#### Sample records for algebraic operations

1. Computer algebra and operators

Fateman, Richard; Grossman, Robert

1989-01-01

The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

2. Operator Algebras of Functions

Mittal, Meghna

2009-01-01

We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Agler's theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.

3. GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA

Labourie, François

2012-01-01

We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...

4. Operator algebras and topology

These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

5. Simple Algebras of Invariant Operators

Xiaorong Shen; J.D.H. Smith

2001-01-01

Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

6. Operator product expansion algebra

The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

7. Differential operators on non-commutative algebras

Hazewinkel, Michiel

2013-01-01

There is a relatively well-known description of the algebra of (higher order) left differential operators on commutative algebras. This note gives a construction of similar flavor for algebras of differential operators on not necessarily commutative algebras.

8. Linear operators in Clifford algebras

We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators MeI,eJ defined by x→eI.x.eJ, where the eI are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (MeI,eJ) is exactly a basis in the even case. (orig.)

9. Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

Ashihara, Takahiro; Miyamoto, Masahiko

2008-01-01

If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...

10. On Axiomatic Approaches to Intertwining Operator Algebras

Chen, Ling

2015-01-01

We study intertwining operator algebras introduced and constructed by Huang. In the case that the intertwining operator algebras involve intertwining operators among irreducible modules for their vertex operator subalgebras, a number of results on intertwining operator algebras were given in [H9] but some of the proofs were postponed to an unpublished monograph. In this paper, we give the proofs of these results in [H9] and we formulate and prove results for general intertwining operator algebras without assuming that the modules involved are irreducible. In particular, we construct fusing and braiding isomorphisms for general intertwining operator algebras and prove that they satisfy the genus-zero Moore-Seiberg equations. We show that the Jacobi identity for intertwining operator algebras is equivalent to generalized rationality, commutativity and associativity properties of intertwining operator algebras. We introduce the locality for intertwining operator algebras and show that the Jacobi identity is equi...

11. Reflexive Operator Algebras on Banach Spaces

Merlevède, Florence; Peligrad, Costel; Peligrad, Magda

2012-01-01

In this paper we study the reflexivity of a unital strongly closed algebra of operators with complemented invariant subspace lattice on a Banach space. We prove that if such an algebra contains a complete Boolean algebra of projections of finite uniform multiplicity and with the direct sum property, then it is reflexive, i.e. it contains every operator that leaves invariant every closed subspace in the invariant subspace lattice of the algebra. In particular, such algebras coincide with their...

12. Vertex operator (super)algebras and LCFT

We review some of the developments in logarithmic conformal field theory from the vertex algebra point of view. Several important examples of vertex operator (super)algebras of the triplet type are discussed, including their representation theory. Particular emphasis is put on C2-cofiniteness of these vertex algebras, a description of Zhu’s algebras and the construction of logarithmic modules. (review)

13. Spatial-Operator Algebra For Robotic Manipulators

Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

1991-01-01

Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

14. Exceptional Vertex Operator Algebras and the Virasoro Algebra

Tuite, Michael P.

2008-01-01

We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition function in the cases where the lowest weight primary vectors form a Lie algebra or a Griess algebra. Exam...

15. Compact Weighted Composition Operators on Function Algebras

TAKAGI, Hiroyuki

1988-01-01

A weighted endomorphism of an algebra is an endomorphism followed by a multiplier. In [6] and [4], H. Kamowitz characterized compact weighted endomorphisms of $C(X)$ and the disc algebra. In this note we define a weighted composition operator on a function algebra as a generalization of a weighted endomorphism, and characterize compact weighted composition operators on a function algebra satisfying a certain condition [Theorem 2]. This theorem not only includes Kamowitz's results as ...

16. Algebra of pseudo-differential operators over C*-algebra

Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L2-continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

17. On ultraproducts of operator algebras

LI; Weihua

2005-01-01

Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

18. Lectures on algebraic quantum field theory and operator algebras

In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

19. Lectures on algebraic quantum field theory and operator algebras

Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br

2001-04-01

In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

20. Lax operator algebras and integrable systems

Sheinman, O. K.

2016-02-01

A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.

1. Imperfect Cloning Operations in Algebraic Quantum Theory

Kitajima, Yuichiro

2015-01-01

No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

2. Simplicity of a vertex operator algebra whose Griess algebra is the Jordan algebra of symmetric matrices

Niibori, Hidekazu; Sagaki, Daisuke

2009-01-01

Let $r \\in \\BC$ be a complex number, and $d \\in \\BZ_{\\ge 2}$ a positive integer greater than or equal to 2. Ashihara and Miyamoto introduced a vertex operator algebra $\\Vam$ of central charge $dr$, whose Griess algebra is isomorphic to the simple Jordan algebra of symmetric matrices of size $d$. In this paper, we prove that the vertex operator algebra $\\Vam$ is simple if and only if $r$ is not an integer. Further, in the case that $r$ is an integer (i.e., $\\Vam$ is not simple), we give a gene...

3. Operator algebras for analytic varieties

Davidson, Kenneth R; Shalit, Orr Moshe

2012-01-01

We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions $\\cM_V$ of the multiplier algebra $\\cM$ of Drury-Arveson space to a holomorphic subvariety $V$ of the unit ball. The related algebras of continuous multipliers are also considered. We find that $\\cM_V$ is completely isometrically isomorphic to $\\cM_W$ if and only if $W$ is the image of $V$ under a biholomorphic automorphism of the ball. A similar condition characterizes when there exists a unital completely contractive homomorphism from $\\cM_V$ to $\\cM_W$. If one of the varieties is a homogeneous algebraic variety, then isometric isomorphism is shown to imply completely isometric isomorphism of the algebras. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. It is shown that if there is an isomorphism between $\\cM_V$ and $\\cM_W$, then there is a biholomorphism (with multiplier coordinates) between the varieties. We present a n...

4. Operator algebras for multivariable dynamics

Davidson, Kenneth R.; Katsoulis, Elias G.

2007-01-01

Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\\tau_i:X \\to X$ for $1 \\le i \\le n$. To this we associate two topological conjugacy algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\\A(X, \\tau)$ and the semicrossed product $\\rC_0(X)\\times_\\tau\\Fn$. We introduce a concept of conjugacy for multidimensional systems, which we coin piecewise conjugacy. We prove that the piecewise conjugacy class of the sy...

5. Weighted composition operators and locally convex algebras

Edoardo Vesentini

2005-01-01

The Gleason-Kahane-Zelazko theorem characterizes the continuous homomorphism of an associative, locally multiplicatively convex, sequentially complete algebra A into the field C among all linear forms on A. This characterization will be applied along two different directions. In the case in which A is a commutative Banach algebra, the theorem yields the representation of some classes of continuous linear maps A: A → A as weighted composition operators, or as composition operators when A is a continuous algebra endomorphism. The theorem will then be applied to explore the behaviour of continuous linear forms on quasi-regular elements, when A is either the algebra of all Hilbert-Schmidt operators or a Hilbert algebra.

6. Homogeneous conformal averaging operators on semisimple Lie algebras

Kolesnikov, Pavel

2014-01-01

In this note we show a close relation between the following objects: Classical Yang---Baxter equation (CYBE), conformal algebras (also known as vertex Lie algebras), and averaging operators on Lie algebras. It turns out that the singular part of a solution of CYBE (in the operator form) on a Lie algebra $\\mathfrak g$ determines an averaging operator on the corresponding current conformal algebra $\\mathrm{Cur} \\mathfrak g$. For a finite-dimensional semisimple Lie algebra $\\mathfrak g$, we desc...

7. Duality theories for Boolean algebras with operators

Givant, Steven

2014-01-01

In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

8. Nijenhuis Operators on n-Lie Algebras

Jie-Feng, Liu; Yun-He, Sheng; Yan-Qiu, Zhou; Cheng-Ming, Bai

2016-06-01

In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH

9. On atomicity of free algebras in Boolean algebras with operators, and a new result on Pinter's free algebras

Ahmed, Tarek Sayed

2013-01-01

We give some general theorems on free algebras of varieties of Boolean algebras with operators; a hitherto new result is obtained for Pinter's substitution algebras. For n\\geq 3, and m>1, there is a generating set of the free algebra freely generated by m elements, which is not a free set of generators.

10. Braiding operator via quantum cluster algebra

We construct a braiding operator in terms of the quantum dilogarithm function based on the quantum cluster algebra. We show that it is a q-deformation of the R-operator for which hyperbolic octahedron is assigned. Also shown is that, by taking q to be a root of unity, our braiding operator reduces to the Kashaev RK-matrix up to a simple gauge-transformation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

11. C*-algebras and operator theory

Murphy, Gerald J

1990-01-01

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

12. Lax operator algebras and Hamiltonian integrable hierarchies

Sheinman, Oleg K

2009-01-01

We consider the theory of Lax equations in complex simple and reductive classical Lie algebras with the spectral parameter on a Riemann surface of finite genus. Our approach is based on the new objects -- the Lax operator algebras, and develops the approach of I.Krichever treating the $\\gl(n)$ case. For every Lax operator considered as the mapping sending a point of the cotangent bundle on the space of extended Tyrin data to an element of the corresponding Lax operator algebra we construct the hierarchy of mutually commuting flows given by Lax equations and prove that those are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example we derive elliptic $A_n$, $C_n$, $D_n$ Calogero-Moser systems in frame of our approach.

13. Automorphism groups and derivation algebras of finitely generated vertex operator algebras

Dong, C.; Griess Jr., R. L.

2002-01-01

We investigate the general structure of the automorphism group and the Lie algebra of derivations of a finitely generated vertex operator algebra. The automorphism group is isomorphic to an algebraic group. Under natural assumptions, the derivation algebra has an invariant bilinear form and the ideal of inner derivations is nonsingular.

14. States on algebras of unbounded operators

There are reviewed some of the fundamental results on normal states on algebras of unbounded operators. It is ndicated how these results are related with ideal theory. Few known facts concerning perturbation of normal states are included. There are contained some new results on singular states

15. Virasoro Correlation Functions for Vertex Operator Algebras

Hurley, Donny; Tuite, Michael P.

2011-01-01

We consider all genus zero and genus one correlation functions for the Virasoro vacuum descendants of a vertex operator algebra. These are described in terms of explicit generating functions that can be combinatorially expressed in terms of graph theory related to derangements in the genus zero case and to partial permutations in the genus one case.

16. Conditional Expectations for Unbounded Operator Algebras

Atsushi Inoue

2007-06-01

Full Text Available Two conditional expectations in unbounded operator algebras (OÃ¢ÂˆÂ—-algebras are discussed. One is a vector conditional expectation defined by a linear map of an OÃ¢ÂˆÂ—-algebra into the Hilbert space on which the OÃ¢ÂˆÂ—-algebra acts. This has the usual properties of conditional expectations. This was defined by Gudder and Hudson. Another is an unbounded conditional expectation which is a positive linear map Ã¢Â„Â° of an OÃ¢ÂˆÂ—-algebra Ã¢Â„Â³ onto a given OÃ¢ÂˆÂ—-subalgebra Ã°ÂÂ’Â© of Ã¢Â„Â³. Here the domain D(Ã¢Â„Â° of Ã¢Â„Â° does not equal to Ã¢Â„Â³ in general, and so such a conditional expectation is called unbounded.

17. Almost-graded central extensions of Lax operator algebra

Schlichenmaier, Martin

2011-01-01

Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for $\\gl(n)$, with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and extended to more general groups. These algebras are almost-graded. In this article their definition is recalled and classification and uniqueness results for almost-graded central extensions for this new class of algebras are presented. The explicit forms of the defining cocycles are given. If the finite-dimensional Lie algebra on which the Lax operator algebra is based is simple then, up to equivalence and rescaling of the central element, there is a unique non-trivial almost-graded central extension. These results ...

18. Framed vertex operator algebras, codes and the moonshine module

Dong, C; Hoehn, G

1997-01-01

For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1/2, two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1/2 are explicitly described. As an application, the decomposition of the moonshine vertex operator algebra is obtained for a distinguished system of 48 Virasoro algebras.

19. Framed vertex operator algebras, codes and the moonshine module

Dong, C.; Griess Jr., R. L.; Hoehn, G.

1997-01-01

For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1/2, two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1/2 are explicitly described. As an application, the decomposition of the moonshine vertex operator alg...

20. Operator algebra from fusion rules

It is described how the fusion rules of a conformal field theory can be employed to derive differential equations for the four-point functions of the theory, and thus to determine eventually the operator product coeffients for primary fields. The results are applied to the Ising fusion rules. A set of theories possessing these function rules is found which is labelled by two discrete parameters. For a specific value of one of the parameters, these are the level one Spin(2m+1) Wess-Zusimo-Witten theories; it is shown that they represent an infinite number of inequivalent theories. (author). 38 refs

1. Conformal field theory, tensor categories and operator algebras

This is a set of lecture notes on the operator algebraic approach to 2-dimensional conformal field theory. Representation theoretic aspects and connections to vertex operator algebras are emphasized. No knowledge on operator algebras or quantum field theory is assumed. (topical review)

2. Topological isomorphisms for some universal operator algebras

Hartz, Michael

2012-01-01

Let $I$ be a radical homogeneous ideal of complex polynomials in $d$ variables, and let $\\mathcal A_I$ be the norm-closed non-selfadjoint algebra generated by the compressions of the $d$-shift on Drury-Arveson space $H^2_d$ to the co-invariant subspace $H^2_d \\ominus I$. Then $\\mathcal A_I$ is the universal operator algebra for commuting row contractions subject to the relations in $I$. In this note, we study the question, under which conditions there are topological isomorphisms between two such algebras $\\mathcal A_I$ and $\\mathcal A_J$. We provide a positive answer to a conjecture of Davdison, Ramsey and Shalit: that $\\mathcal A_I$ and $\\mathcal A_J$ are topologically isomorphic if and only if there is an invertible linear map $A$ on $\\mathbb C^d$ which maps the vanishing locus of $J$ isometrically onto the vanishing locus of $I$. Most of the proof is devoted to showing that finite algebraic sums of full Fock spaces over subspaces of $\\mathbb C^d$ are closed. This allows us to show that the map $A$ induces...

3. The radical of a vertex operator algebra

Dong, C.; Li, H.; Mason, G.; Montague, P

1996-01-01

The radical $J(V)$ of a vertex operator algebra $V$ is defined to be the subspace of $V$ consisting of vectors $v$ such that the zero mode $o(v)=0$ on $V$ where $o(v)=v_{wt v-1}$ if $v$ is homogeneous. We establish various facts about $o(v),$ including the determination of $J(V)$ which is shown to be essentially equal to $(L(0)+L(-1))V.$

4. Bispectral algebras of commuting ordinary differential operators

Bakalov, B N; Yakimov, M T

1997-01-01

We develop a systematic way for constructing bispectral algebras of commuting ordinary differential operators of any rank N. It enables us to obtain all previously known classes or examples of bispectral operators. The suggested method is completely algorithmic, which allows us to present explicitly new examples. We conjecture that the class built in the present paper exhausts all bispectral scalar operators. This paper is the third of a series of papers (hep-th/9510211, q-alg/9602010, q-alg/9602012) on the bispectral problem.

5. Spatial Operator Algebra for multibody system dynamics

Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

1992-01-01

The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

6. Algebras of unbounded operators and physical applications: a survey

Bagarello, Fabio

2009-01-01

After an historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.

7. Algebra of pseudo-differential C*-operators

In this paper the algebra of pseudo-differential operators is studied in the framework of C*-algebras. It is proved that every pseudo-differential operator of order m admits an adjoint operator, in this case, which is again a pseudo-differential operator. Consequently, the space of all pseudo-differential operators on a compact manifold is an involutive algebra. 10 refs

8. On Monotone Product of Operator Algebras

Wen Ming WU; Li Guang WANG

2007-01-01

In this note, we give complete descriptions of the structure of the monotone product of two yon Neumann algebras and two C*-algebras. We show that the monotone product of two simple yon Neumann algebras and C*-algebras aren't simple again. We also show that the monotone product of two hyperfinite von Neumann algebras is again hyperfinite and determine the type of the monotone product of two factors.

9. Three technique and irreducible tensor operators for suq(2) quantum algebra. Irreducible tensor operator algebra

The graphic technique of 'trees' developed in the previous paper is used for the construction of the q-analogue of the tensor operator algebra. The adjoint action of the suq(2) generator on tensor operators is discussed and adjoint R-matrix is introduced. A set of formulae for the calculation of the matrix elements of tensor operators and their combinations is derived. As an application, the recurrent relations for the suq(2) Clebsh-Gordan and Racah coefficients are obtained

10. Spatial-Operator Algebra For Flexible-Link Manipulators

Jain, Abhinandan; Rodriguez, Guillermo

1994-01-01

Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

11. A spatial operator algebra for manipulator modeling and control

Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

1991-01-01

A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

12. QPFT operator algebras and commutative exterior differential calculus

The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs

13. Affine Vertex Operator Algebras and Modular Linear Differential Equations

Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi

2016-05-01

In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.

14. Affine Vertex Operator Algebras and Modular Linear Differential Equations

Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi

2016-04-01

In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.

15. Bounded linear operators between C^*-algebras

Haagerup, U.; Pisier, Gilles

1993-01-01

Let $u:A\\to B$ be a bounded linear operator between two $C^*$-algebras $A,B$. The following result was proved by the second author. Theorem 0.1. There is a numerical constant $K_1$ such that for all finite sequences $x_1,\\ldots, x_n$ in $A$ we have \\leqalignno{&\\max\\left\\{\\left\\|\\left(\\sum u(x_i)^* u(x_i)\\right)^{1/2}\\right\\|_B, \\left\\|\\left(\\sum u(x_i) u(x_i)^*\\right)^{1/2}\\right\\|_B\\right\\}&(0.1)_1\\cr \\le &K_1\\|u\\| \\max\\left\\{\\left\\|\\left(\\sum x^*_ix_i\\right)^{1/2}\\right\\|_A, \\left\\|\\left... 16. An E_8-approach to the moonshine vertex operator algebra Shimakura, Hiroki 2010-01-01 In this article, we study the moonshine vertex operator algebra starting with the tensor product of three copies of the vertex operator algebra V_{\\sqrt2E_8}^+, and describe it by the quadratic space over \\F_2 associated to V_{\\sqrt2E_8}^+. Using quadratic spaces and orthogonal groups, we show the transitivity of the automorphism group of the moonshine vertex operator algebra on the set of all full vertex operator subalgebras isomorphic to the tensor product of three copies of V_{\\sqrt2E_8}^+, and determine the stabilizer of such a vertex operator subalgebra. Our approach is a vertex operator algebra analogue of "An E_8-approach to the Leech lattice and the Conway group" by Lepowsky and Meurman. Moreover, we find new analogies among the moonshine vertex operator algebra, the Leech lattice and the extended binary Golay code. 17. Virtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators Campoamor-Stursberg, R 2008-01-01 Given a semidirect product \\frak{g}=\\frak{s}\\uplus\\frak{r} of semisimple Lie algebras \\frak{s} and solvable algebras \\frak{r}, we construct polynomial operators in the enveloping algebra \\mathcal{U}(\\frak{g}) of \\frak{g} that commute with \\frak{r} and transform like the generators of \\frak{s}, up to a functional factor that turns out to be a Casimir operator of \\frak{r}. Such operators are said to generate a virtual copy of \\frak{s} in \\mathcal{U}(\\frak{g}), and allow to compute the Casimir operators of \\frak{g} in closed form, using the classical formulae for the invariants of \\frak{s}. The behavior of virtual copies with respect to contractions of Lie algebras is analyzed. Applications to the class of Hamilton algebras and their inhomogeneous extensions are given. 18. International Conference on Semigroups, Algebras and Operator Theory Meakin, John; Rajan, A 2015-01-01 This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f... 19. Boson permutation and parity operators: Lie algebra and applications We show that dichotomic permutation and parity operators for a two-dimensional boson system form an su(2) algebra with a unitary operator that relates, in quantum optics, to a balanced beamsplitter. The algebra greatly simplifies the input-output transformations of states through quantum nonlinear systems such as the Kerr interferometer or the kicked top 20. An investigation of symmetry operations with Clifford algebra After presenting Clifford algebra and quaternions, the symmetry operations with Clifford algebra and quaternions are defined. This symmetry operations are applied to a Platonic solid, which is called as dodecahedron. Also, the vertices of a dodecahedron presented in the Cartesian coordinates are calculated (Authors) 1. Theory of pseudo-differential operators over C*-Algebras In this article the behaviour of adjoints and composition of pseudo-differential operators in the framework of a C*-algebra is studied. It results that the class of pseudo-differential operators of order zero is a C*-algebra. 8 refs 2. On the uniqueness of the moonshine vertex operator algebra Dong, Chongying; Griess Jr., Robert L.; lam, Ching Hung 2005-01-01 It is proved that a vertex operator algebra is isomorphic to the moonshine VOA of Frenkel-Lepowsky-Meurman if it satisfies certain conditions. Our two main theorems establish a weak version of the FLM uniqueness conjecture for the moonshine vertex operator algebra. We believe that these are the first such results. 3. Norton's Trace Formulae for the Griess Algebra of a Vertex Operator Algebra with Larger Symmetry Matsuo, Atsushi 2000-01-01 Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module V^\ 4. Associative algebras for (logarithmic) twisted modules for a vertex operator algebra Huang, Yi-Zhi 2016-01-01 We construct two associative algebras from a vertex operator algebra V and a general automorphism g of V. The first, called g-twisted zero-mode algebra, is a subquotient of what we call g-twisted universal enveloping algebra of V. These algebras are generalizations of the corresponding algebras introduced and studied by Frenkel-Zhu and Nagatomo-Tsuchiya in the (untwisted) case that g is the identity. The other is a generalization of the g-twisted version of Zhu's algebra for suitable g-twisted modules constructed by Dong-Li-Mason when the order of g is finite. We are mainly interested in g-twisted V-modules introduced by the first author in the case that g is of infinite order and does not act on V semisimply. In this case, twisted vertex operators in general involve the logarithm of the variable. We construct functors between categories of suitable modules for these associative algebras and categories of suitable (logarithmic) g-twisted V-modules. Using these functors, we prov... 5. The antipode of and star operations in a Hopf algebra It is pointed out that a star operation in a Hopf algebra, i.e., an involutive semilinear mapping of the Hopf algebra into itself which is (anti)multiplicative and (anti)comultiplicative, automatically satisfies a certain compatibility relation with the antipode. (orig.) 6. Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module of I. B. Frenkel et al. (1984), with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c=1/2, the W3 algebra at c=4/5 or the W4 algebra at c=1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster. (orig.) 7. Gr\\"obner-Shirshov Bases for Commutative Algebras with Multiple Operators and Free Commutative Rota-Baxter Algebras Qiu, Jianjun 2013-01-01 In this paper, the Composition-Diamond lemma for commutative algebras with multiple operators is established. As applications, the Gr\\"obner-Shirshov bases and linear bases of free commutative Rota-Baxter algebra, free commutative \\lambda-differential algebra and free commutative \\lambda-differential Rota-Baxter algebra are given, respectively. Consequently, these three free algebras are constructed directly by commutative \\Omega-words. 8. Commutative subalgebras of the algebra of smooth operators Ciaś, Tomasz 2015-01-01 We consider the Fr\\'echet {}^*-algebra L(s',s) of the so-called smooth operators, i.e. continuous linear operators from the dual s' of the space s of rapidly decreasing sequences into s. This algebra is a non-commutative analogue of the algebra s. We characterize all closed commutative {}^*-subalgebras of L(s',s) which are at the same time isomorphic to closed {}^*-subalgebras of s and we provide an example of a closed commutative {}^*-subalgebra of L(s',s) which canno... 9. The investigation of platonic solids symmetry operations with clifford algebra The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated 10. Invariant Differential Operators for Non-Compact Lie Algebras Parabolically Related to Conformal Lie Algebras Dobrev, V K 2013-01-01 In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras g and g' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E_{7(7)} which is parabolically related to the CLA E_{7(-25)}, the parabolic subalgebras including E_{6(6)} and E_{6(-6)} . Other interesting examples are the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,... 11. Why Do the Quantum Observables Form a Jordan Operator Algebra? Niestegge, Gerd 2010-01-01 The Jordan algebra structure of the bounded real quantum observables was recognized already in the early days of quantum mechanics. While there are plausible reasons for most parts of this structure, the existence of the distributive nonassociative multiplication operation is hard to justify from a physical or statistical point of view. Considering the non-Boolean extension of classical probabilities, presented in a recent paper, it is shown in this paper that such a multiplication operation can be derived from certain properties of the conditional probabilities and the observables, i.e., from postulates with a clear statistical interpretation. The well-known close relation between Jordan operator algebras and C*-algebras then provides the connection to the quantum-mechanical Hilbert space formalism, thus resulting in a novel axiomatic approach to general quantum mechanics that includes the types II and III von Neumann algebras. 12. Braided Tensor Categories and Extensions of Vertex Operator Algebras Huang, Yi-Zhi; Kirillov, Alexander; Lepowsky, James 2015-08-01 Let V be a vertex operator algebra satisfying suitable conditions such that in particular its module category has a natural vertex tensor category structure, and consequently, a natural braided tensor category structure. We prove that the notions of extension (i.e., enlargement) of V and of commutative associative algebra, with uniqueness of unit and with trivial twist, in the braided tensor category of V-modules are equivalent. 13. Semantics for a Quantum Programming Language by Operator Algebras Cho, K. 2014-01-01 This paper presents a novel semantics for a quantum programming language by operator algebras, which are known to give a formulation for quantum theory that is alternative to the one by Hilbert spaces. We show that the opposite category of the category of W*-algebras and normal completely positive subunital maps is an elementary quantum flow chart category in the sense of Selinger. As a consequence, it gives a denotational semantics for Selinger's first-order functional quantum programming la... 14. Algebraic Properties of Toeplitz Operators on the Polydisk Bo Zhang 2011-01-01 Full Text Available We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk Dn. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property (P. Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite rank product problem for Toeplitz operators on the polydisk. 15. Operator algebra of free conformal currents via twistors Gelfond, O A 2013-01-01 Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space-time as a particular case, is shown to be determined by an associative algebra M of functions on the twistor space. For free conserved currents, M is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for n-point functions of 3d (super)currents of all spins, built from N free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS AdS_4/CFT_3 framework. Generating function for n-point functions of 4d conformal currents is also presented. 16. Construction of conformally invariant higher spin operators using transvector algebras This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space Rm with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on Rm and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly 17. Construction of conformally invariant higher spin operators using transvector algebras Eelbode, D., E-mail: David.Eelbode@ua.ac.be [Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, G-Building, Middelheimlaan 1, 2020 Antwerpen (Belgium); Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be [Clifford Research Group, Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent (Belgium) 2014-10-15 This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space R{sup m} with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on R{sup m} and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly. 18. Expressing OLAP operators with the TAX XML algebra Hachicha, Marouane; Darmont, Jérôme 2008-01-01 With the rise of XML as a standard for representing business data, XML data warehouses appear as suitable solutions for Web-based decision-support applications. In this context, it is necessary to allow OLAP analyses over XML data cubes (XOLAP). Thus, XQuery extensions are needed. To help define a formal framework and allow much-needed performance optimizations on analytical queries expressed in XQuery, having an algebra at one's disposal is desirable. However, XOLAP approaches and algebras from the literature still largely rely on the relational model and/or only feature a small number of OLAP operators. In opposition, we propose in this paper to express a broad set of OLAP operators with the TAX XML algebra. 19. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics Jorgensen, PET 1987-01-01 Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e 20. BRST-operator for quantum Lie algebra and differential calculus on quantum groups For A Hopf algebra one determined structure of differential complex in two dual external Hopf algebras: A external expansion and in A* dual algebra external expansion. The Heisenberg double of these two Hopf algebras governs the differential algebra for the Cartan differential calculus on A algebra. The forst differential complex is the analog of the de Rame complex. The second complex coincide with the standard complex. Differential is realized as (anti)commutator with Q BRST-operator. Paper contains recursion relation that determines unequivocally Q operator. For Uq(gl(N)) Lie quantum algebra one constructed BRST- and anti-BRST-operators and formulated the theorem of the Hodge expansion 1. Hopf-algebraic structure of combinatorial objects and differential operators Grossman, Robert; Larson, Richard G. 1989-01-01 A Hopf-algebraic structure on a vector space which has as basis a family of trees is described. Some applications of this structure to combinatorics and to differential operators are surveyed. Some possible future directions for this work are indicated. 2. Fractional Dirac operators and deformed field theory on Clifford algebra Fractional Dirac equations are constructed and fractional Dirac operators on Clifford algebra in four dimensional are introduced within the framework of the fractional calculus of variations recently introduced by the author. Many interesting consequences are revealed and discussed in some details. 3. and as Vertex Operator Extensionsof Dual Affine Algebras Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A. We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations. 4. Some topics pertaining to algebras of linear operators Semmes, Stephen 2002-01-01 On the one hand the algebras of linear operators here act on finite-dimensional vector spaces, and on the other hand the point of view is generally an analysts'. Also, one might think of algebras as being used to add more data to basic geometry as on a graph, for instance. Of course this is a common theme which is considered in numerous settings. From an analysts' perspective, compact groups, their representations, and more general topological groups and their representations are basic object... 5. Spatial operator algebra for flexible multibody dynamics Jain, A.; Rodriguez, G. 1993-01-01 This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations. 6. Robot Control Based On Spatial-Operator Algebra Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan 1992-01-01 Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily. 7. ALGEBRAIC METHODS IN PARTIAL DIFFERENTIAL OPERATORS Djilali Behloul 2005-01-01 In this paper we build a class of partial differential operators L having the following property: if u is a meromorphic function in Cn and Lu is a rational function A/q, with q homogenous, then u is also a rational function. 8. Genus Two Zhu Theory for Vertex Operator Algebras Gilroy, Thomas 2015-01-01 We consider correlation functions for a vertex operator algebra on a genus two Riemann surface formed by sewing two tori together. We describe a generalisation of genus one Zhu recursion expressing an arbitrary genus two n--point correlation function in terms of (n-1)--point functions. We consider several applications including the correlation functions for the Heisenberg vertex operator algebra and its modules, Virasoro correlation functions and genus two Ward identities. We derive novel differential equations in terms of a differential operator on the genus two Siegel upper half plane for holomorphic 1--forms, the normalised bidifferential of the second kind and the Heisenberg partition function. We also prove that the holomorphic mapping from the sewing parameter domain to the Siegel upper half plane is injective but not surjective. 9. C*-algebras generated by multiplication operators and composition operators with rational symbol Hamada, Hiroyasu 2015-01-01 Let R be a rational function of degree at least two, let J_R be the Julia set of R and let \\mu^L be the Lyubich measure of R. We study the C^*-algebra \\mathcal{MC}_R generated by all multiplication operators by continuous functions in C(J_R) and the composition operator C_R induced by R on L^2(J_R, \\mu^L). We show that the C^*-algebra \\mathcal{MC}_R is isomorphic to the C^*-algebra \\mathcal{O}_R (J_R) associated with the complex dynamical system \\{R^{\\circ n} \\}... 10. Wilson operator algebras and ground states for coupled BF theories Tiwari, Apoorv; Chen, Xiao; Ryu, Shinsei 2016-01-01 The multi-flavor BF theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled BF theori... 11. Algebraic Quantization, Good Operators and Fractional Quantum Numbers Aldaya Valverde, Víctor; Calixto Molina, Manuel; Guerrero García, Julio 1995-01-01 The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the “failure” of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of “constrained” Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric ... 12. Spatial operator algebra framework for multibody system dynamics Rodriguez, G.; Jain, Abhinandan; Kreutz, K. 1989-01-01 The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed. 13. Analysis on singular spaces: Lie manifolds and operator algebras Nistor, Victor 2016-07-01 We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called "Lie manifolds" -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory. 14. Algebra Tabak, John 2004-01-01 Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics. 15. Exceptional Lie Algebra E_{7(-25)} (Multiplets and Invariant Differential Operators) Dobrev, V K 2008-01-01 In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact exceptional algebra E_{7(-25)}. Our choice of this particular algebra is motivated by the fact that it belongs to a narrow class of algebras, which we call 'conformal Lie algebras', which have very similar properties to the conformal algebras of n-dimensional Minkowski space-time. This class of algebras is identified and summarized in a table. Another motivation is related to the AdS/CFT correspondence. We give the multiplets of indecomposable elementary representations, including the necessary data for all relevant invariant differential operators. 16. Disjunctive normal forms for any class of Boolean algebras with operators Khaled, Mohamed 2015-01-01 Disjunctive normal forms can provide elegant and constructive proofs of many standard results such as completeness, decidability and so on. They were also used to show non atomicity of some free algebras of specific Boolean algebras with operators. Here, we generalize the normal forms for any class of Boolean algebras with operators. 17. Method of generalized Reynolds operators and Pauli's theorem in Clifford algebras Shirokov, D. S. 2014-01-01 We consider real and complex Clifford algebras of arbitrary even and odd dimensions and prove generalizations of Pauli's theorem for two sets of Clifford algebra elements that satisfy the main anticommutative conditions. In our proof we use some special operators - generalized Reynolds operators. This method allows us to obtain an algorithm to compute elements that connect two different sets of Clifford algebra elements. 18. Algebra 2004-01-01 Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text. 19. The combinatorics computation for Casimir operators of the symplectic Lie algebra and the application for determining the center of the enveloping algebra of a semidirect product The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs 20. On Some Algebraic and Operator-Theoretic Properties of λ-Toeplitz Operators Mehdi Nikpour 2015-01-01 Based on a spectral problem raised by Barría and Halmos, a new class of Hardy-Hilbert space operators, containing the classical Toeplitz operators, is introduced, and some of their Toeplitz-like algebraic and operator-theoretic properties are studied and explored. 1. Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry Matsuo, A. [Cambridge Univ. (United Kingdom). Dept. of Pure Mathematics and Mathematical Statistics 2001-12-01 Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module of I. B. Frenkel et al. (1984), with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c=1/2, the W{sub 3} algebra at c=4/5 or the W{sub 4} algebra at c=1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster. (orig.) 2. Algebra Flanders, Harley 1975-01-01 Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a 3. On a certain class of operator algebras and their derivations Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so-called finite tracial algebra Mf as the intersection of Lp-spaces Lp(M, μ) over all p ≥ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner. (author) 4. Lie Subalgebras in a Certain Operator Lie Algebra with Involution Shan Li SUN; Xue Feng MA 2011-01-01 We show in a certain Lie'-algebra,the connections between the Lie subalgebra G+:＝G+G*+[G,G*],generated by a Lie subalgebra G,and the properties of G.This allows us to investigate some useful information about the structure of such two Lie subalgebras.Some results on the relations between the two Lie subalgebras are obtained.As an application,we get the following conclusion:Let A (∪) B(X)be a space of self-adjoint operators and L:＝A ⊕ iA the corresponding complex Lie*-algebra.G+＝G+G*+[G,G*]and G are two LM-decomposable Lie subalgebras of,L with the decomposition G+＝R(G+)+S,G＝RG+SG,and RG (∪) R(C+).Then G+ is ideally finite iff RG+:＝RG+RG*+[RG,RG*]is a quasisolvable Lie subalgebra,SG+:＝SG+SG*+[SG,SG*]is an ideally finite semisimple Lie subalgebra,and [RG,SG]＝[RG*,SG]＝{0}. 5. W-algebras and chiral differential operators at the critical Level Fortuna, Giorgia 2012-01-01 Let \\mathcal{A}_{crit} be the chiral algebra corresponding to the affine Kac-Moody algebra at the critical level \\hat{\\mathfrak{g}}_{crit}. Let \\mathfrak{Z}_{crit} be the center of \\mathcal{A}_{crit}. The commutative chiral algebra \\mathfrak{Z}_{crit} admits a canonical deformation into a non-commutative chiral algebra \\mathcl{W}_{h}. In this paper we will express the resulting first order deformation via the chiral algebra \\mathcal{D}_{crit} of chiral differential operators of ... 6. W-algebras and chiral differential operators at the critical Level Fortuna, Giorgia 2012-01-01 Let \\mathcal{A}_{crit} be the chiral algebra corresponding to the affine Kac-Moody algebra at the critical level \\hat{\\mathfrak{g}}_{crit}. Let \\mathfrak{Z}_{crit} be the center of \\mathcal{A}_{crit}. The commutative chiral algebra \\mathfrak{Z}_{crit} admits a canonical deformation into a non-commutative chiral algebra \\mathcl{W}_{h}. In this paper we will express the resulting first order deformation via the chiral algebra \\mathcal{D}_{crit} of chiral differential operators of G((t)) at the critical level. 7. Wilson operator algebras and ground states for coupled BF theories Tiwari, Apoorv; Ryu, Shinsei 2016-01-01 The multi-flavor BF theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled BF theories on the three-torus, we explicitly calculate the \\mathcal{S}- and \\mathcal{T}-matrices, which encode fractional braiding statistics and topological spin of loop-like excitations, respectively. In the coupled BF theories with cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with point-like excitations, form composite particles. 8. Mikusi\\'nski's Operational Calculus with Algebraic Foundations and Applications to Bessel Functions Bengochea, Gabriel; G, Gabriel López 2013-01-01 We construct an operational calculus supported on the algebraic operational calculus introduced by Bengochea and Verde. With this operational calculus we study the solution of certain Bessel type equations. 9. Differential operators associated to the Cauchy-Riemann operator in a quaternion algebra This paper deals with the initial value problem of the type φw / φt = L (t, x, w, φw / φxi) (1) w(0, x) = φ(x) (2) where t is the time, L is a linear first order operator (matrix-type) in a Quaternion algebra and φ is a regular function. The article proves necessary and sufficient conditions on the coefficients of operator L under which L is associated to the Cauchy-Riemann operator of Quarternion algebra. This criterion makes it possible to construct the operator L for which the initial problem (1),(2) is solvable for an arbitrary initial regular function φ and the solution is also regular for each t. (author) 10. The Calkin representation for a certain class of algebras of unbounded operators Let D=Dsup(infinity)(T), T=T* >= I selfadjoint. It is proved that the closure of the finite dimensional operators on D with respect to the uniform topology tausub(D) is the only twosided tausub(D) - closed * - ideal C in the maximal operator * - algebra α+(D) on D. Moreover the quotient algebra α+(h)/C equipped with the factor topology induced by tausub(D) is algebraically and topologically isomorphic to an appropriate Op*-algebra A(D)[tausub(D-circumflex)]. The isomorphism is constructed explicitly. This generalizes the classical Calkin result to the unbounded case 11. Algebraic models of deviant modal operators based on de Morgan and Kleene lattices Cattaneo, G.; Ciucci, DE; Dubois, D. 2011-01-01 An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) a modal necessity operator that satisfies the axioms N, K, T, and 5 (and as a consequence also B and 4) of modal logic is introduced; it allows one to introduce a modal possibility by the usual combination of necessity operation and... 12. Campbell-Hausdorff Formula and Algebras with Operator Some new classes of algebras are introduced and in these algebras Campbell-Hausdorff like formula is established. The application of these constructions to the problem of the connectivity of the Feynman graphs corresponding to the Green functions in Quantum Field Theory is described. 9 refs 13. Radial multipliers on reduced free products of operator algebras Haagerup, Uffe; Møller, Søren 2012-01-01 Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier. Her....... Hereby we generalize a result of Wysoczanski for Herz–Schur multipliers on reduced group C¿C¿-algebras for free products of groups.... 14. Radial multipliers on reduced free products of operator algebras Haagerup, Uffe; Möller, Sören 2012-01-01 Let Ai be a family of unital C*-algebras, respectively, of von Neumann algebras and \\phi: N0 \\to C. We show that if a Hankel matrix related to \\phi is trace-class, then there exists a unique completely bounded map M\\phi on the reduced free product of the Ai, which acts as a radial multiplier. Her....... Hereby we generalize a result of Wysoczański for Herz–Schur multipliers on reduced group C*-algebras for free products of groups.... 15. First order differential operator associated to the Cauchy-Riemann operator in a Clifford algebra The complex differentiation transforms holomorphic functions into holomorphic functions. Analogously, the conjugate Cauchy-Riemann operator of the Clifford algebra transforms regular functions into regular functions. This paper determines more general first order operator L (matrix-type) for which Lu is regular provided u is regular. For such operator L, the initial value problem ∂u / ∂t = L (t, x, u, ∂u / ∂x) (1) u(0, x) = φ(x) (2) is solvable for an arbitrary regular function φ and the solution is regular in x for each t. (author) 16. Lambda: A Mathematica-package for operator product expansions in vertex algebras Ekstrand, Joel 2010-01-01 We give an introduction to the Mathematica package Lambda, designed for calculating \\lambda-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of \\lambda-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. 17. Lambda: A Mathematica-package for operator product expansions in vertex algebras Ekstrand, Joel 2010-01-01 We give an introduction to the Mathematica package Lambda, designed for calculating {\\lambda}-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of {\\lambda}-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. 18. Path operator algebras in conformal quantum field theories Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.) 19. Nonmeromorphic operator product expansion and C{sub 2}-cofiniteness for a family of W-algebras Carqueville, Nils; Flohr, Michael [Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn (Germany) 2006-01-27 We prove the existence and associativity of the nonmeromorphic operator product expansion for an infinite family of vertex operator algebras, the triplet W-algebras, using results from P(z)-tensor product theory. While doing this, we also show that all these vertex operator algebras are C{sub 2}-cofinite. 20. Ladder operators and associated algebra for position-dependent effective mass systems Amir, Naila; Iqbal, Shahid 2015-07-01 An algebraic treatment of shape-invariant quantum-mechanical position-dependent effective mass systems is discussed. Using shape invariance, a general recipe for construction of ladder operators and associated algebraic structure of the pertaining system, is obtained. These operators are used to find exact solutions of general one-dimensional systems with spatially varying mass. We apply our formalism to specific translationally shape-invariant potentials having position-dependent effective mass. 1. GLAME@lab: An M-script API for Linear Algebra Operations on Graphics Processors Barrachina Mir, Sergio; Castillo Catalán, Maribel; Igual Peña, Francisco Daniel; Mayo, Rafael; Quintana Ortí, Enrique S. 2008-01-01 We propose two high-level application programming interfaces (APIs) to use a graphics processing unit (GPU) as a coprocessor for dense linear algebra operations. Combined with an extension of the FLAME API and an implementation on top of NVIDIA CUBLAS, the result is an efficient and user-friendly tool to design, implement, and execute dense linear algebra operations on the current generation of NVIDIA graphics processors, of wide-appeal to scientists and engineers. As an applicati... 2. Norton's Trace Formulae for the Griess Algebraof a Vertex Operator Algebra with Larger Symmetry Matsuo, Atsushi Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module V , with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c= 1/2, the W3 algebra at c= 4/5 or the W4 algebra at c= 1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster. 3. Infinite-dimensional Lie algebras, classical r-matrices, and Lax operators: Two approaches Skrypnyk, T. 2013-10-01 For each finite-dimensional simple Lie algebra {g}, starting from a general {g}⊗ {g}-valued solutions r(u, v) of the generalized classical Yang-Baxter equation, we construct infinite-dimensional Lie algebras widetilde{{g}}-_r of {g}-valued meromorphic functions. We outline two ways of embedding of the Lie algebra widetilde{{g}}-_r into a larger Lie algebra with Kostant-Adler-Symmes decomposition. The first of them is an embedding of widetilde{{g}}-_r into Lie algebra widetilde{{g}}(u^{-1},u)) of formal Laurent power series. The second is an embedding of widetilde{{g}}-_r as a quasigraded Lie subalgebra into a quasigraded Lie algebra widetilde{{g}}_r: widetilde{{g}}_r=widetilde{{g}}-_r+widetilde{{g}}+_r, such that the Kostant-Adler-Symmes decomposition is consistent with a chosen quasigrading. We construct dual spaces widetilde{{g}}^*_r, (widetilde{{g}}^{± }_r)^* and explicit form of the Lax operators L(u), L±(u) as elements of these spaces. We develop a theory of integrable finite-dimensional hamiltonian systems and soliton hierarchies based on Lie algebras widetilde{{g}}_r, widetilde{{g}}^{± }_r. We consider examples of such systems and soliton equations and obtain the most general form of integrable tops, Kirchhoff-type integrable systems, and integrable Landau-Lifshitz-type equations corresponding to the Lie algebra {g}. 4. Some G-M-type Banach spaces and K-groups of operator algebras on them ZHONG Huaijie; CHEN Dongxiao; CHEN Jianlan 2004-01-01 By providing several new varieties of G-M-type Banachspaces according to decomposable and compoundable properties, this paper discusses the operator structures of thesespaces and the K-theory of the algebra of the operators on these G-M-type Banach spaces throughcalculation of the K-groups of the operator ideals contained in the class of Riesz operators. 5. The symmetric operation in a free pre-Lie algebra is magmatic Bergeron, Nantel 2010-01-01 A pre-Lie product is a binary operation whose associator is symmetric in the last two variables. As a consequence its antisymmetrization is a Lie bracket. In this paper we study the symmetrization of the pre-Lie product. We show that it does not satisfy any other universal relation than commutativity. It means that the map from the free commutative-magmatic algebra to the free pre-Lie algebra induced by the symmetrization of the pre-Lie product is injective. This result is in contrast with the associative case, where the symmetrization gives rise to the notion of Jordan algebra. 6. Classification of invariant differential operators for non-compact Lie algebras via parabolic relations In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the CLA E7(−25). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so(n − 1,1) and its analogs so(p − 1, q − 1). Further we consider the algebras sl(2n, R) and for n = 2k the algebras su* (4k) which are parabolically related to the CLA su(n,n). Further we consider the algebras sp(r,r) which are parabolically related to the CLA sp(2r, R). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14). 7. Quantum Measurement Problem and Systems Selfdescription in Operators Algebras Formalism Mayburov, S. 2002-01-01 Quantum Measurement problem studied in Information Theory approach of systems selfdescription which exploits the information acquisition incompleteness for the arbitrary information system. The studied model of measuring system (MS) consist of measured state S environment E and observer O processing input S signal. O considered as the quantum object which interaction with S,E obeys to Schrodinger equation (SE). MS incomplete or restricted states for O derived by the algebraic QM formali... 8. 6-transposition property of \\tau-involutions of vertex operator algebras Sakuma, Shinya 2006-01-01 In this paper, we study the subalgebra generated by two Ising vectors in the Griess algebra of a vertex operator algebra. We show that the structure of it is uniquely determined by some inner products of Ising vectors. We prove that the order of the product of two \\tau-involutions is less than or equal to 6 and we determine the inner product of two Ising vectors. 9. Boolean Functions, Quantum Gates, Hamilton Operators, Spin Systems and Computer Algebra Hardy, Yorick; Steeb, Willi-Hans 2014-01-01 We describe the construction of quantum gates (unitary operators) from boolean functions and give a number of applications. Both non-reversible and reversible boolean functions are considered. The construction of the Hamilton operator for a quantum gate is also described with the Hamilton operator expressed as spin system. Computer algebra implementations are provided. 10. Multipoint Lax operator algebras: almost-graded structure and central extensions Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- and out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles 11. Classification of Invariant Differential Operators for Non-Compact Lie Algebras via Parabolic Relations Dobrev, V K 2013-01-01 In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras \\cal G and \\cal G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E_{7(7)} which is parabolically related to the CLA E_{7(-25)}. Other interesting examples are the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs ... 12. Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups Mahanta, Snigdhayan; Mathai, Varghese 2011-09-01 In this paper, we quantize universal gauge groups such as SU(∞), as well as their homogeneous spaces, in the σ- C*-algebra setting. More precisely, we propose concise definitions of σ- C*-quantum groups and σ- C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute these groups for the quantum homogeneous spaces associated to the quantum version of the universal gauge group SU(∞). 13. On the Action of Steenrod Operations on Polynomial Algebras KARACA, İsmet 1998-01-01 Let \$$\\bba \$$ be the mod-\$$p \$$ Steenrod Algebra. Let \$$p \$$ be an odd prime number and \$$Zp = Z/pZ \$$. Let \$$Ps = Zp [x1,x2,\\ldots,xs]. \$$ A polynomial \$$N \\in Ps \$$ is said to be hit if it is in the image of the action \$$A \\otimes Ps \\ra Ps. \$$ In [10] for \$$p=2, \$$ Wood showed that if \$$\\a(d+s) > s \$$ then every polynomial of degree \$$d \$$ in \$$Ps \$$ is hit where \$$\\a(d+s) \$$ denotes the number of ones in the binary expansion of \$$d+s \$$. Latter in [6] Monks extended a resu... 14. Ladder operators, Fock-space irreducibility and group gradings for the Relative Parabose Set algebra Kanakoglou, K 2010-01-01 We investigate in detail, the Fock-like representations of the Relative Parabose Set (RPBS) algebra in a single parabosonic and a single parafermionic degree of freedom, for any value of the parameter p. We compute explicit expressions for the action of the generators and we show them to be creation-annihilation operators on the specified Fock-space. We prove that this infinite dimensional Fock-space is irreducible under the action of the whole algebra or in other words that it is a simple module over the RPBS algebra. Finally we introduce (Z2 x Z2)-gradings for both the algebra P_{BF}^{(1,1)} and its Fock-space, we prove that the constructed Fock-like representation is an inf. dim., irreducible, (Z2 x Z2)-graded, P_{BF}^{(1,1)}-module and we comment on the relation between our present approach and similar works in the literature. 15. Applications Of Algebraic Image Operators To Model-Based Vision Lerner, Bao-Ting; Morelli, Michael V.; Thomas, Hans J. 1989-03-01 This paper extends our previous research on a highly structured and compact algebraic representation of grey-level images. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, we have devised an innovative, efficient edge detection scheme.We have developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower with this new edge detection scheme. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The feature extractor and model matcher are being incorporated into a distributed robot control system. Model matching is accomplished using both top-down and bottom-up processing: a priori sensor and world model information are used to constrain the search of the image space for features, while extracted image information is used to update the model. 16. BRST and anti-BRST operators for quantum linear algebra Uq(gl(N)) For a quantum Lie algebra Uq(gl(N)) we construct BRST, anti-BRST and Laplace operators. The (anti)commutator with the BRST operator defines the differential on the de Rham complex over the quantum group GLq(N). The Hodge decomposition theorem for this complex is formulated 17. Which multiplier algebras are W^*-algebras? Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B. 2013-01-01 We consider the question of when the multiplier algebra M(\\mathcal{A}) of a C^*-algebra \\mathcal{A} is a  W^*-algebra, and show that it holds for a stable C^*-algebra exactly when it is a C^*-algebra of compact operators. This implies that if for every Hilbert C^*-module E over a C^*-algebra \\mathcal{A}, the algebra B(E) of adjointable operators on E is a  W^*-algebra, then \\mathcal{A} is a C^*-algebra of compact operators. Also we show that a unital C^*-algebr... 18. Algebraic Bethe ansatz for Q-operators: the Heisenberg spin chain Frassek, Rouven 2015-07-01 We diagonalize Q-operators for rational homogeneous {sl}(2)-invariant Heisenberg spin chains using the algebraic Bethe ansatz. After deriving the fundamental commutation relations relevant for this case from the Yang-Baxter equation we demonstrate that the Q-operators act diagonally on the Bethe vectors if the Bethe equations are satisfied. In this way we provide a direct proof that the eigenvalues of the Q-operators studied here are given by Baxter's Q-functions. 19. On the algebraic Bethe ansatz for the XXX spin chain: creation operators 'beyond the equator' Considering the XXX spin-1/2 chain in the framework of the algebraic Bethe ansatz, we make the following short comment: the product of the creation operators corresponding to the recently found solution of the Bethe equations 'on the wrong side of the equator' is just zero (not only its action on the pseudovacuum). (author). Letter-to-the-editor 20. A chain morphism for Adams operations on rational algebraic K-theory Feliu, Elisenda 2010-01-01 For any regular noetherian scheme X and every k>0, we define a chain morphism between two chain complexes whose homology with rational coefficients is isomorphic to the algebraic K-groups of X tensored by Q. These morphisms induce in homology the Adams operations defined by Gillet and Soulé or th... 1. Construction of the Model of the Lambda Calculus System with Algebraic Operators 陆汝占; 张政; 等 1991-01-01 A lambda system with algebraic operators,Lambda-plus system,is introduced.After giving the definitions of the system,we present a sufficient condition for formulating a model of the system.Finally,a model of such system is constructed. 2. Lie elements in pu-Lie algebras, trees and cohomology operators Markl, Martin 2007-01-01 Roč. 17, č. 2 (2007), s. 241-261. ISSN 0949-5932 R&D Projects: GA ČR(CZ) GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : cohomology operations * pu-Lie algebras * Chevalley-Eilenberg complex Subject RIV: BA - General Mathematics Impact factor: 0.367, year: 2007 3. Integral forms in vertex operator algebras which are invariant under finite groups Griess, Robert L 2012-01-01 For certain vertex operator algebras (e.g., lattice type) and given finite group of automorphisms, we prove existence of a positive definite integral form invariant under the group. Applications include an integral form in the Moonshine VOA which is invariant under the Monster, and examples in other lattice type VOAs. 4. Poincare supersymmetry representations over trace class non-commutative graded operator algebras We show that rigid supersymmetry theories in four dimensions can be extended to give supersymmetric trace (or generalized quantum) dynamics theories, in which the supersymmetry algebra is represented by the generalized Poisson bracket of trace supercharges, constructed from fields that form a trace class non-commutative graded operator algebra. In particular, supersymmetry theories can be turned into supersymmetric matrix models this way. We demonstrate our results by detailed component field calculations for the Wess-Zumino and the supersymmetric Yang-Mills models (the latter with axial gauge fixing), and then show that they are also implied by a simple and general superspace argument. (orig.) 5. New modular form identities associated to generalized vertex operator algebras Zuevsky, Alexander 2015-01-01 Roč. 16, č. 1 (2015), s. 607-623. ISSN 1787-2405 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.229, year: 2014 http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_1138 6. An S_3-symmetry of the Jacobi Identity for Intertwining Operator Algebras Chen, Ling 2015-01-01 We prove an S_{3}-symmetry of the Jacobi identity for intertwining operator algebras. Since this Jacobi identity involves the braiding and fusing isomorphisms satisfying the genus-zero Moore-Seiberg equations, our proof uses not only the basic properties of intertwining operators, but also the properties of braiding and fusing isomorphisms and the genus-zero Moore Seiberg equations. Our proof depends heavily on the theory of multivalued analytic functions of several variables, especially the theory of analytic extensions. 7. Hypercyclic operators on algebra of symmetric snalytic functions on \\ell_p Z. H. Mozhyrovska 2016-06-01 Full Text Available In the paper, it is proposed a method of construction of hypercyclic composition operators on H(\\mathbb{C}^n using polynomial automorphisms of \\mathbb{C}^n and symmetric analytic functions on \\ell_p. In particular, we show that an symmetric translation'' operator is hypercyclic on a Frechet algebra of symmetric entire functions on \\ell_p which are bounded on bounded subsets. 8. Unitary operator bases and Q-deformed algebras Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author) 9. Unitary operator bases and q-deformed algebras Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs 10. Unitary operator bases and q-deformed algebras Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica 1995-11-01 Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs. 11. A program to evaluate closed diagrams algebraically for angular momentum coupled product operators The many particle trace of a product operator, expressed in terms of angular-momentum coupled spherical tensor creation and annihilation operators, can be evaluated as the sum of the different ways or diagrams to contract all the single particle operators. In the coupled representation, the process of contraction involves recouplings of angular momenta and this can be tedious. The program is constructed to perform algebraically the contractions and the associated angular momentum recouplings. The output are (algebraic) expressions which can be used either as analytical results or as input to a separate program, CONTRACTION-COMPILER, constructed to write a Fortran code to carry out the numerical calculations. The primary motivation of the project is derived from the need of scalar and configuration traces in nuclear structure problems using spectral distribution methods. (orig./HSI) 12. Wavelets and quantum algebras A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed suq(2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs 13. Clifford algebra, geometric algebra, and applications Lundholm, Douglas; Svensson, Lars 2009-01-01 These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The v... 14. Quantum exchange algebra and exact operator solution of A sub 2 -Toda field theory Takimoto, Y; Kurokawa, H; Fujiwara, T 1999-01-01 Locality is analyzed for Toda field theories by noting novel chiral description in the conventional non-chiral formalism. It is shown that the canonicity of the interacting to free field mapping described by the classical solution is automatically guaranteed by the locality. Quantum Toda theories are investigated by applying the method of free field quantization. We give Toda exponential operators associated with fundamental weight vectors as bilinear forms of chiral fields satisfying characteristic quantum exchange algebra. It is shown that the locality leads to non-trivial relations among the R-matrix and the expansion coefficients of the exponential operators. The Toda exponentials are obtained for a A sub 2 -system by extending the algebraic method developed for the Liouville theory. The canonical commutation relations and the operatorial field equations are also examined. 15. Quantum Exchange Algebra and Exact Operator Solution of A_{2}-Toda Field Theory Takimoto, Y; Kurokawa, H; Fujiwara, T 1999-01-01 Locality is analyzed for Toda field theories by noting novel chiral description in the conventional nonchiral formalism. It is shown that the canonicity of the interacting to free field mapping described by the classical solution is automatically guaranteed by the locality. Quantum Toda theories are investigated by applying the method of free field quantization. We give Toda exponential operators associated with fundamental weight vectors as bilinear forms of chiral fields satisfying characteristic quantum exchange algebra. It is shown that the locality leads to nontrivial relations among the {\\cal R}-matrix and the expansion coefficients of the exponential operators. The Toda exponentials are obtained for A_2-system by extending the algebraic method developed for Liouville theory. The canonical commutation relations and the operatorial field equations are also examined. 16. On the algebra of deformed differential operators, and induced integrable Toda field theory We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents un, n ≥ 2 and discuss the primary condition of the fields wn, n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author) 17. Additive results for the group inverse in an algebra with applications to block operators Benítez López, Julio; Liu, Xiaoji; Zhu, Tongping 2011-01-01 We derive a very short expression for the group inverse of a(1) + ... + a(n) when a(1), ... , a(n) are elements in an algebra having group inverse and satisfying a(i)a(j) = 0 for i < j. We apply this formula in order to find the group inverse of 2 x 2 block operators under some conditions. (C) 2011 Taylor & Francis 18. Tensor operators of the Lie algebras U(n) and o(ν) Formulas for matrix elements of tensor operators of the Lie algebras U(n) and o(ν) are derived in bases of irreducible representations. The formulas are simple for applications in calculations and are of the form of the Bell polynomials in sums of powers of the angular lengths. Recurrent formulas and generating functions are also obtained. An example of using the formulas obtained in nuclear physics is presented 19. The origin of the algebra of quantum operators in the stochastic formulation of quantum mechanics Davidson, Mark P. 2001-01-01 The origin of the algebra of the non-commuting operators of quantum mechanics is explained in the general Fenyes-Nelson stochastic models in which the diffusion constant is a free parameter. This is achieved by continuing the diffusion constant to imaginary values, a continuation which destroys the physical interpretation, but does not affect experimental predictions. This continuation leads to great mathematical simplification in the stochastic theory, and to an understanding of the entire m... 20. Lattice-integrality of certain group-invariant integral forms in vertex operator algebras Dong, Chongying; Griess Jr., Robert L. 2014-01-01 Certain vertex operator algebras have integral forms (integral spans of bases which are closed under the countable set of products). It is unclear when they (or integral multiples of them) are integral as lattices under the natural bilinear form on the VOA. We show that lattice-integrality may be arranged under some hypotheses, including cases of integral forms invariant by finite groups. In particular, there exists a lattice-integral Monster-invariant integral form in the Moonshine VOA. 1. A Reduced Informationally Complete Set in the C∗-algebra Generated by Phase Space Fuzzy Localization Operators Korf, Lisa A.; Schroeck, Franklin E. 2015-12-01 We consider an effect algebra of phase space localization operators for a quantum mechanical Hilbert space that contains no non-trivial projections, and the C*-algebra generated by it. This C∗-algebra forms an informationally complete set in the original Hilbert space. Its elements are shown to have singular-value-based decompositions that permit their characterization in terms of limits of linear combinations of products of pairs of the phase space fuzzy localization operators. Through these results, it is shown that the informational completeness of the C*-algebra can be greatly reduced to the informational completeness of the set of products of pairs formed from the elements of the effect algebra. 2. Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups Cardona, A.; Ducourtioux, C.; Magnot, J. P.; Paycha, S. 2000-01-01 Using {\\it weighted traces} which are linear functionals of the typeA\\to tr^Q(A):=(tr(A Q^{-z})-z^{-1} tr(A Q^{-z}))_{z=0} defined on the whole algebra of (classical) pseudo-differential operators (P.D.O.s) and where $Q$ is some positive invertible elliptic operator, we investigate the geometry of loop groups in the light of the cohomology of pseudo-differential operators. We set up a geometric framework to study a class of infinite dimensional manifolds in which we recover some results ...

3. Fibered F-Algebra

Kleyn, Aleks

2007-01-01

The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

4. Conformal Field Theory, Vertex Operator Algebra and Stochastic Loewner Evolution in Ising Model

Zahabi, Ali

2015-01-01

We review the algebraic and analytic aspects of the conformal field theory (CFT) and its relation to the stochastic Loewner evolution (SLE) in an example of the Ising model. We obtain the scaling limit of the correlation functions of Ising free fermions on an arbitrary simply connected two-dimensional domain $D$. Then, we study the analytic and algebraic aspects of the fermionic CFT on $D$, using the Fock space formalism of fields, and the Clifford vertex operator algebra (VOA). These constructions lead to the conformal field theory of the Fock space fields and the fermionic Fock space of states and their relations in case of the Ising free fermions. Furthermore, we investigate the conformal structure of the fermionic Fock space fields and the Clifford VOA, namely the operator product expansions, correlation functions and differential equations. Finally, by using the Clifford VOA and the fermionic CFT, we investigate a rigorous realization of the CFT/SLE correspondence in the Ising model. First, by studying t...

5. Hasse-Schmidt derivations on Grassmann algebras with applications to vertex operators

Gatto, Letterio

2016-01-01

This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describing the Plücker embedding of ...

6. Baxter's Q-operator for the W-algebra W{sub N}

Kojima, Takeo [Department of Mathematics, College of Science and Technology, Nihon University, Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

2008-09-05

The q-oscillator representation for the Borel subalgebra of the affine symmetry U'{sub q}(sl{sub N}-hat) is presented. By means of this q-oscillator representation, we give the free field realizations of Baxter's Q-operator Q{sub j}({lambda}), Q-bar{sub j}({lambda}), (j=1,2,...,N) for the W-algebra W{sub N}. We give functional relations of the T-Q operators, including the higher-rank generalization of Baxter's T-Q relation.

7. Classical ladder operators, polynomial Poisson algebras, and classification of superintegrable systems

We recall results concerning one-dimensional classical and quantum systems with ladder operators. We obtain the most general one-dimensional classical systems, respectively, with a third and a fourth-order ladder operators satisfying polynomial Heisenberg algebras. These systems are written in terms of the solutions of quartic and quintic equations. They are the classical equivalent of quantum systems involving the fourth and fifth Painleve transcendents. We use these results to present two new families of superintegrable systems and examples of trajectories that are deformation of Lissajous's figures.

8. Factorization and selection rules of operator product algebras in conformal field theories

Brustein, R.; Yankielowicz, S.; Zuber, J.B.

1989-02-06

Factorization of the operator product algebra in conformal field theory into independent left and right components is investigated. For those theories in which factorization holds we propose an ansatz for the number of independent amplitudes which appear in the fusion rules, in terms of the crossing matrices of conformal blocks in the plane. This is proved to be equivalent to a recent conjecture by Verlinde. The monodromy properties of the conformal blocks of 2-point functions on the torus are investigated. The analysis of their short-distance singularities leads to a precise definition of Verlinde's operations.

9. Nonlinear functional analysis in Banach spaces and Banach algebras fixed point theory under weak topology for nonlinear operators and block operator matrices with applications

Jeribi, Aref

2015-01-01

Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several exten

10. Weyl groups and vertex operator algebras generated by Ising vectors satisfying the (2B, 3C) condition

Chen, Hsian-Yang; Lam, Ching Hung

2014-06-01

In this paper, we construct explicitly certain moonshine type vertex operator algebras generated by a set of Ising vectors I such that (1) for any e ≠ f ∈ I, the subVOA VOA(e, f) generated by e and f is isomorphic to either U2B or U3C; and (2) the subgroup generated by the corresponding Miyamoto involutions {τe | e ∈ I} is isomorphic to the Weyl group of a root system of type An, Dn, E6, E7 or E8. The structures of the corresponding vertex operator algebras and their Griess algebras are also studied. In particular, the central charge of these vertex operator algebras are determined.

11. q-deformed oscillator algebra and an index theorem for the photon phase operator

Fujikawa, K; Oh, C H; Fujikawa, Kazuo; Kwek, L C; Oh, C H

1995-01-01

The quantum deformation of the oscillator algebra is studied from the view point of an index theorem. It is shown that the creation and annihilation operators satisfying \\dml a - \\dml a^{\\dagger} = 1 can be deformed to \\dml a - \\dml a^{\\dagger} = 0 in a singular limit \\dml a = \\infty, which corresponds to the deformation parameter q as a primitive root of unity. On the other hand, the phase operator of Susskind and Glogower, which satisfies \\dml \\expon^{i \\varphi} - \\dml (\\expon^{i \\varphi})^{\\dagger} = 1, cannot be deformed to a hermitian phase operator which satisfies \\dml \\expon^{i \\phi} - \\dml (\\expon^{i \\phi})^{\\dagger} = 0. The indices associated with phase operators are quite robust and may be regarded as responsible for the absence of the hermitian phase operator of the photon.

12. Rigged modules I: modules over dual operator algebras and the Picard group

Blecher, David P.; Kashyap, Upasana

2016-01-01

In a previous paper we generalized the theory of W*-modules to the setting of modules over nonselfadjoint dual operator algebras, obtaining the class of weak*-rigged modules. At that time we promised a forthcoming paper devoted to other aspects of the theory. We fulfill this promise in the present work and its sequel "Rigged modules II", giving many new results about weak*-rigged modules and their tensor products. We also discuss the Picard group of weak* closed subalgebras of a commutative a...

13. Virasoro frames and their Stabilizers for the E_8 lattice type Vertex Operator Algebra

Griess Jr., Robert L.; Hoehn, Gerald

2001-01-01

The concept of a framed vertex operator algebra was studied in [DGH] (q-alg/9707008). This article is an analysis of all Virasoro frame stabilizers of the lattice VOA V for the E_8 root lattice, which is isomorphic to the E_8-level 1 affine Kac-Moody VOA V. We analyze the frame stabilizers, both as abstract groups and as subgroups of the Lie group Aut(V) = E_8(C). Each frame stabilizer is a finite group, contained in the normalizer of a 2B-pure elementary abelian 2-group in Aut(V). In particu...

14. Derivations on the Algebra of Operators in Hilbert C*-Modules

Peng Tong LI; De Guang HAN; Wai Shing TANG

2012-01-01

Let (M) be a full Hilbert C*-module over a C*-algebra (A),and let End*(A)((M)) be the algebra of adjointable operators on (M).We show that if (A) is unital and commutative,then every derivation of End*(A)((M)) is an inner derivation,and that if (A) is σ-unital and commutative,then innerness of derivations on “compact” operators completely decides innerness of derivations on End*(A)((M)).If (A) is unital (no commutativity is assumed) such that every derivation of (A) is inner,then it is proved that every derivation of End*(A)(Ln((A))) is also inner,where Ln((A)) denotes the direct sum of n copies of (A).In addition,in case (A) is unital,commutative and there exist x0,y0 ∈(M) such that〈x0,y0〉＝1,we characterize the linear (A)-module homomorphisms on End*(A)((M)) which behave like derivations when acting on zero products.

15. Alternative formulation for the operator algebra over the space of paths in a ADE $SU(3)$ graph

Pineda, Jesús A; Caicedo, Mario I

2015-01-01

In this work we discuss the elements required for the construction of the operator algebra for the space of paths over a simply laced $SU(3)$ graph. These operators are an important step in the construction of the bialgebra required to find the partition functions of some modular invariant CFTs. We define the cup and cap operators associated with back-and-forth sequences and add them to the creation and annihilation operators in the operator algebra as they are required for the calculation of the full space of essential paths prescribed by the fusion algebra. These operators require collapsed triangular cells that had not been found in previous works; here we provide explicit values for these cells and show their importance in order for the cell system to fulfill the Kuperberg relations for $SU(3)$ tangles. We also find that demanding that our operators satisfy the Temperley-Lieb algebra leads one naturally to consider operators that create and annihilate closed triangular sequences, which in turn provides an...

16. On fermionic Novikov algebras

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. They are a class of left-symmetric algebras with commutative right multiplication operators, which can be viewed as bosonic. Fermionic Novikov algebras are a class of left-symmetric algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we commence a study on fermionic Novikov algebras from the algebraic point of view. We will show that any fermionic Novikov algebra in dimension ≤3 must be bosonic. Moreover, we give the classification of real fermionic Novikov algebras on four-dimensional nilpotent Lie algebras and some examples in higher dimensions. As a corollary, we obtain kinds of four-dimensional real fermionic Novikov algebras which are not bosonic. All of these examples will serve as a guide for further development including the application in physics

17. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

18. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

2016-05-01

Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

19. Selbstduale Vertexoperatorsuperalgebren und das Babymonster (Self-dual Vertex Operator Super Algebras and the Baby Monster)

Hoehn, Gerald

1996-01-01

We investigate self-dual vertex operator algebras (VOAs) and super algebras (SVOAs). Using the genus one correlation functions, it is shown that self-dual SVOAs exist only for half-integral central charges. It is described how self-dual SVOAs can be constructed from self-dual VOAs of larger central charge. The analogy with integral lattices and binary codes is emphasized. One main result is the construction of the shorter Moonshine module, a self-dual SVOA of central charge 23.5 on which the Baby monster - the second largest sporadic simple group - acts by automorphisms. The shorter Moonshine module has the character q^(-47/48)*(1+ 4371q^(3/2)+ 96256q^2+ 1143745q^(5/2) +...) and is the "shorter cousin" of the Moonshine module. Its lattice and code analog are the shorter Leech lattice and shorter Golay code. We conjecture that the shorter Moonshine module is the unique SVOA with this character. The final chapter introduces the notion of extremal VOAs and SVOAs. These are self-dual (S)VOAs with character having...

20. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

Omar, Mohamed A

2014-01-01

Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732

1. L-o cto-algebras

An Hui-hui; Wang Zhi-chun

2016-01-01

L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

2. Direct Method to Solve Differential-Algebraic Equations by Using the Operational Matrices of Chebyshev Cardinal Functions

M. Heydari

2013-05-01

Full Text Available A new and effective direct method to determine the numerical solution of linear and nonlinear differential-algebraic equations (DAEs is proposed. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. By using these operational matrices together, a differentialalgebraic equation can be transformed to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique

3. 2-Local derivations on matrix algebras over commutative regular algebras

Ayupov, Sh. A.; Kudaybergenov, K. K.; Alauadinov, A. K.

2012-01-01

The paper is devoted to 2-local derivations on matrix algebras over commutative regular algebras. We give necessary and sufficient conditions on a commutative regular algebra to admit 2-local derivations which are not derivations. We prove that every 2-local derivation on a matrix algebra over a commutative regular algebra is a derivation. We apply these results to 2-local derivations on algebras of measurable and locally measurable operators affiliated with type I von Neumann algebras.

4.  Optimizing relational algebra operations using discrimination-based joins and lazy products

Henglein, Fritz

We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according to...... a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the...... basis for discrimination-based joins, a new technique for computing joins that requires neither hashing nor sorting. Discriminators also provide ecient implementations for eliminating duplicates, set union and set dierence. We represent a cross-product lazily as a formal pair of the argument sets...

5. Linear algebra and linear operators in engineering with applications in Mathematica

Davis, H Ted

2000-01-01

Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical ...

6. Calculating Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra

Ablinger, J; Blümlein, J; De Freitas, A; von Manteuffel, A; Schneider, C

2015-01-01

Three loop ladder and $V$-topology diagrams contributing to the massive operator matrix element $A_{Qg}$ are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable $N$ and the dimensional parameter $\\varepsilon$. Given these representations, the desired Laurent series expansions in $\\varepsilon$ can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural ...

7. Factorizations of invertible operators and $K$-theory of $C^*$-algebras

Zhang, Shuang

1992-01-01

Let $\\Scr A$ be a unital C*-algebra. We describe \\it K-skeleton factorizations \\rm of all invertible operators on a Hilbert C*-module $\\Scr H_{\\Scr A}$, in particular on $\\Scr H=l^2$, with the Fredholm index as an invariant. We then outline the isomorphisms $K_0(\\Scr A) \\cong \\pi _{2k}([p]_0)\\cong \\pi _{2k} ({GL}^p_r(\\Scr A))$ and $K_1(\\Scr A)\\cong \\pi _{2k+1}([p]_0)\\cong \\pi _{2k+1}(GL^p_r(\\Scr A))$ for $k\\ge 0$, where $[p]_0$ denotes the class of all compact perturbations of a projection $... 8. Certain associative algebras similar to$U(sl_{2})$and Zhu's algebra$A(V_{L})$Dong, Chongying; Li, Haisheng; Mason, Geoffrey 1996-01-01 It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra. 9. Intertwining operators for ℓ-conformal Galilei algebras and hierarchy of invariant equations The ℓ-conformal Galilei algebra, denoted by gl(d), is a non-semisimple Lie algebra specified by a pair of parameters (d, ℓ). The algebra is regarded as a nonrelativistic analogue of the conformal algebra. We derive hierarchies of partial differential equations which have invariance of the group generated by gl(d) with a central extension as kinematical symmetry. This is done by developing a representation theory such as Verma modules, singular vectors of gl(d) and vector field representations for d = 1, 2. (paper) 10. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). Inst. fuer Physik 2015-09-15 Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A{sub Qg} are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies. 11. Universal Algebras of Hurwitz Numbers A. Mironov; Morozov, A; Natanzon, S. 2009-01-01 Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model. 12. Regular norm and the operator semi-norm on a non-unital Banach Algebra Orenstein, Adam 2014-01-01 We show that if$\\mathfrak{A}$is a commutative complex non-unital Banach Algebra with norm$\\|\\cdot\\|$, then$\\|\\cdot\\|$is regular on$\\mathfrak{A}$if and only if$\\|\\cdot\\|_{op}$is a norm on$\\mathfrak{A}\\oplus \\mathbb{C}$and$\\mathfrak{A}\\oplus\\mathbb{C}$is a commutative complex Banach Algebra with respect to$\\|\\cdot\\|_{op}$. 13. Spectral theory of linear operators and spectral systems in Banach algebras Müller, Vladimir 2003-01-01 This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg... 14. Relations Between BZMVdM-Algebra and Other Algebras 高淑萍; 邓方安; 刘三阳 2003-01-01 Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived. 15. Scalar product for the tensor operators of the quantum algebra Ŭq(su2) by the Wigner-Eckart theorem Fakhri, H.; Nouraddini, M. 2015-07-01 Tensor operators as the irreducible submodules corresponding to the adjoint representation of the quantum algebra Ŭq(su2) are equipped with q-analogue of the Hilbert-Schmidt scalar product by using the Wigner-Eckart theorem. Then, it is used to show that the adjoint representation of the quantum algebra Ŭq(su2) is a *-representation. 16. Matrix order and W*-algebras in the operational approach to statistical physical systems An important problem in the axiomatic approach to statistical physical systems is to characterize ordered vector spaces that are isomorphic to the predual of a W*-algebra. Recent work of Werner has shown that the set of interactive neutral hereditary projection on a matrix ordered complete base norm space V is order isomorphic to the lattice of projections of a W*-algebra, called the matrix multiplier algebra. If there are sufficiently many of these projections, then V is the predual of its matrix multiplier algebra. This mathematical conception is motivated by physics. The result shows that matrix order instead of merely partially order provides a setting in which an axiomatic approach to statistical physical systems may be studied. In this paper the discussion on the physical relevance of the conception of matrix order and interactive neutral hereditary projections is started. (orig.) 17. Operator Algebras and Conformal Field Theory III. Fusion of positive energy representations of LSU(N) using bounded operators Wassermann, Antony 1998-01-01 Fusion of positive energy representations is defined using Connes' tensor product for bimodules over a von Neumann algebra. Fusion is computed using the analytic theory of primary fields and explicit solutions of the Knizhnik-Zamolodchikov equation. 18. Short Distance Operator Product Expansion of the 1D, N = 4 Extended GR Super Virasoro Algebra by Use of Coadjoint Representations Chappell, Isaac 2009-01-01 Using the previous construction of the geometrical representation (GR) of the centerless 1D, N = 4 extended Super Virasoro algebra, we construct the corresponding Short Distance Operation Product Expansions for the deformed version of the algebra. This algebra differs from the regular algebra by the addition of terms containing the Levi-Civita tensor. How this addition changes the super-commutation relations and affects the Short Distance Operation Product Expansions (OPEs) of the associated fields is investigated. The Method of Coadjoint Orbits, which removes the need first to find Lagrangians invariant under the action of the symmetries, is used to calculate the expansions. Finally, an alternative method involving Clifford algebras is investigated for comparison. 19. Abstract algebra Deskins, W E 1996-01-01 This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop 20. Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra Jeffrey, Alan 2010-01-01 Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe... 1. On Majorana representations of the group$3^2{:}2$of 3C-pure type and the corresponding vertex operator algebras lam, Ching Hung; Chen, Hsian-Yang 2013-01-01 In this article, we study Griess algebras and vertex operator subalgebras generated by Ising vectors in a moonshine type VOA such that the subgroup generated by the corresponding Miyamoto involutions has the shape$3^2{:}2$and any two Ising vectors generate a 3C subVOA$U_{3C}$. We show that such a Griess algebra is uniquely determined, up to isomorphisms. The structure of the corresponding vertex operator algebra is also discussed. In addition, we give a construction of such a VOA inside th... 2. Homotopy commutative algebra and 2-nilpotent Lie algebra Dubois-Violette, Michel; Popov, Todor 2012-01-01 The homotopy transfer theorem due to Tornike Kadeishvili induces the structure of a homotopy commutative algebra, or$C_{\\infty}$-algebra, on the cohomology of the free 2-nilpotent Lie algebra. The latter$C_{\\infty}$-algebra is shown to be generated in degree one by the binary and the ternary operations. 3. Left Artinian Algebraic Algebras S. Akbari; M. Arian-Nejad 2001-01-01 Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson. 4. LETTER TO THE EDITOR: Structure constants for new infinite-dimensional Lie algebras of U(N+,N-) tensor operators and applications Calixto, M. 2000-03-01 The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U (N + ,N - ) are provided. They generalize the Virasoro and icons/Journals/Common/calW" ALT="calW" ALIGN="TOP"/> icons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> algebras to higher dimensions. The connection with volume-preserving diffeomorphisms on M , higher generalized-spin and tensor operator algebras of U (N + ,N - ) is discussed. These centrally extended, infinite-dimensional Lie algebras also provide the arena for nonlinear integrable field theories in higher dimensions, residual gauge symmetries of higher-extended objects in the light-cone gauge and C * -algebras for tractable non-commutative versions of symmetric curved spaces. 5. Diassociative algebras and their derivations The paper concerns the derivations of diassociative algebras. We introduce one important class of diassociative algebras, give simple properties of the right and left multiplication operators in diassociative algebras. Then we describe the derivations of complex diassociative algebras in dimension two and three 6. Tree technique and irreducible tensor operators for SUq(2) quantum algebra, 9j-symbols The graphic technique of Kuznetsov-Smorodinov for the SUq(2) quantum algebra is discussed. The transformation of trees including the braiding of branches is considered. Using the universal R-matrix the q-analog of 9j-symbol is introduced and its symmetry are examined 7. Computer Program For Linear Algebra Krogh, F. T.; Hanson, R. J. 1987-01-01 Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra. 8. An algebraic function operator expectation value based eigenstate determinations for quantum systems with one degree of freedom Kalay, Berfin; Demiralp, Metin [İstanbul Technical University, Informatics Institute, Maslak, 34469, İstanbul (Turkey) 2015-12-31 This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature. 9. An algebraic function operator expectation value based eigenstate determinations for quantum systems with one degree of freedom This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature 10. Quantum double actions on operator algebras and orbifold quantum field theories Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.) 11. The automorphism group of the Z_2-orbifold of the Barnes-Wall lattice vertex operator algebra of central charge 32 Shimakura, Hiroki 2013-01-01 In this article, we prove that the full automorphism group of the Z_2-orbifold of the Barnes-Wall lattice vertex operator algebra of central charge 32 has the shape$2^{27}.E_6(2)$. In order to identify the group structure, we introduce a graph structure on the Griess algebra and show that it is a rank 3 graph associated to$E_6(2)$. 12. Linear-Algebra Programs Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B. 1982-01-01 The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers. 13. Algebraic geometry Lefschetz, Solomon 2012-01-01 An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition. 14. Topological ∗-algebras with *-enveloping Algebras II S J Bhatt 2001-02-01 Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If$G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product$S(\\mathbb{R}, B, )$satisfies$E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying$A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit$\\mathrm{ind}\\lim I_$is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible. 15. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation 2010-01-01 We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives. 16. A quantum field algebra Brouder, Christian 2002-01-01 The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise... 17. Symmetric Extended Ockham Algebras T.S. Blyth; Jie Fang 2003-01-01 The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30 18. Optimizing relational algebra operations using discrimination-based joins and lazy products Henglein, Fritz on the notion of (equiv- alence) discriminator. A discriminator partitions a list of values according to a user-specified equivalence relation on keys the val- ues are associated with. Equivalence relations can be specified in an expressive embedded language for denoting equivalence rela- tions. We......We show how to efficiently evaluate generic map-filter-product queries, generalizations of select-project-join (SPJ) queries in re- lational algebra, based on a combination of two novel techniques: generic discrimination-based joins and lazy (formal) products. Discrimination-based joins are based...... show that discriminators can be constructed generically (by structural recursion on equivalence expressions), purely func- tionally, and efficiently (worst-case linear time). The array-based basic multiset discrimination algorithm of Cai and Paige (1995) provides a base discriminator that is both... 19. Applications of the potential algebras of the two-dimensional Dirac-like operators Jakubský, Vít 2013-01-01 Roč. 331, č. 4 (2013), s. 216-235. ISSN 0003-4916 R&D Projects: GA AV ČR GPP203/11/P038 Institutional support: RVO:61389005 Keywords : potential algebra * Dirac eyuation * supersymmetry * shape-invariance Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://ac.els-cdn.com/S0003491613000080/1-s2.0-S0003491613000080-main.pdf?_tid=e9c316f0-bbe7-11e2-b8ca-00000aab0f6c&acdnat=1368461731_fb8fe2f5da71ade23877f1a9bcddd89f 20. Stability of functional equations in Banach algebras Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza 2015-01-01 Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l... 1. Algebra Operations on Counting Bloom Filters%计数布鲁姆过滤器代数运算 田小梅; 张大方; 谢鲲; 史长琼; 杨晓波 2012-01-01 文中探讨计数布鲁姆过滤器的代数运算和集合运算的一致性关系,研究使用计数布鲁姆过滤器代数运算进行集合成员查询的性能.理论分析和实验结果表明,计数布鲁姆过滤器的并、交、补、减、异或运算产生的新过滤器依然保持计数布鲁姆过滤器的特征,支持元素的删除操作,不会出现假阴性,能用于集合并集、交集、补集、差集及对称差的成员查询；当使用两个原始的计数布鲁姆过滤器查询补集、差集及对称差元素时,会存在部分本来属于补集、差集或对称差的元素被判为不属于补集、差集或对称差的问题,而使用计数布鲁姆过滤器代数运算后的过滤器进行补集、差集及对称差成员查询,则不存在上述问题,空间效率能提高一倍,时间效率亦能显著地得到改善.计数布鲁姆过滤器代数运算的使用有利于进一步扩展计数布鲁姆过滤器的应用范围.譬如计数布鲁姆过滤器减运算可用作一种新的集合调和方法,用于分布式系统中大型文件的分发.%This paper examines the consistence between algebra operations on counting Bloom filters and algebra operations on data sets, and studies the membership query performances of algebra operations on counting Bloom filters. Theoretical analyses and simulations show that the counting Bloom filter which is Ored(ANDed, COMPLEMENTed, SUBTRACTed, XORed) from the original counting Bloom filters can support membership query on data set Ored (ANDed, COMPLEMENTed, SUBTRACTed, XORed) from the original data sets. When using the two original counting Bloom filter to query elements belonged to complementary set, differences or symmetric differences of the two sets, some complementary set elements, differences or symmetric differences of the sets will be misjudged, while the query method using algebra operations on counting Bloom filters has no false negatives and gain a remarkable improvement in 2. Quiver W-algebras Kimura, Taro 2015-01-01 For a quiver with weighted arrows we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al., and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras. 3. Lectures in general algebra Kurosh, A G; Stark, M; Ulam, S 1965-01-01 Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the 4. Lie algebras and applications Iachello, Francesco 2015-01-01 This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators... 5. Monomial algebras Villarreal, Rafael 2015-01-01 The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods. 6. Quantum algebra of$N$superspace Hatcher, N; Stephany, J 2006-01-01 We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4$N\$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.

7. Localization of Rota-Baxter algebras

Chu, Chenghao; Guo, Li

2012-01-01

A commutative Rota-Baxter algebra can be regarded as a commutative algebra that carries an abstraction of the integral operator. With the motivation of generalizing the study of algebraic geometry to Rota-Baxter algebra, we extend the central concept of localization for commutative algebras to commutative Rota-Baxter algebras. The existence of such a localization is proved and, under mild conditions, its explicit constructions are obtained. The existence of tensor products of commutative Rota...

8. Twisted Hamiltonian Lie Algebras and Their Multiplicity-Free Representations

Ling CHEN

2011-01-01

We construct a class of new Lie algebras by generalizing the one-variable Lie algebras generated by the quadratic conformal algebras (or corresponding Hamiltonian operators) associated with Poisson algebras and a quasi-derivation found by Xu. These algebras can be viewed as certain twists of Xu's generalized Hamiltonian Lie algebras. The simplicity of these algebras is completely determined. Moreover, we construct a family of multiplicity-free representations of these Lie algebras and prove their irreducibility.

9. The su(1, 1) dynamical algebra from the Schroedinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator

We apply the Schroedinger factorization to construct the ladder operators for the hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the su(1, 1) Lie algebra.

10. Discrete Duality for Tense Symmetric Heyting Algebras

Figallo, Aldo V; Sanza, Claudia

2012-01-01

In this article, we continue the study of tense symmetric Heyting algebras (or TSH-algebras). These algebras constitute a generalization of tense algebras. In particular, we describe a discrete duality for TSHalgebras bearing in mind the results indicated by E. Or lowska and I. Rewitzky in [E. Or lowska and I. Rewitzky, Discrete Dualities for Heyting Algebras with Operators, Fund. Inform. 81 (2007), no.1-3, 275-295.] for Heyting algebras. In addition, we introduce a propositional calculus and prove this calculus has TSH-algebras as algebraic counterpart. Finally, the duality mentioned above allowed us to show the completeness theorem for this calculus.

11. On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}

Sergii Kuzhel

2012-01-01

\\(\\Sigma_{J_{\\vec{\\beta}}}\\ are unitarily equivalent for different \\(\\vec{\\alpha}, \\vec{\\beta} \\in \\mathbb{S}^2\\ and describe in detail the structure of operators \\(A \\in \\Sigma_{J_{\\vec{\\alpha}}}\\ with empty resolvent set.

12. Extended finite operator calculus as an example of algebraization of analysis

Kwasniewski, A. K.

2008-01-01

A calculus of sequences started by professor morgan ward constitutes the general scheme for extensions of classical operator calculus of the distinguished gian carlo rota considered by many afterwards and after ward morgan. Because of the historically now established notation we call the wardian calculus of sequences in its afterwards elaborated form a psi calculus. The psi calculus in parts appears to be almost automatic, natural extension of classical operator calculus or equivalently of um...

13. Method of averaging in Clifford algebras

Shirokov, D. S.

2014-01-01

In this paper we consider different operators acting on Clifford algebras. We consider Reynolds operator of Salingaros' vee group. This operator average" an action of Salingaros' vee group on Clifford algebra. We consider conjugate action on Clifford algebra. We present a relation between these operators and projection operators onto fixed subspaces of Clifford algebras. Using method of averaging we present solutions of system of commutator equations.

14. Supertropical algebra

Izhakian, Zur; Rowen, Louis

2008-01-01

We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...

15. On various avatars of the Pasquier algebra

A Pasquier algebra is a commutative associative algebra of normal matrices attached to a graph. I review various appearances of such algebras in different contexts: operator product algebras and structure constants in conformal theories and lattice models, integrable N = 2 supersymmetric models and their topological partners. (author)

16. Nonpotential scattering theory and Lie-admissible algebras: time evolution operators and the S-matrix

In this paper we initiate the study of a non-potential scattering theory within the framework of Lie-admissible formulations. By working in a time-dependent approach, we assume as starting point the usual definition of S-matrix as the time development operator connecting states of our system (supposed interacting through nonpotential forces) in the infinite past to states in the infinite future. It is shown that the Lie-admissible generalization of quantum mechanics, needed to take into account nonconservative forces, leads to two different, non-unitary evolution operators in Schroedinger's representation, U/sub +/ and U/sub -/, describing, respectively, motion forward and backward in time. This implies the existence of two different S-matrices (and, therefore, of two different cross sections) for a given reaction and the inverse (time-reversed) one. Then, one expects a violation of time-reversal invariance whenever nonpotential forces are involved, predictably for strong (nuclear and hadronic) interactions, in agreement with some recent experimental results in nuclear physics. Lie-admissible generalizations of Schroedinger's equations, suggested by the equations of motion for U/sub +/ and U/sub -/, are proposed. Both U/sub +/ and U/sub -/ operators satisfy a Volterra-like integral equation, which can be expanded, under suitable assumptions, in a Neumann-Liouville series. By introducing the operators of chronological and antichronological ordering, one can express both the direct and inverse scattering matrix in the form of a perturbative expansion. The validity of the limiting procedure leading from the U-operators to the S-matrices is investigated by means of generalized Moller's operators

17. Quantum computation using geometric algebra

Matzke, Douglas James

This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

18. Generating Generalized Bessel Equations by Virtue of Bose Operator Algebra and Entangled State Representations

FAN Hong-Yi; WANG Yong

2006-01-01

With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.

19. On Dunkl angular momenta algebra

Feigin, Misha; Hakobyan, Tigran

2015-11-01

We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

20. Graph of BCI-Algebras

Omid Zahiri; Rajab Ali Borzooei

2012-01-01

We associate a graph to any subset Y of a BCI-algebra X and denote it by G(Y). Then we find the set of all connected components of G(X) and verify the relation between X and G(X), when X is commutative BCI-algebra or G(X) is complete graph or n-star graph. Finally, we attempt to investigate the relation between some operations on graph and some operations on BCI-algebras.

1. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

Baykara, N. A.

2015-12-01

Recent studies on quantum evolutionary problems in Demiralp's group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.

2. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one

3. Intermediate algebra a textworkbook

McKeague, Charles P

1985-01-01

Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

4. Bosonization of ZF algebras: direction toward a deformed Virasoro algebra

Bosonization of conformal field theory is discussed. An explicit realization of chiral vertex operators interpolating between irreducible representations of the deformed Virasoro algebra is obtained. The commutation relations of these operators are determined by the elliptic matrix of Zamolodchikov-Faddeev algebras. 45 refs., 6 figs

5. Hopf algebras in noncommutative geometry

We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

6. Algebraic Groups

2007-01-01

The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject of...... algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group-theorists, and to...

7. Dirac matrices as elements of superalgebraic matrix algebra

Monakhov, V. V.

2016-01-01

The paper considers a Clifford extension of the Grassmann algebra, in which operators are built from Grassmann variables and by the derivatives with respect to them. It is shown that a subalgebra which is isomorphic to the usual matrix algebra exists in this algebra, the Clifford exten-sion of the Grassmann algebra is a generalization of the matrix algebra and contains superalgebraic operators expanding matrix algebra and produces supersymmetric transformations.

8. Linear algebra done right

Axler, Sheldon

2015-01-01

This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

9. Lie algebra cohomology

We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables Ci and commuting variables Xi. Ci and Xi transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product, determines the cohomology of the underlying Lie algebra. (orig.)

10. Linear Algebra and Smarandache Linear Algebra

Vasantha, Kandasamy

2003-01-01

The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...