ~10-40% relative to saline in white muscles of the WT mice, but not of the PGC-1alpha KO mice. In line, GLUT4 and cyt c mRNA content increased 30-60% 4h after a single AICAR injection relative to saline only in WT mice. One...... and PGC-1alpha KO mice. In conclusion, we here provide genetic evidence for a major role of PGC-1alpha in AMPK mediated regulation of mitochondrial and glucose membrane transport protein expression in skeletal muscle....

  17. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice.

    Science.gov (United States)

    Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M

    2013-09-01

    The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach Copyright © 2013 Wiley Periodicals, Inc.

  18. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction?

    Directory of Open Access Journals (Sweden)

    Chester C Wu

    Full Text Available The network of interstitial cells of Cajal (ICC is altered in obstructive bowel disorders (OBD. However, whether alteration in ICC network is a cause or consequence of OBD remains unknown. This study tested the hypothesis that mechanical dilation in obstruction disrupts the ICC network and that ICC do not mediate mechanotranscription of COX-2 and impairment of smooth muscle contractility in obstruction.Medical-grade silicon bands were wrapped around the distal colon to induce partial obstruction in wild-type and ICC deficient (W/W(v mice.In wild-type mice, colon obstruction led to time-dependent alterations of the ICC network in the proximal colon segment. Although unaffected on days 1 and 3, the ICC density decreased markedly and the network was disrupted on day 7 of obstruction. COX-2 expression increased, and circular muscle contractility decreased significantly in the segment proximal to obstruction. In W/W(v control mice, COX-2 mRNA level was 4.0 (±1.1-fold higher (n=4 and circular muscle contractility was lower than in wild-type control mice. Obstruction further increased COX-2 mRNA level in W/W(v mice to 7.2 (±1.0-fold vs. W/W(v controls [28.8 (±4.1-fold vs. wild-type controls] on day 3. Obstruction further suppressed smooth muscle contractility in W/W(v mice. However, daily administration of COX-2 inhibitor NS-398 significantly improved muscle contractility in both W/W(v sham and obstruction mice.Lumen dilation disrupts the ICC network. ICC deficiency has limited effect on stretch-induced expression of COX-2 and suppression of smooth muscle contractility in obstruction. Rather, stretch-induced COX-2 plays a critical role in motility dysfunction in partial colon obstruction.

  19. Morcellator's Port-site Metastasis of a Uterine Smooth Muscle Tumor of Uncertain Malignant Potential After Minimally Invasive Myomectomy.

    Science.gov (United States)

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Signorelli, Mauro; Chiappa, Valentina; Lorusso, Domenica; Sabatucci, Ilaria; Carcangiu, Maria L; Fiore, Marco; Gronchi, Alessandro; Raspagliesi, Francesco

    2016-01-01

    Since the safety warning from the US Food and Drug Administration on the use of power morcellators, minimally invasive procedures involving the removal of uterine myomas and large uteri are under scrutiny. Growing evidence suggests that morcellation of undiagnosed uterine malignancies is associated with worse survival outcomes of patients affected by uterine sarcoma. However, to date, only limited data regarding morcellation of low-grade uterine neoplasms are available. In the present article, we reported a case of a (morcellator) port-site implantation of a smooth muscle tumor that occurred 6 years after laparoscopic morcellation of a uterine smooth muscle tumor of uncertain potential. This case highlights the effects of intra-abdominal morcellation, even in low-grade uterine neoplasms. Caution should be used when determining techniques for tissue extraction; the potential adverse consequences of morcellation should be more fully explored. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  20. Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats.

    Science.gov (United States)

    Halmenschlager, Graziele; Rhoden, Ernani Luis; Motta, Gabriela Almeida; Sagrillo Fagundes, Lucas; Medeiros, Jorge Luiz; Meurer, Rosalva; Rhoden, Cláudia Ramos

    2017-10-01

    To evaluate the effects of testosterone (T) on the maintenance of corpus cavernosum (CC) structure and apoptosis. Animals were divided into three groups: sham operation group ( n  = 8) underwent sham operation; Orchiectomized (Orchiec)+ oily vehicle group ( n  = 8) underwent bilateral orchiectomy and received a single dose of oily vehicle by intramuscular injection (i.m.) 30 days after orchiectomy; and Orchiec + T group ( n  = 8) underwent bilateral orchiectomy and received a single dose of T undecanoate 100 mg/kg i.m. 30 days after the surgery. Animals were euthanized 60 days after the beginning of the experiment with an anesthetic overdose of ketamine and xylazine. Blood samples and penile tissue were collected on euthanasia. Azan's trichrome staining was used to evaluate smooth muscle, Weigert's Fucsin-Resorcin staining was used to evaluate elastic fibers and Picrosirius red staining was used to evaluate collagen. Apoptosis was evaluated using TUNEL technique. T levels decreased in Orchiec + oily vehicle when compared to sham operation and Orchiec + T groups ( p  space ( p  = 0.207), elastic fibers ( p  = 0.849), collagen ( p  = 0.216) and in apoptosis ( p  = 0.095). Normal testosterone levels maintain CC smooth muscle content and do not influence elastic fibers, collagen content and apoptotic index. Further studies should be performed in order to investigate the mechanisms by which androgen mediates its effects on CC structure.

  1. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon γ

    International Nuclear Information System (INIS)

    Wagsaeter, Dick; Olofsson, Peder S.; Norgren, Lars; Stenberg, Bjoern; Sirsjoe, Allan

    2004-01-01

    Atherosclerosis is an inflammatory disease that is characterised by the involvement of chemokines that are important for the recruitment of leukocytes and scavenger receptors that mediate foam cell formation. Several cytokines are involved in the regulation of chemokines and scavenger receptors in atherosclerosis. CXCL16 is a chemokine and scavenger receptor and found in macrophages in human atherosclerotic lesions. Using double-labelled immunohistochemistry, we identified that smooth muscle cells in human lesions express CXCL16. We then analysed the effects of IFN-γ, TNF-α, IL-12, IL-15, IL-18, and LPS on CXCL16 expression in cultured aortic smooth muscle cells. IFN-γ was the most potent CXCL16 inducer and increased mRNA, soluble form, membrane form, and total cellular levels of CXCL16. The IFN-γ induction of CXCL16 was also associated with increased uptake of oxLDL into these cells. Taken together, smooth muscle cells express CXCL16 in atherosclerotic lesions, which may play a role in the attraction of T cells to atherosclerotic lesions and contribute to the cellular internalisation of modified LDL

  2. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  3. Plant Vegetative and Animal Cytoplasmic Actins Share Functional Competence for Spatial Development with Protists[W][OA

    Science.gov (United States)

    Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen; Meagher, Richard B.

    2012-01-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin’s competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals. PMID:22589468

  4. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  5. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Bentzon, Jacob F; Sondergaard, Claus S; Kassem, Mustafa

    2007-01-01

    BACKGROUND: Signs of preceding episodes of plaque rupture and smooth muscle cell (SMC)-mediated healing are common in atherosclerotic plaques, but the source of the healing SMCs is unknown. Recent studies suggest that activated platelets adhering to sites of injury recruit neointimal SMCs from ci...

  6. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  7. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  8. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kathleen M Gajewski

    2010-05-01

    Full Text Available The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM, we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F, effects on levels of transcripts of myosin heavy chain (mhc appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size.

  9. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    Science.gov (United States)

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  10. LPS, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Outzen, Emilie M; Zaki, Marina; Mehryar, Rahila

    2017-01-01

    resistance-sized arteries (MRA) supported by experiments in cultured human primary endothelial and vascular smooth muscle cells. Results showed that 24-hr organ culture of mouse MRA with 10 nM Ang II had, unlike 100 ng/mL LPS, no effects on IL-6 or MCP-1 secretion, VCAM1 mRNA expression or endothelial......]-Ang II had no concentration- or time-dependent effects on IL-6 and MCP-1 secretion in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMC). AGTR1 or AGTR2 mRNA expression were undetectable in HUVEC, whereas HASMC expressed only AGTR1 mRNA. In summary, contrary...... rights reserved....

  11. Method of cell transplantation promoting the organization of intraarterial thrombus.

    Science.gov (United States)

    Hirano, Koji; Shimono, Takatsugu; Imanaka-Yoshida, Kyoko; Miyamoto, Keiichi; Fujinaga, Kazuya; Kajimoto, Masaki; Miyake, Yoichiro; Nishikawa, Masakatsu; Yoshida, Toshimichi; Uchida, Atsumasa; Shimpo, Hideto; Yada, Isao; Hirata, Hitoshi

    2005-08-30

    Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms. Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that alpha-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of alpha-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo. Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.

  12. SREBP inhibits VEGF expression in human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Koka [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukumoto, Shinya [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Koyama, Hidenori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Emoto, Masanori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Shimano, Hitoshi [Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Maemura, Koji [Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Nishizawa, Yoshiki [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan)

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  13. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  14. Effect of lovastatin on rabbit vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Pei Zhuguo

    2003-01-01

    Objective: To investigate the effect of lovastatin on binding activity of nuclear factor activator protein-1 (AP-1) to NF-κB and the expression of matrix metalloproteinase-9 (MMP-9) in rabbit vascular smooth muscle cells (VSMCs). Methods: The oligonucleotide corresponding to the consensus NF-κB element or the consensus AP-1 element was labeled by [γ- 32 P]-ATP. AP-1 and NF-κB binding activity was detected by electrophoretic mobility shift assay (EMSA), expression of MMP-9 was detected by zymography. Results: Lovastatin inhibited the expression of MMP-9 in a dose-dependent manner, this effect was reversed by mevalonate and GGPP but not by squalene; lovastatin significantly decreased AP-1 and NF-κB binding activity. Conclusion: Lovastatin decreased AP-1 and NF-κB binding activity and inhibited MMP-9 expression in rabbit VSMCs by the way of inhibiting prenylation of protein but not by cholestrol-lowering, and this might be the mechanism of its arteriosclerostic plaque stabilizing effects

  15. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  16. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    Science.gov (United States)

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628

  17. The histopathology of a human mesenchymal stem cell experimental tumor model: support for an hMSC origin for Ewing's sarcoma?

    DEFF Research Database (Denmark)

    Burns, J S; Abdallah, B M; Schrøder, Henrik Daa

    2008-01-01

    -forming potential of early passage hMSC-TERT20 cells, tumors derived from late passage cells expressed early biomarkers of osteogenesis. However, hMSC-TERT20 cells were heterogeneous for alpha smooth muscle actin (ASMA) expression and one out of six hMSC-TERT20 derived single cell clones was strongly ASMA positive....... Tumors from this ASMA+ clone had distinctive vascular qualities with hot spots of high CD34+ murine endothelial cell density, together with CD34- regions with a branching periodic acid Schiff reaction pattern. Such clone-specific differences in host vascular response provide novel models to explore...

  18. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  19. Effect of mild intermittent hypoxia on glucose tolerance, muscle morphology and AMPK-PGC-1alpha signaling.

    Science.gov (United States)

    Chen, Chung-Yu; Tsai, Ying-Lan; Kao, Chung-Lan; Lee, Shin-Da; Wu, Ming-Chieh; Mallikarjuna, K; Liao, Yi-Hung; Ivy, John L; Kuo, Chia-Hua

    2010-02-28

    The main goal of this study was to investigate the long-term effect of daily 8-hour mild intermittent hypoxia (14-15% O2) on glucose tolerance and muscle morphology of Sprague-Dawley rats. The involvement of AMPK-PGC-1alpha-VEGF signaling pathways in the skeletal muscle was also determined during the first 8 hours of hypoxia. We found that mRNA levels of VEGF and PGC-1alpha were significantly increased above control after 8-h mild hypoxia without a change in AMPK phosphorylation. After 8 weeks of mild intermittent hypoxia treatment, plasma glucose and insulin levels in oral glucose tolerance test (OGTT), epididymal fat mass, and body weight were significantly lower compared to the control group. While soleus muscle weight was not changed, capillary and fiber densities in the hypoxia group were 33% and 35% above the control suggesting reorganization of muscle fibers. In conclusion, our data provide strong evidence that long-term mild intermittent hypoxia decreases the diffusion distance of glucose and insulin across muscle fibers, and decreases adiposity in rats. These changes may account for the improved glucose tolerance observed following the 8-week hypoxia treatment, and provides grounds for investigating the development of a mild non-pharmacological intervention in the treatment of obesity and type 2 diabetes.

  20. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  1. Airway hyperresponsiveness; smooth muscle as the principal actor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anne-Marie Lauzon

    2016-03-01

    Full Text Available Airway hyperresponsiveness (AHR is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway.

  2. Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT4 agonist – tegaserod

    Directory of Open Access Journals (Sweden)

    Shaffer Eldon

    2006-02-01

    Full Text Available Abstract Background Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT4 receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. Methods The effects of a high cholesterol (1% diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX. Two groups of animals, fed either low (0.03% or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. Results The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod

  3. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kazuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Nakao, Saya [Department of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto (Japan); Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Kawada, Teruo [Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects

  4. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  5. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  6. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  7. Regulation of CCL5 expression in smooth muscle cells following arterial injury.

    Directory of Open Access Journals (Sweden)

    Huan Liu

    Full Text Available Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined.The expression of CCL5 receptors (CCR1, 3 & 5 were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs, similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.

  8. Colonic smooth muscle responses in patients with diverticular disease of the colon: effect of the NK2 receptor antagonist SR48968.

    Science.gov (United States)

    Maselli, M A; Piepoli, A L; Guerra, V; Caruso, M L; Pezzolla, F; Lorusso, D; Demma, I; De Ponti, F

    2004-05-01

    Little is known about the pathophysiology of diverticular disease. To compare passive and active stress and the response to carbachol of colonic smooth muscle specimens from patients with diverticular disease and patients with colon cancer. The effect of the NK2 receptor antagonist, SR48968, on electrically evoked contractions of circular muscle was also investigated. Sigmoid colon segments were obtained from 16 patients (51-83 years) undergoing elective sigmoid resection for diverticular disease and 39 patients (50-88 years) undergoing left hemicolectomy for non-obstructive sigmoid colon cancer. Isometric tension was measured on circular or longitudinal taenial muscle. Strips were stretched gradually to Lo (length allowing the development of optimal active tension with carbachol) and were also exposed to increasing carbachol concentrations. The effects of atropine, tetrodotoxin and SR48968 on electrically evoked (supramaximal strength, 0.3 ms, 0.1-10 Hz) contractions of circular strips from 8 patients with diverticular disease and 19 patients with colon cancer were also studied. Both passive and active stress in circular muscle strips obtained from patients with diverticular disease was higher than in patients with colon cancer (P colon cancer, whereas a tetrodotoxin-resistant component was identified in patients with diverticular disease. The changes in both passive and active stress in specimens from patients with diverticular disease may reflect circular smooth muscle dysfunction. Acetylcholine and tachykinins are the main excitatory neurotransmitters mediating electrically evoked contractions in human sigmoid colon circular muscle.

  9. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Christine Cheung

    2014-10-01

    Full Text Available Summary: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden. : The contribution of blood vessel pathologies to neurodegenerative disorders is relatively neglected, partly due to inadequate human tissues for research. By using human stem cells, Cheung et al. establish a method of generating vascular smooth muscle cells (SMCs from neural crest progenitors, the primary precursors that give rise to brain blood vessels. These stem-cell-derived SMCs display defective amyloid processing under chronic hypoxia, a phenomenon well documented in the cerebral vasculatures of aged people and patients with Alzheimer’s disease.

  10. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes......Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  11. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Department of Respiratory Medicine, Jiangsu Provincial Hospital of Chinese Traditional Medicine (China); Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China); Fang, Mingming [Jiangsu Jiankang Vocational Institute (China); Xie, Weiping, E-mail: wpxienjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Wang, Hong, E-mail: hwangnjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Xu, Yong [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  12. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle.

    Science.gov (United States)

    Sam, Christine; Li, Fei-Feng; Liu, Shu-Lin

    2015-10-01

    Neurovascular diseases are among the leading causes of mortality and permanent disability due to stroke, aneurysm, and other cardiovascular complications. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Marfan syndrome are two neurovascular disorders that affect smooth muscle cells through accumulation of granule and osmiophilic materials and defective elastic fiber formations respectively. Moyamoya disease, hereditary hemorrhagic telangiectasia (HHT), microcephalic osteodysplastic primordial dwarfism type II (MOPD II), and Fabry's disease are disorders that affect the endothelium cells of blood vessels through occlusion or abnormal development. While much research has been done on mapping out mutations in these diseases, the exact mechanisms are still largely unknown. This paper briefly introduces the pathogenesis, genetics, clinical symptoms, and current methods of treatment of the diseases in the hope that it can help us better understand the mechanism of these diseases and work on ways to develop better diagnosis and treatment.

  13. A Case of Angioleiomyoma with Epithelioid Granuloma

    Directory of Open Access Journals (Sweden)

    Masazumi Onishi

    2011-08-01

    Full Text Available We describe a 61-year-old Japanese woman who had been aware of a lesion on her left thigh for 10 years. Pathological examination demonstrated a well-circumscribed encapsulated nodule at the dermal-subcutaneous boundary, composed of eosinophilic spindle cell bundles, connective tissue, and numerous small vessels. Immunohistochemically, these eosinophilic cells were positive for α-smooth muscle actin. The granulomatous areas in the tumor were composed focally of epithelioid cells and lymphocytes. The epithelioid cells were negative for α-smooth muscle actin. We diagnosed this case as an angioleiomyoma with epithelioid granuloma. Malignant tumors with granulomatous change have sometimes been reported in the literature, but benign tumors with epithelioid granuloma, such as the present one, are rare. We thought that epithelioid cell granuloma might transform to angioleiomyoma through the action of IL-1 released from vascular smooth muscle cells.

  14. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  15. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Bond, J.A.; Kocan, R.M.; Benditt, E.P.; Juchau, M.R.

    1979-01-01

    Cultured human fetal aortic smooth muscle cells derived from the abdominal aorta converted benzo[a]pyrene (BaP) and 7,12-dimethylbenz[a]anthracene (DMBA) via cytochrome P-450-dependent monooxygenation to metabolites detectable by both a highly sensitive radiometric assay and high pressure liquid chromatography (HPLC). Cells incubated with 3 H-BaP transformed this substrate primarily to phenols. 14 C-DMBA was converted to metabolites that cochromatographed with 12-hydroxymethyl-methylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz[a]anthracene, 7- 7,12-dihydroxymethylbenz[a]anthracene, and trans-8,9-dihydrodiol-7,12-DMBA. Exposure of cells in culture to 13 μM 1,2-benz[a]anthracene resulted in increased oxidative metabolism of both BaP and DMBA. In the case of BaP, total phenol formation was increased, while with DMBA all metabolites detected by HPLC were increased. Support for the potential role of metabolism of polycyclic aromatic hydrocarbons by aortic smooth muscle cells in the etiology of atherosclerosis was obtained

  16. Histones bundle F-actin filaments and affect actin structure.

    Directory of Open Access Journals (Sweden)

    Edna Blotnick

    Full Text Available Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  17. [Effects of vitamin K3 on the contractile activity of the colonic smooth muscles of guinea pig through the calcium activated potassium channel].

    Science.gov (United States)

    Li, Jun; Luo, He-sheng; He, Xiao-gu

    2006-07-25

    To study the mechanism of relaxation of gastrointestinal smooth muscles by vitamin K(3). Stripes of proximal colon were collected from guinea pigs. Suspension of single cells was created from these stripes. TD-112S transducer was used to measure the contraction of the stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L respectively. The Ca(2+)-activated K(+) current [IK(Ca)] of the cytomembrane of the colon smooth muscle was recorded with an EPC 10 amplifier under conventional whole cell patterns. The contraction frequencies of the muscle stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L were 79% +/- 4%, 58% +/- 5%, 33% +/- 4%, and 12% +/- 3% respectively of that of the control group (all P Vitamin K(3) inhibits the contractile activity of the colonic muscle stripes and increases the IK(Ca) of single myocytes concentration-dependently. The mechanism is activation of the Ca(2+)-activated K(+) channel, thus promoting the potassium efflux.

  18. Proteomic analysis of coronary sinus serum reveals leucine-rich alpha2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-02-01

    BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF. METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich alpha2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P<\\/=0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-alpha (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-betaR1 (P<0.001) and alpha-smooth muscle actin (P=0.025) expression. CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, beta-blocker therapy, and BNP.

  19. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacin, Nelisa, E-mail: melisalacin@yahoo.com [Mersin University, Advanced Technology Education, Research and Application Center (Turkey); Utkan, Gueldem [TUBITAK MAM, Enzyme and Fermentation Technology Laboratory, Genetic Engineering and Biotechnology Institute (Turkey); Kutsal, Tuelin [Hacettepe University, Chemical Engineering Department and Bioengineering Division (Turkey); Dedeoglu, Bala Guer; Yulug, Is Latin-Small-Letter-Dotless-I k G. [Bilkent University, Department of Molecular Biology and Genetics, Faculty of Science (Turkey); Piskin, Erhan [Hacettepe University, Chemical Engineering Department and Bioengineering Division and Center for Bioengineering-Biyomedtek (Turkey)

    2012-02-15

    Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 {+-} 2.05 nm with a zeta potential of +64. 4 {+-} 1.14 mV and 201.9 {+-} 1.83 nm with +54.2 {+-} 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.

  20. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

    Science.gov (United States)

    Laçin, Nelisa; Utkan, Güldem; Kutsal, Tülin; Dedeoğlu, Bala Gür; Yuluğ, Işık G.; Pişkin, Erhan

    2012-02-01

    Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 ± 2.05 nm with a zeta potential of +64. 4 ± 1.14 mV and 201.9 ± 1.83 nm with +54.2 ± 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.