WorldWideScience

Sample records for alcohol decreased serotonin

  1. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Science.gov (United States)

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  2. Interaction between serotonin transporter and serotonin receptor 1 B genes polymorphisms may be associated with antisocial alcoholism.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2012-07-11

    Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism's heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n=120) and antisocial non-alcoholism (AS-N-ALC) group (n=153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan's Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  3. Ethanol intake and 3H-serotonin uptake II: A study in alcoholic patients using platelets 3H-paroxetine binding

    International Nuclear Information System (INIS)

    Daoust, M.; Boucly, P.; Ernouf, D.; Breton, P.; Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of 3 H-paroxetine binding and 3 H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in 3 H-paroxetine binding. When binding and 3 H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology

  4. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    Directory of Open Access Journals (Sweden)

    Wang Tzu-Yun

    2012-07-01

    Full Text Available Abstract Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR and serotonin 1 B receptor (5-HT1B, may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD [antisocial alcoholism (AS-ALC group (n = 120 and antisocial non-alcoholism (AS-N-ALC group (n = 153] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  5. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.

    Science.gov (United States)

    Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje

    2017-11-22

    Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This

  6. Serotonin's Complex Role in Alcoholism: Implications for Treatment and Future Research.

    Science.gov (United States)

    Marcinkiewcz, Catherine A; Lowery-Gionta, Emily G; Kash, Thomas L

    2016-06-01

    Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence. Copyright © 2016 by the Research Society on Alcoholism.

  7. Decreased uptake of 3H-serotonin and endogenous content of serotonin in blood platelets in hypertensive patients

    International Nuclear Information System (INIS)

    Kamal, L.A.; Le Quan-Bui, K.H.; Meyer, P.

    1984-01-01

    The uptake and content of serotonin in blood platelets were studied in patients with essential hypertension and in five families in which at least one member was hypertensive. Blood was obtained from male and female normotensive volunteers and hypertensive patients who were free of medication. Lineweaver-Burk plots of 3H-serotonin uptake from both control subjects and hypertensive patients were linear, which suggested simple Michaelis-Menten uptake kinetics. The maximal uptake velocity (Vmax) in hypertensive patients was significantly lower than in control subjects (control . 41.7 +/- 3.3 pmol/min/10(8) platelets, n . 17; hypertensive . 26.6 +/- 3.0 pmol/min/10(8) platelets, n . 16; p less than 0.005). The affinity constant (Km) was slightly but significantly lower in hypertensive patients (control . 0.70 +/- 0.08 microM; hypertensive . 0.46 +/- 0.08 microM; p less than 0.05). The serotonin content in blood platelets determined by high pressure liquid chromatography with electrochemical detection was significantly lower in hypertensive patients (control . 165.0 +/- 12.9 nmol/10(11) platelets, n . 29; hypertensive . 105.9 +/- 10.4 nmol/10(11) platelets, n . 27; p less than 0.001). In the five families investigated, the lowered serotonin content was observed in some normotensive members. The reduced number of carriers of serotonin uptake and the slight decrease in the affinity constant observed in platelets of patients with essential hypertension suggest that serotonin metabolism is altered in essential hypertension and that blood platelets may be a useful model in studying the serotonergic modifications at the molecular level

  8. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    International Nuclear Information System (INIS)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-01-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression

  9. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity.

    Science.gov (United States)

    Lamb, R J; Daws, L C

    2013-10-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Ethanol intake and 3H-serotonin uptake I: A study in Fawn-Hooded rats

    International Nuclear Information System (INIS)

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P.

    1991-01-01

    Ethanol intake and synaptosomal 3 H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal 3 H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces 3 H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system

  11. [Development of a prediabetic state under chronic alcohol intoxication].

    Science.gov (United States)

    Voĭtenko, V V; Konopel'niuk, V V; Savchuk, O M; Ostapchenko, L I

    2013-01-01

    We investigated the changes in key parameters of carbohydrate and lipid metabolism, which correspond to the clinical picture that accompanies the development of prediabetic condition on the background of chronic alcohol intoxication. From the analysis of glycemic curves obtained during the insulin-glucose test, a speed of glucose uptake by peripheral tissues increased at the 1st day (1.5 fold) and the third day (1.3 fold) of administration of alcohol solution. At the later periods, at 7 and 11 days of ethanol administration, a decreased rate of glucose uptake in animals with chronic alcohol intoxication was detected. We also detected an increased content of serotonin in the blood serum and a decreased (1.2 fold) serotonin content in rat brain during the whole period of development of chronic alcohol intoxication.

  12. Insomnia, platelet serotonin and platelet monoamine oxidase in chronic alcoholism.

    Science.gov (United States)

    Nenadic Sviglin, Korona; Nedic, Gordana; Nikolac, Matea; Mustapic, Maja; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2011-08-18

    Insomnia is a common sleep disorder frequently occurring in chronic alcoholic patients. Neurobiological basis of insomnia, as well as of alcoholism, is associated with disrupted functions of the main neurotransmitter systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Blood platelets are considered a limited peripheral model for the central 5-HT neurons, since both platelets and central 5-HT synaptosomes have similar dynamics of 5-HT. Platelet 5-HT concentration and platelet monoamine oxidase type B (MAO-B) are assumed to represent biomarkers for particular symptoms and behaviors in psychiatric disorders. The hypothesis of this study was that platelet 5-HT concentration and platelet MAO-B activity will be altered in chronic alcoholic patients with insomnia compared to comparable values in patients without insomnia. The study included 498 subjects: 395 male and 103 female medication-free patients with alcohol dependence and 502 healthy control subjects: 325 men and 177 women. The effects of early, middle and late insomnia (evaluated using the Hamilton Depression Rating Scale), as well as sex, age and smoking on platelet 5-HT concentration and platelet MAO-B activity were evaluated using one-way ANOVA and multiple regression analysis by the stepwise method. Platelet 5-HT concentration, but not platelet MAO-B activity, was significantly reduced in alcoholic patients with insomnia compared to patients without insomnia. Multiple regression analysis revealed that platelet 5-HT concentration was affected by middle insomnia, smoking and sex, while platelet MAO activity was affected only by sex and age. The present and previous data suggest that platelet 5-HT concentration might be used, after controlling for sex and smoking, as a biomarker for insomnia in alcoholism, PTSD and in rotating shift workers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  14. The association of measures of the serotonin system, personality, alcohol use, and smoking with risk-taking traffic behavior in adolescents in a longitudinal study.

    Science.gov (United States)

    Luht, Kadi; Eensoo, Diva; Tooding, Liina-Mai; Harro, Jaanus

    2018-01-01

    Studies on the neurobiological basis of risk-taking behavior have most often focused on the serotonin system. The promoter region of the gene encoding the serotonin transporter contains a polymorphic site (5-HTTLPR) that is important for the transcriptional activity, and studies have demonstrated its association with brain activity and behavior. Another molecular mechanism that reflects the capacity of the central serotonin system is the activity of the enzyme monoamine oxidase (MAO) as measured in platelets. The purpose of the present study was to examine how measures of the serotonin system (platelet MAO activity and the 5-HTTLPR polymorphism), personality variables, alcohol use and smoking are associated with risk-taking traffic behavior in schoolchildren through late adolescence. The younger cohort of the longitudinal Estonian Children Personality Behaviour and Health Study (originally n = 583) filled in questionnaires about personality traits, smoking status, alcohol use and traffic behavior at age 15 and 18 years. From venous blood samples, platelet MAO activity was measured radioenzymatically and 5-HTTLPR was genotyped. During late adolescence, subjects with lower platelet MAO activity were more likely to belong to the high-risk traffic behavior group. Male 5-HTTLPRs'-allele carriers were more likely to belong to the high-risk traffic behavior group compared to the l'/l' homozygotes. Other variables predicting risk group were alcohol use, smoking and Maladaptive impulsivity.The results suggest that lower capacity of the serotoninergic system is associated with more risky traffic behavior during late adolescence, but possibly by different mechanisms in boys and girls.

  15. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  16. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    International Nuclear Information System (INIS)

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  17. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  18. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P. E-mail: kunghf@sunmac.spect.upenn.edu; Acton, Paul D.; Kung, Hank F

    2000-02-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [{sup 125}I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[{sup 125}I]iodide, the radiolabeled [{sup 125}I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K{sub i}=2.8{+-}0.88 nM. Using LLC-PK{sub 1} cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K{sub i}=0.12{+-}0.02 nM). Inhibition constants for the other two transporters were lower (K{sub i}=3.9{+-}0.7 {mu}M and 20.0 {+-} 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [{sup 125}I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection

  19. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    International Nuclear Information System (INIS)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P.; Acton, Paul D.; Kung, Hank F.

    2000-01-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [ 125 I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[ 125 I]iodide, the radiolabeled [ 125 I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K i =2.8±0.88 nM. Using LLC-PK 1 cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K i =0.12±0.02 nM). Inhibition constants for the other two transporters were lower (K i =3.9±0.7 μM and 20.0 ± 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [ 125 I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection, respectively. The specific uptake in hypothalamus

  20. Prenatal alcohol exposure results in long-term serotonin neuron deficits in female rats: modulatory role of ovarian steroids.

    Science.gov (United States)

    Sliwowska, Joanna H; Song, Hyun Jung; Bodnar, Tamara; Weinberg, Joanne

    2014-01-01

    Previous studies on male rodents found that prenatal alcohol exposure (PAE) decreases the number of serotonin immunoreactive (5-HT-ir) neurons in the brainstem. However, data on the effects of PAE in females are lacking. In light of known sex differences in responsiveness of the 5-HT system and known effects of estrogen (E2 ) and progesterone (P4 ) in the brain, we hypothesized that sex steroids will modulate the adverse effects of PAE on 5-HT neurons in adult females. Adult females from 3 prenatal groups (Prenatal alcohol-exposed [PAE], Pair-fed [PF], and ad libitum-fed Controls [C]) were ovariectomized (OVX), with or without hormone replacement, or underwent Sham OVX. 5-HT-ir cells were examined in key brainstem areas. Our data support the hypothesis that PAE has long-term effects on the 5-HT system of females and that ovarian steroids have a modulatory role in these effects. Intact (Sham OVX) PAE females had marginally lower numbers of 5-HT-ir neurons in the dorsal raphe nucleus of the brainstem compared with PF and C females. This marginal difference became significant following removal of hormones by OVX. Replacement with E2 restored the number of 5-HT-ir neurons in PAE females to control levels, while P4 reversed the effects of E2 . Importantly, despite these differential responses of the 5-HT system to ovarian steroids, there were no differences in E2 and P4 levels among prenatal treatment groups. These data demonstrate long-term, adverse effects of PAE on the 5-HT system of females, as well as differential sensitivity of PAE compared with control females to the modulatory effects of ovarian steroids on 5-HT neurons. Our findings have important implications for understanding sex differences in 5-HT dysfunction in depression/anxiety disorders and the higher rates of these mental health problems in individuals with fetal alcohol spectrum disorder. Copyright © 2013 by the Research Society on Alcoholism.

  1. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    International Nuclear Information System (INIS)

    Simon, C.; Ternaux, J.P.

    1990-01-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population

  2. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    Science.gov (United States)

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Serotonin shapes risky decision making in monkeys.

    Science.gov (United States)

    Long, Arwen B; Kuhn, Cynthia M; Platt, Michael L

    2009-12-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.

  4. Alcohol abuse and related disorders treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Yu. P. Sivolap

    2014-01-01

    Full Text Available Alcohol abuse and alcoholism are the leading causes of worse health and increased mortality rates. Excessive alcohol consumption is the third leading cause of the global burden of diseases and a leading factor for lower lifespan and higher mortality. Alcohol abuse decreases working capacity and efficiency and requires the increased cost of the treatment of alcohol-induced disorders, which entails serious economic losses. The unfavorable medical and social consequences of excessive alcohol use determine the importance of effective treatment for alcoholism. The goals of rational pharmacotherapy of alcohol dependence are to enhance GABA neurotransmission, to suppress glutamate neurotransmission, to act on serotonin neurotransmission, to correct water-electrolyte balance, and to compensate for thiamine deficiency. Alcoholism treatment consists of two steps: 1 the prevention and treatment of alcohol withdrawal syndrome and its complications (withdrawal convulsions and delirium alcoholicum; 2 antirecurrent (maintenance therapy. Benzodiazepines are the drugs of choice in alleviating alcohol withdrawal and preventing its convulsive attacks and delirium alcoholicum. Diazepam and chlordiazepoxide are most commonly used for this purpose; the safer drugs oxazepam and lorazepam are given to the elderly and patients with severe liver lesions. Anticonvulsants having normothymic properties, such as carbamazepine, valproic acid, topiramate, and lamotrigine, are a definite alternative to benzodiazepines. The traditional Russian clinical practice (clearance detoxification has not a scientific base or significant impact on alcohol withdrawal-related states in addicts. Relapse prevention and maintenance therapy for alcohol dependence are performed using disulfiram, acamprosate, and naltrexone; since 2013 the European Union member countries have been using, besides these agents, nalmefene that is being registered in Russia. Memantine and a number of other

  5. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  6. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  7. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  8. Modulation of defensive reflex conditioning in snails by serotonin

    Science.gov (United States)

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  9. Selective decrease in central nervous system serotonin turnover in children with dopa-nonresponsive dystonia.

    Science.gov (United States)

    Assmann, Birgit; Köhler, Martin; Hoffmann, Georg F; Heales, Simon; Surtees, Robert

    2002-07-01

    Childhood dystonia that does not respond to treatment with levodopa (dopa-nonresponsive dystonia, DND) has an unclear pathogenesis and is notoriously difficult to treat. To test the hypothesis that there may be abnormalities in serotonin turnover in DND we measured cerebrospinal fluid (CSF) concentrations of homovanillic (HVA) and 5-hydroxyindoleacetic (HIAA) acids, metabolites of dopamine and serotonin, respectively, in 18 children with dystonia not responsive to levodopa. These were combined with a reference population of 85 children with neurologic or metabolic disease known not to affect dopamine or serotonin metabolism. Because of the known natural age-related decrement in HVA and HIAA concentrations, the results were analyzed using multiple regression using age and DND as predictors of CSF HIAA and HVA concentrations. DND was a highly significant predictor of CSF HIAA concentration (p model, the geometric mean ratio of CSF HIAA in DND compared with the reference range was 0.53 whereas that for CSF HVA was 0.95. We also analyzed CSF HIAA/HVA ratios. After fitting a regression model, we found no dependence on age, and the mean of CSF HIAA/HVA in DND was 0.28 whereas that for the reference range was 0.49 (p < 0.001). We conclude that a significant number of children with DND have reduced CNS serotonin turnover. Treatment with drugs that increase serotonin concentration in the synaptic cleft should be considered in this group of patients.

  10. Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Hans; Erritzoe, David; Andersen, Rune

    2010-01-01

    , in vivo studies of serotonin(2A) binding report conflicting results, presumably because sample sizes have been small or because schizophrenic patients who were not antipsychotic-naive were included. Furthermore, the relationships between serotonin(2A) binding, psychopathology, and central neurocognitive...

  11. Resisting temptation: decreasing alcohol-related affect and drinking behavior by training response inhibition

    NARCIS (Netherlands)

    Houben, K.; Nederkoorn, C.; Wiers, R.W.; Jansen, A.

    2011-01-01

    According to dual-process models, excessive alcohol use emerges when response inhibition ability is insufficient to inhibit automatic impulses to drink alcohol. This study examined whether strengthening response inhibition for alcohol-related cues decreases alcohol intake. Fifty-two heavy drinking

  12. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  13. Low doses of alcohol substantially decrease glucose metabolism in the human brain.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Franceschi, Dinko; Fowler, Joanna S; Thanos, Panayotis Peter K; Maynard, Laurence; Gatley, S John; Wong, Christopher; Veech, Richard L; Kunos, George; Kai Li, Ting

    2006-01-01

    Moderate doses of alcohol decrease glucose metabolism in the human brain, which has been interpreted to reflect alcohol-induced decreases in brain activity. Here, we measure the effects of two relatively low doses of alcohol (0.25 g/kg and 0.5 g/kg, or 5 to 10 mM in total body H2O) on glucose metabolism in the human brain. Twenty healthy control subjects were tested using positron emission tomography (PET) and FDG after placebo and after acute oral administration of either 0.25 g/kg, or 0.5 g/kg of alcohol, administered over 40 min. Both doses of alcohol significantly decreased whole-brain glucose metabolism (10% and 23% respectively). The responses differed between doses; whereas the 0.25 g/kg dose predominantly reduced metabolism in cortical regions, the 0.5 g/kg dose reduced metabolism in cortical as well as subcortical regions (i.e. cerebellum, mesencephalon, basal ganglia and thalamus). These doses of alcohol did not significantly change the scores in cognitive performance, which contrasts with our previous results showing that a 13% reduction in brain metabolism by lorazepam was associated with significant impairment in performance on the same battery of cognitive tests. This seemingly paradoxical finding raises the possibility that the large brain metabolic decrements during alcohol intoxication could reflect a shift in the substrate for energy utilization, particularly in light of new evidence that blood-borne acetate, which is markedly increased during intoxication, is a substrate for energy production by the brain.

  14. Serum and ascitic fluid serotonin levels and 5-hydroxyindoleacetic acid urine excretion in the liver of cirrhotic patients with encephalopathy.

    Science.gov (United States)

    Chojnacki, C; Walecka-Kapica, E; Stepien, A; Pawlowicz, M; Wachowska-Kelly, P; Chojnacki, J

    2013-01-01

    The excess and deficit of serotonin can be the cause of somatic and mental disorders. The aim of this study was to evaluate serotonin levels in blood and ascitic fluid as well as excretion of 5-hydroxyindoleacetic acid (5-HIAA) in urine in patients with hepatic encephalopathy (HE). The study included 75 alcoholic cirrhotic patients divided into 3 groups (HE1, HE2, HE3), 25 patients each, with grade 1, 2 and 3 of hepatic encephalopathy according to West-Haven classification. The control group (C) included 25 clinically healthy volunteers. Venous blood and ascitic fluid were collected in fasting. On the same day a 24-hour urine collection was performed. Immunoenzymatic method was used to determine the serotonin level in serum and ascitic fluid, and 5-HIAA in urine (IBL-RE-59121, RE-59131). In the control group, mean serum serotonin level (ng/ml) was 155.5 ± 38.1 and in the 3 study groups: HE1 - 175.2 ± 32.4 (NS), HE2 - 137.2 ± 28.6 (NS), HE3 - 108.3 ± 46.3 (pencephalopathy. In patients with severe hepatic encephalopathy serotonin concentration in blood is decreased which can affect some clinical manifestation of this disease.

  15. A double-blind, placebo-controlled study of sertraline with naltrexone for alcohol dependence.

    LENUS (Irish Health Repository)

    Farren, Conor K

    2009-01-01

    Significant preclinical evidence exists for a synergistic interaction between the opioid and the serotonin systems in determining alcohol consumption. Naltrexone, an opiate receptor antagonist, is approved for the treatment of alcohol dependence. This double-blind placebo-controlled study examined whether the efficacy of naltrexone would be augmented by concurrent treatment with sertraline, a selective serotonin receptor uptake inhibitor (SSRI).

  16. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  17. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  18. Lack of association of the serotonin transporter gene promoter region polymorphism, 5-HTTLPR, including rs25531 with cigarette smoking and alcohol consumption

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Bagger, Yu; Tanko, Laszlo B

    2009-01-01

    We addressed the question whether 5-HTTLPR, a variable number of tandem repeats located in the 5' end of the serotonin transporter gene, is associated with smoking or alcohol consumption. Samples of DNA from 1,365 elderly women with a mean age of 69.2 years were genotyped for this polymorphism...... using a procedure, which allowed the simultaneous determination of variation in the number of repeat units and single nucleotide changes, including the A > G variation at rs25531 for discrimination between the L(A) and L(G) alleles. Qualitative and quantitative information on the women's current...... and previous consumption of cigarettes and alcohol were obtained using a questionnaire. Genotypes were classified according to allele size, that is, S and L with 14 and 16 repeat units, respectively, and on a functional basis by amalgamation of the L(G) and S alleles. Data were subjected to regression analyses...

  19. Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Carnicella, Sebastien; Ahmadiantehrani, Somayeh; He, Dao-Yao; Nielsen, Carsten K; Bartlett, Selena E; Janak, Patricia H; Ron, Dorit

    2009-07-15

    Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPgammaS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders.

  20. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.

    Directory of Open Access Journals (Sweden)

    Kota Tamada

    Full Text Available Autism spectrum disorders (ASDs have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+ mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.

  1. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  2. Do alcohol compliance checks decrease underage sales at neighboring establishments?

    Science.gov (United States)

    Erickson, Darin J; Smolenski, Derek J; Toomey, Traci L; Carlin, Bradley P; Wagenaar, Alexander C

    2013-11-01

    Underage alcohol compliance checks conducted by law enforcement agencies can reduce the likelihood of illegal alcohol sales at checked alcohol establishments, and theory suggests that an alcohol establishment that is checked may warn nearby establishments that compliance checks are being conducted in the area. In this study, we examined whether the effects of compliance checks diffuse to neighboring establishments. We used data from the Complying with the Minimum Drinking Age trial, which included more than 2,000 compliance checks conducted at more than 900 alcohol establishments. The primary outcome was the sale of alcohol to a pseudo-underage buyer without the need for age identification. A multilevel logistic regression was used to model the effect of a compliance check at each establishment as well as the effect of compliance checks at neighboring establishments within 500 m (stratified into four equal-radius concentric rings), after buyer, license, establishment, and community-level variables were controlled for. We observed a decrease in the likelihood of establishments selling alcohol to underage youth after they had been checked by law enforcement, but these effects quickly decayed over time. Establishments that had a close neighbor (within 125 m) checked in the past 90 days were also less likely to sell alcohol to young-appearing buyers. The spatial effect of compliance checks on other establishments decayed rapidly with increasing distance. Results confirm the hypothesis that the effects of police compliance checks do spill over to neighboring establishments. These findings have implications for the development of an optimal schedule of police compliance checks.

  3. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  4. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  5. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  6. Alcohol and caffeine consumption and decreased fertility.

    Science.gov (United States)

    Hakim, R B; Gray, R H; Zacur, H

    1998-10-01

    To examine the effects of alcohol and caffeine on conception. Prospective observational study. Healthy volunteers in two manufacturing facilities. One hundred twenty-four women who provided daily urine samples for measurement of steroid hormones and hCG, and prospective information about alcohol and caffeine consumption. Probability of conception per 100 menstrual cycles. There was >50% reduction in the probability of conception during a menstrual cycle during which participants consumed alcohol. Caffeine consumption did not independently affect the probability of conception but may enhance alcohol's negative effect. Women who abstained from alcohol and consumed less than one cup of coffee or its equivalent per day conceived 26.9 pregnancies per 100 menstrual cycles compared with 10.5 per 100 menstrual cycles among those who consumed any alcohol and more than one cup of coffee per day. This study revealed an independent dose-related negative effect of alcohol consumption on the ability to conceive. Our results suggest that women who are attempting to conceive should abstain from consuming alcohol.

  7. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  8. Genetics of Lesch's typology of alcoholism.

    Science.gov (United States)

    Samochowiec, Jerzy; Kucharska-Mazur, Jolanta; Grzywacz, Anna; Pelka-Wysiecka, Justyna; Mak, Monika; Samochowiec, Agnieszka; Bienkowski, Przemyslaw

    2008-02-15

    It is widely accepted that dopamine and serotonin (5-HT) neurotransmission can be critically involved in the development of alcohol abuse and alcohol dependence. Lesch's typology of alcoholism has been gaining increasing popularity as it qualitatively differentiates patients into different treatment response subgroups. The aim of the present study was to evaluate a possible genetic background of Lesch's typology with special emphasis placed on dopamine- and serotonin-related genes. 122 alcoholics (the mean age: 35+/-9 years) were investigated. According to Lesch's typology, 58 patients were of type I, 36 patients of type II, 11 patients of type III, and 17 patients of type IV. Alcohol drinking and family history was assessed by means of a structured interview, based on the Semi-Structured Assessment for the Genetics of Alcoholism. 150 control subjects without psychiatric disorders were also recruited. The control group was ethnically-, age- and gender-matched to the patients. The DRD2 TaqIA, exon 8, and promoter -141C ins/del polymorphisms as well as COMT Val158Met, 5HTT 44 bp del in promoter, and DAT 40 bp VNTR polymorphisms were detected by means of PCR. No significant differences were observed when the whole group of alcoholics and the controls were compared. Similarly, there were no differences between either the Lesch type I or type II alcoholics and the control subjects. No significant differences were observed between type I and type II alcoholics. Alleles frequencies were not calculated for the Lesch type III and type IV alcoholics since the number of patients was too small. The present results argue against any major role of the investigated polymorphisms in either Lesch type I or type II alcoholism. More comprehensive studies are needed to define the role of the investigated polymorphisms in Lesch type III and type IV alcoholism.

  9. Alcohol consumption decreases the protection efficiency of the antioxidant network and increases the risk of sunburn in human skin.

    Science.gov (United States)

    Darvin, M E; Sterry, W; Lademann, J; Patzelt, A

    2013-01-01

    In recent years, epidemiological data has demonstrated that alcohol consumption is a risk factor for sunburn, melanoma and nonmelanoma skin cancer. We hypothesized that if the concentration of the antioxidants in the skin has already decreased due to alcohol consumption, then an adequate neutralization of the free radicals induced by ultraviolet light cannot be performed. Based on this hypothesis, we determined the carotenoid concentration in the skin and the minimal erythema dose (MED) of 6 male human volunteers before and after consumption of alcohol or alcohol and orange juice combined. The results showed a significant decrease in the carotenoid concentration in the skin and the MED after alcohol consumption, but no significant decrease after a combined intake of alcohol and orange juice. Copyright © 2012 S. Karger AG, Basel.

  10. Association between salivary serotonin and the social sharing of happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others, we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative, as well as the presence of a friend (absent, positive, or negative. Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking, which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  11. Association between salivary serotonin and the social sharing of happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Ishii, Keiko; Ohtsubo, Yohsuke; Noguchi, Yasuki; Ochi, Misaki; Yamasue, Hidenori

    2017-01-01

    Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others), we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend (absent, positive, or negative). Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking), which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  12. Serotonin-Related Gene Polymorphisms and Asymptomatic Neurocognitive Impairment in HIV-Infected Alcohol Abusers

    Directory of Open Access Journals (Sweden)

    Karina Villalba

    2016-01-01

    Full Text Available HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND may be associated with neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life and HIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4, TPH2, and GALM genes may affect the activity of serotonin and increase the risk of HAND. The present study explored the relationship between SLC6A4, TPH2, and GALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892. To assess neurocognitive functions, the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with executive function in African American males (odds ratio 4.8, 95% CI, 1.5–14.8; P=0.005. Similarly, GALM SNP rs6741892 showed an increased risk with African American males (odds ratio 2.4, 95% CI, 1.2–4.9; P=0.02. This study suggests that TPH2 rs4570625 and GALM rs6741892 polymorphisms may be risk factors for HAND.

  13. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  14. Central administration of the anorexigenic peptide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents.

    Science.gov (United States)

    Vallöf, Daniel; Ulenius, Lisa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2017-05-01

    By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans. © 2016 The Authors Addiction Biology published by John Wiley & Sons Ltd.

  15. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.

    Science.gov (United States)

    Gillman, P Ken

    2010-02-01

    The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.

  16. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  17. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.

    Science.gov (United States)

    Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung

    2018-03-01

    The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018

  18. Bright versus dim ambient light affects subjective well-being but not serotonin-related biological factors.

    Science.gov (United States)

    Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A

    2015-10-30

    Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Epinephrine Injection effect on serotonin metabolism in small intestines of gamma irradiated rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Mahdy, A.M.

    1997-01-01

    The response of serotonin metabolism to epinephrine injection was examined in the small intestine of normal and whole body gamma irradiated rats. The data revealed that a single dose of 6 Gy induced decrease in serotonin content associated with increase of monoaminoxidase activity (MAO), and 5-hydroxyindol acetic acid (5-HIAA); at one and four hours, and one, three and seven days after exposure. Intraperitoneal administration of epinephrine to normal unirradiated rats at a dose of 0.2 mug/g increased serotonin content, decreased (MAO) activity, and (5-HIAA) level, one and four hours after treatment. No significant changes were recorded later. Injection of epinephrine to rats, 15 minutes before irradiation, resulted in no significant changes of serotonin content, MAO activity and 5-HIAA level at one, four hours and one day after irradiation. At three and seven days, the changes were less significant. The results obtained suggest that the effect of epinephrine on serotonin and 5-HIAA levels in the small intestine of rats is mediated by the opposing effect of epinephrine on the radiation induced increase of intestinal MAO activity

  20. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Science.gov (United States)

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  1. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.J.A.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  2. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; de Bruin, A.

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  3. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  4. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  5. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  6. Serotonergic dysfunction in addiction: effects of alcohol, cigarette smoking and heroin on platelet 5-HT content.

    Science.gov (United States)

    Schmidt, L G; Dufeu, P; Heinz, A; Kuhn, S; Rommelspacher, H

    1997-10-10

    The impact of ethanol, cigarette smoking and heroin on serotonin function was evaluated, first in alcoholics during chronic ethanol intoxication and in opiate addicts after long-term heroin consumption, and secondly in both patient groups after detoxification treatment (i.e. a short-term abstinence of 8 days). Our results showed that the 5-hydroxytryptamine (5-HT) content in platelets was: (1) increased in the subgroup of anti-social alcoholics; (2) transiently and differently altered in alcoholics compared to opiate addicts; and (3) lowered in drinking alcoholics and normal in alcoholics who were drinking as well as smoking (that may occur via MAO-B inhibition by smoke). The findings indicate that alterations of the peripheral and possibly the central serotonin system may occur as predisposing factors for alcoholism in individuals with anti-social traits; they may also have some impact on the progression of alcoholism due to its lowered function during chronic ethanol intoxication that is substantially modified by smoking.

  7. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  8. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  9. Decreased serum level of NGF in alcohol-dependent patients with declined executive function

    Directory of Open Access Journals (Sweden)

    Bae H

    2014-11-01

    Full Text Available Hwallip Bae,1 Youngsun Ra,1 Changwoo Han,2 Dai-Jin Kim3 1Department of Psychiatry, Myongji Hospital, Goyang, 2Department of Psychiatry, Keyo Hospital, Uiwang, 3Department of Psychiatry, Seoul St Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea Abstract: The role of neurotrophic factors has been highlighted as a cause of decline in the cognitive function of alcohol-dependent patients. It is known that nerve-growth factor (NGF, one of the neurotrophins, is related to the growth and differentiation of nerve cells, as well as to a decline in cognitive function. The purpose of this study was to investigate the relationship between decreased NGF levels and cognitive decline in alcohol-dependent patients. The serum concentration of NGF was measured in 38 patients with chronic alcohol dependence, and several neuropsychological tests were also performed for cognitive function assessment. The results indicated a significant correlation between serum NGF level and the trail-making test part B, which evaluates executive function, but did not show a significant correlation with other cognitive function tests. An increased serum level of NGF was associated with a decreased completion time in the trail-making test B, and this finding indicates that a high serum level of NGF is related to greater executive function. This finding may imply a protective role of NGF in preventing neuron damage among patients with alcohol dependence. Larger controlled studies will be necessary in the future to investigate this issue further. Keywords: nerve-growth factor, alcohol dependence, executive function, trail-making test

  10. The value of blood serotonin for effective weight loss in obese women

    Directory of Open Access Journals (Sweden)

    Natal'ya Vadimovna Anikina

    2015-07-01

    Full Text Available Introduction. Obesity is a disorder of energy balance, which leads to excessive accumulation of fat. In recent years, many important discoveries were made in this field, including the discovery of hormones produced by adipose tissue and the identification of many of the central and peripheral pathways of energy balance. Objective. To study the levels of hormones that affect appetite and metabolism in women with obesity baseline and after weight loss while taking sibutramine. Materials and methods. The study included 56 women aged 42,9±9,5 years, with a BMI of 34,6±6,1 kg/m2. All patients underwent clinical, laboratory and instrumental examination. Hormonal study included determination of serotonin, leptin, ghrelin, endothelin-1, adiponectin. Results: In women with obesity we identified hyperleptinemia and increased serotonin levels. The decrease in body weight in patients receiving sibutramine was accompanied by lower levels of serotonin, leptin, ghrelin, endothelin-1, and increase of adiponectin. Conclusions: Obese patients have significantly elevated levels of leptin, serotonin, ghrelin compared to women of normal weight. Sibutramine treatment leads to a decrease in serotonin, leptin, ghrelin and is more effective in women with a BMI less than 36,5 kg/m2.

  11. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    Science.gov (United States)

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  12. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  13. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    Science.gov (United States)

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system

  14. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    Science.gov (United States)

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  15. Neuroendocrine responses to fenfluramine and its relationship to personality in alcoholism.

    Science.gov (United States)

    Weijers, H G; Wiesbeck, G A; Jakob, F; Böning, J

    2001-01-01

    This study investigates the relationship between personality and serotonergic reactivity in alcohol dependence. Personality characteristics were assessed according to the Temperament and Character model of Cloninger, the five-factor model of McCrae and Costa, Zuckerman's Sensation Seeking as well as Eysenck's impulsiveness/venturesomeness. Placebo-controlled prolactin response to the serotonin (5-HT) reuptake inhibitor/releaser fenfluramine served as an indicator for the reactivity of serotonergic neurotransmission. Forty abstinent alcohol-dependent men were subdivided into high and low prolactin responders according to their level of neuroendocrine response. High responders were characterized by decreased harm avoidance while their extraversion and venturesomeness scores were increased in comparison to low responders. The data demonstrates that harm avoidance on the one hand and extraversion/venturesomeness on the other are inversely correlated to serotonergic neurotransmission. These results support a specific relationship between personality traits and the serotonergic system.

  16. Aggravation of nonalcoholic steatohepatitis by moderate alcohol consumption is associated with decreased SIRT1 activity in rats

    Science.gov (United States)

    Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...

  17. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  18. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3

  19. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  20. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  1. Effects of tryptophan depletion on selective serotonin reuptake inhibitor-remitted patients with obsessive compulsive disorder.

    Science.gov (United States)

    Hood, Sean D; Broyd, Annabel; Robinson, Hayley; Lee, Jessica; Hudaib, Abdul-Rahman; Hince, Dana A

    2017-12-01

    Serotonergic antidepressants are first-line medication therapies for obsessive-compulsive disorder, however it is not known if synaptic serotonin availability is important for selective serotonin reuptake inhibitor efficacy. The present study tested the hypothesis that temporary reduction in central serotonin transmission, through acute tryptophan depletion, would result in an increase in anxiety in selective serotonin reuptake inhibitor-remitted obsessive-compulsive disorder patients. Eight patients (four males) with obsessive-compulsive disorder who showed sustained clinical improvement with selective serotonin reuptake inhibitor treatment underwent acute tryptophan depletion in a randomized, double-blind, placebo-controlled, within-subjects design, over two days one week apart. Five hours after consumption of the depleting/sham drink the participants performed a personalized obsessive-compulsive disorder symptom exposure task. Psychological responses were measured using the Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and Visual Analogue Scales. Free plasma tryptophan to large neutral amino acid ratio decreased by 93% on the depletion day and decreased by 1% on the sham day, as anticipated. Psychological rating scores as measured by Visual Analogue Scale showed a significant decrease in perceived control and increase in interfering thoughts at the time of provocation on the depletion day but not on the sham day. A measure of convergent validity, namely Visual Analogue Scale Similar to past, was significantly higher at the time of provocation on both the depletion and sham days. Both the depletion and time of provocation scores for Visual Analogue Scale Anxiety, Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and blood pressure were not significant. Acute tryptophan depletion caused a significant decrease in perceived control and increase in interfering thoughts at the time of provocation. Acute tryptophan

  2. Influence of serotonin and melatonin on some parameters of gastrointestinal activity.

    Science.gov (United States)

    Bubenik, G A; Dhanvantari, S

    1989-01-01

    In vitro melatonin (M) reduced the tone of gut muscles and counteracted the tonic effect of serotonin (5-HT). In vivo 0.1 to 4 mg of 5-HT (contained in beeswax implants) decreased the food transit time (FTT) in a dose-dependent manner, but higher doses (5 and 6 mg) increased the FTT. Melatonin injected intraperitoneally into mice bearing 5-HT implants (2 mg per animal) blocked partly the serotonin effect and increased FTT by 50%; however, no dose-dependent effect was observed when doses between 0.01 and 1 mg were used. Surprisingly, M injected into intact mice decreased FTT to levels comparable to those observed in 5-HT implanted, M-treated mice. Again, this significant decrease was not dose-dependent between 0.02 and 1 mg. Although in vitro the maximal inhibition of serotonin-induced spasm was achieved when the M:5-HT ratio was 50-100:1, in vivo the effective ratio was about 1:1. This may indicate that part of M action on the gut movement is mediated by extraintestinal mechanisms. A hypothetical, counterbalancing system of M and 5-HT regulation of gut activity (similar to adrenaline-acetylcholine system) is proposed.

  3. Combined Effect of food deprivation and serotonin injection on plasma prolactin and glucose levels in irradiated rats

    International Nuclear Information System (INIS)

    Girgis, R.B.; Abdel-Fattah, K.I.; Khamis, F.I.; Abu Zaid, N.M.

    2004-01-01

    The present study aims to investigate the role of serotonin (5-HT) on the homeostasis of plasma prolactin and glucose in rats induced by gamma irradiation and food deprivation. Animals were divided into seven groups; control, irradiated at a dose level of 6 Gy, injected with 500 mg/kg b.wt. 5-HT intra-peritoneally, injected with 5-HT before irradiation food deprived for 48 hrs then irradiated, food deprived then injected with 5-HT, and food deprived then injected with 5-HT before whole body irradiation. Samples were collected at 1,3, 7 and 14 days post irradiation. The results showed that gamma irradiation firstly elevated prolactin (PRL) levels in plasma (1 and 3 days) then the levels decreased after 7 and 14 days as compared to control values. Rats received serotonin before irradiation exhibited an increased level of PRL after 14 days post irradiation compared to control value, while the level decreased after 1, 3, 7 days post irradiation. Food deprivation for 48 hrs altered the effect of serotonin and /or irradiation on PRL levels in plasma. Rats injected with serotonin showed a decreased level of plasma prolactin in food deprived rats, 3 days post injection. The obtained results showed that serotonin causes variable effects on plasma prolactin compared to control values. Glucose plasma levels were increased in both irradiated and serotonin injected rats before irradiation, and also in serotonin injected rats as compared to control values. Irradiation of rats after 48 hrs food deprivation induced an increase in plasma glucose levels measured throughout the different experimental periods. Injection of serotonin to rats after 48 hrs food deprivation before irradiation increased plasma glucose levels after 1, 3, 7 and 14 days compared to control value. Also, injection of serotonin to 48 hrs food deprived rats increased glucose levels during all examined days of experiment.It could be concluded that serotonin may have a variable mechanism controlling prolactin

  4. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    Science.gov (United States)

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-12-01

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  6. Why does serotonergic activity drastically decrease during REM sleep?

    Science.gov (United States)

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  7. Invocations and intoxication: does prayer decrease alcohol consumption?

    Science.gov (United States)

    Lambert, Nathaniel M; Fincham, Frank D; Marks, Loren D; Stillman, Tyler F

    2010-06-01

    Four methodologically diverse studies (N = 1,758) show that prayer frequency and alcohol consumption are negatively related. In Study 1 (n = 824), we used a cross-sectional design and found that higher prayer frequency was related to lower alcohol consumption and problematic drinking behavior. Study 2 (n = 702) used a longitudinal design and found that more frequent prayer at Time 1 predicted less alcohol consumption and problematic drinking behavior at Time 2, and this relationship held when controlling for baseline levels of drinking and prayer. In Study 3 (n = 117), we used an experimental design to test for a causal relationship between prayer frequency and alcohol consumption. Participants assigned to pray every day (either an undirected prayer or a prayer for a relationship partner) for 4 weeks drank about half as much alcohol at the conclusion of the study as control participants. Study 4 (n = 115) replicated the findings of Study 3, as prayer again reduced drinking by about half. These findings are discussed in terms of prayer as reducing drinking motives. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  8. Paroxetine reduces social anxiety in individuals with a co-occurring alcohol use disorder

    OpenAIRE

    Book, Sarah W.; Thomas, Suzanne E.; Randall, Patrick K.; Randall, Carrie L.

    2007-01-01

    Patients with social anxiety disorder who are seen in clinical practice commonly have additional psychiatric comorbidity, including alcohol use disorders. The first line treatment for social anxiety disorder is selective-serotonin-reuptake-inhibitors (SSRIs), such as paroxetine. However, the efficacy of SSRIs has been determined with studies that excluded alcoholics. Forty two subjects with social anxiety and a co-occurring alcohol use disorder participated in a 16-week, double-blind, placebo...

  9. Effects of sugar rich diet on brain serotonin, hyperphagia and anxiety in animal model of both genders.

    Science.gov (United States)

    Inam, Qurrat-ul-Aen; Ikram, Huma; Shireen, Erum; Haleem, Darakhshan Jabeen

    2016-05-01

    Lower levels of 5-hydroxytryptamine (5-HT; serotonin) in the brain elicit sugar craving, while ingestion of sugar rich diet improves mood and alleviates anxiety. Gender differences occur not only in brain serotonin metabolism but also in a serotonin mediated functional responses. The present study was therefore designed to investigate gender related differences on the effects of long term consumption of sugar rich diet on the metabolism of serotonin in the hypothalamus and whole brain which may be relevant with the hyperphagic and anxiety reducing effects of sugar rich diet. Male and female rats were fed freely on a sugar rich diet for five weeks. Hyperphagic effects were monitored by measuring total food intake and body weights changes during the intervention. Anxiolytic effects of sugar rich diet was monitored in light-dark transition test. The results show that ingestion of sugar rich diet decreased serotonin metabolism more in female than male rats. Anxiolytic effects were elicited only in male rats. Hyperphagia was comparable in both male and female rats. Finings would help in understanding the role of sugar rich diet-induced greater decreases of serotonin in sweet craving in women during stress.

  10. Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU patients

    Directory of Open Access Journals (Sweden)

    Joseph Leung

    2018-06-01

    Full Text Available Introduction: Phenylketonuria (PKU is an inborn error of metabolism associated with an increased risk of behavioural and mood disorders. There are currently no reliable markers for monitoring mood in PKU. The purpose of this study was to evaluate salivary serotonin as a possible non-invasive marker of long-term mood symptoms and central serotonin activity in patients with PKU. Methods: 20 patients were recruited from our Adult Metabolic Diseases Clinic. Age, sex, plasma phenylalanine (Phe level, DASS (Depression Anxiety Stress Scales depression score, DASS anxiety score, BMI, salivary serotonin, salivary cortisol, 2-year average Phe, 2-year average tyrosine (Tyr, and 2-year average Phe:Tyr ratio were collected for each patient. Spearman's ρ correlation analysis was used to determine if there was any relationship between any of the parameters. Results: There were positive correlations between DASS anxiety and DASS depression scores (Spearman's ρ = 0.8708, p-value < 0.0001, BMI and plasma Phe level (Spearman's ρ = 0.6228, p-value = .0034, and 2-year average Phe and BMI (Spearman's ρ = 0.5448, p-value = .0130. There was also a negative correlation between salivary cortisol and plasma Phe level (Spearman's ρ = −0.5018, p-value = .0338. All other correlations were not statistically significant. Conclusion: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, implying that salivary serotonin does not reflect central serotonin turnover. Additionally, this study suggests that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU. Synopsis: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, suggesting that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU

  11. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...

  12. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available The pattern of cerebral dopamine (DA abnormalities in Huntington disease (HD is complex, as reflected by the variable clinical benefit of both DA antagonists and agonists in treating HD symptoms. In addition, little is known about serotonin metabolism despite the early occurrence of anxiety and depression in HD. Post-mortem enzymatic changes are likely to interfere with the in vivo profile of biogenic amines. Hence, in order to reliably characterize the regional and chronological profile of brain neurotransmitters in a HD mouse model, we used a microwave fixation system that preserves in vivo concentrations of dopaminergic and serotoninergic amines. DA was decreased in the striatum of R6/2 mice at 8 and 12 weeks of age while DA metabolites, 3-methoxytyramine and homovanillic acid, were already significantly reduced in 4-week-old motorically asymptomatic R6/2 mice. In the striatum, hippocampus and frontal cortex of 4, 8 and 12-week-old R6/2 mice, serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly decreased in association with a decreased turnover of serotonin. In addition, automated high-resolution behavioural analyses displayed stress-like behaviours such as jumping and grooming and altered spatial learning in R6/2 mice at age 4 and 6 weeks respectively. Therefore, we describe the earliest alterations of DA and serotonin metabolism in a HD murine model. Our findings likely underpin the neuropsychological symptoms at time of disease onset in HD.

  13. Parental Mediation in the Digital Era: Increasing Children's Critical Thinking May Help Decrease Positive Attitudes toward Alcohol.

    Science.gov (United States)

    Radanielina Hita, Marie Louise; Kareklas, Ioannis; Pinkleton, Bruce

    2018-01-01

    We demonstrate in our research that discussion-based parental mediation may successfully decrease the negative effects that youth's engagement with alcohol brands on social media may have on attitudes toward alcohol through its effects on critical thinking. A clear pattern was found with positive mediation leading to unhealthy outcomes and negative mediation predicting healthier behaviors. Youth whose parents critiqued media messages reported more critical thinking skills, which predicted less interaction with alcohol brands on social media and fewer expectancies toward alcohol. On the other hand, youth whose parents endorsed media portrayals of drinking reported fewer critical thinking skills and were thus more likely to interact with alcohol brands on social media. Including a media literacy component in alcohol education that target parental strategies and that are conducive to discussion may lead to beneficial health outcomes in the digital era.

  14. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  15. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Herr, Nadine; Bode, Christoph; Duerschmied, Daniel

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  16. Type I Interferon-Mediated Skewing of the Serotonin Synthesis Is Associated with Severe Disease in Systemic Lupus Erythematosus

    Science.gov (United States)

    Lood, Christian; Tydén, Helena; Gullstrand, Birgitta; Klint, Cecilia; Wenglén, Christina; Nielsen, Christoffer T.; Heegaard, Niels H. H.; Jönsen, Andreas; Kahn, Robin; Bengtsson, Anders A.

    2015-01-01

    Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (pserotonin (p=0.0008) as well as increased IDO activity (pserotonin levels in platelets and serum (pserotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels. PMID:25897671

  17. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  18. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  19. Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males.

    Science.gov (United States)

    Liao, Ding-Lieh; Hong, Chen-Jee; Shih, Hao-Ling; Tsai, Shih-Jen

    2004-01-01

    The neurotransmitter, serotonin, has been implicated in aggressive behavior. The serotonin transporter (5-HTT), which reuptakes serotonin into the nerve terminal, plays a critical role in the regulation of serotonergic function. Previous western reports have demonstrated that the low-activity short (S) allele of the 5-HTT gene-linked polymorphic-region (5-HTTLPR) polymorphism is associated with aggressive behavior and associated personality traits. In the present study, we investigated this 5-HTTLPR genetic polymorphism in a group of Chinese males who had been convicted for extremely violent crime (n = 135) and a normal control group (n = 111). The proportion of S-allele carriers was significantly higher in the criminal group than in the controls (p = 0.006). A significant association was not demonstrated for the relationship between the 5-HTTLPR polymorphism and antisocial personality disorder, substance abuse or alcohol abuse in the criminal group. Our findings demonstrate that carriage of the low-activity S allele is associated with extremely violent criminal behavior in Chinese males, and suggests that the 5-HTT may be implicated in the mechanisms underlying violent behaviors.

  20. [Specific aspects of thrombocyte system of serotonin in patients with different manifestations of schizoaffective psychosis].

    Science.gov (United States)

    Brusov, O S; Dikaia, V I; Zlobina, G P; Faktor, M I; Pavlova, O A; Bologov, P V; Korenev, A N

    2000-01-01

    45 women with different manifestations of schizoaffective psychosis (SAP) were examined. The diagnosis corresponded to ICD-10 (F25). According to the classification elaborated in Mental Health Research Centre of Russian Academy of Medical Sciences, groups of patients were identified with different variants of the psychoses course: a nuclear SAP type; a borderline SAP variation with phasic-recurrent course; SAP with progredient variation (schizoaffective variation of schizophrenia). The patients were examined both during the attack and remission. A rate of serotonine uptake (Vmax) in blood platelets, a specific imipramine binding (Bmax) and the level of serotonin in blood platelets were evaluated. It was found that dynamics of both Vmax and the level of serotonin in different SAP types were different, that was related to clinical and biological SAP heterogeneity. A tendency to decreasing of serotonin system functional activity was found in progredient SAP variations, especially during the remission, which was of low quality in these cases. On the contrary, in the borderline variations the indices of the decreased function of serotonin system corresponded well to those of acute psychosis. In nuclear type--a type with the most favourable course of psychosis--any significant changes weren't revealed as compared with the normal parameters.

  1. The evolution of violence in men: the function of central cholesterol and serotonin.

    Science.gov (United States)

    Wallner, Bernard; Machatschke, Ivo H

    2009-04-30

    Numerous studies point to central serotonin as an important modulator of maladaptive behaviors. In men, for instance, low concentrations of this neurotransmitter are related to hostile aggression. A key player in serotonin metabolism seems to be central cholesterol. It plays a fundamental role in maintaining the soundness of neuron membranes, especially in the exocytosis transport of serotonin vesicles into the synaptic cleft. In this review, we attempt an evolutionary approach to the neurobiological basis of human male violence. Hominid evolution was shaped by periods of starvation but also by energy demands of an increasingly complex brain. A lack of food resources reduces uptake of glucose and results in a decreased energy-supply for autonomous brain cholesterol synthesis. Consequently, concentrations of neuromembrane cholesterol decrease, which lead to a failure of the presynaptic re-uptake mechanism of serotonin and ultimately to low central serotonin. We propose that starvation might have affected the larger male brains earlier than those of females. Furthermore, this neurophysiological process diminished the threshold for hostile aggression, which in effect represented a prerequisite for being a successful hunter or scavenger. In a Darwinian sense, the odds to acquire reliable energetic resources made those males to attractive spouses in terms of paternal care and mate support. To underpin these mechanisms, a hypothetical four-stage model of synaptic membrane destabilization effected by a prolonged shortage of high-energy, cholesterol-containing food is illustrated.

  2. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  3. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  4. Radioprotective action of serotonin

    Energy Technology Data Exchange (ETDEWEB)

    Vodop' yanova, L G; Vinogradova, M F [Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.

    1975-09-01

    Tests in vitro were performed to study the effect of serotonin on oxidative phosphorylation in the mitochondria of rat liver. Serotonin (2.10/sup -4/ M) was shown to suppress oxidation of ..cap alpha..-ketoglutaric acid without significantly changing succinic acid consumption. A comparison of the results obtained with those from the literature allowed to assume that the radioprotective effect of serotonin was based not only on its previously known ability to cause tissue hypoxia, but also on its ability to affect oxidation processes in mitochondria.

  5. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  6. Serotonin reuptake inhibitors and bone health: A review of clinical studies and plausible mechanisms

    Directory of Open Access Journals (Sweden)

    Ravisha Wadhwa

    2017-06-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are currently the treatment of choice in depression and constitute major portion of prescription in depressive patients. The role of serotonin receptors in bone is emerging, raising certain questions regarding the effect of blockade of serotonin reuptake in the bone metabolism. Clinical studies have reported an association of SSRI antidepressants which with increase in fracture and decrease in bone mineral density. This review focus on recent evidence that evaluate the association of SSRIs with the risk of fracture and bone mineral density and also the probable mechanisms that might be involved in such effects.

  7. Adolescent heavy drinkers' amplified brain responses to alcohol cues decrease over one month of abstinence.

    Science.gov (United States)

    Brumback, Ty; Squeglia, Lindsay M; Jacobus, Joanna; Pulido, Carmen; Tapert, Susan F; Brown, Sandra A

    2015-07-01

    Heavy drinking during adolescence is associated with increased reactivity to alcohol related stimuli and to differential neural development. Alcohol cue reactivity has been widely studied among adults with alcohol use disorders, but little is known about the neural substrates of cue reactivity in adolescent drinkers. The current study aimed to identify changes in blood-oxygen level dependent (BOLD) signal during a cue reactivity task pre- and post-monitored abstinence from alcohol. Demographically matched adolescents (16.0-18.9 years, 54% female) with histories of heavy episodic drinking (HD; n=22) and light or non-drinking control teens (CON; n=16) were recruited to participate in a month-long study. All participants completed a functional Magnetic Resonance Imaging (fMRI) scan with an alcohol cue reactivity task and substance use assessments at baseline and after 28 days of monitored abstinence from alcohol and drugs (i.e., urine toxicology testing every 48-72 h). Repeated-measure analysis of variance (ANOVA) examined main effects of group, time, and group×time interactions on BOLD signal response in regions of interest defined by functional differences at baseline. The HD group exhibited greater (pbrain regions, differences in BOLD response were no longer apparent following a month of abstinence, suggesting a decrease in alcohol cue reactivity among adolescent non-dependent heavy drinkers as a consequence of abstaining from alcohol. These results highlight the malleability of adolescent brain function despite no formal intervention targeting cue reactivity. Increased understanding of the neural underpinnings of cue reactivity could have implications for prevention and intervention strategies in adolescent heavy alcohol users. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness.

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B; Santini, Martin A; Knudsen, Gitte M; Henn, Fritz; Gass, Peter; Vollmayr, Barbara

    2010-07-01

    Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging. Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls. These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression, particularly in the elderly.

  9. Pulmonary extraction of serotonin and propranolol in patients with adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Morel, D.R.; Dargent, F.; Bachmann, M.; Suter, P.M.; Junod, A.F.

    1985-01-01

    Because injury to the pulmonary vascular endothelium is associated with the development of the adult respiratory distress syndrome (ARDS), the authors assessed the metabolic function of pulmonary endothelial cells by the measurements of the first-pass pulmonary extraction of [ 14 C]serotonin and [ 3 H]propranolol in 15 patients with ARDS and 15 patients at risk for developing ARDS. Serotonin extraction ratio was lower in patients with ARDS (0.85 +/- 0.10, mean +/- SD) than in patients at risk (0.91 +/- 0.04) (p less than 0.025), and both values were significantly reduced (p less than 0.005) when compared with a control group value (0.97 +/- 0.01). The decrease in serotonin extraction was correlated with the severity of ARDS (r = -0.67) (p less than 0.001) and with pulmonary function changes over time. Propranolol extraction ratio was decreased in patients at risk (0.66 +/- 0.11) (p less than 0.005) but not in patients with ARDS (0.75 +/- 0.11), when compared with those in the control group (0.81 +/- 0.03). Low values in patients at risk were restored to normal by continuous positive airway pressure breathing. The authors conclude that pulmonary extraction of serotonin, an index of pulmonary endothelial cell function, correlates with the severity of ARDS

  10. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study.

    Science.gov (United States)

    Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars

    2015-11-01

    A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.

  11. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    Science.gov (United States)

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p serotonin receptor antagonist significantly (p serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  12. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum.

    Directory of Open Access Journals (Sweden)

    Weixiang Guo

    Full Text Available Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.

  13. Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome.

    Science.gov (United States)

    Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P seizure threshold (P seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.

  14. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  15. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse

    Directory of Open Access Journals (Sweden)

    Herman AI

    2012-06-01

    Full Text Available Aryeh I Herman, Kornelia N BaloghDepartment of Psychiatry, VA Connecticut Healthcare/Yale University School of Medicine, West Haven, CT, USAAbstract: Serotonin (5-hydroxytryptamine [5-HT] is an important neurotransmitter implicated in regulating substance-use disorder (SUD acquisition, maintenance, and recovery. During the past several years, an abundance of research has begun discovering and describing specific 5-HT genetic polymorphisms associated with SUDs. Genetic variations in the 5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3 (HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E, likely play a role contributing to SUD patient heterogeneity. The 5-HT transporter-linked polymorphic region S allele, located in SLC6A4, has now been modestly associated with alcohol dependence in two large meta-analyses. Additional 5-HT genes may also play a role but have not been extensively investigated. A limited number of SUD treatment studies have included 5-HT gene variation as moderating treatment outcomes, but the results have been equivocal. Future research on 5-HT addiction genetics should adopt whole-genome sequencing technology, utilize large study samples, and collect data from multiple ethnic groups. Together, these methods will build on the work already conducted with the aim of utilizing 5-HT genetics in SUD treatment settings.Keywords: serotonin, genetic, substance dependence, addiction, alcohol, drug

  16. Approach to novel functional foods for stress control 4. Regulation of serotonin transporter by food factors.

    Science.gov (United States)

    Ito, Mikiko; Haito, Sakiko; Furumoto, Mari; Kawai, Yoshichika; Terao, Junji; Miyamoto, Ken-ichi

    2005-11-01

    Serotonin transporters (SERTs) are pre-synaptic proteins specialized for the clearance of serotonin following vesicular release at central nervous system (CNS) and enteric nervous system synapses. SERTs are high affinity targets in vivo for antidepressants such as serotonin selective reuptake inhibitors (SSRIs). These include 'medical' psychopharmacological agents such as analgesics and antihistamines, a plant extract called St John's Wort (Hypericum). Osteoclasts are the primary cells responsible for bone resorption. They arise by the differentiation of osteoclast precursors of the monocyte/macrophage lineage. The expression of SERTs was increased in RANKL-induced osteoclast-like cells. Using RANKL stimulation of RAW264.7 cells as a model system for osteoclast differentiation, we studied the direct effects of food factor on serotonin uptake. The SSRIs (fluoxetine and fluvoxamine) inhibited markedly (approximately 95%) in serotonin transport in differentiated osteoclast cells. The major components of St. John's Wort, hyperforin and hypericine were significantly decreased in serotonin transport activity. Thus, a new in vitro model using RANKL-induced osteoclast-like cells may be useful to analyze the regulation of SERT by food factors and SSRIs.

  17. Therapeutic Application of Diacylglycerol Oil for Obesity: Serotonin Hypothesis

    Directory of Open Access Journals (Sweden)

    Yuji Hirowatari

    2012-01-01

    Full Text Available ABSTRACT: Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG, and decreased high-density lipoprotein-cholesterol (HDL-C. Diacylglycerol (DAG oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG. Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL, and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2(1:1-10 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with â-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2, was significantly higher in 1-MOG

  18. Rikkunshito, a Japanese Kampo Medicine, Ameliorates Decreased Feeding Behavior via Ghrelin and Serotonin 2B Receptor Signaling in a Novelty Stress Murine Model

    Directory of Open Access Journals (Sweden)

    Chihiro Yamada

    2013-01-01

    Full Text Available We investigated the effects of rikkunshito (RKT, a ghrelin signal enhancer, on the decrease in food intake after exposure to novelty stress in mice. RKT administration (500 mg/kg, per os improved the decrease in 6 h cumulative food intake. In control mice, the plasma acylated ghrelin levels significantly increased by 24 h fasting. In contrast, the acylated ghrelin levels did not increase by fasting in mice exposed to the novelty stress. RKT administration to the novelty stress mice showed a significant increase in the acylated ghrelin levels compared with that in the distilled-water-treated control mice. Food intake after administering serotonin 2B (5-HT2B receptor antagonists was evaluated to clarify the role of 5-HT2B receptor activation in the decrease in feeding behavior after novelty stress. SB215505 and SB204741, 5-HT2B receptor antagonists, significantly improved the decrease in food intake after exposure to novelty stress. A component of RKT, isoliquiritigenin, prevented the decrease in 6 h cumulative food intake. Isoliquiritigenin showed 5-HT2B receptor antagonistic activity in vitro. In conclusion, the results suggested that RKT improves the decrease in food intake after novelty stress probably via 5-HT2B receptor antagonism of isoliquiritigenin contained in RKT.

  19. The postradiation efficacy of serotonin and its dependence on the stage of embryonal growith of mice

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Podmareva, O.N.; Dontsova, G.V.; Turpaev, T.M.

    1994-01-01

    In earlier experiments, the authors discovered that if serotonin was given to the mouse after its exposure to radiation on the 8th or 9th day of pregnancy, i.e., in the period of intensive neurogenesis, during which this particular biogenic amine was accumulated in the neural tube, the radiation damage was lessened and the growth of the fetus was normalized. These findings suggested involvement of exogenous serotonin in the elimination of radiation damage to the central nervous system of the germ. A question rises: Can serotonin lessen radiation damage to the embryo if it is exposed to ionizing radiation at later periods of gestation, during the period when the bones and the muscles are formed? This is the object of the present study. If mice were irradiated on the 11th day of gestation at a dose of 2.63 Gy, the number of female mice with viable fetuses decreased to 76.9% (compared with 100% of intact controls). The number of fetuses per female decreases to 3.2 (vs. 5.14); all developed fetuses had abnormalities, while there were no malformations in the fetuses of the intact (not irradiated) animals. Comparison results, showing the absence of the therapeutic effect of serotonin at the stage of skeleton formation, with results of previous studies, which demonstrated serotonin efficacy at the stage of formation of the central nervous system, suggests that the therapeutic effect of serotonin depends on the stage of embryo growth during which the mother is exposed to radiation

  20. Preparation and evaluation of serotonin labelled with 125I

    International Nuclear Information System (INIS)

    Sivaprasad, N.; Geetha, R.; Ghodke, A.S.; Karmalkar, C.P.; Pilkhwal, N.S.; Sarnaik, J.S.; Borkute, S.D.; Nadkarni, G.D.

    1999-01-01

    Radiolabelled serotonin is an important tool for studying serotonin receptors and estimating serotonin levels in plants and animals. In this paper we report the synthesis of serotonin - 125 I. Tyrosine Methyl Ester (TME) was first labelled with 125 I using chloramine-T method. 125 I-TME was then conjugated with serotonin using carbodimide. The labelled conjugate was purified using gel filtration. Yield and radiochemical purity were estimated using electrophoresis and ITLC in different solvent systems. The binding of the purified tracer to serotonin receptors and serotonin antibodies was studied. (author)

  1. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    International Nuclear Information System (INIS)

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET- 18 FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  2. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.

  3. The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line

    DEFF Research Database (Denmark)

    Hansen, Cecilie Hurup; Larsen, Lizette Weber; Sørensen, Amalie Møller

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRIs) used as first line of treatment in major depressive disorder (MDD) are known to exert negative effects on the endocrine system and fertility. The aim of the present study was to investigate the possible endocrine disrupting effect of six SSRIs...... in the pathway. Furthermore, all SSRIs relatively increased the estrogen/androgen ratio, indicating stimulating effects on the aromatase. Our study demonstrates the potential of SSRIs to interfere with steroid production in the H295R cells around Cmax levels and indicates that these drugs should be investigated...... validated LC-MS/MS method. All 6 SSRIs were found to exert endocrine disrupting effects on steroid hormone synthesis at concentrations just around Cmax. Although the mechanisms of disruption were all different, they all resulted in decreased testosterone levels, some due to effects on CYP17, some earlier...

  4. Optimum ratio of AET, ATP and serotonin applied in combinations determined with a reference to their toxicity

    International Nuclear Information System (INIS)

    Benova, D.K.; P''tev, I.Kh.

    1985-01-01

    In experiments on mice, a study was made of the quantitative dependence of toxicity of AET, ATP and serotonin applied in combinations. The toxicity decreased when ATP was combined with AET and increased when ATP of AET were combined with serotonin. The toxicity of a combination of all three substances was reduced by introducing high doses of ATP

  5. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  6. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-01-01

    1. The mitotic rate in the crypts of Lieberkühn of the descending colon and in dimethylhydrazine-induced adenocarcinomata of the descending colon of rat was measured using a stathmokinetic technique. 2. Intraperitoneal injection of a small dose (10 microgram/kg) of serotonin resulted in an increase in the tumour cell mitotic rate. 3. Blockade of serotonin receptors by 2-bromolysergic acid diethylamide and depletion of tissue serotonin levels following injection of DL-6-fluorotryptophan both result in a decrease in the tumour cell mitotic rate. 4. Treatment with serotonin, 2-bromolysergic acid diethylamide and DL-6-fluorotryptophan were all without effect on the colonic crypt cell mitotic rate.

  7. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  8. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  9. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  10. The Role of Serotonin (5-HT) in Behavioral Control: Findings from Animal Research and Clinical Implications

    Science.gov (United States)

    Sanchez, CL; Biskup, CS; Herpertz, S; Gaber, TJ; Kuhn, CM; Hood, SH

    2015-01-01

    The neurotransmitters serotonin and dopamine both have a critical role in the underlying neurobiology of different behaviors. With focus on the interplay between dopamine and serotonin, it has been proposed that dopamine biases behavior towards habitual responding, and with serotonin offsetting this phenomenon and directing the balance toward more flexible, goal-directed responding. The present focus paper stands in close relationship to the publication by Worbe et al. (2015), which deals with the effects of acute tryptophan depletion, a neurodietary physiological method to decrease central nervous serotonin synthesis in humans for a short period of time, on the balance between hypothetical goal-directed and habitual systems. In that research, acute tryptophan depletion challenge administration and a following short-term reduction in central nervous serotonin synthesis were associated with a shift of behavioral performance towards habitual responding, providing further evidence that central nervous serotonin function modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. In the present focus paper, we discuss the findings by Worbe and colleagues in light of animal experiments as well as clinical implications and discuss potential future avenues for related research. PMID:25991656

  11. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  12. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders B; Santini, Martin A

    2010-01-01

    . These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression....... Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber...

  13. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    Science.gov (United States)

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  14. Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis.

    Science.gov (United States)

    Wei, Qiu-Shi; Huang, Li; Chen, Xian-Hong; Wang, Hai-Bin; Sun, Wei-Shan; Huo, Shao-Chuan; Li, Zi-Qi; Deng, Wei-Min

    2014-01-01

    Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats. Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated. The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group. These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin.

  15. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  16. Ecstasy use and serotonin syndrome: a neglected danger to adolescents and young adults prescribed selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Dobry, Yuriy; Rice, Timothy; Sher, Leo

    2013-01-01

    At present, there are scarce clinical and basic lab data concerning the risk of acute serotonin toxicity from selective serotonin reuptake inhibitors (SSRIs) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) co-administration. The health care community can strongly benefit from efforts to address the high risks associated with serotonin syndrome from this specific drug combination. The aim of this work is to review the risk of serotonin syndrome in adolescents and young adults prescribed with SSRIs and are concurrently using ecstasy. An electronic search of the major behavioral science bibliographic databases (Pubmed, PsycINFO, Medline) was conducted to retrieve peer-reviewed articles, which detail the clinical characteristics, biological mechanisms and social implications of SSRIs, MDMA, and their potential synergism in causing serotonin syndrome in the pediatric and young adult population. Search terms included "serotonin syndrome", "ecstasy", "MDMA", "pediatric", and "SSRI". Additional references were incorporated from the bibliographies of these retrieved articles. MDMA, in combination with the widely-prescribed SSRI antidepressant class, can lead to rapid, synergistic rise of serotonin (5-HT) concentration in the central nervous system, leading to the acute medical emergency known as serotonin syndrome. This review addresses such complication through an exploration of the theoretical mechanisms and clinical manifestations of this life-threatening pharmacological interaction. The increasing incidences of recreational ecstasy use and SSRI pharmacotherapy among multiple psychiatric disorders in the adolescent population have made this an overlooked yet increasingly relevant danger, which poses a threat to public health. This can be curbed through further research, as well as greater health care provision and attention from a regulatory body owing.

  17. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  18. On the action of radioprotective agents on the endogenous serotonin content and radiosensitivity of isolated Ehrlich ascites tumour and E. coli B. cells

    International Nuclear Information System (INIS)

    Goncharenko, E.N.; Gorskaya, T.G.; Gusareva, Eh.V.; Konstantinova, M.M.; Panyushkina, N.V.; AN SSSR, Moscow. Inst. Biologii Razvitiya)

    1976-01-01

    At a higher radioresistance level attained by incubation of isolated Ehrlich ascites tumour and E. coli B. cells with MEA or noradrenaline, the endogenous serotonin content of these cells was found to increase. The extent of radioresistance increase and the serotonin content of the cells were interrelated, i.e. washing the protector off cells decreased both the radioresistance and the content of endogenous serotonin. It is concluded that radioresistance of cells is connected with the content of biologically active substances (serotonin) that possess radioprotective action

  19. Increasing and Decreasing Alcohol Use Trajectories Among Older Women in the U.S. Across a 10-Year Interval

    Directory of Open Access Journals (Sweden)

    Janet Kay Bobo

    2011-08-01

    Full Text Available Older women who routinely drink alcohol may experience health benefits, but they are also at risk for adverse effects. Despite the importance of their drinking patterns, few studies have analyzed longitudinal data on changes in drinking among community-based samples of women ages 50 and older. Reported here are findings from a semi-parametric group-based model that used data from 4,439 randomly sampled U.S. women who enrolled in the Health and Retirement Study (HRS and completed ≥3 biannual alcohol assessments during 1998–2008. The best-fitting model based on the drinks per day data had four trajectories labeled as “Increasing Drinkers” (5.3% of sample, “Decreasing Drinkers” (5.9%, “Stable Drinkers” (24.2%, and “Non/Infrequent Drinkers” (64.6%. Using group assignments generated by the trajectory model, one adjusted logistic regression analysis contrasted the groups with low alcohol intake in 1998 (Increasing Drinkers and Non/Infrequent Drinkers. In this model, baseline education, physical activity, cigarette smoking, and binge drinking were significant factors. Another analysis compared the groups with higher intake in 1998 (Decreasing Drinkers versus Stable Drinkers. In this comparison, baseline depression, cigarette smoking, binge drinking, and retirement status were significant. Findings underscore the need to periodically counsel all older women on the risks and benefits of alcohol use.

  20. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders B; Santini, Martin A

    2010-01-01

    Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging...... density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls...

  1. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science.gov (United States)

    Hasegawa, Emi; Maejima, Takashi; Yoshida, Takayuki; Masseck, Olivia A; Herlitze, Stefan; Yoshioka, Mitsuhiro; Sakurai, Takeshi; Mieda, Michihiro

    2017-04-25

    Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.

  2. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  3. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  4. Study of serotonin effect on the yield of some damages in DNA after ultraviolet and x-ray irradiations

    International Nuclear Information System (INIS)

    Ivanova, Eh.V.; Frajkin, G.Ya.

    1985-01-01

    Using thin-layer two-dimensional chromatography serotonin effect on the yield of thymine dimers and appearance of n-glycoside strand breaks in DNA (thymine yield) after ultraviolet and X-ray irradiation is studied. It is shown that bound with DNA serotonin decreases formation of induced by ultraviolet thymine dimers but doesn't affect on the quantity of N-glycoside bond breaks in thymidine residues caused by X radiation. The obtained data are discussed in relation to the problem on mechanisms of realization of serotonin protective effect in the processes of yeast Saccharomyces photoprotection from ultraviolet and X-ray irradiation lethal effect

  5. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  6. Treatment in hospital for alcohol-dependent patients decreases attentional bias

    Directory of Open Access Journals (Sweden)

    Flaudias V

    2013-05-01

    Full Text Available Valentin Flaudias,1,2 Georges Brousse,1,2 Ingrid De Chazeron,1,2 François Planche,2 Julien Brun,2 Pierre-Michel Llorca1,2 1Clermont Université, EA 7280 NPsy-Sydo, Clermont-Ferrand, France; 2Pôle Psychiatrie B, CHU Gabriel-Montpied, Clermont-Ferrand, France Background and objectives: Previous studies in alcohol-dependent patients have shown an attentional bias (AB under related substance cues, which can lead to relapse. This AB can be evaluated by the alcohol Stroop test (AST. The AST is a modified Stroop task in which participants have to name the color of an alcohol-related word or a neutral word. AB is the response-time difference between these two types of words. The goal of the current study was to examine modification of AB during specialized hospitalization for alcohol dependence, with the suppression of a training bias that could be present in within-subject design. Methods: Individuals with alcohol-dependence disorders (Diagnostic and Statistical Manual of Mental Disorders, 4th edition and admitted for withdrawal in the addiction unit of the University Hospital of Clermont-Ferrand (test group, n = 42 and persons with no alcohol or psychiatric disorder (control group, n = 16, recruited among colleagues and friends of the staff, performed the AST. A subgroup of the test group performed the AST in admission (admission group, n = 19, and another subgroup undertook the test immediately before discharge (discharge group, n = 23. Results: Results showed an AB only for patients seen at admission (F[1,55] = 3.283, P = 0.075. Moreover, we observed that the AB in the admission group (mean = 34 ms, standard deviation [SD] = 70.06 was greater than the AB in the control group (mean = 23 ms, SD = 93.42, itself greater than the AB in the discharge group (mean = −12 ms, SD = 93.55 (t[55] = −1.71; P = 0.09. Conclusion: Although the results are preliminary, the present study provides evidence for changes in the AB during alcohol-addiction treatment

  7. Serotonin Test

    Science.gov (United States)

    ... microscope. (For more, see the article on Anatomic Pathology .) See More Common Questions See Less Common Questions ... tumor. Accessed December 2010. Vorvick, L. (Updated 2009 March 14). Serum serotonin level. MedlinePlus Medical Encyclopedia [On- ...

  8. Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use.

    Science.gov (United States)

    Skelly, Mary J; Weiner, Jeff L

    2014-07-01

    Alcohol use disorders have been linked to increased anxiety, and enhanced central noradrenergic signaling may partly explain this relationship. Pharmacological interventions believed to reduce the excitatory effects of norepinephrine have proven effective in attenuating ethanol intake in alcoholics as well as in rodent models of ethanol dependence. However, most preclinical investigations into the effectiveness of these drugs in decreasing ethanol intake have been limited to acute observations, and none have concurrently assessed their anxiolytic effects. The purpose of these studies was to examine the long-term effectiveness of pharmacological interventions presumed to decrease norepinephrine signaling on concomitant ethanol self-administration and anxiety-like behavior in adult rats with relatively high levels of antecedent anxiety-like behavior. Adult male Long-Evans rats self-administered ethanol on an intermittent access schedule for eight to ten weeks prior to being implanted with osmotic minipumps containing either an a1-adrenoreceptor antagonist (prazosin, 1.5 mg/kg/day), a β1/2-adrenoreceptor antagonist (propranolol, 2.5 mg/kg/day), a serotonin/norepinephrine reuptake inhibitor (duloxetine, 1.5 mg/kg/day) or vehicle (10% dimethyl sulfoxide). These drugs were continuously delivered across four weeks, during which animals continued to have intermittent access to ethanol. Anxiety-like behavior was assessed on the elevated plus maze before treatment and again near the end of the drug delivery period. Our results indicate that chronic treatment with a low dose of prazosin or duloxetine significantly decreases ethanol self-administration (P chronic treatment with putative inhibitors of central noradrenergic signaling may attenuate ethanol intake via a reduction in anxiety-like behavior.

  9. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans.

    NARCIS (Netherlands)

    Molteni, R.; Cattaneo, A.; Calabrese, F.; Macchi, F.; Olivier, J.D.A.; Racagni, G.; Ellenbroek, A.A.; Gennarelli, M.; Riva, M.A.

    2010-01-01

    In order to identify the molecular mechanisms that may contribute to the enhanced susceptibility to depression under serotonin transporter (SERT) dysfunction, we analyzed the expression of brain-derived neurotrophic factor (BDNF), a key player in neuronal plasticity, which is implicated in the

  10. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  11. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  12. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  13. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  14. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  15. 5-HT1A receptor-dependent modulation of emotional and neurogenic deficits elicited by prolonged consumption of alcohol.

    Science.gov (United States)

    Belmer, Arnauld; Patkar, Omkar L; Lanoue, Vanessa; Bartlett, Selena E

    2018-02-01

    Repeated episodes of binge-like alcohol consumption produce anxiety, depression and various deleterious effects including alterations in neurogenesis. While the involvement of the serotonin receptor 1 A (5-HT 1A ) in the regulation of anxiety-like behavior and neurogenesis is well documented, its contribution to alcohol withdrawal-induced anxiety and alcohol-induced deficits in neurogenesis is less documented. Using the Drinking-In-the-Dark (DID) paradigm to model chronic long-term (12 weeks) binge-like voluntary alcohol consumption in mice, we show that the selective partial activation of 5-HT 1A receptors by tandospirone (3 mg/kg) prevents alcohol withdrawal-induced anxiety in a battery of behavioral tests (marble burying, elevated-plus-maze, open-field), which is accompanied by a robust decrease in binge-like ethanol intake (1 and 3 mg/kg). Furthermore, using triple immunolabelling of proliferation and neuronal differentiation markers, we show that long-term DID elicits profound deficits in neurogenesis and neuronal fate specification in the dorsal hippocampus that are entirely reversed by a 2-week chronic treatment with the 5-HT 1A partial agonist tandospirone (3 mg/kg/day). Together, our results confirm previous observations that 5-HT 1A receptors play a pivotal role in alcohol drinking behavior and the associated emotional and neurogenic impairments, and suggest that 5-HT 1A partial agonists represent a promising treatment strategy for alcohol abuse.

  16. Use of selective serotonin reuptake inhibitors and risk of re-operation due to post-surgical bleeding in breast cancer patients: a Danish population-based cohort study

    DEFF Research Database (Denmark)

    Gärtner, Rune; Cronin-Fenton, Deirdre; Hundborg, Heidi Holmager

    2010-01-01

    Selective serotonin reuptake inhibitors (SSRI) decrease platelet-function, which suggests that SSRI use may increase the risk of post-surgical bleeding. Few studies have investigated this potential association.......Selective serotonin reuptake inhibitors (SSRI) decrease platelet-function, which suggests that SSRI use may increase the risk of post-surgical bleeding. Few studies have investigated this potential association....

  17. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Thase, Michael E.; Moses-Kolko, Eydie L.; Price, Julie; Frank, Ellen; Kupfer, David J.; Mathis, Chester

    2007-01-01

    Introduction: Serotonin-1A receptor (5-HT 1A R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT 1A R agonists in vivo and to 5-HT 1A R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT 1A R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl- 11 C]WAY-100635, and we have demonstrated reduced 5-HT 1A R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl- 11 C]WAY-100635, 5-HT 1A R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT 1A R BP was reduced by 26% in the MTC (P 1A R binding were similar to those found postmortem in 5-HT 1A R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT 1A R-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There

  18. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 33960 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  19. INFLUENCE OF A SEROTONIN-RICH AND DOPAMINE-RICH DIET ON PLATELET SEROTONIN CONTENT AND URINARY-EXCRETION OF BIOGENIC-AMINES AND THEIR METABOLITES

    NARCIS (Netherlands)

    KEMA, IP; SCHELLINGS, AMJ; MEIBORG, G; HOPPENBROUWERS, CJM; MUSKIET, FAJ

    Using high-performance liquid chromatography and gas chromatography, we reevaluated the 24-h influence of a serotonin- and dopamine-rich diet on platelet serotonin and serotonin, 5-hydroxyindoleacetic acid (5-HIAA), and major catecholamine metabolites in the urine of 15 healthy adults. Although

  20. [Metabolism of serotonin in autism in children].

    Science.gov (United States)

    Bursztejn, C; Ferrari, P; Dreux, C; Braconnier, A; Lancrenon, S

    1988-01-01

    In this controlled study of 22 autistic children and 22 normal controls matched for age and sex, the frequency of hyperserotonemia in infantile autism was confirmed. Platelet serotonin was elevated in patients. Comparative to controls, serotonin was also high in urine of autistic patients, while, on the contrary there was no difference for the urinary excretion of 5-HIAA. No difference was observed either for serotonin uptake and efflux or for MAO activity, in isolated platelets. The elevation of plasma free tryptophan - significant only with the Kolmogorov Smirnov test - suggests that 5-HT biosynthesis might be enhanced. In the group of patient reported in this study, disorders of serotonin metabolism are associated with disturbances of platelet catecholamines, and also with elevated immunoglobulins and enhanced cellular immunity reactions.

  1. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    Science.gov (United States)

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    Science.gov (United States)

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  3. TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons

    Directory of Open Access Journals (Sweden)

    Yong Gao

    2017-01-01

    Full Text Available The molecular mechanisms underlying acute leptin and serotonin 2C receptor-induced hypophagia remain unclear. Here, we show that neuronal and pro-opiomelanocortin (Pomc-specific loss of transient receptor potential cation 5 (TrpC5 subunits is sufficient to decrease energy expenditure and increase food intake resulting in elevated body weight. Deficiency of Trpc5 subunits in Pomc neurons is also sufficient to block the anorexigenic effects of leptin and serotonin 2C receptor (Ht2Cr agonists. The loss of acute anorexigenic effects of these receptors is concomitant with a blunted electrophysiological response to both leptin and Ht2Cr agonists in arcuate Pomc neurons. We also demonstrate that the Ht2Cr agonist lorcaserin-induced improvements in glucose and insulin tolerance are blocked by TrpC5 deficiency in Pomc neurons. Together, our results link TrpC5 subunits in the brain with leptin- and serotonin 2C receptor-dependent changes in neuronal activity, as well as energy balance, feeding behavior, and glucose metabolism.

  4. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  5. Automated mass spectrometric analysis of urinary and plasma serotonin

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; Wilkens, Marianne H. L. I.; de Vries, Elisabeth G. E.; Kema, Ido P.

    Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim

  6. Serotonin manipulations and social behavior : Studies in individuals at familial risk for depression

    NARCIS (Netherlands)

    Hogenelst, Koen

    2016-01-01

    Interactions with others affect our mood, and vice versa. Unsurprisingly, people with a mood disorder such as depression often have difficulties in their social relationships. Depression is often thought to be associated with a decreased availability of serotonin, a signaling molecule in the brain

  7. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    Energy Technology Data Exchange (ETDEWEB)

    Hummerich, Rene [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Schulze, Oliver [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Raedler, Thomas [Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Mikecz, Pal [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Reimold, Matthias [Department of Nuclear Medicine, University Hospital Tuebingen, D-72076 Tuebingen (Germany); Brenner, Winfried [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Clausen, Malte [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Schloss, Patrick [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Buchert, Ralph [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany)]. E-mail: buchert@uke.uni-hamburg.de

    2006-04-15

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [{sup 11C}] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [{sup 11}C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [{sup 11}C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [{sup 3}H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V {sub max} of SERT without affecting the Michaelis-Menten constant K {sub M}. Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [{sup 11}C] (+)McN5652 PET is not significantly affected by endogenous serotonin.

  8. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    International Nuclear Information System (INIS)

    Hummerich, Rene; Schulze, Oliver; Raedler, Thomas; Mikecz, Pal; Reimold, Matthias; Brenner, Winfried; Clausen, Malte; Schloss, Patrick; Buchert, Ralph

    2006-01-01

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [ 11C ] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [ 11 C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [ 11 C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [ 3 H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V max of SERT without affecting the Michaelis-Menten constant K M . Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [ 11 C] (+)McN5652 PET is not significantly affected by endogenous serotonin

  9. Non-conventional features of peripheral serotonin signalling - the gut and beyond.

    Science.gov (United States)

    Spohn, Stephanie N; Mawe, Gary M

    2017-07-01

    Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.

  10. Modest alcohol consumption decreases the risk of fatty liver disease or nonalcoholic fatty liver disease: a Meta-analysis

    Directory of Open Access Journals (Sweden)

    Guo-li CAO

    2016-08-01

    Full Text Available Objective  To evaluate the association between modest alcohol consumption and the risk of fatty liver disease (FLD or nonalcoholic fatty liver disease (NAFLD. Methods  PubMed, EMBASE, Web of Science, the Cochrane Library, China National Knowledge Infrastructure (CNKI, Wanfang Digital Journal Full-text Database, and database for Chinese Technical Periodicals (VIP till Nov. 2015 were searched for the studies in evaluating the effect of alcohol consumption on FLD or NAFLD. The quality assessment of included studies was performed according to the combined evaluation for cross-sectional studies and Newcastle-Ottawa scale (NOS for cohort studies. A meta-analysis was performed using Stata12.0 software. Results  A total of 16 studies including 13 cross-sectional studies, 2 cross-sectional following longitudinal studies, and 1 cohort study with 76 967 participants were selected finally. The results of Meta-analysis were as follows. Minimal and light alcohol consumptions reduced the risk for FLD or NAFLD by 17% and 27%, respectively, and moderate alcohol consumption was marginally associated with decreased risk for FLD or NAFLD. The results of subgroup analysis by gender showed that (1 Minimal and light alcohol consumptions reduced the risk of FLD or NAFLD by 29% and 33%, respectively, but moderate alcohol consumption was not statistically significant in reducing the risk of FLD or NAFLD in females compared with controls; (2 Light alcohol consumption reduced the risk of FLD or NAFLD by 23%, but minimal and moderate alcohol consumptions were not statistically significant in reducing the risk of FLD or NAFLD in male compared with controls; (3 Light and moderate alcohol consumptions in Asian males reduced the risk of FLD or NAFLD by 29.7% and 30.3%, respectively. Conclusions  Modest alcohol consumptions may not increase the risk of FLD or NAFLD. Inversely, minimal and light alcohol consumptions in female reduce the risk of FLD or NAFLD remarkably

  11. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  12. Serotonin induces peripheral antinociception via the opioidergic system.

    Science.gov (United States)

    Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima

    2018-01-01

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  14. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on serotonin markers in Göttingen minipig brain

    DEFF Research Database (Denmark)

    Cumming, Paul; Møller, Mette; Benda, Kjeld

    2007-01-01

    The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neuroch......The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive...... with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days...... reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion...

  15. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  16. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  17. The serotonin transporter in psychiatric disorders

    DEFF Research Database (Denmark)

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert

    2015-01-01

    Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology...... of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application...... of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder...

  18. Neural and psychological characteristics of college students with alcoholic parents differ depending on current alcohol use.

    Science.gov (United States)

    Brown-Rice, Kathleen A; Scholl, Jamie L; Fercho, Kelene A; Pearson, Kami; Kallsen, Noah A; Davies, Gareth E; Ehli, Erik A; Olson, Seth; Schweinle, Amy; Baugh, Lee A; Forster, Gina L

    2018-02-02

    A significant proportion of college students are adult children of an alcoholic parent (ACoA), which can confer greater risk of depression, poor self-esteem, alcohol and drug problems, and greater levels of college attrition. However, some ACoA are resilient to these negative outcomes. The goal of this study was to better understand the psychobiological factors that distinguish resilient and vulnerable college-aged ACoAs. To do so, scholastic performance and psychological health were measured in ACoA college students not engaged in hazardous alcohol use (resilient) and those currently engaged in hazardous alcohol use (vulnerable). Neural activity (as measured by functional magnetic resonance imaging) in response to performing working memory and emotion-based tasks were assessed. Furthermore, the frequency of polymorphisms in candidate genes associated with substance use, risk taking and stress reactivity were compared between the two ACoA groups. College ACoAs currently engaged in hazardous alcohol use reported more anxiety, depression and posttraumatic stress symptoms, and increased risky nicotine and marijuana use as compared to ACoAs resistant to problem alcohol use. ACoA college students with current problem alcohol showed greater activity of the middle frontal gyrus and reduced activation of the posterior cingulate in response to visual working memory and emotional processing tasks, which may relate to increased anxiety and problem alcohol and drug behaviors. Furthermore, polymorphisms of cholinergic receptor and the serotonin transporter genes also appear to contribute a role in problem alcohol use in ACoAs. Overall, findings point to several important psychobiological variables that distinguish ACoAs based on their current alcohol use that may be used in the future for early intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin

    International Nuclear Information System (INIS)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.; Askenase, P.W.

    1982-01-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10 -6 M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD 1 = 4.5 x 10 - 8 M; KD 2 = 3.9 x 10 -6 M) did not bind to Con A. Moreover, binding of [ 3 H]serotonin to protein of Peak I was sensitive to inhibition by reserpine, while binding of [ 3 H]serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of [ 3 H] serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules

  20. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  1. Serotonin and decision making processes.

    Science.gov (United States)

    Homberg, Judith R

    2012-01-01

    Serotonin (5-HT) is an important player in decision making. Serotonergic antidepressant, anxiolytic and antipsychotic drugs are extensively used in the treatment of neuropsychiatric disorders characterized by impaired decision making, and exert both beneficial and harmful effects in patients. Detailed insight into the serotonergic mechanisms underlying decision making is needed to strengthen the first and weaken the latter. Although much remains to be done to achieve this, accumulating studies begin to deliver a coherent view. Thus, high central 5-HT levels are generally associated with improved reversal learning, improved attentional set shifting, decreased delay discounting, and increased response inhibition, but a failure to use outcome representations. Based on 5-HT's evolutionary role, I hypothesize that 5-HT integrates expected, or changes in, relevant sensory and emotional internal/external information, leading to vigilance behaviour affecting various decision making processes. 5-HT receptor subtypes play distinctive roles in decision making. 5-HT(2A) agonists and 5-HT2c antagonists decrease compulsivity, whereas 5-HT(2A) antagonists and 5-HT(2C) agonists decrease impulsivity. 5-HT(6) antagonists univocally affect decision making processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever

    Science.gov (United States)

    Thein, Tun Linn; Fang, Jinling; Pang, Junxiong; Ooi, Eng Eong; Leo, Yee Sin; Ong, Choon Nam; Tannenbaum, Steven R.

    2016-01-01

    Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (1.5) in the serum, among which are two products of tryptophan metabolism–serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF. PMID:27055163

  3. Serotonin and Blood Pressure Regulation

    Science.gov (United States)

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  4. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Serotonin syndrome:case report and current concepts.

    LENUS (Irish Health Repository)

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  6. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  7. Ca++ dependent bistability induced by serotonin in spinal motoneurons

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kiehn, O.

    1985-01-01

    The plateau potential, responsible for the bistable state of spinal motoneurons, recently described in the decerebrate cat, was suggested to depend on serotonin (Hounsgaard et al. 1984). In an in vitro preparation of the spinal cord of the turtle we now show that serotonin, applied directly...... to the bath, transforms the intrinsic response properties of motoneurons, uncovering a plateau potential and voltage sensitive bistability. The changes induced by serotonin were blocked by Mn++, while the plateau potential and the bistability remained after application of tetrodotoxin. We conclude...... that serotonin controls the expression of a Ca++ dependent plateau potential in motoneurons....

  8. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  9. Conundrums in neurology: diagnosing serotonin syndrome - a meta-analysis of cases.

    Science.gov (United States)

    Werneke, Ursula; Jamshidi, Fariba; Taylor, David M; Ott, Michael

    2016-07-12

    Serotonin syndrome is a toxic state, caused by serotonin (5HT) excess in the central nervous system. Serotonin syndrome's main feature is neuro-muscular hyperexcitability, which in many cases is mild but in some cases can become life-threatening. The diagnosis of serotonin syndrome remains challenging since it can only be made on clinical grounds. Three diagnostic criteria systems, Sternbach, Radomski and Hunter classifications, are available. Here we test the validity of four assumptions that have become widely accepted: (1) The Hunter classification performs clinically better than the Sternbach and Radomski criteria; (2) in contrast to neuroleptic malignant syndrome, the onset of serotonin syndrome is usually rapid; (3) hyperthermia is a hallmark of severe serotonin syndrome; and (4) serotonin syndrome can readily be distinguished from neuroleptic malignant syndrome on clinical grounds and on the basis of medication history. Systematic review and meta-analysis of all cases of serotonin syndrome and toxicity published between 2004 and 2014, using PubMed and Web of Science. Two of the four assumptions (1 and 2) are based on only one published study each and have not been independently validated. There is little agreement between current criteria systems for the diagnosis of serotonin syndrome. Although frequently thought to be the gold standard for the diagnosis of the serotonin syndrome, the Hunter criteria did not perform better than the Sternbach and Radomski criteria. Not all cases seem to be of rapid onset and only relatively few cases may present with hyperthermia. The 0 differential diagnosis between serotonin syndrome and neuroleptic malignant syndrome is not always clear-cut. Our findings challenge four commonly made assumptions about serotonin syndrome. We propose our meta-analysis of cases (MAC) method as a new way to systematically pool and interpret anecdotal but important clinical information concerning uncommon or emergent phenomena that cannot be

  10. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin

    Science.gov (United States)

    Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Rached, Marie-Therese; Zhou, Bin; Wang, Ji; Townes, Tim M.; Hen, Rene; DePinho, Ronald A.; Guo, X. Edward; Kousteni, Stavroula

    2012-01-01

    Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element–binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation. PMID:22945629

  12. Selective serotonin reuptake inhibitors and risk for gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Batić-Mujanović Olivera

    2014-01-01

    Full Text Available The most of the known effects of selective serotonin reuptake inhibitors, beneficial or harmful, are associated with the inhibitory action of the serotonin reuptake transporter. This mechanism is present not only in neurons, but also in other cells such as platelets. Serotoninergic mechanism seems to have an important role in hemostasis, which has long been underestimated. Abnormal activation may lead to a prothrombotic state in patients treated with selective serotonin reuptake inhibitors. On one hand there may be an increased risk of bleeding, and on the other hand reduction in thrombotic risk may be possible. Serotonin is critical to maintain a platelet haemostatic function, such as platelet aggregation. Evidences from the studies support the hypothesis that antidepressants with a relevant blockade of action of serotonin reuptake mechanism may increase the risk of bleeding, which can occur anywhere in the body. Epidemiological evidences are, however, the most robust for upper gastrointestinal bleeding. It is estimated that this bleeding can occur in 1 in 100 to 1 in 1.000 patient-years of exposure to the high-affinity selective serotonin reuptake inhibitors, with very old patients at the highest risk. The increased risk may be of particular relevance when selective serotonin reuptake inhibitors are taken simultaneously with nonsteroidal anti-inflammatory drugs, low dose of aspirin or warfarin.

  13. Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine

    International Nuclear Information System (INIS)

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.; Snyder, S.H.

    1987-01-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes [ 3 H]citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for [ 3 H]citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of [ 3 H]citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of [ 3 H]citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of [ 3 H]imipramine binding reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific [ 3 H]imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of [ 3 H]imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in [ 3 H]citalopram and serotonin-sensitive [ 3 H]imipramine binding with only a small effect on serotonin-insensitive [ 3 H]imipramine binding. The dissociation rate of [ 3 H]imipramine or [ 3 H]citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive [ 3 H]imipramine high affinity binding sites closely resembles that of [ 3 H]citalopram binding

  14. Role of serotonin in pathogenesis of analgesic induced headache

    Energy Technology Data Exchange (ETDEWEB)

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  15. Regulation of Pituitary Beta Endorphin Release: Role of Serotonin Neurons

    Science.gov (United States)

    1983-12-15

    endogenous) may be related to pain and its transmission in the nervous system. Areas known to have a large number of opiate receptors both in primates and...serotonin meta- bolite 5-hydroxytrvptamine; serotonin 5-hydroxtryptophan; serotonin precursor intra- cerebro -ventricular administration intermediate lobe

  16. Varenicline Reduces Alcohol Intake During Repeated Cycles of Alcohol Reaccess Following Deprivation in Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Froehlich, Janice C; Nicholson, Emily R; Dilley, Julian E; Filosa, Nick J; Rademacher, Logan C; Smith, Teal N

    2017-08-01

    Most alcoholics experience periods of voluntary alcohol abstinence or imposed alcohol deprivation followed by a return to alcohol drinking. This study examined whether varenicline (VAR) reduces alcohol intake during a return to drinking after periods of alcohol deprivation in rats selectively bred for high alcohol drinking (the alcohol preferring or "P" rats). Alcohol-experienced P rats were given 24-hour access to food and water and scheduled access to alcohol (15% and 30% v/v) for 2 h/d. After 4 weeks, rats were deprived of alcohol for 2 weeks, followed by reaccess to alcohol for 2 weeks, and this pattern was repeated for a total of 3 cycles. Rats were fed either vehicle (VEH) or VAR, in doses of 0.5, 1.0, or 2.0 mg/kg BW, at 1 hour prior to onset of the daily alcohol reaccess period for the first 5 days of each of the 3 alcohol reaccess cycles. Low-dose VAR (0.5 mg/kg BW) reduced alcohol intake during the 5 days of drug treatment in alcohol reaccess cycles 1 and 2. Higher doses of VAR (1.0 mg/kg BW and 2.0 mg/kg BW) reduced alcohol intake during the 5 days of treatment in all 3 alcohol reaccess cycles. The decrease in alcohol intake disappeared with termination of VAR treatment in all alcohol reaccess cycles. The results demonstrate that VAR decreases alcohol intake during multiple cycles of alcohol reaccess following alcohol deprivation in rats and suggests that it may prevent a return to heavy alcohol drinking during a lapse from alcohol abstinence in humans with alcohol use disorder. Copyright © 2017 by the Research Society on Alcoholism.

  17. Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo

    Science.gov (United States)

    Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo

    2014-01-01

    The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305

  18. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  19. Serotonin Toxicity Caused by Moclobemide Too Soon After Paroxetine-Selegiline

    Directory of Open Access Journals (Sweden)

    Ming-Ling Wu

    2009-08-01

    Full Text Available Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyper-reflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegi-line and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.

  20. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the

  1. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne B; Jørgensen, Lone K

    2018-01-01

    Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS...

  2. Tributyltin impaired reproductive success in female zebrafish through disrupting oogenesis, reproductive behaviors and serotonin synthesis.

    Science.gov (United States)

    Xiao, Wei-Yang; Li, Ying-Wen; Chen, Qi-Liang; Liu, Zhi-Hao

    2018-07-01

    Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present

  3. Gut peptide GLP-1 and its analogue, Exendin-4, decrease alcohol intake and reward.

    Directory of Open Access Journals (Sweden)

    Rozita H Shirazi

    Full Text Available Glucagon-like-peptide-1 (GLP-1 is a gut- and neuro-peptide with an important role in the regulation of food intake and glucose metabolism. Interestingly, GLP-1 receptors (GLP-1R are expressed in key mesolimbic reward areas (including the ventral tegmental area, VTA, innervated by hindbrain GLP-1 neurons. Recently GLP-1 has emerged as a potential regulator of food reward behavior, an effect driven by the mesolimbic GLP-1Rs. Its role in other reward behaviors remains largely unexplored. Since a considerable overlap has been suggested for circuitry controlling reward behavior derived from food and alcohol we hypothesized that GLP-1 and GLP-1Rs could regulate alcohol intake and alcohol reward. We sought to determine whether GLP-1 or its clinically safe stable analogue, Exendin-4, reduce alcohol intake and reward. To determine the potential role of the endogenous GLP-1 in alcohol intake we evaluated whether GLP-1R antagonist, Exendin 9-39, can increase alcohol intake. Furthermore, we set out to evaluate whether VTA GLP-1R activation is sufficient to reduce alcohol intake. Male Wistar rats injected peripherally with GLP-1 or Exendin-4 reduced their alcohol intake in an intermittent access two bottle free choice drinking model. Importantly, a contribution of endogenously released GLP-1 is highlighted by our observation that blockade of GLP-1 receptors alone resulted in an increased alcohol intake. Furthermore, GLP-1 injection reduced alcohol reward in the alcohol conditioned place preference test in mice. To evaluate the neuroanatomical substrate linking GLP-1 with alcohol intake/reward, we selectively microinjected GLP-1 or Exendin 4 into the VTA. This direct stimulation of the VTA GLP-1 receptors potently reduced alcohol intake. Our findings implicate GLP-1R signaling as a novel modulator of alcohol intake and reward. We show for the first time that VTA GLP-1R stimulation leads to reduced alcohol intake. Considering that GLP-1 analogues are already

  4. Serotonin: Modulator of a Drive to Withdraw

    Science.gov (United States)

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  5. Serotonin: Is it a marker for the diagnosis of hepatocellular ...

    African Journals Online (AJOL)

    Impaired metabolic function in liver cirrhosis and slow uptake and storage of serotonin by the platelets is a sequelae of kinetic change of serotonin transport mechanisms or abnormal serotonin release from dense granules of activated platelets is a condition defined as ''platelet exhaustion'', contributes to elevated plasma ...

  6. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    Science.gov (United States)

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  7. The serotonin system in autism spectrum disorder: from biomarker to animal models

    Science.gov (United States)

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  8. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  9. Changes in EEG indices and serotonin concentrations in depression and anxiety disorders

    Directory of Open Access Journals (Sweden)

    I. V. Kichuk

    2016-01-01

    Full Text Available Electroencephalogram (EEG is an important tool to study brain function. EEG can evaluate the current functional state of the brain with high temporal resolution and identify metabolic and ion disorders that cannot be detected by magnetic resonance imaging.Objective: to analyze the relationship between some neurophysiological and biochemical parameters with a Neuro-KM hardware-software complex for the topographic mapping of brain electrical activity.Patients and methods. 75 patients with depression, 101 with anxiety disorders (AD, and 86 control individuals were examined. EEG spectrum and coherence changes were estimated in the depression and AD groups versus the control group. Correlation analysis of EEG indices and blood serotonin concentrations was carried out.Results and discussion. The patients with depression and those with AD as compared to the controls were observed to have similar EEG spectral changes in the beta band. Coherence analysis in the beta-band showed that both disease groups versus the control group had oppositely directed changes: a reduction in intra- and interhemispheric coherence for depression and its increase for AD (p < 0.001. That in the theta and alpha bands revealed that both disease groups had unidirectional interhemispheric coherence changes: a decrease in integration in the alpha band and its increase in the theta and delta bands in the depression and AD groups (p < 0.05 and multidirectional changes in intrahemispheric coherence: its reduction in the depression group and an increase in the AD group (p < 0.05. Correlation analysis of EEG parameters and platelet serotonin concentrations showed opposite correlations of serotonin concentrations and EEG percentage power in the theta and beta bands. When there were higher serotonin concentrations in the patients with depression, EEG demonstrated a preponderance of a synchronization pattern; when these were in the patients with AD, there was a predominance

  10. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Directory of Open Access Journals (Sweden)

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  11. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation

    Science.gov (United States)

    Weaver, Samantha R.; Prichard, Allan S.; Maerz, Noah L.; Prichard, Austin P.; Endres, Elizabeth L.; Hernández-Castellano, Lorenzo E.; Akins, Matthew S.; Bruckmaier, Rupert M.

    2017-01-01

    Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP), the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver. PMID:28922379

  12. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation.

    Directory of Open Access Journals (Sweden)

    Samantha R Weaver

    Full Text Available Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP, the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver.

  13. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  14. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  15. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas

    2016-01-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohor...

  16. Autoradiographic study of serotonin transporter during memory formation.

    Science.gov (United States)

    Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo

    2010-09-01

    Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Low levels of serum serotonin and amino acids identified in migraine patients.

    Science.gov (United States)

    Ren, Caixia; Liu, Jia; Zhou, Juntuo; Liang, Hui; Wang, Yayun; Sun, Yinping; Ma, Bin; Yin, Yuxin

    2018-02-05

    Migraine is a highly disabling primary headache associated with a high socioeconomic burden and a generally high prevalence. The clinical management of migraine remains a challenge. This study was undertaken to identify potential serum biomarkers of migraine. Using Liquid Chromatography coupled to Mass Spectrometry (LC-MS), the metabolomic profile of migraine was compared with healthy individuals. Principal component analysis (PCA) and Orthogonal partial least squares-discriminant analysis (orthoPLS-DA) showed the metabolomic profile of migraine is distinguishable from controls. Volcano plot analysis identified 10 serum metabolites significantly decreased during migraine. One of these was serotonin, and the other 9 were amino acids. Pathway analysis and enrichment analysis showed tryptophan metabolism (serotonin metabolism), arginine and proline metabolism, and aminoacyl-tRNA biosynthesis are the three most prominently altered pathways in migraine. ROC curve analysis indicated Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine are potential sensitive and specific biomarkers for migraine. Our results show Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine may be as specific or more specific for migraine than serotonin which is the traditional biomarker of migraine. We propose that therapeutic manipulation of these metabolites or metabolic pathways may be helpful in the prevention and treatment of migraine. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Plasma serotonin in horses undergoing surgery for small intestinal colic

    Science.gov (United States)

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  19. The importance of serotonin in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Jarosław Koza

    2017-12-01

    Description of the current knowledge and conclusions. Serotonin is responsible for some symptoms of carcinoid syndrome. It is the result of higher 5-hydroxytryptamine content in the body. Moreover disrupted serotonin system is found in different gastrointestinal disorders e.g. in gastroesophageal reflux disease, functional heartburn, hypersensitive esophagus, functional dyspepsia, irritable bowel syndrome (both diarrhoea predominant and constipation predominant as well as in inflammatory bowel diseases. Knowledge of changed mechanisms in particular diseases facilitates the optimal choice of treatment. Drugs affecting the serotonin system in gastroenterological clinical practice are useful especially in the case of abnormalities in the brain - gut axis.

  20. Effects of consuming alcohol mixed with energy drinks versus consuming alcohol only on overall alcohol consumption and negative alcohol-related consequences

    Directory of Open Access Journals (Sweden)

    de Haan L

    2012-11-01

    reported (2.6 for the previous year, including driving a car while intoxicated, taking foolish risks, or being injured or hurt, as compared with alcohol-related consequences when consuming alcohol only (4.9.Conclusion: Mixing alcohol with energy drinks decreases overall alcohol consumption, and decreases the likelihood of experiencing negative alcohol-related consequences.Keywords: alcohol, energy drinks, AMED, alcohol consumption, consequences

  1. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  2. Modulation of Tryptophan and Serotonin Metabolism as a Biochemical Basis of the Behavioral Effects of Use and Withdrawal of Androgenic-Anabolic Steroids and Other Image- and Performance-Enhancing Agents

    Directory of Open Access Journals (Sweden)

    Abdulla A-B Badawy

    2018-02-01

    Full Text Available Modulation of tryptophan (Trp metabolism may underpin the behavioral effects of androgenic-anabolic steroids (AAS and associated image and performance enhancers. Euphoria, arousal, and decreased anxiety observed with moderate use and exercise may involve enhanced cerebral serotonin synthesis and function by increased release of albumin-bound Trp and estrogen-mediated liver Trp 2,3-dioxygenase (TDO inhibition and enhancement of serotonin function. Aggression, anxiety, depression, personality disorders, and psychosis, observed on withdrawal of AAS or with use of large doses, can be caused by decreased serotonin synthesis due to TDO induction on withdrawal, excess Trp inhibiting the 2 enzymes of serotonin synthesis, and increased cerebral levels of neuroactive kynurenines. Exercise and excessive protein and branched-chain amino acid intakes may aggravate the effects of large AAS dosage. The hypothesis is testable in humans and experimental animals by measuring parameters of Trp metabolism and disposition and related metabolic processes.

  3. Serotonin transporter genotype linked to adolescent substance use treatment outcome through externalizing behavior

    Directory of Open Access Journals (Sweden)

    Tammy eChung

    2014-07-01

    Full Text Available Meta-analyses suggest that the serotonin transporter linked polymorphic region (5-HTTLPR short (S allele, relative to the long (L allele, is associated with risk for alcohol dependence, particularly among individuals with early onset antisocial alcoholism. Youth in substance use treatment tend to show antisocial or externalizing behaviors, such as conduct problems, which predict worse treatment outcome. This study examined a pathway in which 5-HTTLPR genotype is associated with externalizing behavior, and the intermediate phenotype of externalizing behavior serves as a link between 5-HTTLPR genotype and substance use treatment outcome in youth. Adolescents (n=142 who were recruited from addictions treatment were genotyped for 5-HTTLPR polymorphisms (S and LG carriers vs. LALA, assessed for externalizing and internalizing behaviors shortly after starting treatment, and followed over 6-months. 5-HTTLPR genotype was not associated with internalizing behaviors, and was not directly associated with 6-month substance use outcomes. However, 5-HTTLPR genotype was associated with externalizing behaviors (S and LG > LALA, and externalizing behaviors predicted alcohol and marijuana problem severity at 6-month follow-up. Results indicated an indirect (p<.05 and non-specific (i.e., both alcohol and marijuana severity effect of 5-HTTLPR genotype on youth substance use treatment outcomes, with externalizing behaviors as an important linking factor. Adolescents in substance use treatment with low expressing (S and LG 5-HTTLPR alleles and externalizing behavior might benefit from intervention that addresses serotonergic functioning, externalizing behaviors, and substance use to improve outcomes.

  4. Decline in alcohol consumption in Estonia: combined effects of strengthened alcohol policy and economic downturn.

    Science.gov (United States)

    Lai, Taavi; Habicht, Jarno

    2011-01-01

    To describe alcohol policy changes in parallel to consumption changes in 2005-2010 in Estonia, where alcohol consumption is among the highest in Europe. Review of pertinent legislation and literature. Alcohol consumption decreased since 2008, while alcohol excise tax, sales time restrictions and ad bans have increased since 2005. An economic downturn started in 2008. The precise roles of policy changes and the economic downturn in the decline of alcohol consumption, and whether the decrease will be sustained, are still unclear.

  5. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.

    Science.gov (United States)

    Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy

    2012-06-01

    The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.

  6. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  7. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    Science.gov (United States)

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  8. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different

    Directory of Open Access Journals (Sweden)

    Tatiana K. Bogodvid

    2017-12-01

    Full Text Available Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT or serotonin precursor 5-hydroxytryptophan (5-HTP in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.

  9. Melatonin and serotonin effects on gastrointestinal motility.

    Science.gov (United States)

    Thor, P J; Krolczyk, G; Gil, K; Zurowski, D; Nowak, L

    2007-12-01

    The gastrointestinal tract represents the most important extra pineal source of melatonin. Presence of melatonin (M) suggests that this hormone is somehow involved in digestive pathophysiology. Release of GI melatonin from serotonin-rich enterochromaffin EC cells of the GI mucosa suggest close antagonistic relationship with serotonin (S) and seem to be related to periodicity of food intake. Food deprivation resulted in an increase of tissue and plasma concentrations of M. Its also act as an autocrine and paracrine hormone affecting not only epithelium and immune system but also smooth muscle of the digestive tract. Low doses M improve gastrointestinal transit and affect MMC. M reinforce MMCs cyclic pattern but inhibits spiking bowel activity. Pharmacological doses of M delay gastric emptying via mechanisms that involve CCK2 and 5HT3 receptors. M released in response to lipid infusion exerts a modulatory influence that decreases the inhibitory effects of the ileal brake on gastric emptying. On isolated bowel S induces dose dependent increase in tone and reduction in amplitude of contraction which is affected by M. M reduced the tone but not amplitude or frequency of contraction. M is a promising therapeutic agent for IBS with activities independent of its effects on sleep, anxiety or depression. Since of its unique properties M could be considered for prevention or treatment of colorectal cancer, ulcerative colitis, gastric ulcers and irritable bowel syndrome.

  10. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  11. Serotonin shapes risky decision making in monkeys

    OpenAIRE

    Long, Arwen B.; Kuhn, Cynthia M.; Platt, Michael L.

    2009-01-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in ...

  12. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  13. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  14. Moderation of antidepressant response by the serotonin transporter gene

    DEFF Research Database (Denmark)

    Huezo-Diaz, Patricia; Uher, Rudolf; Smith, Rebecca

    2009-01-01

    Background: There have been conflicting reports on whether the length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) moderates the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs). We hypothesised that the pharmacogenetic effect of 5-HTTLPR...... the serotonin transporter gene were genotyped in 795 adults with moderate-to-severe depression treated with escitalopram or nortriptyline in the Genome Based Therapeutic Drugs for Depression (GENDEP) project. Results: The 5-HTTLPR moderated the response to escitalopram, with long-allele carriers improving more...

  15. Dopamine and serotonin: influences on male sexual behavior.

    Science.gov (United States)

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  16. The influence of superlethal γ-radiation doses on the content and metabolism of serotonin in the rat brain

    International Nuclear Information System (INIS)

    Silina, A.G.; Sverdlov, A.G.

    1987-01-01

    As early as 60 min after γ-irradiation of Wistar rats with a dose of 150 Gy the content of serotonin and 5-hydroxyindoleacetic acid decreases in the midbrain, hippocampus, and cerebral hemisphere cortex. The decrease is most pronounced in the midbrain where serotoninergic neurons are located. The changes are accumulated during the first 24 h following irradiation h

  17. A chiral synthesis of dapoxetine hydrochloride, a serotonin re-uptake inhibitor, and its 14C isotopomer

    International Nuclear Information System (INIS)

    Wheeler, W.J.; O'Bannon, D.D.

    1992-01-01

    The 14 C-isotopmer of dapoxetine-[ 14 C] HCl (S (+) -N,N-dimethyl-α[2-(1-naphthalenyloxy)ethyl-2- 14 C]benzenemeth a-n amine hydrochloride, 1a), a potent serotonin re-uptake inhibitor has been prepared by a chiral synthesis, starting with tert. -butyloxyphenylglycine (3). Borane reduction, followed by activation of the resulting alcohol 4 as its mesylate 5b, provided the chiral starting material. The radiolabel was introduced by reaction of 5b with sodium cyanide-[ 14 C]. The desired product (1) was then elaborated from nitrile 6a,b via a five step synthesis in an overall 19.5% radiochemical yield. (Author)

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  19. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders

    Science.gov (United States)

    Dayer, Alexandre

    2014-01-01

    Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants. PMID:24733969

  20. Effects of delayed laboratory processing on platelet serotonin levels.

    Science.gov (United States)

    Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini

    2013-01-01

    Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.

  1. Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone

    DEFF Research Database (Denmark)

    D'Amico, Jessica M; Butler, Annie A; Héroux, Martin E

    2017-01-01

    that activation of 5-HT1Areceptors depresses human motoneurone excitability. Such a depression could contribute to decreased motoneurone output during fatiguing exercise if there is high serotonergic drive to the motoneurones. ABSTRACT: Intense serotonergic drive in the turtle spinal cord results in serotonin...... motoneurone output. Such a mechanism could potentially contribute to fatigue with exercise....

  2. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2017-07-01

    The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.

  3. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W

    2017-08-01

    Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.

  4. Interaction of antidepressants with the serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Sørensen, Lena; Andersen, Jacob; Thomsen, Mette

    2012-01-01

    The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used...

  5. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  6. Effects of general and alcohol-specific media literacy training on children's decision making about alcohol.

    Science.gov (United States)

    Austin, E W; Johnson, K K

    1997-01-01

    This article examines the immediate and delayed effects of media literacy training on third-grade children's perceptions of alcohol advertising, alcohol norms, expectancies for drinking, and behaviors toward alcohol. A Solomon four-group style experiment (N = 225) with two levels of the treatment factor assessed the effectiveness of in-school media literacy training for alcohol. The experiment compared a treatment that included the viewing of a videotape about television advertising along with the viewing of video clips of alcohol ads and discussion pertaining to alcohol advertising specifically versus one that included the viewing of the same general purpose media literacy videotape along with video clips of non-alcohol advertising and then discussion of advertising in general. The treatment had both immediate and delayed effects. Immediate effects included the children's increased understanding of persuasive intent, viewing of characters as less similar to people they knew in real life and less desirable, decreased desire to be like the characters, decreased expectation of positive consequences from drinking alcohol, and decreased likelihood to choose an alcohol-related product. Indirect effects also were found on their perceptions of television's realism and their views of social norms related to alcohol. Delayed effects were examined and confirmed on expectancies and behavior. The treatment was more effective when alcohol-specific, and it also was more effective among girls than boys.

  7. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  8. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    Rationale The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  9. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  10. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  12. Protective influences of N-acetylcysteine against alcohol abstinence-induced depression by regulating biochemical and GRIN2A, GRIN2B gene expression of NMDA receptor signaling pathway in rats.

    Science.gov (United States)

    Yawalkar, Rutuja; Changotra, Harish; Gupta, Girdhari Lal

    2018-04-25

    Evidences have indicated a high degree of comorbidity of alcoholism and depression. N-acetylcysteine (NAC) has shown its clinical efficiency in the treatment of several psychiatric disorders and is identified as a multi-target acting drug. The ability of NAC to prevent alcohol abstinence-induced depression-like effects and underlying mechanism(s) have not been adequately addressed. This study was aimed to investigate the beneficial effects of NAC in the alcohol abstinence-induced depression developed following long-term voluntary alcohol intake. For evaluation of the effects of NAC, Sprague-Dawley rats were enabled to voluntary drinking of 4.5%, 7.5% and 9% v/v alcohol for fifteen days. NAC (25, 50, and 100 mg/kg) and fluoxetine (5 mg/kg) were injected intraperitoneally for three consecutive days during the alcohol abstinence period on the days 16, 17, 18. The behavioral studies were conducted employing forced swim test (FST), and tail suspension test (TST) on day 18 to determine the effects of N-acetylcysteine and fluoxetine in the ethanol withdrawal induced-depression. Blood alcohol concentration, alcohol biomarkers like SGPT, SGOT, ALP, GGT, and MCV were estimated by using commercially available kits. Serotonin concentrations were measured in the plasma, hippocampus and pre-frontal cortex using the rat ELISA kit. The expression of GRIN1, GRIN2A, GRIN2B genes for the N-methyl d-aspartate receptors (NMDAR) subunits in the hippocampus and the prefrontal cortex were also examined by reverse-transcription quantitative polymerase chain reaction. The results revealed that alcohol abstinence group depicted increased immobility time in FST and TST. Further, NAC exerted significant protective effect at the doses 50 mg/kg and 100 mg/kg, but 25 mg/kg showed insignificant protection against alcohol abstinence-induced depression. The increased level of biochemical parameters following ethanol abstinence were also reversed by NAC at the dose of 100 mg/kg. The

  13. Serotonin enhances the impact of health information on food choice.

    Science.gov (United States)

    Vlaev, Ivo; Crockett, Molly J; Clark, Luke; Müller, Ulrich; Robbins, Trevor W

    2017-06-01

    Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.

  14. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  15. Serotonin inhibits low-threshold spike interneurons in the striatum

    Science.gov (United States)

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  16. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  17. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  18. Serotonin induces ecdysteroidogenesis and methyl farnesoate synthesis in the mud crab, Scylla serrata.

    Science.gov (United States)

    Girish, B P; Swetha, C H; Reddy, P Sreenivasula

    2017-09-02

    In the current study, we have examined the role of serotonin in regulating the levels of methyl farnesoate and ecdysteroids in the giant mud crab Scylla serrata and validated that serotonin indeed is a reproductive hormone. Administration of serotonin elevated circulatory levels of methyl farnesoate and ecdysteroids in crabs. Since methyl farnesoate and ecdysteroid act through retinoid X receptor (RXR) and ecdysteroid receptor (EcR) respectively and these receptors are involved in the regulation of reproduction in crustaceans, we have determined the mRNA levels of RXR and EcR in hepatopancreas and ovary after serotonin administration. The expression levels of both RXR and EcR increased significantly in the hepatopancreas and ovary of serotonin injected crabs when compared to the controls. In vitro organ culture studies revealed that incubation of Y-orgas and mandibular organ explants in the presence of serotonin resulted in a significant increase in the secretion of ecdysteroids by Y-organs, but without alterations in MF synthesis in mandibular organs. From the above studies it is evident that serotonin stimulates Y organs resulting in increased ecdysteroidogenesis. Though the circulatory levels methyl farnesoate elevated after serotonin administration, organ culture studies revealed serotonin mediated methyl farnesaote synthesis is indirect probably by inhibiting release of mandibular organ inhibiting hormone from eyestalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The influence of serotonin depletion on rat behavior in the Vogel test and brain 3H-zolpidem binding.

    Science.gov (United States)

    Nazar, M; Siemiatkowski, M; Bidziński, A; Członkowska, A; Sienkiewicz-Jarosz, H; Płaźnik, A

    1999-01-01

    The influence of p-chlorophenylalanine (p-CPA) and 5,7-dihydroxytryptamine (5,7-DHT)-induced serotonin depletion on rat behavior as well as on zolpidem's the behavioral effects and binding to some brain areas of zolpidem, was examined with the help of Vogel's punished drinking test and autoradiography, respectively. Moreover, changes in the serotonin levels and turnover rate were studied in the forebrain and brainstem of rats pretreated with various ligands at the benzodiazepine (BDZ) receptors (midazolam, bretazenil, abecarnil, zolpidem). These drugs were given at doses shown previously to significantly disinhibit animal behavior suppressed by punishment in the Vogel test (Nazar et al., 1997). It was found that serotonin decrease in the frontal cortex and hippocampus after p-CPA significantly and inversely correlated with rat behavior controlled by fear in the VT. p-CPA produced an anticonflict activity in the absence of effect on spontaneous drinking, pain threshold and motility of animals. All applied benzodiazepine receptor ligands decreased the 5-HT turnover rate in the frontal cortex and hippocampus, whereas in the brainstem only abecarnil and zolpidem diminished 5-hydroxyindoleacetic acid levels. This part of the study replicated earlier data with neurotoxins and indicated that the anxiolytic-like effect of 5-HT depletion in some models of anxiety did not depend on changes in animal appetitive behavior or stimulus control. Moreover, the fact that all nonselective and selective (zolpidem) agonists of the type 1 benzodiazepine receptors seemed to produce the same anticonflict effect and decreasing 5-HT turnover indicates that this subtype of benzodiazepine receptor may be important for the interaction between brain 5-HT and GABA/BDZ systems. Accordingly, it was found that serotonin decrease enhanced the anticonflict effect of zolpidem in the Vogel test and increased 3H-zolpidem binding to the occipital cortex and substantia nigra. Altogether, the present study

  20. Serotonin blockade delays learning performance in a cooperative fish.

    Science.gov (United States)

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger.

  1. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  2. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels.

    Science.gov (United States)

    Robert, Alexandrine; Monsinjon, Tiphaine; Delbecque, Jean-Paul; Olivier, Stéphanie; Poret, Agnès; Foll, Frank Le; Durand, Fabrice; Knigge, Thomas

    2016-06-01

    Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the

  3. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies

    International Nuclear Information System (INIS)

    Lundquist, Pinelopi; Wilking, Helena; Hoeglund, A. Urban; Sandell, Johan; Bergstroem, Mats; Hartvig, Per; Langstroem, Bengt

    2005-01-01

    The serotonin transporter radioligand [ 11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [ 11 C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [ 11 C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [ 11 C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [ 11 C]DASB for transporter binding

  4. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  5. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  6. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  7. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    Directory of Open Access Journals (Sweden)

    Anupam Kotwal

    2015-01-01

    Full Text Available Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity.

  8. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  9. Treatment of Anxiety Disorders and Comorbid Alcohol Abuse with Buspirone in a Patient with Antidepressant-Induced Platelet Dysfunction: A Case Report

    Directory of Open Access Journals (Sweden)

    Mir Mazhar

    2013-01-01

    Full Text Available The risk of abnormal bleeding with serotonin reuptake inhibitors has been known, but there is insufficient evidence base to guide pharmacological treatment of anxiety in patients with underlying haematological conditions. The following case report is about a 50-year-old female with generalized anxiety disorder, social phobia, obsessive compulsive disorder, and alcohol abuse where pharmacological treatment of anxiety symptoms has been difficult as it would lead to bruising due to the patient’s underlying qualitative platelet dysfunction. Treatment with venlafaxine, citalopram, escitalopram, and clomipramine resulted in improvement and anxiety symptoms, as well as reduction in alcohol use, but pharmacological treatment has to be discontinued because of bruising and hematomas. In view of an active substance use disorder, benzodiazepines were avoided as a treatment option. The patient’s anxiety symptoms and comorbid alcohol abuse responded well to pharmacological treatment with buspirone which gradually titrated up to a dose of 30 mg BID. Patient was followed for around a six-month period while she was on buspirone before being discharged to family doctor’s care. Buspirone is unlikely to have a significant effect on platelet serotonin transponder and could be an effective alternative for pharmacological treatment of anxiety in patients with a bleeding diathesis.

  10. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  11. Serotonin exerting protection of serum lipid pattern in male albino rat subjected to shot or intermittent whole body gamma irradiation

    International Nuclear Information System (INIS)

    El-Dighidy, E.A.M.; El-Kady, M.H.R.

    1995-01-01

    Certain cancer patients are subjected to varying levels of intermittent radiation delivered in certain cases as whole body exposure. Effective control of many haematological complications built up during radiation treatment would necessarily contribute to up-grading of cancer radiotherapy. In the present study, the effect of either shot or intermittent whole body gamma irradiation at cumulative dose levels up to 6 and 10 Gy, have been evaluated on the levels of total lipids and lipid fractions in blood serum of male albino rats. The pharmacological role of serotonin and its potential radioprotective capacity have been assessed on the serum lipid pattern. The results indicated generally significant increases in the levels of blood lipid fractions especially HDL-cholesterol. On the other hand, the level of LDL-cholesterol recorded a significant decrease on the third day post either shot or cumulative dose levels at 6 or 10 Gy and also post 4 successive doses of serotonin administration. The only exceptions were recorded in the case of LDL-cholesterol post administration of single dose of serotonin and serotonin prior to shot dose levels of 6 or 10 Gy. 2 tabs

  12. On the correlation between the radioprotective effectiveness of serotonin and its derivatives and their ability to modify the local blood flow in animal tissues

    International Nuclear Information System (INIS)

    Abramov, M.M.; Vasin, M.V.

    1978-01-01

    Radioprotective effectiveness of serotonin and its alkoxy derivatives and their ability to modify a local blood flow in hemopoietic tissues have been comparatively studied in albino mice and rats. The correlation between these two parameters is nonlinear and may be approximated by a hyperbola equation. The correlation coefficient is - 0.88. A high radioprotective effect of serotonin and its derivatives is observed in the case of a three-fold decrease of the blood flow in the spleen

  13. The Cognitive and Behavioural Impact of Alcohol Promoting and Alcohol Warning Advertisements: An Experimental Study

    Science.gov (United States)

    Brown, Kyle G.; Stautz, Kaidy; Hollands, Gareth J.; Winpenny, Eleanor M.; Marteau, Theresa M.

    2016-01-01

    Aims To assess the immediate effect of alcohol promoting and alcohol warning advertisements on implicit and explicit attitudes towards alcohol and on alcohol seeking behaviour. Methods We conducted a between-participants online experiment in which participants were randomly assigned to view one of three sets of advertisements: (a) alcohol promoting, (b) alcohol warning, or (c) unrelated to alcohol. A total of 373 participants (59.5% female) aged 18–40 (M = 28.03) living in the UK were recruited online through a research agency. Positive and negative implicit attitudes and explicit attitudes towards alcohol were assessed before and after advertisements were viewed. Alcohol seeking behaviour was measured by participants' choice of either an alcohol-related or non-alcohol-related voucher offered ostensibly as a reward for participation. Self-reported past week alcohol consumption was also recorded. Results There were no main effects on any of the outcome measures. In heavier drinkers, viewing alcohol promoting advertisements increased positive implicit attitudes (standardized beta = 0.15, P = 0.04) and decreased negative implicit attitudes (standardized beta = −0.17, P = 0.02). In heavier drinkers, viewing alcohol warning advertisements decreased negative implicit attitudes (standardized beta = −0.19, P = 0.01). Conclusions Viewing alcohol promoting advertisements has a cognitive impact on heavier drinkers, increasing positive and reducing negative implicit attitudes towards alcohol. Viewing alcohol warning advertisements reduces negative implicit attitudes towards alcohol in heavier drinkers, suggestive of a reactance effect. PMID:26391367

  14. Impact of Alcohol Tax Increase on Maryland College Students' Alcohol-Related Outcomes.

    Science.gov (United States)

    Smart, Mieka J; Yearwood, Safiya S; Hwang, Seungyoung; Thorpe, Roland J; Furr-Holden, C Debra

    2018-05-12

    This study A) assessed whether levels of alcohol-related disciplinary actions on college campuses changed among MD college students after the 2011 Maryland (MD) state alcohol tax increase from 6% to 9%, and B) determined which school-level factors impacted the magnitude of changes detected. A quasi-experimental interrupted time series (ITS) analysis of panel data containing alcohol-related disciplinary actions on 33 MD college campuses in years 2006-2013. Negative binomial regression models were used to examine whether there was a statistically significant difference in counts of alcohol-related disciplinary actions comparing time before and after the tax increase. The ITS anaysis showed an insignificant relationship between alcohol-related disciplinary actions and tax implementation (β = -.27; p =.257) but indicated that alcohol-related disciplinary actions decreased significantly over the time under study (β = -.05; p =.022). Alcohol related disciplinary actions did decrease over time in the years of study, and this relationship was correlated with several school-level characteristics, including school price, school funding type, types of degrees awarded, and specialty. School price may serve as a proxy mediator or confounder of the effect of time on disciplinary actions.

  15. Exercise and sleep in aging: emphasis on serotonin.

    Science.gov (United States)

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients.

    Science.gov (United States)

    Xia, Yan; Wang, Dawei; Zhang, Nan; Wang, Zhihao; Pang, Li

    2018-02-01

    To investigate the prognostic value of plasma serotonin levels in colorectal cancer (CRC). Preoperative plasma serotonin levels of 150 healthy control (HC) cases, 150 benign colorectal polyp (BCP) cases, and 176 CRC cases were determined using radioimmunoassay assay. Serotonin levels were compared between HC, BCP, and CRC cases, and those in CRC patients were related to 5-year outcome. Plasma serotonin levels were markedly higher in CRC patients than in either HCs or BCP cases. An elevated serotonin level was significantly associated with advanced tumor node metastasis. Receiver operating characteristic curve analysis showed that the level of serotonin had a high predictive value for disease recurrence and mortality. Multivariate analysis revealed that high serotonin level was significantly associated with poor recurrence-free survival and overall survival. Our results suggest that a high peri-operative plasma serotonin level is useful as a prognostic biomarker for CRC recurrence and poor survival. © 2017 Wiley Periodicals, Inc.

  17. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  18. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    Science.gov (United States)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  19. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Directory of Open Access Journals (Sweden)

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  20. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    Science.gov (United States)

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Looking on the bright side of serotonin transporter gene variation.

    NARCIS (Netherlands)

    Homberg, J.R.; Lesch, K.P.

    2011-01-01

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for

  2. Protective effect of serotonin on phospholipids and lipid peroxides contents in brain and liver of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.A.

    1999-01-01

    Treatment of normal rats with serotonin (2 mg/100 g body weight) produced no significant change in levels of phospholipids and lipid peroxides of the cerebral hemispheres and liver 1,3 and days after treatment. The content of lipid peroxides was measured as malondialdehyde (MDA). Whole body gamma-irradiation of rats at 8 Gy resulted in significant decrease in the level of phospholipids and significant increase in MDA level in cerebral hemispheres and lever. Changes were more pronounced in liver. Treatment with serotonin, 15 minutes before irradiation, had a pronounced protective effect against the radiation induced changes in the levels of phospholipids and MDA only in the liver through all the experimental period

  3. Alcohol consumption and burden of disease in the Americas in 2012: implications for alcohol policy.

    Science.gov (United States)

    Shield, Kevin D; Monteiro, Maristela; Roerecke, Michael; Smith, Blake; Rehm, Jürgen

    2015-12-01

    To describe the volume and patterns of alcohol consumption up to and including 2012, and to estimate the burden of disease attributable to alcohol consumption as measured in deaths and disability-adjusted life years (DALYs) lost in the Americas in 2012. Measures of alcohol consumption were obtained from the World Health Organization (WHO) Global Information System on Alcohol and Health (GISAH). The burden of alcohol consumption was estimated in both deaths and DALYs lost based on mortality data obtained from WHO, using alcohol-attributable fractions. Regional groupings for the Americas were based on the WHO classifications for 2004 (according to child and adult mortality). Regional variations were observed in the overall volume of alcohol consumed, the proportion of the alcohol market attributable to unrecorded alcohol consumption, drinking patterns, prevalence of drinking, and prevalence of heavy episodic drinking, with inhabitants of the Americas consuming more alcohol (8.4 L of pure alcohol per adult in 2012) compared to the world average. The Americas also experienced a high burden of disease attributable to alcohol consumption (4.7% of all deaths and 6.7% of all DALYs lost), especially in terms of injuries attributable to alcohol consumption. Alcohol is consumed in a harmful manner in the Americas, leading to a high burden of disease, especially in terms of injuries. New cost-effective alcohol policies, such as increasing alcohol taxation, increasing the minimum legal age to purchase alcohol, and decreasing the maximum legal blood alcohol content while driving, should be implemented to decrease the harmful consumption of alcohol and the resulting burden of disease.

  4. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  5. The possible impact of an alcohol welfare surcharge on consumption of alcoholic beverages in Taiwan.

    Science.gov (United States)

    Yeh, Chun-Yuan; Ho, Li-Ming; Lee, Jie-Min; Hwang, Jhe-Yo

    2013-09-08

    The abuse of alcoholic beverages leads to numerous negative consequences in Taiwan, as around the world. Alcohol abuse not only contributes to cardiovascular disease, hypertension, diabetes and cancer, but it is also an underlying cause of many other serious problems, such as traffic accidents, lost productivity, and domestic violence. International leaders in health policy are increasingly using taxation as an effective tool with which to lower alcohol consumption. In this study, we assessed how consumption patterns in Taiwan would be affected by levying a welfare surcharge on alcoholic beverages of 20%, 40% or 60% in accordance with the current excise tax. We also assessed the medical savings Taiwan would experience if consumption of alcoholic beverages were to decrease and how much additional revenue a welfare surcharge would generate. We estimated the elasticity of four types of alcoholic beverages (beer, wine, whisky and brandy) using the Central Bureau of Statistics (CBS) Demand Model. Specifically, we estimated alcohol's price elasticity by analyzing the sales prices and time statistics of these products from 1974 to 2009. Alcoholic beverages in Taiwan have the following price elasticities: beer (-0.820), wine (-0.955), whisky (-0.587), brandy (-0.958). A welfare surcharge tax of 40% in accordance with the excise tax would decrease overall consumption of beer, wine, whisky and brandy between 16.24% and 16.42%. It would also generate New Taiwan Dollar (NT$) revenues of 5.782 billion to 5.993 billion. Savings in medical costs would range from NT$871.07 million to NT$897.46 million annually. A social and welfare surcharge of 40% on alcoholic beverages in Taiwan would successfully lower consumption rates, decrease medical costs, and generate revenue that could be used to educate consumers and further decrease consumption rates. Consequently, we strongly recommend that such a tax be imposed in Taiwan.

  6. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Effects of ageing on serotonin transporters in healthy females

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Tammela, L.; Karhunen, L.; Uusitupa, M.; Bergstroem, K.A.; Tiihonen, J.

    2001-01-01

    The effect of ageing on brain serotonin transporters was evaluated in 19 healthy female volunteers (age range 22-74 years) using single-photon emission tomography and [ 123 I] nor-β-CIT. The study subjects were scanned 0.3, 3, 6 and 23 h after injection of 185 MBq of [ 123 I] nor-β-CIT. The ratio of the distribution volume for tracer in the midbrain to that in the cerebellum minus 1 was used as an index for serotonin transporter binding. An age-related decline of 2% per decade (r=-0.47; P 123 I] nor-β-CIT binding in the serotonin transporter-rich area is much less than that in dopamine transporters in the striatum (6% per decade). (orig.)

  8. Selective serotonin reuptake inhibitor (SSRI antidepressants, prolactin and breast cancer

    Directory of Open Access Journals (Sweden)

    Janet eAshbury

    2012-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are a widely prescribed class of anti-depressants. Laboratory and epidemiologic evidence suggests that a prolactin-mediated mechanism secondary to increased serotonin levels at neuronal synapses could lead to a potentially carcinogenic effect of SSRIs. In this population-based case-control study, we evaluated the association between SSRI use and breast cancer risk as a function of their relative degree of inhibition of serotonin reuptake as a proxy for their impact on prolactin levels. Cases were 2,129 women with primary invasive breast cancer diagnosed from 2003-2007, and controls were 21,297 women randomly selected from the population registry. Detailed information for each SSRI prescription dispensed was compiled using the Saskatchewan prescription database. Logistic regression was used to evaluate the impact of use of high and lower inhibitors of serotonin reuptake and duration of use, as well as to assess the effect of individual high inhibitors on the risk of breast cancer. Exclusive users of high or lower inhibitors of serotonin reuptake were not at increased risk for breast cancer compared with nonusers of SSRIs (OR = 1.01, CI = 0.88-1.17 and OR = 0.91, CI = 0.67-1.25 respectively, regardless of their duration of use or menopausal status. While we cannot rule out the possibility of a clinically important risk increase (OR = 1.83, CI = 0.99-3.40 for long-term users of sertraline (≥24 prescriptions, given the small number of exposed cases (n=12, the borderline statistical significance and the wide confidence interval, these results need to be interpreted cautiously. In this large population-based case-control study, we found no conclusive evidence of breast cancer risk associated with the use of SSRIs even after assessing the degree of serotonin reuptake inhibition and duration of use. Our results do not support the serotonin-mediated pathway for the prolactin-breast cancer hypothesis.

  9. [The effect of mineral water on serotonin and insulin production (an experimental study)].

    Science.gov (United States)

    Polushina, N D

    1998-01-01

    Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.

  10. Acute and delayed effect of (-) deprenyl and (-) 1-phenyl-2-propylaminopentane (PPAP) on the serotonin content of peritoneal cells (white blood cells and mast cells).

    Science.gov (United States)

    Csaba, G; Kovács, P; Pállinger, Eva

    2006-01-01

    Acute and delayed (hormonal imprinting) effect of (-) deprenyl and its derivative without MAO-B inhibitory activity (-) PPAP, were studied on cells of the peritoneal fluid (lymphocytes, monocytes, granulocytes and mast cells) by flow cytometric and confocal microscopic analysis. Thirty minutes after treatment of 6-week-old female animals, deprenyl was ineffective while PPAP significantly increased the serotonin level of these cells. Three weeks after treatment at weaning, deprenyl drastically decreased the serotonin level of each cell type, while PPAP moderately but significantly increased the serotonin level of monocytes, granulocytes and mast cells. This means that the two related molecules have different effects on the immune cells, which seem to be independent of MAO-B inhibition. The experiments emphasize the necessity of studying the prolonged effects of biologically active molecules, even if they are without acute effects. As serotonin is a modulator of the immune system, the influence on immune cells of the molecules studied can contribute to their enhancing effect. Copyright 2004 John Wiley & Sons, Ltd.

  11. Serotonin and decision making processes.

    NARCIS (Netherlands)

    Homberg, J.R.

    2012-01-01

    Serotonin (5-HT) is an important player in decision making. Serotonergic antidepressant, anxiolytic and antipsychotic drugs are extensively used in the treatment of neuropsychiatric disorders characterized by impaired decision making, and exert both beneficial and harmful effects in patients.

  12. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  13. β-cell serotonin production is associated with female sex, old age, and diabetes-free condition.

    Science.gov (United States)

    Kim, Yeong Gi; Moon, Joon Ho; Kim, Kyuho; Kim, Hyeongseok; Kim, Juok; Jeong, Ji-Seon; Lee, Junguee; Kang, Shinae; Park, Joon Seong; Kim, Hail

    2017-11-25

    Serotonin is known to be present in pancreatic β-cells and to play several physiological roles, including insulin secretion, β-cell proliferation, and paracrine inhibition of α-cells. However, the serotonin production of different cell lines and islets has not been compared based on age, sex, and diabetes related conditions. Here, we directly compared the serotonin concentrations in βTC and MIN6 cell lines, as well as in islets from mice using ultra-performance liquid chromatography tandem mass spectrometry. The average serotonin concentration was 5-10 ng/mg protein in the islets of male and non-pregnant female mice. The serotonin level was higher in females than males at 8 weeks, although there was no difference at 1 year. Furthermore, we observed serotonin by immunofluorescence staining in the pancreatic tissues of mice and human. Serotonin was detected by immunofluorescence staining in a portion of β-cells from islets of old female mice, but not of male or young female mice. A similar pattern was observed in human pancreas as well. In humans, serotonin production in β-cells was associated with a diabetes-free condition. Thus, serotonin production in β-cells was associated with old age, female sex, and diabetes-free condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    Directory of Open Access Journals (Sweden)

    René Klysner

    2014-01-01

    Full Text Available The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.

  15. Alcohol consumption and burden of disease in the Americas in 2012: implications for alcohol policy

    Directory of Open Access Journals (Sweden)

    Kevin D. Shield

    Full Text Available OBJECTIVE:To describe the volume and patterns of alcohol consumption up to and including 2012, and to estimate the burden of disease attributable to alcohol consumption as measured in deaths and disability-adjusted life years (DALYs lost in the Americas in 2012. METHODS: Measures of alcohol consumption were obtained from the World Health Organization (WHO Global Information System on Alcohol and Health (GISAH. The burden of alcohol consumption was estimated in both deaths and DALYs lost based on mortality data obtained from WHO, using alcohol-attributable fractions. Regional groupings for the Americas were based on the WHO classifications for 2004 (according to child and adult mortality. RESULTS: Regional variations were observed in the overall volume of alcohol consumed, the proportion of the alcohol market attributable to unrecorded alcohol consumption, drinking patterns, prevalence of drinking, and prevalence of heavy episodic drinking, with inhabitants of the Americas consuming more alcohol (8.4 L of pure alcohol per adult in 2012 compared to the world average. The Americas also experienced a high burden of disease attributable to alcohol consumption (4.7% of all deaths and 6.7% of all DALYs lost, especially in terms of injuries attributable to alcohol consumption. CONCLUSIONS: Alcohol is consumed in a harmful manner in the Americas, leading to a high burden of disease, especially in terms of injuries. New cost-effective alcohol policies, such as increasing alcohol taxation, increasing the minimum legal age to purchase alcohol, and decreasing the maximum legal blood alcohol content while driving, should be implemented to decrease the harmful consumption of alcohol and the resulting burden of disease.

  16. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  17. Serotonin syndrome associated with sertraline use: case report

    Directory of Open Access Journals (Sweden)

    Bárbara Werner Griciunas

    2017-06-01

    Full Text Available Case report of serotonin syndrome in patient who initiated the use of sertraline at a dose greater than twice the recommended for the treatment of psychotic depression. The patient presented contracture of the limbs, puzzled look, mutism and blood pressure 230x110 mmHg. The syndrome is increasingly common, although it is not well recognized. Many medications can cause it and this possibility should be considered in patients taking serotonergic drugs presenting autonomic or mental disorders and neurological symptoms. The findings of clonus, oculogyric crisis, hyperreflexia and hypertonicity should lead to the medication review. Treatment focuses on interruption of causative agents, treatment of a possible hyperthermia and use of benzodiazepines to decrease hypertonus and neurological excitability.

  18. Serotonin, calcitonin and calcitonin gene-related peptide in acute pancreatitis

    DEFF Research Database (Denmark)

    Wahlstrøm, Kirsten Lykke; Novovic, Srdan; Ersbøll, Annette Kjær

    2017-01-01

    OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients with alco......OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients...... dysfunction. We hypothesize that serotonin plays a pathogenic role in the compromised pancreatic microcirculation, and calcitonin a role as a biomarker of severity in AP....

  19. Effect of serotonin infusions on the mean plasma concentrations of ...

    African Journals Online (AJOL)

    SERVER

    hhazali@hotmail.com, tabeshyarnoor@yahoo.com. neurotransmitters. It has been shown that neurons secreting serotonin may be co-locolized with neurons secreting GHRH and TRH (Bujatti et al., 1976; Bulsa et al., 1998; Savard et al., 1986; Savard et al., 1983). This indicate that serotonin as a neurotransmitter may control.

  20. In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter

    Science.gov (United States)

    Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.

    2015-01-01

    Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784

  1. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  2. Transient serotonin syndrome by concurrent use of electroconvulsive therapy and selective serotonin reuptake inhibitor: a case report and review of the literature.

    Science.gov (United States)

    Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki

    2012-01-01

    The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  3. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    Science.gov (United States)

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical

  4. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  5. The serotonin system in autism spectrum disorder: from biomarker to animal models

    OpenAIRE

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophy...

  6. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    DEFF Research Database (Denmark)

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.

    2009-01-01

    receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25.......2+/-4.3) kg/m(2). Cerebral cortex 5-HT(2A) binding was significantly positively correlated to BMI, whereas no association between cortical 5-HT(2A) receptor binding and alcohol or tobacco use was detected. We suggest that our observation is driven by a lower central 5-HT level in overweight people, leading...

  7. Capture and retention of tritiated serotonin by the chick notochord

    International Nuclear Information System (INIS)

    Gerard, Anne; Gerard, Hubert; Dollander, Alexis

    1978-01-01

    The 3 day old chick notochord capacity to fix tritiated serotonin is maximal in its axis and in cephalic region. Observations permitting to find, the intracellular serotonin binding sites, contribute to an explanation of the capture mechanism and suggest a special direct role of the notochord on the monoaminergic neuron cytodifferentiation [fr

  8. Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid

    International Nuclear Information System (INIS)

    Delaage, M.A.; Puizillout, J.J.

    1981-01-01

    Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid were developed. High titer antibodies, having a well-defined high specificity, have been raised by coupling the side-chain of both molecules to human serum albumin. Serotonin is first converted into N-hemisuccinate, and then treated like 5-HIAA, namely, conjugated with HSA for the immunogen. Synthesis of 125 I iodinated analogues was performed by coupling 5-HIAA or N-succinyl serotonin to glycyltyrosine, without any contact between both molecules and the oxidizing reagents. Chemical conversions of biological samples (by succinylation for 5-HT and amidation for 5-HIAA) were carried out. This critical step makes the antigen molecules resemble the immunogen more closely, thus allowing an appreciable gain in specificity and sensitivity. These assays allow the rapid determination of 5-HT and 5-HIAA in small amounts of tissue, blood, cerebral spinal fluid or perfusate without any purification, with a sensitivity threshold of 50 pg

  9. Treatment of alcohol dependence in patients with co-morbid major depressive disorder – predictors for the outcomes with memantine and escitalopram medication

    Directory of Open Access Journals (Sweden)

    Lönnqvist Jouko

    2008-10-01

    Full Text Available Abstract Background Alcohol dependence comorbid with major depressive disorder poses a major challenge in the clinical setting. The results in the treatment with selective serotonin re-uptake inhibitors have been conflicting. Thus, we compared in alcohol-dependent patients with co-morbid major depressive disorder the selective serotonin re-uptake inhibitor escitalopram to a compound that acts on different transporter system and may reduce craving, the glutamate receptor antagonist memantine. Methods Eighty alcohol-dependent patients comorbid with major depressive disorder in municipal alcohol clinics were randomized 1:1 to receive memantine 20 mg or escitalopram 20 mg in a double-blind manner. During the 26-week study period patients continued their routine treatment at the clinics. Abstinence was not required but encouraged. The patients attended visits weekly during the first month, and then at 3 and at 6 months. Outcome measures were Alcohol Use Disorders Identification Test (AUDIT, Obsessive Compulsive Drinking Scale (OCDS and Drinking Diary. Results The completion rate was high in both groups, especially among the patients who had been abstinent at the beginning of the study. However, among those patients who were not abstinent at baseline, 47% in both groups discontinued the study. Numbers of abstinent days were high in both groups throughout the study. Alcohol consumption measured by the AUDIT QF (quantity-frequency score was significantly reduced in both groups, as was the craving for alcohol measured by the OCDS. Early age at first alcohol intoxication predicted poor treatment outcomes in patients treated with escitalopram, and the same was seen with the early onset of the first depressive episode. The same predictive effects were not found in patients treated with memantine. Conclusion Our results indicate that both memantine and escitalopram are useful adjunct medications for the treatment of alcohol dependence co-morbid with major

  10. [3H]Serotonin release: an improved method to measure mast cell degranulation

    International Nuclear Information System (INIS)

    Mazingue, C.; Dessaint, J.-P.; Capron, A.

    1978-01-01

    A method based on the release of tritium-labelled serotonin by activated mast cells in rodents is described. Mast cells incorporate labelled serotonin selectively and released the label after activation by non-specific stimulators (compound 48/80, polymyxin B sulphate, ATP, bovine chymotrypsin and L-α-lysophosphatidylcholine) or anaphylactic antibody and the corresponding antigen. These two types of activation were investigated in comparison with the toluidine blue microscopic rat mast cell degranulation test, and a methodological study of the release of [ 3 H] serotonin is described. The measurement of labelled serotonin release provides a simple and quick assay of mast cell degranulation compared to the time required for the classical rat mast cell degranulation technique and achieves a greater sensitivity. (Auth.)

  11. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  12. Alcohol and Apoptosis: Friends or Foes?

    Science.gov (United States)

    Rodriguez, Ana; Chawla, Karan; Umoh, Nsini A; Cousins, Valerie M; Ketegou, Assama; Reddy, Madhumati G; AlRubaiee, Mustafa; Haddad, Georges E; Burke, Mark W

    2015-11-19

    Alcohol abuse causes 79,000 deaths stemming from severe organ damage in the United States every year. Clinical manifestations of long-term alcohol abuse on the cardiac muscle include defective contractility with the development of dilated cardiomyopathy and low-output heart failure; which has poor prognosis with less than 25% survival for more than three years. In contrast, low alcohol consumption has been associated with reduced risk of cardiovascular disease, however the mechanism of this phenomenon remains elusive. The aim of this study was to determine the significance of apoptosis as a mediating factor in cardiac function following chronic high alcohol versus low alcohol exposure. Adult rats were provided 5 mM (low alcohol), 100 mM (high alcohol) or pair-fed non-alcohol controls for 4-5 months. The hearts were dissected, sectioned and stained with cresyl violet or immunohistochemically for caspase-3, a putative marker for apoptosis. Cardiomyocytes were isolated to determine the effects of alcohol exposure on cell contraction and relaxation. High alcohol animals displayed a marked thinning of the left ventricular wall combined with elevated caspase-3 activity and decreased contractility. In contrast, low alcohol was associated with increased contractility and decreased apoptosis suggesting an overall protective mechanism induced by low levels of alcohol exposure.

  13. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecutive...... experiments. The first experiment evaluated vasomotor response (IR-Th) and scratching behavior (number of bouts) induced by intradermal serotonin (10 μl, 2%). Isotonic saline (control: 10 μl, 0.9%) and Methysergide (antagonist: 10 μl, 0.047 mg/ml) were used. The second experiment evaluated the dose......-response effect of intradermal serotonin (1%, 2% and 4%) on local temperature. The third experiment evaluated the anesthetized rats to test the local vasomotor responses in absent of scratching. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A dose...

  14. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  15. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014...

  16. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  18. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    Deterre, Philippe

    1983-01-01

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein [fr

  19. Platelet 3H-serotonin releasing immune complexes induced by pseudomonas aeruginosa in cystic fibrosis

    International Nuclear Information System (INIS)

    Permin, H.; Stahl Skov, P.; Norn, S.; Hoeiby, N.; Schioetz, P.O.

    1982-01-01

    In vitro formation of immune complexes was studied by 3 H-serotonin release from human platelets by P. aeruginosa antigens in the presence of serum from 22 cyctic fibrosis patients, chronically infected with mucoid P. aeruginosa (CF+P) and with a pronounced antibody response against these bacteria, and in 24 patients without P. aeruginosa (CF-P). All CF+P patients responded with 3 H-serotonin release (16-34%), whereas CF-P patients released less than 15%. In the group of CF+P patients the number of P. aeruginosa precipitins was correlated to the serotonin titer. Time courses indicated that 3 H-serotonin release was maximal between 2 and 5 min, and that no further release was observed up to 20 min. There was a gradual increase in 3 H-serotonin release with higher platelet concentrations. The response was not changed by complement inactivation, and fractionation of serum demonstrated that the serotonin release was dependent on the presence of the immunoglobulin fraction. These experiments support the suggestion of a type III reaction being involved in the lung damage in CF+P patients and also suggest a possible involvement of serotonin in the inflammatory reaction during chronic P. aeruginosa lung infection. (author)

  20. Alcohol Increases Delay and Probability Discounting of Condom-Protected Sex: A Novel Vector for Alcohol-Related HIV Transmission.

    Science.gov (United States)

    Johnson, Patrick S; Sweeney, Mary M; Herrmann, Evan S; Johnson, Matthew W

    2016-06-01

    Alcohol use, especially at binge levels, is associated with sexual HIV risk behavior, but the mechanisms through which alcohol increases sexual risk taking are not well-examined. Delay discounting, that is, devaluation of future consequences as a function of delay to their occurrence, has been implicated in a variety of problem behaviors, including risky sexual behavior. Probability discounting is studied with a similar framework as delay discounting, but is a distinct process in which a consequence is devalued because it is uncertain or probabilistic. Twenty-three, nondependent alcohol users (13 male, 10 female; mean age = 25.3 years old) orally consumed alcohol (1 g/kg) or placebo in 2 separate experimental sessions. During sessions, participants completed tasks examining delay and probability discounting of hypothetical condom-protected sex (Sexual Delay Discounting Task, Sexual Probability Discounting Task) and of hypothetical and real money. Alcohol decreased the likelihood that participants would wait to have condom-protected sex versus having immediate, unprotected sex. Alcohol also decreased the likelihood that participants would use an immediately available condom given a specified level of sexually transmitted infection (STI) risk. Alcohol did not affect delay discounting of money, but it did increase participants' preferences for larger, probabilistic monetary rewards over smaller, certain rewards. Acute, binge-level alcohol intoxication may increase sexual HIV risk by decreasing willingness to delay sex in order to acquire a condom in situations where one is not immediately available, and by decreasing sensitivity to perceived risk of STI contraction. These findings suggest that delay and probability discounting are critical, but heretofore unrecognized, processes that may mediate the relations between alcohol use and HIV risk. Copyright © 2016 by the Research Society on Alcoholism.

  1. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  2. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  3. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown).

    Science.gov (United States)

    Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona Jm; Murch, Susan J

    2015-01-01

    Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to "light on." The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The "dark" IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.

  4. Localization of 3H-serotonin in the adrenal medullary cells of newborn rats

    International Nuclear Information System (INIS)

    Sudar, F.; Csaba, G.

    1979-01-01

    Newborn rats received 25 μCi 3 H-5-hydroxytryptophan (5-HTP); 30, 60 min or 5 hours later the adrenal glands were removed. Electronmicroscopic autoradiography was carried out after fixation and embedding. As in the cells 5-HTP is formed into serotonin, the distribution of radioactivity actually represents the distribution of serotonin. Activity was found on the cellular, nuclear and catecholamine granule-membranes, and in the nucleus. The activity increased as a function of time at all the above mentioned sites, and in line with this more and more empty catecholamine-granules appeared. Data indicate the existence of intracellular serotonin-receptors and the role of serotonin in the release of catecholamines. (L.E.)

  5. Different components of 3H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    International Nuclear Information System (INIS)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous 3 H-imipramine ( 3 H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM 3 H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three 3 H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific 3 H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables

  6. Amygdala Volume in Offspring from Multiplex for Alcohol Dependence Families: The Moderating Influence of Childhood Environment and 5-HTTLPR Variation.

    Science.gov (United States)

    Hill, Shirley Y; Wang, Shuhui; Carter, Howard; McDermott, Michael D; Zezza, Nicholas; Stiffler, Scott

    2013-12-12

    The increased susceptibility for developing alcohol dependence seen in offspring from families with alcohol dependence may be related to structural and functional differences in brain circuits that influence emotional processing. Early childhood environment, genetic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR) of the SLCA4 gene and allelic variation in the Brain Derived Neurotrophic Factor (BDNF) gene have each been reported to be related to volumetric differences in the temporal lobe especially the amygdala. Magnetic resonance imaging was used to obtain amygdala volumes for 129 adolescent/young adult individuals who were either High-Risk (HR) offspring from families with multiple cases of alcohol dependence (N=71) or Low-Risk (LR) controls (N=58). Childhood family environment was measured prospectively using age-appropriate versions of the Family Environment Scale during a longitudinal follow-up study. The subjects were genotyped for Brain-Derived Neurotrophic Factor (BDNF) Val66Met and the serotonin transporter polymorphism (5-HTTLPR). Two family environment scale scores (Cohesion and Conflict), genotypic variation, and their interaction were tested for their association with amygdala volumes. Personal and prenatal exposure to alcohol and drugs were considered in statistical analyses in order to more accurately determine the effects of familial risk group differences. Amygdala volume was reduced in offspring from families with multiple alcohol dependent members in comparison to offspring from control families. High-Risk offspring who were carriers of the S variant of the 5-HTTLPR polymorphism had reduced amygdala volume in comparison to those with an LL genotype. Larger amygdala volume was associated with greater family cohesion but only in Low-Risk control offspring. Familial risk for alcohol dependence is an important predictor of amygdala volume even when removing cases with significant personal exposure and covarying for

  7. Serotonin selectively influences moral judgment and behavior through effects on harm aversion.

    Science.gov (United States)

    Crockett, Molly J; Clark, Luke; Hauser, Marc D; Robbins, Trevor W

    2010-10-05

    Aversive emotional reactions to real or imagined social harms infuse moral judgment and motivate prosocial behavior. Here, we show that the neurotransmitter serotonin directly alters both moral judgment and behavior through increasing subjects' aversion to personally harming others. We enhanced serotonin in healthy volunteers with citalopram (a selective serotonin reuptake inhibitor) and contrasted its effects with both a pharmacological control treatment and a placebo on tests of moral judgment and behavior. We measured the drugs' effects on moral judgment in a set of moral 'dilemmas' pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person). Enhancing serotonin made subjects more likely to judge harmful actions as forbidden, but only in cases where harms were emotionally salient. This harm-avoidant bias after citalopram was also evident in behavior during the ultimatum game, in which subjects decide to accept or reject fair or unfair monetary offers from another player. Rejecting unfair offers enforces a fairness norm but also harms the other player financially. Enhancing serotonin made subjects less likely to reject unfair offers. Furthermore, the prosocial effects of citalopram varied as a function of trait empathy. Individuals high in trait empathy showed stronger effects of citalopram on moral judgment and behavior than individuals low in trait empathy. Together, these findings provide unique evidence that serotonin could promote prosocial behavior by enhancing harm aversion, a prosocial sentiment that directly affects both moral judgment and moral behavior.

  8. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  9. Proximity of off-premise alcohol outlets and heavy alcohol consumption: a cohort study.

    Science.gov (United States)

    Halonen, Jaana I; Kivimäki, Mika; Virtanen, Marianna; Pentti, Jaana; Subramanian, S V; Kawachi, Ichiro; Vahtera, Jussi

    2013-09-01

    Availability of alcohol has been associated with alcohol consumption in cross-sectional studies. We examined longitudinally whether change in proximity to off-premise (i.e., no consumption on the premises) beer and liquor outlets is associated with heavy alcohol consumption. Distances from 54,778 Finnish Public Sector study participants' homes to the nearest off-premise beer and liquor outlets were calculated using Global Positioning System-coordinates. Between-individual analyses were used to study the effects of distance to the nearest outlet on heavy alcohol use, and within-individual analyses to study the effects of a change in distance on change in heavy use. Mean follow-up time in 2000-2009 was 6.8 (standard deviation 2.0) years. In a between-individual analysis, decrease from ≥500 m to alcohol use in women (odds ratio 1.23, 95% CI 1.05-1.44), but not in men. In a within-individual analysis decrease from 500 m to 0m in log-transformed continuous distance to the nearest beer outlet increased the odds of heavy alcohol consumption in women by 13% (odds ratio 1.13, 95% CI 1.01-1.27). For the corresponding change in distance to liquor outlet the increase was 3% (odds ratio 1.03, 95% CI 0.97-1.09). Change in distance from home to the nearest off-premise alcohol outlet affects the risk of heavy alcohol consumption in women. This evidence supports policies that restrict physical availability of alcohol. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    OpenAIRE

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25 % of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD, we observed a correlation between a quantitative measure of lower GI symptoms and whole blood serotonin levels. No significant association was seen...

  11. Alcohol-attributed disease burden and alcohol policies in the BRICS-countries during the years 1990-2013.

    Science.gov (United States)

    Rabiee, Rynaz; Agardh, Emilie; Coates, Matthew M; Allebeck, Peter; Danielsson, Anna-Karin

    2017-06-01

    We aimed to assess alcohol consumption and alcohol-attributed disease burden by DALYs (disability adjusted life years) in the BRICS countries (Brazil, Russia, India, China and South Africa) between 1990 and 2013, and explore to what extent these countries have implemented evidence-based alcohol policies during the same time period. A comparative risk assessment approach and literature review, within a setting of the BRICS countries. Participants were the total populations (males and females combined) of each country. Levels of alcohol consumption, age-standardized alcohol-attributable DALYs per 100 000 and alcohol policy documents were measured. The alcohol-attributed disease burden mirrors level of consumption in Brazil, Russia and India, to some extent in China, but not in South Africa. Between the years 1990-2013 DALYs per 100 000 decreased in Brazil (from 2124 to 1902), China (from 1719 to 1250) and South Africa (from 2926 to 2662). An increase was observed in Russia (from 4015 to 4719) and India (from 1574 to 1722). Policies were implemented in all of the BRICS countries and the most common were tax increases, drink-driving measures and restrictions on advertisement. There was an overall decrease in alcohol-related DALYs in Brazil, China and South Africa, while an overall increase was observed in Russia and India. Most notably is the change in DALYs in Russia, where a distinct increase from 1990-2005 was followed by a steady decrease from 2005-2013. Even if assessment of causality cannot be done, policy changes were generally followed by changes in alcohol-attributed disease burden. This highlights the importance of more detailed research on this topic.

  12. BDNF val66met association with serotonin transporter binding in healthy humans

    DEFF Research Database (Denmark)

    Fisher, P. M.; Ozenne, B.; Svarer, C.

    2017-01-01

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted......-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT...

  13. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  14. The possible impact of an alcohol welfare surcharge on consumption of alcoholic beverages in Taiwan

    Science.gov (United States)

    2013-01-01

    Background The abuse of alcoholic beverages leads to numerous negative consequences in Taiwan, as around the world. Alcohol abuse not only contributes to cardiovascular disease, hypertension, diabetes and cancer, but it is also an underlying cause of many other serious problems, such as traffic accidents, lost productivity, and domestic violence. International leaders in health policy are increasingly using taxation as an effective tool with which to lower alcohol consumption. In this study, we assessed how consumption patterns in Taiwan would be affected by levying a welfare surcharge on alcoholic beverages of 20%, 40% or 60% in accordance with the current excise tax. We also assessed the medical savings Taiwan would experience if consumption of alcoholic beverages were to decrease and how much additional revenue a welfare surcharge would generate. Methods We estimated the elasticity of four types of alcoholic beverages (beer, wine, whisky and brandy) using the Central Bureau of Statistics (CBS) Demand Model. Specifically, we estimated alcohol’s price elasticity by analyzing the sales prices and time statistics of these products from 1974 to 2009. Results Alcoholic beverages in Taiwan have the following price elasticities: beer (−0.820), wine (−0.955), whisky (−0.587), brandy (−0.958). A welfare surcharge tax of 40% in accordance with the excise tax would decrease overall consumption of beer, wine, whisky and brandy between 16.24% and 16.42%. It would also generate New Taiwan Dollar (NT$) revenues of 5.782 billion to 5.993 billion. Savings in medical costs would range from NT$871.07 million to NT$897.46 million annually. Conclusions A social and welfare surcharge of 40% on alcoholic beverages in Taiwan would successfully lower consumption rates, decrease medical costs, and generate revenue that could be used to educate consumers and further decrease consumption rates. Consequently, we strongly recommend that such a tax be imposed in Taiwan. PMID:24010885

  15. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  16. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response.

    Science.gov (United States)

    Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M

    2009-08-01

    Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.

  17. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  18. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: as a Model

    Directory of Open Access Journals (Sweden)

    Sergio D. Paredes

    2009-01-01

    Full Text Available In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove ( Streptopelia risoria as a suitable model.

  19. Boosting serotonin in the brain: is it time to revamp the treatment of depression?

    Science.gov (United States)

    Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E

    2012-05-01

    Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.

  20. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha...

  1. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas

    2012-01-01

    rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives....

  2. [Effect of sibutramine (meridia) on body composition, peptide YY3-36 and serotonin levels in patients with exogenous constitutional obesity].

    Science.gov (United States)

    Vlasova, Iu Iu; Ametov, A S

    2010-01-01

    To evaluate the impact of gradual weight loss and the positive effect of sibutramine on metabolic parameters and the levels of serotonin and neuropeptide YY3-36 levels in patients with exogenous constitutional obesity (ECO). The study included 36 patients (24 women and 12 men; mean age 37.56 +/- 0.9 years) with a verified diagnosis of ECO. The height, body weight, waist and hip circumference (WC and HC), and body mass index (BMI) were determined. Adipose tissue content was estimated by a bioimpedance method using an adipose mass analyzer. Serum peptide YY3-36 levels were measured by enzyme immunoassay and blood serotonin concentrations were estimated by high performance liquid chromatography with an electrochemical method. 12-week sibutramine therapy caused a significant reduction in body weight, WC, HC, and BMI (p < 0.05) in all the patients. At the same time they were found to have a considerable body composition change (total body and visceral fat was decreased, total body water increased, and systemic metabolism was lowered). The mean peptide YY3-36 level was significantly decreased. Sibutramine did not affect the serum content of total serotonin in the sera of patients. Sibutramine used in the combined therapy in patients with ECO contributes to an effective and steady-state weight loss. Sibutramine treatment causes a reduction in total neuropeptide YY3-36, systemic metabolism, and adipose tissue at the expense of the visceral depot.

  3. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    Science.gov (United States)

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  4. Decrease in the number of rat brain dopamine and muscarinic receptors after chronic alcohol intake

    International Nuclear Information System (INIS)

    Syvaelahti, E.K.G.; Hietala, J.; Roeyttae, M.; Groenroos, J.

    1988-01-01

    The effect of 32 weeks' alcohol treatment on the number and affinity of dopamine and muscarinic receptor sites in rat striatum were measured using 3 H-spiperone and 3 H-quinuclidinylbenzilate ( 3 H-QNB) as radioligans. The number of dopamine receptor sites was 38 per cent and the number of muscarinic receptor sites 36 per cent lower in the alcohol group than in control rats. The differences in receptor affinities were less marked. In conclusion, a long-term alcohol intake with rather moderate doses seems to induce a pronounced down-regulation in dopamine and muscarinic receptor systems in rat striatum. (author)

  5. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    International Nuclear Information System (INIS)

    Hussain, M.N.; Benedict, C.R.

    1987-01-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day

  6. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  7. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A current view of serotonin transporters [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Louis J. De Felice

    2016-07-01

    Full Text Available Serotonin transporters (SERTs are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state.

  9. Lower serotonin level and higher rate of fibromyalgia syndrome with advancing pregnancy.

    Science.gov (United States)

    Atasever, Melahat; Namlı Kalem, Muberra; Sönmez, Çiğdem; Seval, Mehmet Murat; Yüce, Tuncay; Sahin Aker, Seda; Koç, Acar; Genc, Hakan

    2017-09-01

    The aim of the study is to investigate the relationship between changes in serotonin levels during pregnancy and fibromyalgia syndrome (FS) and the relationships between FS and the physical/psychological state, biochemical and hormonal parameters, which may be related to the musculoskeletal system. This study is a prospective case-control study conducted with 277 pregnant women at the obstetric unit of Ankara University Faculty of Medicine, in the period between January and June 2015. FS was determined based on the presence or absence of the 2010 ACR diagnostic criteria and all the volunteers were asked to answer the questionnaires as Fibromyalgia Impact Criteria (FIQ), Widespread Pain Index (WPI), Symptom Severity Scale (SS), Beck Depression Inventory and Visual Analog Scale (VAS). Biochemical and hormonal markers (glucose, TSH, T4, Ca (calcium), P (phosphate), PTH (parathyroid hormone) and serotonin levels) relating to muscle and bone metabolism were measured. In the presence of fibromyalgia, the physical and psychological parameters are negatively affected (p serotonin levels may contribute to the development of fibromyalgia but this was not statistically significant. The Beck Depression Inventory scale statistically showed that increasing scores also increase the risk of fibromyalgia (p serotonin levels in women with FS are lower than the control group and that serotonin levels reduce as pregnancy progresses. Anxiety and depression in pregnant women with FS are higher than the control group. The presence of depression increases the likelihood of developing FS at a statistically significant level. Serotonin impairment also increases the chance of developing FS, but this correlation has not been shown to be statistically significant.

  10. Plasma serotonin in horses undergoing surgery for small intestinal colic

    OpenAIRE

    Torfs, Sara C; Maes, An A; Delesalle, Catherine J; Pardon, Bart; Croubels, Siska M; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those fo...

  11. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  12. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  13. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants.

    Science.gov (United States)

    Sansone, Randy A; Sansone, Lori A

    2009-04-01

    This ongoing column is dedicated to the challenging clinical interface between psychiatry and primary care-two fields that are inexorably linked.Tramadol (Ultram(®)) is a commonly prescribed analgesic because of its relatively lower risk of addiction and better safety profile in comparison with other opiates. However, two significant adverse reactions are known to potentially occur with tramadol-seizures and serotonin syndrome. These two adverse reactions may develop during tramadol monotherapy, but appear much more likely to emerge during misuse/overdose as well as with the coadministration of other drugs, particularly antidepressants. In this article, we review the data relating to tramadol, seizures, and serotonin syndrome. This pharmacologic intersection is of clear relevance to both psychiatrists and primary care clinicians.

  14. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus.

    Directory of Open Access Journals (Sweden)

    Cecilia Berg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI fluoxetine (FLU, Prozac® is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.

  15. Influence of previous administration of trans-phenylcyclopropylamine on radioprotective and hypothermic effects of serotonin

    International Nuclear Information System (INIS)

    Misustova, J.; Hosek, B.; Novak, L.; Kautska, J.

    1978-01-01

    The influence of a previous administration of trans-phenylcyclopropylamine (t-PCPA) on radioprotective and hypothermic effects of serotonin was studied in male mice of the H strain, which were given t-PCPA in the dose of 4 mg/kg intraperitoneally 2 or 7 hours before application of serotonin (40 mg/kg, i.p.). The time course of protection was studied for exposures to 800 and 900 R. The results have shown that a previous administration of t-PCPA does not alter the short-time protective effect of serotonin, but that it significantly prolongs the time course of protection. The administration of t-PCPA also affects the starting speed and the duration of the serotonin-induced hypothermic reaction. The established correlation between prolongation of the radioprotective and hypothermic effects of serotonin induced by previous application of t-PCPA supplements the results with the existence of mutual relationship between changes of the energetic exchange and radioresistance of the organism. (author)

  16. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism.

    Science.gov (United States)

    Winter, Christine; Reutiman, Teri J; Folsom, Timothy D; Sohr, Reinhard; Wolf, Rainer J; Juckel, Georg; Fatemi, S Hossein

    2008-10-01

    Prenatal viral infection has been associated with neurodevelopmental disorders such as schizophrenia and autism. It has previously been demonstrated that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and middle-late second trimester (E18) administration of influenza virus. Neurochemical analysis following infection on E18 using this model has revealed significantly altered levels of serotonin, 5-hydroxyindoleacetic acid, and taurine, but not dopamine. In order to monitor these different patterns of monoamine expression in exposed offspring in more detail and to see if there are changes in the dopamine system at another time point, pregnant C57BL6J mice were infected with a sublethal dose of human influenza virus or sham-infected using vehicle solution on E16. Male offspring of the infected mice were collected at P0, P14, and P56, their brains removed and cerebellum dissected and flash frozen. Dopamine and serotonin levels were then measured using HPLC-ED technique. When compared to controls, there was a significant decrease in serotonin levels in the cerebella of offspring of virally exposed mice at P14. No differences in levels of dopamine were observed in exposed and control mice, although there was a significant decrease in dopamine at P14 and P56 when compared to P0. The present study shows that the serotonergic system is disrupted following prenatal viral infection, potentially modelling disruptions that occur in patients with schizophrenia and autism.

  17. An Exploration of the Serotonin System in Antisocial Boys with High Levels of Callous-Unemotional Traits

    Science.gov (United States)

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David; Dadds, Mark

    2013-01-01

    Background The serotonin system is thought to play a role in the aetiology of antisocial and aggressive behaviour in both adults and children however previous findings have been inconsistent. Recently, research has suggested that the function of the serotonin system may be specifically altered in a sub-set of antisocial populations – those with psychopathic (callous-unemotional) personality traits. We explored the relationships between callous-unemotional traits and functional polymorphisms of selected serotonin-system genes, and tested the association between callous-unemotional traits and serum serotonin levels independently of antisocial and aggressive behaviour. Method Participants were boys with antisocial behaviour problems aged 3–16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered either a blood or saliva sample from which levels of serum serotonin (N = 66) and/or serotonin-system single nucleotide polymorphisms (N = 157) were assayed. Results Functional single nucleotide polymorphisms from the serotonin 1b receptor gene (HTR1B) and 2a receptor gene (HTR2A) were found to be associated with callous-unemotional traits. Serum serotonin level was a significant predictor of callous-unemotional traits; levels were significantly lower in boys with high callous-unemotional traits than in boys with low callous-unemotional traits. Conclusion Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of callous-unemotional traits. The findings should be interpreted as preliminary and future research that aims to replicate and further investigate these results is required. PMID:23457595

  18. Biodistribution and dosimetry of 123I-mZIENT: a novel ligand for imaging serotonin transporters

    International Nuclear Information System (INIS)

    Nicol, Alice; Krishnadas, Rajeev; Champion, Sue; Tamagnan, Gilles; Stehouwer, Jeffrey S.; Goodman, Mark M.; Hadley, Donald M.; Pimlott, Sally L.

    2012-01-01

    123 I-labelled mZIENT (2β-carbomethoxy-3β-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. 123 I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  19. Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells.

    Science.gov (United States)

    Westerberg, Sonja; Hagbom, Marie; Rajan, Anandi; Loitto, Vesa; Persson, B David; Allard, Annika; Nordgren, Johan; Sharma, Sumit; Magnusson, Karl-Eric; Arnberg, Niklas; Svensson, Lennart

    2018-04-01

    Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells. IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41

  20. Role of endogenous serotonin in the mechanism of action of radioprotective substances

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Nekrasova, I.V.; Gusareva, Eh.V.; Dontsova, G.V.

    1978-01-01

    A study is made of a correlation between radiomodifying activity of noradrenaline (NA), N-ethylmaleimide (NEM) and a combination of these agents and their effect on the content of endogenous serotonin in cells of Ehrlich's ascites tumor and E. coli B. There is no uniformity in the response of different cells and uniform direction of the changes in their radioresistance and endogenous serotonin content both under the effect of the substances (NA and NEM) given separately and under a combined effect of the protector and the agent, which removes the protective effect or prevents realization of the latter (NEM). This enables us to arrive at a conclusion that endogenous serotonin is not the only factor responsible for the radioprotective effect of the protective substances. At the same time, it is not excluded that endogenous serotonin is involved in the chain of reactions which are necessary for the radioprotective effect to come into play

  1. Profile of biogenic amines in blood and urine of irradiated rats and potential radioprotective role of serotonin

    International Nuclear Information System (INIS)

    Abdel-Hamid, F.M.; El-Mossalamy, N.; Abdel-Raheem, Kh.; Othman, S.A.; Roushdy, H.M.

    1993-01-01

    The effect of γ-irradiation on serum levels of 5-HT, 5-HIAA, NE and DA, and urinary excretion of 5-HIAA and VMA were studied. Male adult albino rats were subjected to a single dose at either 6.5 or 10 Gy. The analyses were undertaken on 3 successive days post-treatment. The data revealed a decrease in serum levels of 5-HIAA and Da with simultaneous increase in serum level of 5-HIAA and rate of excretion of 5-HIAA and VMA in urine. Treatment with serotonin prior to irradiation at 6.5 Gy showed significant protection while post-exposure treatment did not induce any significant change in the rate of urinary excretion of 5-HIAA and VMA. Administration of serotonin proved to exert no significant protective or therapeutic role in animals exposed to the higher dose level of 10 Gy. 1 fig. 1 tab

  2. Genetics of premenstrual syndrome: investigation of specific serotonin receptor polymorphisms

    OpenAIRE

    Dhingra, Vandana

    2014-01-01

    Premenstrual dysphoric disorder (PMDD) is a distressing and disabling syndrome causing a significant degree of impairment on daily functioning and interpersonal relationships in 3-8% of the women. With the convincing evidence that PMS is inheritable and that serotonin is important in the pathogenesis of PMS, and failure of initial studies to demonstrate significant associations between key genes controlling the synthesis, reuptake and catabolism of serotonin and PMDD, the main aim of this the...

  3. Clinical evaluation of a new synthetic protease inhibitor in open heart surgery. Effect on plasma serotonin and histamine release and blood conservation.

    Science.gov (United States)

    Miyamoto, Y; Nakano, S; Kaneko, M; Takano, H; Matsuda, H

    1992-01-01

    To achieve more physiologically successful cardiopulmonary bypass (CPB), the effects of a new synthetic protease inhibitor, nafamostat mesilate (FUT), were examined in open heart surgery. Thirty adult patients were divided into two groups. In Group F (GpF; n = 15), 2 mg/kg/hr of FUT was administered continuously during CPB and 0.2 mg/kg/hr before and after CPB. FUT was not given to Group C patients (GpC; n = 15), who acted as controls. Serotonin and histamine levels in plasma, platelet counts, platelet adhesive function levels, and alpha 2 plasmin inhibitor-plasmin complexes (PIC) were serially measured. The serotonin level in GpF was significantly lower at 5 min of CPB than in GpC. Histamine levels in GpC decreased remarkably after starting CPB, then later recovered; by contrast, they did not decrease in GpF during CPB. At 1 hr after CPB, platelet counts were higher (p platelet adhesion was lower (p platelets and inhibiting fibrinolysis during CPB.

  4. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants...... in the VNTRs of all mammalian SERT genes. The number of these putative binding sites varies proportionally to the length of the VNTR. We propose that the intronic VNTR have been selectively targeted through mammalian evolution to finetune transcriptional regulation of the serotonin expression....

  5. Modulation of the intrinsic properties of motoneurons by serotonin

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne Borger; Christensen, Rasmus Kordt

    2013-01-01

    Serotonin (5-HT) is one of the main transmitters in the nervous system. Serotonergic neurons in the raphe nuclei in the brainstem innervate most parts of the central nervous system including motoneurons in the spinal cord and brainstem. This review will focus on the modulatory role that 5-HT exerts...... a sustained depolarization and an amplification of synaptic inputs. Under pathological conditions, such as after a spinal cord injury, the promotion of persistent inward currents by serotonin and/or the overexpression of autoactive serotonergic receptors may contribute to motoneuronal excitability, muscle...

  6. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Mikuš, Peter

    2017-10-07

    An advanced two-dimensional capillary electrophoresis method, based on on-line combination of capillary isotachophoresis and capillary zone electrophoresis with cyclodextrin additive in background electrolyte, was developed for effective determination of serotonin in human urine. Hydrodynamically closed separation system and large bore capillaries (300-800 µm) were chosen for the possibility to enhance the sample load capacity, and, by that, to decrease limit of detection. Isotachophoresis served for the sample preseparation, defined elimination of sample matrix constituents (sample clean up), and preconcentration of the analyte. Cyclodextrin separation environment enhanced separation selectivity of capillary zone electrophoresis. In this way, serotonin could be successfully separated from the rest of the sample matrix constituents migrating in capillary zone electrophoresis step so that human urine could be directly (i.e., without any external sample preparation) injected into the analyzer. The proposed method was successfully validated, showing favorable parameters of sensitivity (limit of detection for serotonin was 2.32 ng·mL -1 ), linearity (regression coefficient higher than 0.99), precision (repeatability of the migration time and peak area were in the range of 0.02-1.17% and 5.25-7.88%, respectively), and recovery (ranging in the interval of 90.0-93.6%). The developed method was applied for the assay of the human urine samples obtained from healthy volunteers. The determined concentrations of serotonin in such samples were in the range of 12.4-491.2 ng·mL -1 that was in good agreement with literature data. This advanced method represents a highly effective, reliable, and low-cost alternative for the routine determination of serotonin as a biomarker in human urine.

  7. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster.

    Science.gov (United States)

    Johnson, O; Becnel, J; Nichols, C D

    2011-09-29

    Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  9. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  10. Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Olivier, J D A; Jans, L A W; Korte-Bouws, G A H; Korte, S M; Deen, P M T; Cools, A R; Ellenbroek, B A; Blokland, A

    2008-01-01

    RATIONALE: Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES: As individual differences exist in central serotonin

  11. Transferrin metabolism in alcoholic liver disease

    International Nuclear Information System (INIS)

    Potter, B.J.; Chapman, R.W.; Nunes, R.M.; Sorrentino, D.; Sherlock, S.

    1985-01-01

    The metabolism of transferrin was studied using purified 125 I-labeled transferrin in 11 alcoholic patients; six with fatty liver and five with cirrhosis. Six healthy subjects whose alcohol intake was les than 40 gm daily were studied as a control group. There were no significant differences in the mean fractional catabolic rate and plasma volume in the alcoholic groups when compared with control subjects. A significantly decreased mean serum transferrin concentration was found in the alcoholic cirrhotic patients (1.8 +/- 0.3 gm per liter vs. 2.9 +/- 0.2; p less than 0.01), resulting from diminished total body synthesis (0.9 +/- 0.2 mg per kg per hr vs. 1.8 +/- 0.2; p less than 0.01). In contrast, in the patients with alcoholic fatty liver, the mean total body transferrin synthesis (2.4 +/- 0.3 mg per kg per hr) was significantly increased when compared with controls (p less than 0.05). For all the alcoholic patients, the serum transferrin correlated with transferrin synthesis (r = +0.70; p less than 0.01) but the serum iron did not. These results suggest that, in alcoholic cirrhosis, transferrin synthesis is decreased, probably reflecting diminished synthetic capacity by the liver. In contrast, in patients with alcoholic fatty liver, transferrin turnover is accelerated

  12. Role of Serotonin Neurons in L-DOPA- and Graft-Induced Dyskinesia in a Rat Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Eunju Shin

    2012-01-01

    Full Text Available L-DOPA, the most effective drug to treat motor symptoms of Parkinson's disease, causes abnormal involuntary movements, limiting its use in advanced stages of the disease. An increasing body of evidence points to the serotonin system as a key player in the appearance of L-DOPA-induced dyskinesia (LID. In fact, exogenously administered L-DOPA can be taken up by serotonin neurons, converted to dopamine and released as a false transmitter, contributing to pulsatile stimulation of striatal dopamine receptors. Accordingly, destruction of serotonin fibers or silencing serotonin neurons by serotonin agonists could counteract LID in animal models. Recent clinical work has also shown that serotonin neurons are present in the caudate/putamen of patients grafted with embryonic ventral mesencephalic cells, producing intense serotonin hyperinnervation. These patients experience graft-induced dyskinesia (GID, a type of dyskinesia phenotypically similar to the one induced by L-DOPA but independent from its administration. Interestingly, the 5-HT1A receptor agonist buspirone has been shown to suppress GID in these patients, suggesting that serotonin neurons might be involved in the etiology of GID as for LID. In this paper we will discuss the experimental and clinical evidence supporting the involvement of the serotonin system in both LID and GID.

  13. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N-acyl serotonins identified in human intestinal tissue.

    Science.gov (United States)

    Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn

    2017-09-01

    Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.

  14. Decreases in adolescent weekly alcohol use in Europe and North America

    DEFF Research Database (Denmark)

    Looze, Margaretha de; Raaijmakers, Quinten; Bogt, Tom Ter

    2015-01-01

    in 2002, 2006 and 2010. RESULTS: Weekly alcohol use declined in 20 of 28 countries and in all geographic regions, from 12.1 to 6.1% in Anglo-Saxon countries, 11.4 to 7.8% in Western Europe, 9.3 to 4.1% in Northern Europe and 16.3 to 9.9% in Southern Europe. Even in Eastern Europe, where a stable trend...

  15. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats.

    Science.gov (United States)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane; Schlumberger, Chantal; Wortwein, Gitta; Weikop, Pia; Benveniste, Helene; Volkow, Nora D; Fink-Jensen, Anders

    2018-02-01

    Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans. Copyright © 2017 by the Research Society on Alcoholism.

  16. Efficacy of serotonin in lessening radiation damage to mouse embryo depending on time of its administration following radiation exposure

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Dontsova, G.V.; Panaeva, S.V.; Turpaev, T.M.

    1994-01-01

    Our earlier studies demonstrated that serotonin lessons radiation damage to an 8-day mouse embryo. Moreover, this biogenic amine was equally effective when administered before and after intrauterine exposure of the embryo to ionizing radiation. The radiotherapeutic effect of serotonin was manifested by disorders in the embryo growth of various intensity, within the range of the studied radiation doses (1.31, 1.74, and 2.18 Gy). The therapeutic effect of serotonin in the embryos exposed to various doses of radiation depended on the amount of serotonin administered. The effective doses of this substance were determined by the severity of the damage inflicted. In this series of experiments, serotonin was administered immediately after exposure to ionizing radiation. The object of the present study was to determine whether or not the radiotherapeutic effect of serotonin depends on the time that elapses between the end of radiation exposure and the administration of serotonin to pregnant mice. It was established that serotonin produces a radiotherapeutic effect during 24 h following the intrauterine exposure of the fetus to ionizing radiation on the 8th day of gestation. The best therapeutic effect is attained with the administration of serotonin immediately after radiation exposure. The effect is slightly lower is serotonin is administered within 5 or 24 h following radiation exposure

  17. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake.

    Science.gov (United States)

    Anacker, Allison M J; Ryabinin, Andrey E

    2013-01-01

    Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles' drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified, by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  18. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake

    Directory of Open Access Journals (Sweden)

    Allison M.J. Anacker

    2013-07-01

    Full Text Available Peer influences are critical in the decrease of alcohol (ethanol abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a. Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  19. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  20. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model

    Directory of Open Access Journals (Sweden)

    Sergio D. Paredes

    2009-01-01

    Full Text Available In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age- related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopelia risoria as a suitable model.

  1. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

    DEFF Research Database (Denmark)

    Christensen, Anne Munch; Faaborg-Andersen, S.; Ingerslev, Flemming

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identi......Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds...... with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqeous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluoxamine, paroxetine, and sertraline.......027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two...

  2. Upper gastrointestinal bleeding in a patient with depression receiving selective serotonin reuptake inhibitor therapy.

    Science.gov (United States)

    Kumar, Deepak; Saaraswat, Tanuj; Sengupta, S N; Mehrotra, Saurabh

    2009-02-01

    Serotonin plays an important role in the normal clotting phenomenon and is released by platelets. Platelets are dependent on a serotonin transporter for the uptake of serotonin, as they cannot synthesize it themselves. Selective serotonin reuptake inhibitors (SSRIs) block the uptake of serotonin into platelets and can cause problems with clotting leading to bleeding. This case report highlights the occurrence of upper gastrointestinal bleeding in the index case on initiating SSRI therapy for depression and the prompt resolution of the same on its discontinuation on two separate occasions. SSRIs may cause upper gastrointestinal (GI) bleeding. Physicians should be aware of the same and should try to rule out previous episodes of upper GI bleed or the presence of other risk factors which might predispose to it before prescribing SSRIs; they should also warn the patients about this potential side effect. Also, the presence of thalassemia trait in the index patient deserves special attention and needs to be explored to see if it might in any way contribute in potentiating this side effect of SSRIs.

  3. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  4. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  5. Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy.

    Science.gov (United States)

    Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V

    2017-09-01

    Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Europe. An analysis of changes in the consumption of alcoholic beverages: the interaction among consumption, related harms, contextual factors and alcoholic beverage control policies.

    Science.gov (United States)

    Allamani, Allaman; Pepe, Pasquale; Baccini, Michela; Massini, Giulia; Voller, Fabio

    2014-10-01

    This AMPHORA study's aim was to investigate selected factors potentially affecting changes in consumption of alcoholic beverages in 12 European countries during the 1960s-2008 (an average increase in beer, decreases in wine and spirits, total alcohol drinking decrease). Both time series and artificial neural networks-based analyses were used. Results indicated that selected socio-demographic and economic factors showed an overall major impact on consumption changes; particularly urbanization, increased income, and older mothers' age at their childbirths were significantly associated with consumption increase or decrease, depending on the country. Alcoholic beverage control policies showed an overall minor impact on consumption changes: among them, permissive availability measures were significantly associated with consumption increases, while drinking and driving limits and availability restrictions were correlated with consumption decreases, and alcohol taxation and prices of the alcoholic beverages were not significantly correlated with consumption. Population ageing, older mother's age at childbirths, increased income and increases in female employment, as well as drink driving limitations were associated with the decrease of transport mortality. Study's limitations are noted.

  7. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder

    Directory of Open Access Journals (Sweden)

    Oliveira J.R.M.

    1999-01-01

    Full Text Available Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD, the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE gene (on chromosome 19 is the major susceptibility locus for the most common late onset AD (LOAD. Serotonin (5-hydroxytryptamine or 5-HT is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s of this 5-HTT gene-linked polymorphic region (5-HTTLPR is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  8. Decreased risk of alcohol dependence and/or misuse in women with high self-assertiveness and leadership abilities.

    Science.gov (United States)

    Hensing, G; Spak, F; Thundal, K L; Ostlund, A

    2003-01-01

    To analyse dimensions of gender identity and its association to psychiatric disorders and alcohol consumption. The study was performed in two stages: an initial screening (n = 8335) for alcohol consumption, followed by a structured psychiatric interview (n = 1054). The Masculinity/Femininity-Questionnaire was used as an indicator of gender identity. The final study group included 836 women. Leadership, caring, self-assertiveness and emotionality were dimensions of gender identity found in a factor analysis. Low self-assertiveness, high emotionality and to some extent low leadership were associated with increased odds for having bipolar disorders, severe anxiety disorders and alcohol dependence and misuse. Low self-assertiveness and high emotionality were not only associated with alcohol dependence and misuse, but also with high episodic drinking. There was an association between some of the dimensions of gender identity and psychiatric disorders and alcohol consumption. Further attention is needed in both clinical work and research.

  9. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  10. Serotonin, neural markers and memory

    Directory of Open Access Journals (Sweden)

    Alfredo eMeneses

    2015-07-01

    Full Text Available Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals’ species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptors as well as SERT (serotonin transporter seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence

  11. Serotonin 6 receptor controls Alzheimer's disease and depression.

    Science.gov (United States)

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.

  12. Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism.

    Science.gov (United States)

    Lin, R C; Guthrie, S; Xie, C Y; Mai, K; Lee, D Y; Lumeng, L; Li, T K

    1996-06-01

    The extract from an edible vine, Pueraria lobata, has long been used in China to lessen alcohol intoxication. We have previously shown that daidzin, one of the major components from this plant extract, is efficacious in lowering blood alcohol levels and shortens sleep time induced by alcohol ingestion. This study was conducted to test the antidipsotropic effect of daidzin and two other major isoflavonoids, daidzein and puerarin, from Pueraria lobata administered by the oral route. An alcohol-preferring rat model, the selectively-bred P line of rats, was used for the study. All three isoflavonoid compounds were effective in suppressing voluntary alcohol consumption by the P rats. When given orally to P rats at a dose of 100 mg/kg/day, daidzein, daidzin, and puerarin decreased ethanol intake by 75%, 50%, and 40%, respectively. The decrease in alcohol consumption was accompanied by an increase in water intake, so that the total fluid volume consumed daily remained unchanged. The effects of these isoflavonoid compounds on alcohol and water intake were reversible. Suppression of alcohol consumption was evident after 1 day of administration and became maximal after 2 days. Similarly, alcohol preference returned to baseline levels 2 days after discontinuation of the isoflavonoids. Rats receiving the herbal extracts ate the same amounts of food as control animals, and they gained weight normally during the experiments. When administered orally, none of these compounds affected the activities of liver alcohol dehydrogenase and aldehyde dehydrogenase. Therefore, the reversal of alcohol preference produced by these compounds may be mediated via the CNS. Data demonstrate that isoflavonoid compounds extracted from Pueraria lobata is effective in suppressing the appetite for alcohol when taken orally, raising the possibility that other constituents of edible plants may exert similar and more potent actions.

  13. Biodistribution and dosimetry of {sup 123}I-mZIENT: a novel ligand for imaging serotonin transporters

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, Alice [NHS Greater Glasgow and Clyde, Department of Nuclear Medicine, Southern General Hospital, Glasgow (United Kingdom); Krishnadas, Rajeev [University of Glasgow, Sackler Institute of Psychobiological Research, Glasgow (United Kingdom); Champion, Sue [University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow (United Kingdom); Tamagnan, Gilles [Institute for Neurodegenerative Disorders, New Haven, CT (United States); Stehouwer, Jeffrey S.; Goodman, Mark M. [Emory University, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Hadley, Donald M. [NHS Greater Glasgow and Clyde, Department of Neuro-Radiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Pimlott, Sally L. [NHS Greater Glasgow and Clyde, West of Scotland Radionuclide Dispensary, Glasgow (United Kingdom)

    2012-05-15

    {sup 123}I-labelled mZIENT (2{beta}-carbomethoxy-3{beta}-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. {sup 123}I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  14. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  15. Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement

    Science.gov (United States)

    Rashid, Mohammed; Ribeiro, Paula

    2014-01-01

    Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972

  16. Kinetics of homocysteine metabolism after moderate alcohol consumption

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Schaafsma, G.; Kok, F.J.; Struys, E.A.; Jakobs, C.; Hendriks, H.F.J.

    2005-01-01

    Moderate alcohol consumption is associated with a decreased risk of cardiovascular disease. Because plasma homocysteine (tHcy) is considered an independent risk factor for cardiovascular disease and associated with alcohol consumption, the authors investigated the effect of moderate alcohol

  17. [Alcohol and pregnancy].

    Science.gov (United States)

    Seror, E; Chapelon, E; Bué, M; Garnier-Lengliné, H; Lebeaux-Legras, C; Loudenot, A; Lejeune, C

    2009-10-01

    Alcohol consumption during pregnancy is a major cause of mental retardation in Western countries. Fetal alcohol syndrome (FAS) is mainly characterized by pre- and postnatal stunted growth, neurocognitive disorders, and facial dysmorphism. It compromises the intellectual and behavioral prognosis of the child. Prevention tools exist, through better information of health professionals, for optimal care of high-risk women before, during, and after pregnancy, which would decrease the incidence of SAF in the future.

  18. An evaluation of the Australian Football League Central Australian Responsible Alcohol Strategy 2005-07.

    Science.gov (United States)

    Mentha, Ricky; Wakerman, Johne

    2009-12-01

    In 2004, the Australian Football League Central Australia (AFLCA) implemented the Responsible Alcohol Strategy (RAS), which aimed to decrease alcohol consumption at matches, and to promote healthy lifestyle messages to the youth of Central Australia participating in Australian Rules football. The evaluation adopted a pre- and post-implementation design to monitor a number of performance indicators. The evaluation analysed routinely collected data from AFLCA, its Security Company, Alice Springs Police Department and Alice Springs Hospital; we surveyed AFLCA staff, club officials and umpires; and undertook direct observation at AFLCA events. The volume of alcohol sold at matches decreased. Survey data indicate decreased alcohol related violence, improved spectator behaviour and decreased spectator attendances. Police data suggest declining alcohol-related and violent behaviours, but trends were not statistically significant. Alice Springs Hospital injury admission data indicate a non-significant interaction between year and season effect. In a community context of high alcohol consumption and high rates of interpersonal violence, the strategies implemented were successful in decreasing alcohol consumption and related undesirable behaviours at football games. However, these measures have resulted in unintended consequences: decreased numbers of spectators attending games, decreased canteen sales and falling sponsorship. The decreased revenue has raised serious issues about sustainability of the alcohol intervention, and stimulated discussions with government and others about strategies to maintain this important alcohol reduction policy.

  19. Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin

    International Nuclear Information System (INIS)

    Fagan-Murphy, Aidan; Patel, Bhavik Anil

    2014-01-01

    Serotonin (5-HT) is an important neurochemical that is present in high concentrations within the intestinal tract. Carbon fibre and boron-doped diamond based electrodes have been widely used to date for monitoring 5-HT, however these electrodes are prone to fouling and are difficult to fabricate in certain sizes and geometries. Carbon nanotubes have shown potential as a suitable material for electroanalytical monitoring of 5-HT but can be difficult to manipulate into a suitable form. The fabrication of composite electrodes is an approach that can shape conductive materials into practical electrode geometries suitable for biological environments. This work investigated how compression of multiwall carbon nanotubes (MWCNTs) epoxy composite electrodes can influence their electroanalytical performance. Highly compressed composite electrodes displayed significant improvements in their electrochemical properties along with decreased internal and charge transfer resistance, reproducible behaviour and improved batch to batch variability when compared to non-compressed composite electrodes. Compression of MWCNT epoxy composite electrodes resulted in an increased current response for potassium ferricyanide, ruthenium hexaammine and dopamine, by preferentially removing the epoxy during compression and increasing the electrochemical active surface of the final electrode. For the detection of serotonin, compressed electrodes have a lower limit of detection and improved sensitivity compared to non-compressed electrodes. Fouling studies were carried out in 10 μM serotonin where the MWCNT compressed electrodes were shown to be less prone to fouling than non-compressed electrodes. This work indicates that the compression of MWCNT carbon-epoxy can result in a highly conductive material that can be moulded to various geometries, thus providing scope for electroanalytical measurements and the production of a wide range of analytical devices for a variety of systems

  20. SPECT imaging of dopamine and serotonin transporters with [[sup 123]I][beta]-CIT. Binding kinetics in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Bruecke, T; Asenbaum, S; Frassine, H; Podreka, I [Vienna Univ. (Austria). Neurologische Klinik; Kornhuber, J [Wuerzburg Univ. (Germany); Angelberger, P [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1993-01-01

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [[sup 123]I]-2-[beta]-carbomethoxy-3-[beta]-(4-iodophenyl)-tropane ([[sup 123]I][beta]-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [[sup 123]I][beta]-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [[sup 123]I][beta]-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain.

  1. A serum and platelet-rich plasma serotonin assay using liquid chromatography tandem mass spectrometry for monitoring of neuroendocrine tumor patients.

    Science.gov (United States)

    Korse, Catharina M; Buning-Kager, Johanna C G M; Linders, Theodora C; Heijboer, Annemieke C; van den Broek, Daan; Tesselaar, Margot E T; van Tellingen, Olaf; van Rossum, Huub H

    2017-06-01

    Serotonin is used for the diagnosis and follow-up of neuroendocrine tumors (NET). We describe the analytical and clinical validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) based serotonin assay for serum and platelet-rich plasma (PRP). An LC-MS/MS based method for serum and PRP serotonin was validated by determination of assay imprecision, carry-over, linearity, interference, recovery, sample stability and a matrix/method comparison of serum and PRP serotonin was made with whole blood serotonin. Furthermore, upper limits of normal were determined and serotonin concentrations of healthy individuals, 14 NET patients without evidence of disease and 51 NET patients with evidence of disease were compared. For serum and PRP fractions, total assay imprecision was serotonin upper limit of normal were 5.5nmol/10 9 platelet and 5.1nmol/10 9 platelet, respectively. NET patients with confirmed evidence of disease had significantly higher serum and PRP serotonin levels when compared to NET patients without evidence of disease and healthy volunteers. LC-MS/MS based serum and PRP serotonin assays were developed with suitable analytical characteristics. Furthermore, serum and PRP serotonin was found to be useful for monitoring NET patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Multidimensional Model of Mothers’ Perceptions of Parent Alcohol Socialization and Adolescent Alcohol Misuse

    Science.gov (United States)

    Ennett, Susan T.; Jackson, Christine; Cole, Veronica T.; Haws, Susan; Foshee, Vangie A.; Reyes, Heathe Luz McNaughton; Burns, Alison Reimuller; Cox, Melissa J.; Cai, Li

    2015-01-01

    We assessed a multidimensional model of parent alcohol socialization in which key socialization factors were considered simultaneously to identify combinations of factors that increase or decrease risk for development of adolescent alcohol misuse. Of interest was the interplay between putative risk and protective factors, such as whether the typically detrimental effects on youth drinking of parenting practices tolerant of some adolescent alcohol use are mitigated by an effective overall approach to parenting and parental modeling of modest alcohol use. The sample included 1,530 adolescents and their mothers; adolescents’ mean age was 13.0 (SD = .99) at the initial assessment. Latent profile analysis was conducted of mothers’ reports of their attitude toward teen drinking, alcohol-specific parenting practices, parental alcohol use and problem use, and overall approach to parenting. The profiles were used to predict trajectories of adolescent alcohol misuse from early to middle adolescence. Four profiles were identified: two profiles reflected conservative alcohol-specific parenting practices and two reflected alcohol-tolerant practices, all in the context of other attributes. Alcohol misuse accelerated more rapidly from grade 6 through 10 in the two alcohol-tolerant compared with conservative profiles. Results suggest that maternal tolerance of some youth alcohol use, even in the presence of dimensions of an effective parenting style and low parental alcohol use and problem use, is not an effective strategy for reducing risky adolescent alcohol use. PMID:26415053

  3. Alcohol consumption after laparoscopic sleeve gastrectomy: 1-year results.

    Science.gov (United States)

    Coluzzi, Ilenia; Iossa, Angelo; Spinetti, Elena; Silecchia, Gianfranco

    2018-02-06

    Laparoscopic sleeve gastrectomy (SG) represents, at present, the most performed bariatric procedure worldwide with excellent long-term results on weight loss and comorbidities control. After the gastrectomy procedure, together with hormonal modification, several changes in taste and habits occur, including the potential modification in alcohol consumption. The aim of this prospective study was to determine the frequency and the amount of alcohol use before and after SG using a modified version of the Alcohol Use Disorder Identification Test (AUDIT) at 1-year follow-up and eventually to evaluate relationships between different ages and sexes. A total of 142 patients were prospectively enrolled and evaluated before and 1 year after SG with a modified AUDIT. The exclusion criteria were as follows: history of alcohol abuse, presence of psychopathology or cognitive impairments, diabetes mellitus type II decompensated, or previous gastrointestinal, liver, and pancreatic resective surgery. Subgroup analyses were performed between male and female and between under and over 40 years old. The median AUDIT score decreased from 2.70 (range 1-18) before surgery to 1.38 (range 1-7) after 1 year of SG, indicating a marked reduction in alcohol use. The most consumed alcoholic drink was beer (36.6%/n = 52) while after surgery the consumption of beer decreased considerably (21.1%/n = 30). The frequency of alcohol consumption also decreased: at baseline 45% of patients consumed alcoholic drinks "from 2 to 4 times per month", whereas 26 and 39.4% consumed alcohol "never" and "less than once a month," respectively. After surgery, nobody consumed more then six alcoholic drinks. No differences were found between the subgroups in terms of alcohol consumption and social behavior. The alcohol preference is modified and decreased 1 year after SG and this could be related to the strict nutritional follow-up and to the hormonal changes. Studies with large samples and long

  4. Duration and distribution of experimental muscular hyperalgesia in humans following combined infusions of serotonin and bradykinin

    DEFF Research Database (Denmark)

    Babenko, Victor; Svensson, Peter; Graven-Nielsen, Thomas

    2000-01-01

    -infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. Pain intensity was continuously scored on a visual analogue scale (VAS), and subjects drew the distribution of the pain areas on an anatomical map. Pressure pain thresholds (PPTs) were assessed with an electronic algometer....... In addition, PPTs were significantly decreased (Peffect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle...

  5. Differential regulation of the excitability of prefrontal cortical fast-spiking interneurons and pyramidal neurons by serotonin and fluoxetine.

    Directory of Open Access Journals (Sweden)

    Ping Zhong

    2011-02-01

    Full Text Available Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC, a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT₂ receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT₁ receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.

  6. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  7. Radioprotective effectiveness and toxicity of ATP, AET and serotonin applied individually or simultaneously to mice. Pt. 4

    International Nuclear Information System (INIS)

    Benova, D.K.; Putev, I.K.

    1979-01-01

    Interactions occuring between three drugs - AET, serotonin, and ATP - in simultaneous administration were studied quantitatively. Using isobologram techniques, paired drug combination were examined for synergism in protective action against radiation. For ATP+AET pairs, increase in ATP fraction enhanced protection. For ATP+serotonin pairs, peak effect was observed at 360 mg/kg b.w. of ATP and 12 mg/kg b.w. of serotonin. Higher ATP fractions lowered the effectiveness. The highest degree of synergism was found for AET+serotonin, with peak effect at 17 to 33 mg/kg of AET plus 11 to 7 mg/kg of serotonin. By applying a method specially elaborated to enable prediction of interactions between three drugs administered simultaneously and by making use of three-dimensional diagrams, the parts played by individual components of triple combinations in total effect were estimated and the component dose ratio providing maximum protection identified. The determining components in protection were found to be AET and serotonin, the latter being of greater importance. The rhole of ATP in total effect is small and enhancement may be noted only up to ATP doses of no more than 156 mg/kg. The maximum effectiveness dose ratio of serotonin:AET:ATP was identified as 1:2:7.5-9. (orig.) [de

  8. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  9. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    Science.gov (United States)

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  10. Effects of alcohol on platelet functions.

    Science.gov (United States)

    Renaud, S C; Ruf, J C

    1996-03-15

    Recent epidemiologic studies have consistently shown that moderate intake of alcoholic beverages protect against morbidity and mortality from coronary heart disease and ischemic stroke. By contrast, alcohol drinking may also predispose to cerebral hemorrhage. These observations suggest an effect of alcohol similar to that of aspirin. Several studies in humans and animals have shown that the immediate effect of alcohol, either added in vitro to platelets or 10 to 20 min after ingestion, is to decrease platelet aggregation in response to most agonists (thrombin, ADP, epinephrine, collagen). Several hours later, as, in free-living populations deprived of drinking since the previous day it is mostly secondary aggregation to ADP and epinephrine and aggregation to collagen that are still inhibited in alcohol drinkers. By contrast, in binge drinkers or in alcoholics after alcohol withdrawal, response to aggregation, especially that induced by thrombin, is markedly increased. This rebound phenomenon, easily reproduced in rats, may explain ischemic strokes or sudden death known to occur after episodes of drunkenness. The platelet rebound effect of alcohol drinking was not observed with moderate red wine consumption in man. The protection afforded by wine has been recently duplicated in rats by grape tannins added to alcohol. This protection was associated with a decrease in the level of conjugated dienes, the first step in lipid peroxidation. In other words, wine drinking does not seem to be associated with the increased peroxidation usually observed with spirit drinking. Although further studies are required, the platelet rebound effect of alcohol drinking could be associated with an excess of lipid peroxides known to increase platelet reactivity, especially to thrombin.

  11. Serotonin-related gene expression in female monkeys with individual sensitivity to stress.

    Science.gov (United States)

    Bethea, C L; Streicher, J M; Mirkes, S J; Sanchez, R L; Reddy, A P; Cameron, J L

    2005-01-01

    Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. In this study, the expression of four genes pivotal to serotonin neural function was assessed in monkeys previously categorized as highly stress resistant (n=3; normal menstrual cyclicity through two stress cycles), medium stress resistant (n=5; ovulatory in the first stress cycle but anovulatory in the second stress cycle), or low stress resistant (i.e. stress-sensitive; n=4; anovulatory as soon as stress is initiated). In situ hybridization and quantitative image analysis was used to measure mRNAs coding for SERT (serotonin transporter), 5HT1A autoreceptor, MAO-A and MAO-B (monoamine oxidases) at six levels of the dorsal raphe nucleus (DRN). Optical density (OD) and positive pixel area were measured with NIH Image software. In addition, serotonin neurons were immunostained and counted at three levels of the DRN. Finally, each animal was genotyped for the serotonin transporter long polymorphic region (5HTTLPR). Stress sensitive animals had lower expression of SERT mRNA in the caudal region of the DRN (PMAO-A mRNA signal in the stress-sensitive group (PMAO-A OD was positively correlated with progesterone from a pre-stress control cycle (PMAO-B mRNA exhibited a similar downward trend in the stress-sensitive group. MAO-B OD also correlated with control cycle progesterone (PMAO-A) or exhibited a lower trend (5HT1A, MAO-B) in the stress sensitive animals, which probably reflects the lower number of serotonin neurons present.

  12. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  13. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    Science.gov (United States)

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model

    NARCIS (Netherlands)

    de Raaf, Michiel Alexander; Kroeze, Yvet; Middelman, Anthonieke; de Man, Frances S.; de Jong, Helma; Vonk-Noordegraaf, Anton; de Korte, Chris; Voelkel, Norbert F.; Homberg, Judith; Bogaard, Harm Jan

    2015-01-01

    Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is

  15. Alcohol consumption for simulated driving performance: A systematic review

    Directory of Open Access Journals (Sweden)

    Mohammad Saeid Rezaee-Zavareh

    2017-06-01

    Conclusion: Alcohol consumption may decrease simulated driving performance in alcohol consumed people compared with non-alcohol consumed people via changes in SDSD, LPSD, speed, MLPD, LC and NA. More well-designed randomized controlled clinical trials are recommended.

  16. A multidimensional model of mothers' perceptions of parent alcohol socialization and adolescent alcohol misuse.

    Science.gov (United States)

    Ennett, Susan T; Jackson, Christine; Cole, Veronica T; Haws, Susan; Foshee, Vangie A; Reyes, Heathe Luz McNaughton; Burns, Alison Reimuller; Cox, Melissa J; Cai, Li

    2016-02-01

    We assessed a multidimensional model of parent alcohol socialization in which key socialization factors were considered simultaneously to identify combinations of factors that increase or decrease risk for development of adolescent alcohol misuse. Of interest was the interplay between putative risk and protective factors, such as whether the typically detrimental effects on youth drinking of parenting practices tolerant of some adolescent alcohol use are mitigated by an effective overall approach to parenting and parental modeling of modest alcohol use. The sample included 1,530 adolescents and their mothers; adolescents' mean age was 13.0 (SD = .99) at the initial assessment. Latent profile analysis was conducted of mothers' reports of their attitude toward teen drinking, alcohol-specific parenting practices, parental alcohol use and problem use, and overall approach to parenting. The profiles were used to predict trajectories of adolescent alcohol misuse from early to middle adolescence. Four profiles were identified: 2 profiles reflected conservative alcohol-specific parenting practices and 2 reflected alcohol-tolerant practices, all in the context of other attributes. Alcohol misuse accelerated more rapidly from Grade 6 through 10 in the 2 alcohol-tolerant compared with conservative profiles. Results suggest that maternal tolerance of some youth alcohol use, even in the presence of dimensions of an effective parenting style and low parental alcohol use and problem use, is not an effective strategy for reducing risky adolescent alcohol use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  18. Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users

    International Nuclear Information System (INIS)

    Buchert, Ralph; Wilke, Florian; Nebeling, Bruno; Clausen, Malte; Thomasius, Rainer; Petersen, Kay; Obrocki, Jost; Wartberg, Lutz; Zapletalova, Pavlina

    2006-01-01

    Animal data suggest that the synthetic drug ecstasy may damage brain serotonin neurons. Previously we reported protracted reductions in the availability of the serotonin transporter (SERT), an index of integrity of the axon terminals of brain serotonergic neurons, in SERT-rich brain regions in current human ecstasy users. Comparison of current ecstasy users and former ecstasy users yielded some evidence that this reduction might be reversible. However, participant selection effects could not be ruled out. Therefore, follow-up examinations were performed in these subjects to test the following a priori hypothesis in a prospective longitudinal design that eliminates participant selection effects to a large extent: availability of the SERT increases towards normal levels when ecstasy use is stopped, and remains unchanged or is further decreased if use is continued. Two follow-up positron emission tomography measurements using the SERT ligand [ 11 C](+)McN5652 were completed by 15 current and nine former ecstasy users. All subjects used illicit drugs other than ecstasy, too. The time interval between repeated measurements was about 1 year. The time course of the availability of the SERT was analysed in the following SERT-rich regions: mesencephalon, putamen, caudate and thalamus. Current ecstasy users showed a consistent increase in the availability of the SERT in the mesencephalon during the study (Friedman test: p=0.010), which most likely was caused by a decrease in the intensity of ecstasy consumption (Spearman correlation coefficient -0.725, p=0.002). Former ecstasy users showed a consistent increase in SERT availability in the thalamus (Friedman test: p=0.006). Ecstasy-induced protracted alterations in the availability of the SERT might be reversible. (orig.)

  19. Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, Ralph; Wilke, Florian; Nebeling, Bruno; Clausen, Malte [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Thomasius, Rainer; Petersen, Kay; Obrocki, Jost; Wartberg, Lutz; Zapletalova, Pavlina [University Medical Center Hamburg-Eppendorf, Departments of Psychiatry and Psychotherapy, Hamburg (Germany)

    2006-02-01

    Animal data suggest that the synthetic drug ecstasy may damage brain serotonin neurons. Previously we reported protracted reductions in the availability of the serotonin transporter (SERT), an index of integrity of the axon terminals of brain serotonergic neurons, in SERT-rich brain regions in current human ecstasy users. Comparison of current ecstasy users and former ecstasy users yielded some evidence that this reduction might be reversible. However, participant selection effects could not be ruled out. Therefore, follow-up examinations were performed in these subjects to test the following a priori hypothesis in a prospective longitudinal design that eliminates participant selection effects to a large extent: availability of the SERT increases towards normal levels when ecstasy use is stopped, and remains unchanged or is further decreased if use is continued. Two follow-up positron emission tomography measurements using the SERT ligand [{sup 11}C](+)McN5652 were completed by 15 current and nine former ecstasy users. All subjects used illicit drugs other than ecstasy, too. The time interval between repeated measurements was about 1 year. The time course of the availability of the SERT was analysed in the following SERT-rich regions: mesencephalon, putamen, caudate and thalamus. Current ecstasy users showed a consistent increase in the availability of the SERT in the mesencephalon during the study (Friedman test: p=0.010), which most likely was caused by a decrease in the intensity of ecstasy consumption (Spearman correlation coefficient -0.725, p=0.002). Former ecstasy users showed a consistent increase in SERT availability in the thalamus (Friedman test: p=0.006). Ecstasy-induced protracted alterations in the availability of the SERT might be reversible. (orig.)

  20. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  1. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    International Nuclear Information System (INIS)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT 1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [ 3 H]serotonin, [ 3 H]lysergic acid diethylamide or [ 3 H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  2. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    International Nuclear Information System (INIS)

    Zeng Zhizhen; Chen, T.-B.; Miller, Patricia J.; Dean, Dennis; Tang, Y.S.; Sur, Cyrille; Williams, David L.

    2006-01-01

    We have characterized the interaction of the serotonin transporter ligand [ 3 H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [ 3 H]-DASB, a tritiated version of the widely used [ 11 C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K d =0.20±0.04 nM). The serotonin transporter density (B max ) obtained for rhesus frontal cortex was found to be 66±8 fmol/mg protein using [ 3 H]-DASB, similar to the B max value obtained using the reference radioligand [ 3 H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83±22 fmol/mg protein). Specific binding sites of both [ 3 H]-DASB and [ 3 H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [ 3 H]-citalopram binding in a competition autoradiographic study, with K i values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [ 3 H]-DASB and [ 3 H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [ 11 C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates

  3. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    Science.gov (United States)

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  4. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    Science.gov (United States)

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25% of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD,…

  5. Gammaradiation effect on spectral properties of oxyhemoglobin solutions of different pH in the presence of serotonin

    International Nuclear Information System (INIS)

    Artyukhov, V.G.

    1979-01-01

    Changes in spectral properties of oxyhemoglobin solutions (pH 3 to 12) of mice exposed to gammaradiation (6000R) in the presence of serotonin have been studied. It was established that serotonin (5x10 -5 M) exerts a radioprotective effect in respect of oxyhemoglobin solutions of pH 5 to 9. Serotonin fails to protect protein in the presence of catalase (1x10 -6 M). It is stated that the process of formation of hydrogen peroxide/serotonin complex appreciably contributes to the protective action of the radioprotective agent in respect of gammairradiated oxyhemoglobin solutions

  6. Assessing the impacts of Saskatchewan's minimum alcohol pricing regulations on alcohol-related crime.

    Science.gov (United States)

    Stockwell, Tim; Zhao, Jinhui; Sherk, Adam; Callaghan, Russell C; Macdonald, Scott; Gatley, Jodi

    2017-07-01

    Saskatchewan's introduction in April 2010 of minimum prices graded by alcohol strength led to an average minimum price increase of 9.1% per Canadian standard drink (=13.45 g ethanol). This increase was shown to be associated with reduced consumption and switching to lower alcohol content beverages. Police also informally reported marked reductions in night-time alcohol-related crime. This study aims to assess the impacts of changes to Saskatchewan's minimum alcohol-pricing regulations between 2008 and 2012 on selected crime events often related to alcohol use. Data were obtained from Canada's Uniform Crime Reporting Survey. Auto-regressive integrated moving average time series models were used to test immediate and lagged associations between minimum price increases and rates of night-time and police identified alcohol-related crimes. Controls were included for simultaneous crime rates in the neighbouring province of Alberta, economic variables, linear trend, seasonality and autoregressive and/or moving-average effects. The introduction of increased minimum-alcohol prices was associated with an abrupt decrease in night-time alcohol-related traffic offences for men (-8.0%, P prices may contribute to reductions in alcohol-related traffic-related and violent crimes perpetrated by men. Observed lagged effects for violent incidents may be due to a delay in bars passing on increased prices to their customers, perhaps because of inventory stockpiling. [Stockwell T, Zhao J, Sherk A, Callaghan RC, Macdonald S, Gatley J. Assessing the impacts of Saskatchewan's minimum alcohol pricing regulations on alcohol-related crime. Drug Alcohol Rev 2017;36:492-501]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  7. Animal experiment studies on biological and chemical radiation protection - the combined effects of serotonin and erythropoletin

    International Nuclear Information System (INIS)

    Sasse, U.

    1975-01-01

    The influence of a prophylactic combination treatment with serotonin and erythropoietin on the inhibited erythropoiesis of whole-body irradiated mice (500 R) was studied. Both erythropoietin and serotonin turned out to compensate the radiation-induced inhibition of the formation rate for erythrocytes to a small extent. However, only the enhancement of erythropoiesis due to serotonin indicated significant values. Yet the combined application of the named substances yielded a distinct and significant effect in radiation protection which even exceeded the simple addition of the protective effect yielded by serotonin and erythropoietin alone. But despite of this considerable success the radiation damage in the erythropoietic system was not even half compensated for. (orig./MG) [de

  8. Alcohol consumption among partners of pregnant women in Sweden: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Hjördis Högberg

    2016-08-01

    Full Text Available Abstract Background Antenatal care in Sweden involves a visit in pregnancy week 6–7 for counseling about lifestyle issues, including alcohol. The aim of this study was to investigate alcohol consumption among partners of pregnant women, their motives for changing drinking patterns when becoming a parent and their perceptions of the midwife’s counseling about alcohol. Method The study was conducted at 30 antenatal care centers across Sweden in 2009–2010. All partners who accompanied a pregnant women in pregnancy week >17 were asked to participate. The questionnaire included questions on alcohol consumption. Results Questionnaires from 444 partners were analyzed. Most, 95 %, of the partners reported alcohol consumption before pregnancy; 18 % were binge drinking (6 standard drinks or more per occasion, each drink containing 12 grams of pure alcohol at least once every month during the last year. More than half, 58 %, of all partners had decreased their alcohol consumption following pregnancy recognition and a higher proportion of binge drinkers decreased their consumption compared to non-frequent binge drinkers (p = 0.025. Their motives varied; the pregnancy itself, fewer social gatherings (potentially involving alcohol consumption and a sense of responsibility for the pregnant partner were reported. Of the partners, 37 % reported support for decreased drinking from others (pregnant partner, parents, friend or workmates. Further, most partners appreciated the midwife’s counseling on alcohol. Conclusion A majority of partners decreased their alcohol consumption in transition to parenthood, which also appears to be a crucial time for changing alcohol-drinking patterns. The partners with higher AUDIT-C scores reported more support for decreased drinking. Most partners appreciated the midwife’s talk about alcohol and pregnancy and those who filled out AUDIT in early pregnancy reported that the counseling was more engaging. During

  9. Impact of a new alcohol policy on homemade alcohol consumption and sales in Russia.

    Science.gov (United States)

    Radaev, Vadim

    2015-05-01

    To describe the effects of Russian policy since 2006 affecting price and availability on the consumption of recorded and unrecorded alcohol, with specific reference to homemade alcohol, and to investigate other factors affecting homemade alcohol consumption and purchasing. Consumption and preferred beverage data were collected from RLMS-HSE nationwide panel surveys from 1994 to 2013, with a detailed analysis of 2012 data (18,221 respondents aged 16+ years). Official statistics on manufactured alcohol sales, regional price increase and real disposable income were used. Homemade distilled spirits (samogon) consumption decreased together with that of recorded and unrecorded manufactured spirits since 2000. The consumption of spirits was partially replaced by the consumption of beer and wine. These trends in alcohol consumption were interrupted in 2008-2013. The interruption was more likely affected by the economic crisis and recession than by the new alcohol policy. Social networks and availability of unrecorded alcohol were more important predictors of homemade alcohol consumption and purchasing than was a recorded alcohol price increase. Homemade alcohol consumption does not replace the declining market for recorded spirits in Russia. The effects of economic and social factors on homemade alcohol consumption are greater than are the short-term effects of the new alcohol policy. The very recent (2015) reduction of the minimum unit price of vodka may be premature. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  10. Radiohippuran renography in chronic alcoholics with acute alcohol withdrawal syndromes

    International Nuclear Information System (INIS)

    Dobrzanski, T.

    1975-01-01

    Functional changes found in radiohippuran renography in chronic alcoholics with acute alcohol withdrawal syndromes (n=82; AAWS) regressed to normal values with recovery from AAWS (during 4 days on the average) with the exception of the secretory value which increased to a maximum on the 7th day of observation, remaining approximately unchanged for the following 3 days and decreasing more gradually to a normal value on the 23rd day of observation. In various forms of AAWS the same functional changes in the radiohippuran renogram were observed. (author)

  11. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    Science.gov (United States)

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Contribution to the study of the radioprotective effect of serotonin on brain spontaneous and evoked electrical activities in the adult rabbit following whole-body lethal $gamma$-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fatome, M; Court, L

    1973-11-01

    Thesis. Submitted to Paris Univ., (France). A 1 to 12 mg/kg serotonin- creatine-sulfate intravenous injection seems to act only slightly on the chronic implanted rabbit CNS except for an increase in latencies and delays of the fast components of evoked potentials and a generalized decrease in the total energy of the signal occurring 20 to 60 min after the injection. The CNS is given a real protection by a 10 mg/kg serotonin injec, tion 20 min before a 650 R whole-body exposure, the spontaneous or induced electrical activity being slightly disturbed. In the hours following irradiation the total energy increase is less important than in the unprotected animal, and there is no clear variation towards the low frequencies. Serotonin could act on the brain structures and the total energy of the signal through its depressing effect. Its radioprotective effect could act, at least partly, through the CNS. (auth)

  13. Alcohol consumption and mortality in Russia since 2000: are there any changes following the alcohol policy changes starting in 2006?

    Science.gov (United States)

    Neufeld, Maria; Rehm, Jürgen

    2013-01-01

    To elucidate the possible effects of Russian alcohol control policy on alcohol consumption and alcohol-related mortality for the period 2000-2010. Narrative review including statistical analysis. Trends before and after 2006 are compared, 2006 being the date of implementation of the Russian government's long-term strategy to reduce alcohol-related harms. Mortality data were taken from the World Health Organization (WHO) database 'Health for All'. Data on recorded alcohol consumption were taken from the WHO, based on the Russian Statistical Service (Rosstat). For unrecorded consumption, the calculations of Alexandr Nemtsov were used. Russian public opinion surveys on drinking habits were utilized. Treatment data on alcohol dependence were obtained from the Moscow National Research Centre on Addictions. Information on alcohol policy was obtained from official reports. Marked fluctuations in all-cause and alcohol-associated mortality in the working-age population were observed during the reviewed period. A decrease in total consumption and mortality was noted since the end of 2005, when the Russian government initially adopted the regulation of alcohol production and sale. The consumption changes were driven by decreases in recorded and unrecorded spirit consumption, only partly compensated for by increases in beer and wine consumption. Alcohol is a strong contributor to premature deaths in Russia, with both the volume and the pattern of consumption being detrimental to health. The regulations introduced since 2006 seem to have positive effects on both drinking behavior and health outcomes. However, there is an urgent need for further alcohol-control strategies to reduce alcohol-related harm.

  14. Rationality and emotionality: serotonin transporter genotype influences reasoning bias.

    Science.gov (United States)

    Stollstorff, Melanie; Bean, Stephanie E; Anderson, Lindsay M; Devaney, Joseph M; Vaidya, Chandan J

    2013-04-01

    Reasoning often occurs under emotionally charged, opinion-laden circumstances. The belief-bias effect indexes the extent to which reasoning is based upon beliefs rather than logical structure. We examined whether emotional content increases this effect, particularly for adults genetically predisposed to be more emotionally reactive. SS/SL(G) carriers of the serotonin transporter genotype (5-HTTLPR) were less accurate selectively for evaluating emotional relational reasoning problems with belief-logic conflict relative to L(A)L(A) carriers. Trait anxiety was positively associated with emotional belief-bias, and the 5-HTTLPR genotype significantly accounted for the variance in this association. Thus, deductive reasoning, a higher cognitive ability, is sensitive to differences in emotionality rooted in serotonin neurotransmitter function.

  15. Genetic variation in the serotonin transporter gene influences ERP old/new effects during recognition memory.

    Science.gov (United States)

    Ross, Robert S; Medrano, Paolo; Boyle, Kaitlin; Smolen, Andrew; Curran, Tim; Nyhus, Erika

    2015-11-01

    Recognition memory is defined as the ability to recognize a previously encountered stimulus and has been associated with spatially and temporally distinct event-related potentials (ERPs). Allelic variations of the serotonin transporter gene (SLC6A4) have recently been shown to impact memory performance. Common variants of the serotonin transporter-linked polymorphic region (5HTTLPR) of the SLC6A4 gene result in long (l) and short (s) allelic variants with carriers of the s allele having lowered transcriptional efficiency. Thus, the current study examines the effects polymorphisms of the SLC6A4 gene have on performance and ERP amplitudes commonly associated with recognition memory. Electroencephalogram (EEG), genetic, and behavioral data were collected from sixty participants as they performed an item and source memory recognition task. In both tasks, participants studied and encoded 200 words, which were then mixed with 200 new words during retrieval. Participants were monitored with EEG during the retrieval portion of each memory task. EEG electrodes were grouped into four ROIs, left anterior superior, right anterior superior, left posterior superior, and right posterior superior. ERP mean amplitudes during hits in the item and source memory task were compared to correctly recognizing new items (correct rejections). Results show that s-carriers have decreased mean hit amplitudes in both the right anterior superior ROI 1000-1500ms post stimulus during the source memory task and the left anterior superior ROI 300-500ms post stimulus during the item memory task. These results suggest that individual differences due to genetic variation of the serotonin transporter gene influences recognition memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Association and interaction analyses of 5-HT3 receptor and serotonin transporter genes with alcohol, cocaine, and nicotine dependence using the SAGE data.

    Science.gov (United States)

    Yang, Jiekun; Li, Ming D

    2014-07-01

    Previous studies have implicated genes encoding the 5-HT3AB receptors (HTR3A and HTR3B) and the serotonin transporter (SLC6A4), both independently and interactively, in alcohol (AD), cocaine (CD), and nicotine dependence (ND). However, whether these genetic effects also exist in subjects with comorbidities remains largely unknown. We used 1,136 African-American (AA) and 2,428 European-American (EA) subjects from the Study of Addiction: Genetics and Environment (SAGE) to determine associations between 88 genotyped or imputed variants within HTR3A, HTR3B, and SLC6A4 and three types of addictions, which were measured by DSM-IV diagnoses of AD, CD, and ND and the Fagerström Test for Nicotine Dependence (FTND), an independent measure of ND commonly used in tobacco research. Individual SNP-based association analysis revealed a significant association of rs2066713 in SLC6A4 with FTND in AA (β = -1.39; P = 1.6E - 04). Haplotype-based association analysis found one major haplotype formed by SNPs rs3891484 and rs3758987 in HTR3B that was significantly associated with AD in the AA sample, and another major haplotype T-T-G, formed by SNPs rs7118530, rs12221649, and rs2085421 in HTR3A, which showed significant association with FTND in the EA sample. Considering the biologic roles of the three genes and their functional relations, we used the GPU-based Generalized Multifactor Dimensionality Reduction (GMDR-GPU) program to test SNP-by-SNP interactions within the three genes and discovered two- to five-variant models that have significant impacts on AD, CD, ND, or FTND. Interestingly, most of the SNPs included in the genetic interaction model(s) for each addictive phenotype are either overlapped or in high linkage disequilibrium for both AA and EA samples, suggesting these detected variants in HTR3A, HTR3B, and SLC6A4 are interactively contributing to etiology of the three addictive phenotypes examined in this study.

  17. Unifying Concept of Serotonin Transporter-associated Currents*

    Science.gov (United States)

    Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter

    2012-01-01

    Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents. PMID:22072712

  18. Unifying concept of serotonin transporter-associated currents.

    Science.gov (United States)

    Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-01-02

    Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents.

  19. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  20. Chronic alcoholism: insights from neurophysiology.

    Science.gov (United States)

    Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X

    2009-01-01

    Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.

  1. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Sullivan, Gregory M; Oquendo, Maria A; Milak, Matthew; Miller, Jeffrey M; Burke, Ainsley; Ogden, R Todd; Parsey, Ramin V; Mann, J John

    2015-02-01

    Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with

  2. Alcohol-Aversion Therapy: Relation Between Strength of Aversion and Abstinence.

    Science.gov (United States)

    Cannon, Dale S.; And Others

    1986-01-01

    Assessed degree of alcohol aversion in 60 alcoholics who received emetic alcohol-aversion therapy. Results revealed changes in response to alcoholic, but not to nonalcoholic, flavors, including decreased consumption in taste tests, more negative flavor ratings, overt behavioral indicants of aversion and increased tachycardiac response. (Author/NB)

  3. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  4. Blood levels of serotonin are differentially affected by romantic love in men and women

    NARCIS (Netherlands)

    S.J.E. Langeslag (Sandra); F.M. van der Veen (Frederik); D. Fekkes (Durk)

    2012-01-01

    textabstractPeople who are in love think about their beloved the whole day, which is supposed to be associated with serotonin. The research questions were how peripheral serotonin levels differ between individuals that are in love compared to individuals that are not in love, and how these levels

  5. Damage of hippocampal neurons in rats with chronic alcoholism

    OpenAIRE

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  6. Ontogeny of serotonin and serotonin2A receptors in rat auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Abbas, Atheir I; O'Donohue, Heather; Lauder, Jean M; Roth, Bryan L; Walker, Paul D; Manis, Paul B

    2008-10-01

    Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT(2A) receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT(2A) receptors with the 5-HT(2A/2C) receptor agonist, (125)I-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT(2C) receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (P8), significantly increased at P10 and at P17, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT(2A) receptors and confocal microscopy revealed that 5-HT(2A) receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT(2A) receptors, may play an important role in early postnatal AC development.

  7. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  8. Unrecorded alcohol consumption: its economics and its effects on alcohol control in the Nordic countries.

    Science.gov (United States)

    Nordlund, S; Osterberg, E

    2000-12-01

    The starting point of this paper is the fact that no country has complete records of alcohol consumption. In addition to being a matter or statistical accuracy, unrecorded alcohol also plays an important role in alcohol policy discussions. Furthermore, its quantity is bound to basic economic laws. These latter two aspects are the main interest in this paper, which discusses, first, what is really meant by unrecorded alcohol consumption and what kind of categories are included in it. The next task is to discuss the economics of different categories of unrecorded alcohol and the mechanisms which lead to increases or decreases in them. The examples in this part of the paper come from the Nordic countries. Arguments about increased smuggling and illegal distilling have always been used against alcohol policy restrictions in the Nordic countries. Recently the level of travellers' alcohol imports and border trade have also been used for the same purpose. In the European Union the task to harmonize alcohol excise taxes is partly given to increased travellers' duty-free allowances and market forces. This policy has already led to reductions in alcohol taxation both in Denmark and Sweden.

  9. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  10. Evaluating the impact of the alcohol act on off-trade alcohol sales: a natural experiment in Scotland.

    Science.gov (United States)

    Robinson, Mark; Geue, Claudia; Lewsey, James; Mackay, Daniel; McCartney, Gerry; Curnock, Esther; Beeston, Clare

    2014-12-01

    A ban on multi-buy discounts of off-trade alcohol was introduced as part of the Alcohol Act in Scotland in October 2011. The aim of this study was to assess the impact of this legislation on alcohol sales, which provide the best indicator of population consumption. Interrupted time-series regression was used to assess the impact of the Alcohol Act on alcohol sales among off-trade retailers in Scotland. Models accounted for underlying seasonal and secular trends and were adjusted for disposable income, alcohol prices and substitution effects. Data for off-trade retailers in England and Wales combined (EW) provided a control group. Weekly data on the volume of pure alcohol sold by off-trade retailers in Scotland and EW between January 2009 and September 2012. The introduction of the legislation was associated with a 2.6% (95% CI = -5.3 to 0.2%, P = 0.07) decrease in off-trade alcohol sales in Scotland, but not in EW (-0.5%, 95% CI = -4.6 to 3.9%, P = 0.83). A statistically significant reduction was observed in Scotland when EW sales were adjusted for in the analysis (-1.7%, 95% CI = -3.1 to -0.3%, P = 0.02). The decline in Scotland was driven by reduced off-trade sales of wine (-4.0%, 95% CI = -5.4 to -2.6%, P types in Scotland, or in sales of any drink type in EW. The introduction of the Alcohol Act in Scotland in 2011 was associated with a decrease in total off-trade alcohol sales in Scotland, largely driven by reduced off-trade wine sales. © 2014 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  11. Effects of alcohol-induced working memory decline on alcohol consumption and adverse consequences of use.

    Science.gov (United States)

    Lechner, William V; Day, Anne M; Metrik, Jane; Leventhal, Adam M; Kahler, Christopher W

    2016-01-01

    Alcohol use appears to decrease executive function acutely in a dose-dependent manner, and lower baseline executive function appears to contribute to problematic alcohol use. However, no studies, to our knowledge, have examined the relationship between individual differences in working memory (a subcomponent of executive function) after alcohol consumption and drinking behaviors and consequences. The current study assessed the relationship between drinking behavior, alcohol-related consequences, and alcohol-induced changes in working memory (as assessed by Trail Making Test-B). Participants recruited from the community (n = 41), 57.3 % male, mean age 39.2, took part in a three-session, within-subjects, repeated-measures design. Participants were administered a placebo, 0.4 g/kg, or 0.8 g/kg dose of alcohol. Working memory, past 30-day alcohol consumption, and consequences of alcohol use were measured at baseline; working memory was measured again after each beverage administration. Poorer working memory after alcohol administration (controlling for baseline working memory) was significantly associated with a greater number of drinks consumed per drinking day. Additionally, we observed a significant indirect relationship between the degree of alcohol-induced working memory decline and adverse consequences of alcohol use, which was mediated through greater average drinks per drinking day. It is possible that greater individual susceptibility to alcohol-induced working memory decline may limit one's ability to moderate alcohol consumption as evidenced by greater drinks per drinking day and that this results in more adverse consequences of alcohol use.

  12. Men with high serotonin 1B receptor binding respond to provocations with heightened amygdala reactivity

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V

    2018-01-01

    Serotonin signalling influences amygdala reactivity to threat-related emotional facial expressions in healthy adults, but in vivo serotonin signalling has never been investigated in the context of provocative stimuli in aggressive individuals. The aim of this study was to evaluate associations...

  13. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  14. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    NARCIS (Netherlands)

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P. J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a

  15. Thalamic synaptic transmission of sensory information modulated by synergistic interaction of adenosine and serotonin.

    Science.gov (United States)

    Yang, Ya-Chin; Hu, Chun-Chang; Huang, Chen-Syuan; Chou, Pei-Yu

    2014-03-01

    The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations. © 2013 International Society for Neurochemistry.

  16. Alcohol Demand, Future Orientation, and Craving Mediate the Relation Between Depressive and Stress Symptoms and Alcohol Problems.

    Science.gov (United States)

    Soltis, Kathryn E; McDevitt-Murphy, Meghan E; Murphy, James G

    2017-06-01

    Elevated depression and stress have been linked to greater levels of alcohol problems among young adults even after taking into account drinking level. This study attempts to elucidate variables that might mediate the relation between symptoms of depression and stress and alcohol problems, including alcohol demand, future time orientation, and craving. Participants were 393 undergraduates (60.8% female, 78.9% White/Caucasian) who reported at least 2 binge-drinking episodes (4/5+ drinks for women/men, respectively) in the previous month. Participants completed self-report measures of stress and depression, alcohol demand, future time orientation, craving, and alcohol problems. In separate mediation models that accounted for gender, race, and weekly alcohol consumption, future orientation and craving significantly mediated the relation between depressive symptoms and alcohol problems. Alcohol demand, future orientation, and craving significantly mediated the relation between stress symptoms and alcohol problems. Heavy-drinking young adults who experience stress or depression are likely to experience alcohol problems, and this is due in part to elevations in craving and alcohol demand, and less sensitivity to future outcomes. Interventions targeting alcohol misuse in young adults with elevated levels of depression and stress should attempt to increase future orientation and decrease craving and alcohol reward value. Copyright © 2017 by the Research Society on Alcoholism.

  17. Fetal alcohol exposure and development of the integument

    Directory of Open Access Journals (Sweden)

    Longhurst WD

    2016-05-01

    Full Text Available William D Longhurst,1 Jordan Ernst,2 Larry Burd3 1Center for Emergency Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA; 2University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; 3Department of Pediatrics, North Dakota Fetal Alcohol Syndrome Center, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA Background: The physiology of fetal alcohol exposure changes across gestation. Early in pregnancy placental, fetal, and amniotic fluid concentrations of alcohol exposure are equivalent. Beginning in mid-pregnancy, the maturing fetal epidermis adds keratins which decrease permeability resulting in development of a barrier between fetal circulation and the amniotic fluid. Barrier function development is essential for viability in late pregnancy and in the extra-uterine environment. In this paper we provide a selected review of the effects of barrier function on fetal alcohol exposure. Methods: We utilized a search of PubMed and Google for all years in all languages for MeSH on Demand terms: alcohol drinking, amnion, amniotic fluid, epidermis, ethanol, female, fetal development, fetus, humans, keratins, permeability, and pregnancy. We also reviewed the reference lists of relevant papers and hand-searched reference lists of textbooks for additional references. Results: By 30 gestational weeks, development of barrier function alters the pathophysiology of ethanol dispersion between the fetus and amniotic fluid. Firstly, increases in the effectiveness of barrier function decreases the rate of diffusion of alcohol from fetal circulation across fetal skin into the amniotic fluid. This reduces the volume of alcohol entering the amniotic fluid. Secondly, barrier function increases the duration of fetal exposure by decreasing the rate of alcohol diffusion from amniotic fluid back into fetal circulation. Ethanol is then transported into

  18. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify...

  19. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    Science.gov (United States)

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  20. BLOOD CHEMISTRY AND PLATELET SEROTONIN UPTAKE AS ...

    African Journals Online (AJOL)

    A cross sectional study was conducted to investigate the blood chemistry and platelet serotonin uptake as alternative method of determining HIV disease stage in HIV/AIDS patients. Whole blood was taken from subjects at the Human Virology of the Nigerian Institute of Medical Research. Subjects were judged suitable for ...

  1. Prenatal exposure to selective serotonin reuptake inhibitors and childhood overweight at 7 years of age

    DEFF Research Database (Denmark)

    Grzeskowiak, Luke E; Gilbert, Andrew L; Sørensen, Thorkild

    2013-01-01

    To investigate a possible association between prenatal selective serotonin reuptake inhibitor (SSRI) exposure and childhood overweight at 7 years of age.......To investigate a possible association between prenatal selective serotonin reuptake inhibitor (SSRI) exposure and childhood overweight at 7 years of age....

  2. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  3. Phenobarbital compared to benzodiazepines in alcohol withdrawal treatment: A register-based cohort study of subsequent benzodiazepine use, alcohol recidivism and mortality.

    Science.gov (United States)

    Askgaard, Gro; Hallas, Jesper; Fink-Jensen, Anders; Molander, Anna Camilla; Madsen, Kenneth Grønkjær; Pottegård, Anton

    2016-04-01

    Long-acting benzodiazepines such as chlordiazepoxide are recommended as first-line treatment for alcohol withdrawal. These drugs are known for their abuse liability and might increase alcohol consumption among problem drinkers. Phenobarbital could be an alternative treatment option, possibly with the drawback of a more pronounced acute toxicity. We evaluated if phenobarbital compared to chlordiazepoxide decreased the risk of subsequent use of benzodiazepines, alcohol recidivism and mortality. The study was a register-based cohort study of patients admitted for alcohol withdrawal 1998-2013 and treated with either phenobarbital or chlordiazepoxide. Patients were followed for one year. We calculated hazard ratios (HR) for benzodiazepine use, alcohol recidivism and mortality associated with alcohol withdrawal treatment, while adjusting for confounders. A total of 1063 patients treated with chlordiazepoxide and 1365 patients treated with phenobarbital were included. After one year, the outcome rates per 100 person-years in the phenobarbital versus the chlordiazepoxide cohort were 9.20 vs. 5.13 for use of benzodiazepine, 37.9 vs. 37.9 for alcohol recidivism and 29 vs. 59 for mortality. Comparing phenobarbital to chlordiazepoxide treated, the HR of subsequent use of benzodiazepines was 1.56 (95%CI 1.05-2.30). Similarly, the HR for alcohol recidivism was 0.99 (95%CI 0.84-1.16). Lastly, the HR for 30-days and 1 year mortality was 0.25 (95%CI 0.08-0.78) and 0.51 (95%CI 0.31-0.86). There was no decreased risk of subsequent benzodiazepine use or alcohol recidivism in patients treated with phenobarbital compared to chlordiazepoxide. Phenobarbital treatment was associated with decreased mortality, which might be confounded by somatic comorbidity among patients receiving chlordiazepoxide. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Inhibitory effect of fluvoxamine on β-casein expression via a serotonin-independent mechanism in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Kimura, Soichiro; Morimoto, Yasunori; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-11-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used as a first-line therapy in postpartum depression. The objective of this study was to determine the mechanism underlying the inhibitory effects of the SSRI, fluvoxamine, on β-casein expression, an indicator of lactation, in MCF-12A human mammary epithelial cells. Expression levels of serotonin (5-hydroxytryptamine; 5-HT) transporter, an SSRI target protein, and tryptophan hydroxylase 1, a rate-limiting enzyme in 5-HT biosynthesis, were increased in MCF-12A cells by prolactin treatment. Treatment with 1 μM fluvoxamine for 72 h significantly decreased protein levels of β-casein and phosphorylated signal transducer and activator transcription 5 (pSTAT5). Extracellular 5-HT levels were significantly increased after exposure to 1 μM fluvoxamine, in comparison with those of untreated and vehicle-treated cells; however, extracellular 5-HT had little effect on the decrease in β-casein expression. Expression of glucose-related protein 78/binding immunoglobulin protein, a regulator of endoplasmic reticulum (ER) stress, was significantly increased after treatment with 1 μM fluvoxamine for 48 h. Exposure to tunicamycin, an inducer of ER stress, also decreased expression of β-casein and pSTAT5 in a manner similar to fluvoxamine. Our results indicate that fluvoxamine suppresses β-casein expression in MCF-12A cells via inhibition of STAT5 phosphorylation caused by induction of ER stress. Further studies are required to confirm the effect of fluvoxamine on the function of mammary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biochemical changes in tissue catecholamines and serotonin in duodenal ulceration caused by cysteamine or propionitrile in the rat

    International Nuclear Information System (INIS)

    Szabo, S.; Horner, H.C.; Maull, H.; Schnoor, J.; Chiueh, C.C.; Palkovits, M.

    1987-01-01

    Previous structure-activity and pharmacologic studies with duodenal ulcerogens cysteamine and propionitrile implicating catecholamines in the pathogenesis of duodenal ulceration have now been followed up by dose- and time-response biochemical investigations to assess the importance of monoamines in the development of duodenal ulcers. The concentrations of norepinephrine (noradrenaline), dopamine, serotonin and their metabolites were measured in total brain, brain regions, stomach, duodenum, pancreas and adrenals in the rat. Turnover of catecholamines was determined in rats pretreated with the inhibitor of tyrosine hydroxylase alpha-methyl-p-tyrosine. The duodenal ulcerogens caused a dose- and time-dependent depletion of norepinephrine in virtually all the tissues examined. The effect was maximal 4 or 7 hr after cysteamine or propionitrile, and norepinephrine levels returned to normal in 24 hr. Dopamine changes were selective and often biphasic, e.g., elevation in adrenals, biphasic in brain cortex, hippocampus and midbrain, but uniformly decreasing in glandular stomach and duodenum. In the median eminence dopamine levels decreased by 181 and 324% at 15 and 30 min, respectively, after cysteamine, but neither dopamine nor 3,4-dihydroxyphenylacetic acid was modified in the periventricular nucleus. Serotonin levels were relatively stable, revealing slight elevations or no changes in most of the tissues. The turnover of norepinephrine was accelerated by both chemicals in virtually all brain regions, but dopamine turnover was affected only in a few areas, e.g., in the corpus striatum and medulla oblongata cysteamine decreased dopamine turnover, whereas propionitrile first (at 1 hr) accelerated then (at 8 hr) significantly suppressed it.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Increased hypothalamic serotonin turnover in inflammation-induced anorexia

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Witkamp, R.F.; Boekschoten, M.V.; Laak, ter M.C.; Heins, M.S.; Norren, van K.

    2016-01-01

    Background: Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections

  7. Intrinsic neuromodulation in the Tritonia swim CPG: serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1995-12-01

    1. Neuromodulation has previously been shown to be intrinsic to the central pattern generator (CPG) circuit that generates the escape swim of the nudibranch mollusk Tritonia diomedea; the dorsal swim interneurons (DSIs) make conventional monosynaptic connections and evoke neuromodulatory effects within the swim motor circuit. The conventional synaptic potentials evoked by a DSI onto cerebral neuron 2 (C2) and onto the dorsal flexion neurons (DFNs) consist of a fast excitatory postsynaptic potential (EPSP) followed by a prolonged slow EPSP. In their neuromodulatory role, the DSIs produce an enhancement of the monosynaptic connections made by C2 onto other CPG circuit interneurons and onto efferent flexion neurons. Previous work showed that the DSIs are immunoreactive for serotonin. Here we provide evidence that both the neurotransmission and the neuromodulation evoked by the DSIs are produced by serotonin, and that these effects may be pharmacologically separable. 2. Previously it was shown that bath-applied serotonin both mimics and occludes the modulation of the C2 synapses by the DSIs. Here we find that pressure-applied puffs of serotonin mimic both the fast and slow EPSPs evoked by a DSI onto a DFN, whereas high concentrations of bath-applied serotonin occlude both of these synaptic components. 3. Consistent with the hypothesis that serotonin mediates the actions of the DSIs, the serotonin reuptake inhibitor imipramine prolongs the duration of the fast DSI-DFN EPSP, increases the amplitude of the slow DSI-DFN EPSP, and increases both the amplitude and duration of the modulation of the C2-DFN synapse by the DSIs. 4. Two serotonergic antagonists were found that block the actions of the DSIs. Gramine blocks the fast DSI-DFN EPSP, and has far less of an effect on the slow EPSP and the modulation. Gramine also diminishes the depolarization evoked by pressure-applied serotonin, showing that it is a serotonin antagonist in this system. In contrast, methysergide greatly

  8. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    Science.gov (United States)

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  9. Effects of early serotonin programming on behavior and central monoamine concentrations in an avian model

    Science.gov (United States)

    Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...

  10. Serotonin transporter density in binge eating disorder and pathological gambling: A PET study with [11C]MADAM.

    Science.gov (United States)

    Majuri, Joonas; Joutsa, Juho; Johansson, Jarkko; Voon, Valerie; Parkkola, Riitta; Alho, Hannu; Arponen, Eveliina; Kaasinen, Valtteri

    2017-12-01

    Behavioral addictions, such as pathological gambling (PG) and binge eating disorder (BED), appear to be associated with specific changes in brain dopamine and opioid function, but the role of other neurotransmitter systems is less clear. Given the crucial role of serotonin in a number of psychiatric disorders, we aimed to compare brain serotonergic function among individuals with BED, PG and healthy controls. Seven BED patients, 13 PG patients and 16 healthy controls were scanned with high-resolution positron emission tomography (PET) using the serotonin transporter (SERT) tracer [ 11 C]MADAM. Both region-of-interest and voxel-wise whole brain analyses were performed. Patients with BED showed increased SERT binding in the parieto-occipital cortical regions compared to both PG and healthy controls, with parallel decreases in binding in the nucleus accumbens, inferior temporal gyrus and lateral orbitofrontal cortex. No differences between PG patients and controls were observed. None of the subjects were on SSRI medications at the time of imaging, and there were no differences in the level of depression between PG and BED patients. The results highlight differences in brain SERT binding between individuals with BED and PG and provide further evidence of different neurobiological underpinnings in behavioral addictions that are unrelated to the co-existing mood disorder. The results aid in the conceptualization of behavioral addictions by characterizing the underlying serotonin changes and provide a framework for additional studies to examine syndrome-specific pharmaceutical treatments. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  11. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  12. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  13. On the role of serotonin and histamine in neurohumoral mechanisms of postirradiation diarrhea in rats

    International Nuclear Information System (INIS)

    Legeza, V.I.; Shagoyan, M.G.; Markovskaya, I.V.; Vasil'eva, T.P.; Pozharisskaya, T.D.; Alekseeva, I.I.; Lokteva, O.I.

    1990-01-01

    In experiments with rats exposed to 200 Gy radiation it was shown that the diarrhea effect of serotonin under the effect of radiation is implemented via D- and M-type receptors, and that of histamine via H 1 and H 2 receptors. Serotonin and histamine, that were released under the effect of radiation from endocrine and mast cells of the digestive tract stimulated the propulsion activity of the intestine whereas histamine, in addition, inhibited the absorption process. It is suggested that serotonin and histamine antagonists should be used as means of preventing of radiation-induced diarrhea

  14. The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of surface resident...... SERT, two functional epitope tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N-terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope...

  15. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  16. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors.

    Science.gov (United States)

    Maswood, S; Truitt, W; Hotema, M; Caldarola-Pastuszka, M; Uphouse, L

    1999-06-12

    In vivo microdialysis was used to examine extracellular serotonin (5-HT) in the mediobasal hypothalamus (MBH) of male and female Fischer (CDF-344) rats. Females from the stages of diestrus, proestrus, and estrus were used. Additionally, ovariectomized rats, primed subcutaneously (s.c.) with estradiol benzoate or estradiol benzoate plus progesterone were examined. Extracellular 5-HT in the MBH varied with stage of the estrous cycle and with the light/dark cycle. Proestrous females had the highest microdialysate concentrations of 5-HT during the light portion of the light/dark cycle and lowest concentrations during the dark portion of the cycle. Diestrous females had the highest levels during the dark portion of the cycle, while males and estrous females showed little change between light and dark portions of the cycle. In ovariectomized rats, there was no effect of 2.5 microg or 25 microg estradiol benzoate (s.c.) on extracellular 5-HT; but the addition of 500 microg progesterone, 48 h after estrogen priming, reduced microdialysate 5-HT near the threshold for detection. In intact females and in males, reverse perfusion with 3 microM fluoxetine, a selective serotonin reuptake inhibitor (SSRI), or 2 microM methiothepin, a 5-HT receptor antagonist, increased microdialysate concentrations of 5-HT. Estrous females and males showed nearly a 4-fold increase in microdialysate 5-HT in response to fluoxetine while smaller responses were seen in diestrous and proestrous rats. In contrast, proestrous rats showed the largest response to methiothepin. Estrous females showed a delayed response to methiothepin, but there was no methiothepin-induced increase in extracellular 5-HT in males. These findings are discussed in reference to the suggestion that extracellular 5-HT in the MBH is regulated in a manner that is gender and estrous cycle dependent. The 5-HT terminal autoreceptor may exert a greater role in proestrous females; the serotonin transporter appears to play a more active

  17. Subjective aggression during alcohol and cannabis intoxication before and after aggression exposure.

    Science.gov (United States)

    De Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Toennes, S W; Ramaekers, J G

    2016-09-01

    Alcohol and cannabis use have been implicated in aggression. Alcohol consumption is known to facilitate aggression, whereas a causal link between cannabis and aggression has not been clearly demonstrated. This study investigated the acute effects of alcohol and cannabis on subjective aggression in alcohol and cannabis users, respectively, following aggression exposure. Drug-free controls served as a reference. It was hypothesized that aggression exposure would increase subjective aggression in alcohol users during alcohol intoxication, whereas it was expected to decrease subjective aggression in cannabis users during cannabis intoxication. Heavy alcohol (n = 20) and regular cannabis users (n = 21), and controls (n = 20) were included in a mixed factorial study. Alcohol and cannabis users received single doses of alcohol and placebo or cannabis and placebo, respectively. Subjective aggression was assessed before and after aggression exposure consisting of administrations of the point-subtraction aggression paradigm (PSAP) and the single category implicit association test (SC-IAT). Testosterone and cortisol levels in response to alcohol/cannabis treatment and aggression exposure were recorded as secondary outcome measures. Subjective aggression significantly increased following aggression exposure in all groups while being sober. Alcohol intoxication increased subjective aggression whereas cannabis decreased the subjective aggression following aggression exposure. Aggressive responses during the PSAP increased following alcohol and decreased following cannabis relative to placebo. Changes in aggressive feeling or response were not correlated to the neuroendocrine response to treatments. It is concluded that alcohol facilitates feelings of aggression whereas cannabis diminishes aggressive feelings in heavy alcohol and regular cannabis users, respectively.

  18. A modified assay method for determining serotonin uptake in human platelets

    International Nuclear Information System (INIS)

    Arora, R.C.; Meltzer, H.Y.

    1981-01-01

    Effects of various experimental conditions on serotonin (5-HT) uptake in human platelets were examined. The experimental design allowed the evaluation of the effect of diffusion and other non-saturable processes on the affinity and maximum activity of the membrane pump for 5-HT uptake. Total 5-HT uptake was determined by incubating platelet-rich plasma (PRP) with increasing concentrations of serotonin at 37 0 C for 4 min. The passive uptake was measured by the addition of various 5-HT concentrations to PRP in buffer at 37 0 C, followed by immediate transfer to an ice-cold water bath. The difference between the total and passive uptake was linear for 6 min. The affinity (Ksub(m)) for active platelet serotonin uptake was 0.45 +- 0.09 μmol/l and maximal rate of uptake (V) was 10.7 +- 2.1 pmol/10 7 platelets/min. The described method provides a convenient and reliable measure of active 5-HT uptake suitable for clinical investigation. The effect of passive diffusion on kinetic parameters is discussed. (Auth.)

  19. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish.

    Science.gov (United States)

    McDonald, M Danielle

    2017-07-01

    Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Parent–Child Interactions, Peripheral Serotonin, and Self-Inflicted Injury in Adolescents

    Science.gov (United States)

    Crowell, Sheila E.; Beauchaine, Theodore P.; McCauley, Elizabeth; Smith, Cindy J.; Vasilev, Christina A.; Stevens, Adrianne L.

    2009-01-01

    Self-inflicted injury in adolescence indicates significant emotional and psychological suffering. Although data on the etiology of self-injury are limited, current theories suggest that the emotional lability observed among self-injuring adolescents results from complex interactions between individual biological vulnerabilities and environmental risk. For example, deficiencies in serotonergic functioning, in conjunction with certain family interaction patterns, may contribute to the development of emotional lability and risk for self-injury. The authors explored the relation between peripheral serotonin levels and mother–child interaction patterns among typical (n = 21) and self-injuring (n = 20) adolescents. Findings revealed higher levels of negative affect and lower levels of both positive affect and cohesiveness among families of self-injuring participants. Peripheral serotonin was also correlated with the expression of positive affect within dyads. Furthermore, adolescents’ serotonin levels interacted with negativity and conflict within dyads to explain 64% of the variance in self-injury. These findings underscore the importance of considering both biological and environmental risk factors in understanding and treating self-injuring adolescents. PMID:18229978

  1. Synthesis and evaluation of racemic [11C]NS2456 and its enantiomers as selective serotonin reuptake radiotracers for PET

    International Nuclear Information System (INIS)

    Smith, D.F.; Bender, D.; Marthi, K.; Cumming, P.; Hansen, S.B.; Peters, D.; Oestergaard Nielsen, E.; Scheel-Krueger, J.; Gjedde, A.

    2001-01-01

    Positron emission tomography (PET) radiotracers are needed for quantifying serotonin uptake sites in the living brain. Therefore, we evaluated a new selective serotonin reuptake inhibitor, NS2456, to determine whether it is suited for use in PET. Racemic NS2456 [(1RS,5SR)-8-methyl-3-[4-trifluoromethoxyphenyl]-8-azabicyclo [3.2.1]oct-2-ene] and its N-demethylated analog, racemic NS2463, selectively inhibited serotonin uptake in rat brain synaptosomes; their IC 50 values were 3000-fold lower for [ 3 H]serotonin than for either [ 3 H]dopamine or [ 3 H]noradrenaline. The enantiomers of NS2463 were also potent inhibitors of serotonin uptake in vitro, but they failed to show stereoselectivity. Racemic NS2463 as well as its enantiomers were radiolabelled by N-methylation with C-11, yielding [ 11 C]NS2456 for use in PET of the living porcine brain. The compounds crossed the blood-brain barrier rapidly and accumulated preferentially in regions rich in serotonin uptake sites (e.g., brainstem, subthalamus and thalamus). However, their binding potentials were relatively low and no stereoselectivity was found. Thus, neither racemic [ 11 C]NS2456 nor its [ 11 C]-labelled enantiomers are ideal for PET neuroimaging of neuronal serotonin uptake sites

  2. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T cell subsets in multiple sclerosis patients.

    Science.gov (United States)

    Sacramento, Priscila M; Monteiro, Clarice; Dias, Aleida S O; Kasahara, Taissa M; Ferreira, Thaís B; Hygino, Joana; Wing, Ana Cristina; Andrade, Regis M; Rueda, Fernanda; Sales, Marisa C; Vasconcelos, Claudia Cristina; Bento, Cleonice A M

    2018-05-02

    Excessive levels of pro-inflammatory cytokines in the central nervous system (CNS) are associated with reduced serotonin (5-HT) synthesis, a neurotransmitter with diverse immune effects. In this study, we evaluated the ability of exogenous 5-HT to modulate the T-cell behavior of patients with multiple sclerosis (MS), a demyelinating autoimmune disease mediated by Th1 and Th17 cytokines. Here, 5-HT attenuated, in vitro, T-cell proliferation and Th1 and Th17 cytokines production in cell cultures from MS patients. Additionally, 5-HT reduced IFN-γ and IL-17 release by CD8 + T-cells. By contrast, 5-HT increased IL-10 production by CD4 + T-cells from MS patients. A more accurate analysis of these IL-10-secreting CD4 + T-cells revealed that 5-HT favors the expansion of FoxP3 + CD39 + regulatory T cells (Tregs) and type 1 regulatory T cells. Notably, this neurotransmitter also elevated the frequency of Treg17 cells, a novel regulatory T-cell subset. The effect of 5-HT in up-regulating CD39 + Treg and Treg17 cells was inversely correlated with the number of active brain lesions. Finally, in addition to directly reducing cytokine production by purified Th1 and Th17 cells, 5-HT enhanced in vitro Treg function. In summary, our data suggest that serotonin may play a protective role in the pathogenesis of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.

    2010-01-01

    The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine...

  4. HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power--an intermediate phenotype for alcoholism and co-morbid behaviors.

    Science.gov (United States)

    Ducci, Francesca; Enoch, Mary-Anne; Yuan, Qiaoping; Shen, Pei-Hong; White, Kenneth V; Hodgkinson, Colin; Albaugh, Bernard; Virkkunen, Matti; Goldman, David

    2009-02-01

    Alcohol use disorders (AUD) with co-morbid antisocial personality disorder (ASPD) have been associated with serotonin (5-HT) dysfunction. 5-HT3 receptors are potentiated by ethanol and appear to modulate reward. 5-HT3 receptor antagonists may be useful in the treatment of early-onset alcoholics with co-morbid ASPD. Low-voltage alpha electroencephalogram (EEG) power, a highly heritable trait, has been associated with both AUD and ASPD. A recent whole genome linkage scan in one of our samples, Plains American Indians (PI), has shown a suggestive linkage peak for alpha power at the 5-HT3R locus. We tested whether genetic variation within the HTR3A and HTR3B genes influences vulnerability to AUD with comorbid ASPD (AUD+ASPD) and moderates alpha power. Our study included three samples: 284 criminal alcoholic Finnish Caucasians and 234 controls; two independent community-ascertained samples with resting EEG recordings: a predominantly Caucasian sample of 191 individuals (Bethesda) and 306 PI. In the Finns, an intronic HTR3B SNP rs3782025 was associated with AUD+ASPD (P=.004). In the Bethesda sample, the same allele predicted lower alpha power (P=7.37e(-5)). Associations between alpha power and two other HTR3B SNPs were also observed among PI (P=.03). One haplotype in the haplotype block at the 3' region of the gene that included rs3782025 was associated with AUD+ASPD in the Finns (P=.02) and with reduced alpha power in the Bethesda population (P=.00009). Another haplotype in this block was associated with alpha power among PI (P=.03). No associations were found for HTR3A. Genetic variation within HTR3B may influence vulnerability to develop AUD with comorbid ASPD. 5-HT3R might contribute to the imbalance between excitation and inhibition that characterize the brain of alcoholics.

  5. Change in size, shape and radiocolloid uptake of the alcoholic liver during alcohol withdrawal, as demonstrated by single photon emission computed tomography

    International Nuclear Information System (INIS)

    Blomquist, L.; Yansen Wang; Jacobsson, H.; Kimiaei, S.

    1994-01-01

    The volume of the total liver and separate right and left lobes was studied before and after 1 week of alcohol withdrawal in 16 consecutive alcoholics by means of single photon emission computed tomography after intravenous injection of 99 Tc m -human albumin colloid; the relative tissue distribution of radioactivity was also followed. The left liver lobe increased in volume more than the right lobe during drinking and decreased more rapidly after alcohol withdrawal. Median volume reductions during 1 week of alcohol withdrawal were: total liver 12%, left lob 26%, and right lobe 8%, indicating that half of the reduction to values of a control group was achieved during this first week. The volume of the right but not of the left lobe was significantly correlated to body size in alcoholics and in controls. The left lobe had a lower capacity to concentrate the radiocolloid than the right lobe in alcoholics and in controls. The liver/spleen, liver/bone marrow and liver/background radioactivity concentration ratios in the alcoholics increased during alcohol withdrawal We conclude that heavy drinking causes both an increased total liver volume and a change in liver shape, with a relatively more enlarged left right lobe, as well as a decreased capacity to concentrate radiocolloid. These changes are rapidly reversible during abstinence from alcohol. (au) (26 refs.)

  6. Alterations to embryonic serotonin change aggression and fearfulness

    Science.gov (United States)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  7. [Alcoholism prevention and alcohol advertising investment in Spain: David versus Goliath].

    Science.gov (United States)

    Montes-Santiago, Julio; Lado Castro-Rial, Marta

    2009-01-01

    Alcohol advertising correlates with consumption, particularly in young people. We studied the evolution of the amounts spent on alcoholic beverages advertising and on advertising as a whole in conventional media in Spain during the period 1995-2005. We analyzed the amounts spent on advertising in total and on alcoholic beverages advertising by studying the annual INFOADEX Survey on Advertising Investment in Spain in conventional media (TV, radio, the press, billboards and Internet). The results were subdivided into the periods 1995-2000 and 2001-2005. In the period 1995-2000 there was an increase (Delta) in alcoholic beverages advertising expenditure, from 268 to 347 million euro (Delta=29.5%), but a decrease in its percentage of advertising as a whole (from 7.6% to 6.1%). In the period 2001-2005 there was a rise in alcohol advertising expenditure from 145 to 186 million euro(Delta=28.0%), and also in its percentage of total advertising (from 2.7% to 2.8%). In 2001-2005, spending by Regional governments on preventive advertising increased from 22 to 52 million euro (Delta=136%). Alcohol advertising expenditure remains high in Spain, with young people as a primary target. In contrast, there is only modest investment in preventive advertising. Regulatory measures are necessary with a view to protecting populations especially susceptible to uncontrolled consumption.

  8. Adrenaline and serotonin therapeutic effect on the hemopoietic system of irradiated mice

    International Nuclear Information System (INIS)

    Smirnova, I.B.; Dontsova, G.V.; Rakhmanina, O.N.; Konstantinova, M.M.

    1984-01-01

    Post-irradiation effect of adrenaline and serotonin on the hemopoietic system of irradiated mice has been studied. The pharmaceuticals were injected subcutaneously 15 minutes before the X-radiation exposure at a dose of 7 Gy or immediately after it. The degree of radiation injury has been estimated from 30-day survival fraction of the animals, cell state of the bone marrow, mass of spleen, cfu quantity in the bone marrow at exo- and endocolonial growth (following implantation of bone marrow cells from mice that had been injected with these drugs to irradiated recipients). Post-irradiation effect of adrenaline turned to be weaker than that of serotonin, the latter increasing the survival rate of irradiated mice to 50%. It is stated that post-irradiation therapeutic effect of adrenaline and serotonin expressed in acceleration of the irradiated hemopoietic tissue repair can be realized under direct effect of drugs on the viable hemopoietic cells, probably, by enchancement of their proliferation

  9. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Directory of Open Access Journals (Sweden)

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  10. Effects of serotonin and fluoxetine on blood glucose regulation in two decapod species

    Directory of Open Access Journals (Sweden)

    Santos E.A.

    2001-01-01

    Full Text Available One of the best known crustacean hormones is the crustacean hyperglycemic hormone (CHH. However, the mechanisms involved in hormone release in these animals are poorly understood, and thus constitute the central objective of the present study. Different groups of crustaceans belonging to diverse taxa (Chasmagnathus granulata, a grapsid crab and Orconectes limosus, an astacid were injected with serotonin, fluoxetine, or a mixture of both, and glycemic values (C. granulata and O. limosus and CHH levels (O. limosus were determined after 2 h in either submerged animals or animals exposed to atmospheric air. Both serotonin and fluoxetine caused significant hyperglycemia (P<0.05 after injection into the blood sinus of the two species, an effect enhanced after exposure to atmospheric air. In C. granulata blood glucose increased from 6.1 to 43.3 and 11.4 mg/100 ml in submerged animals and from 5.7 to 55.2 and 22.5 mg/100 ml in air-exposed animals after treatment with serotonin and fluoxetine, respectively. In O. limosus the increases were from 1.2 to 59.7 and 135.2 mg/100 ml in submerged animals and from 2.5 to 200.3 and 193.6 mg/100 ml in air-exposed animals after treatment with serotonin and fluoxetine, respectively. Serotonin and fluoxetine also caused a significant increase in the circulating levels of CHH in O. limosus, from 11.9 to 43 and 45.7 fmol/ml in submerged animals and from 13.2 to 32.6 and 45.7 fmol/ml in air-exposed animals, respectively, thus confirming their action as neuroregulators in these invertebrates.

  11. Solvation effect on isomer stability and electronic structures of protonated serotonin

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    Microsolvation effect on geometry and transition energies of protonated serotonin has been investigated by MP2 and CC2 quantum chemical methods. Also, conductor-like screening model, implemented recently in the MP2 and ADC(2) methods, was examined to address the bulk water environment's effect on the isomer stability and electronic transition energies of protonated serotonin. It has been predicted that the dipole moment of gas phase isomers plays the main role on the isomer stabilization in water solution and electronic transition shifts. Also, both red- and blue-shift effects have been predicted to take place on electronic transition energies, upon hydration.

  12. Displacement of specific serotonin and lysergic acid diethylamide binding by Ergalgin, a new antiserotonin drug

    International Nuclear Information System (INIS)

    Oelszner, W.

    1980-01-01

    [ 3 H]-serotonin and [ 3 H]-lysergic acid diethylamide (LSD) bind with a high affinity, Ksub(D) = 12 nM and 6 nM, respectively, to distinct receptors of rat caudate membranes in vitro. Displacement experiments with unlabeled serotonin and LSD support the hypothesis of serotonin receptors existing in an agonist and antagonist state. Methysergide and Ergalgin display quite similar potenties in displacing [ 3 H]-serontonin and [ 3 H]-LSD from their specific binding sites (Ksub(i) = 46.7 and 53.4 nM; 22.3 and 36.5 nM, respectively). Contrary to pharmacological findings these binding results are in favour of mixed agonist/antagonist properties of these compounds. (author)

  13. Kinetics of homocysteine metabolism after moderate alcohol consumption

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Schaafsma, G.; Kok, F.J.; Struys, E.A.; Jakobs, C.; Hendriks, H.F.J.

    2005-01-01

    Background: Moderate alcohol consumption is associated with a decreased risk of cardiovascular disease. Because plasma homocysteine (tHcy) is considered an independent risk factor for cardiovascular disease and associated with alcohol consumption, the authors investigated the effect of moderate

  14. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  15. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E

    2016-01-01

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin...... acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist...... into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings...

  16. Tris(2-ethylhexyl)phosphine oxide as an effective solvent mediator for constructing a serotonin-selective membrane electrode

    International Nuclear Information System (INIS)

    Ueda, Keisuke; Yonemoto, Rei; Komagoe, Keiko; Masuda, Kazufumi; Hanioka, Nobumitsu; Narimatsu, Shizuo; Katsu, Takashi

    2006-01-01

    A series of solvent mediators containing a phosphoryl (P=O) group, such as tris(2-ethylhexyl)phosphate, bis(2-ethylhexyl) 2-ethylhexylphosphonate, 2-ethylhexyl bis(2-ethylhexyl)phosphinate, and tris(2-ethylhexyl)phosphine oxide, were used to construct serotonin-selective membrane electrodes. We found that replacing the alkoxy groups attached to phosphorus atoms in P=O groups with alkyl groups strengthened the response of the electrode to serotonin, suppressing remarkably interference from inorganic cations, such as Na + . Thus, an electrode combining tris(2-ethylhexyl)phosphine oxide with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate, gave a detection limit of 9 x 10 -6 M with a slope of 55.2 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM NaH 2 PO 4 /Na 2 HPO 4 (pH 7.4). This is the best detection limit of any serotonin-selective electrode developed to date. The selectivity of this electrode for serotonin was over 10 3 times that for inorganic cations, such as Na + and K + , and lipophilic quaternary ammonium ions, such as acetylcholine and (C 2 H 5 ) 4 N + . Using the electrode, we measured the amount of serotonin released from platelets and found that the results agreed well with those obtained by a conventional fluorimetric assay of serotonin

  17. Common ground: an investigation of environmental management alcohol prevention initiatives in a college community.

    Science.gov (United States)

    Wood, Mark D; Dejong, William; Fairlie, Anne M; Lawson, Doreen; Lavigne, Andrea M; Cohen, Fran

    2009-07-01

    This article presents an evaluation of Common Ground, a media campaign-supported prevention program featuring increased enforcement, decreased alcohol access, and other environmental management initiatives targeting college student drinking. Phase 1 of the media campaign addressed student resistance to environmentally focused prevention by reporting majority student support for alcohol policy and enforcement initiatives. Phase 2 informed students about state laws, university policies, and environmental initiatives. We conducted student telephone surveys, with samples stratified by gender and year in school, for 4 consecutive years at the intervention campus and 3 years at a comparison campus. We did a series of one-way between-subjects analyses of variance and analyses of covariance, followed by tests of linear trend and planned comparisons. Targeted outcomes included perceptions of enforcement and alcohol availability, alcohol use, and alcohol-impaired driving. We examined archived police reports for student incidents, primarily those resulting from loud parties. There were increases at the intervention campus in students' awareness of formal alcohol-control efforts and perceptions of the alcohol environment, likelihood of apprehension for underage drinking, consequences for alcohol-impaired driving, and responsible alcohol service practices. There were decreases in the perceived likelihood of other students' negative behavior at off-campus parties. Police-reported incidents decreased over time; however, perceived consequences for off-campus parties decreased. No changes were observed for difficulty finding an off-campus party, self-reported alcohol use, or alcohol-impaired driving. The intervention successfully altered perceptions of alcohol enforcement, alcohol access, and the local alcohol environment. This study provides important preliminary information to researchers and practitioners engaged in collaborative prevention efforts in campus communities.

  18. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  19. Increased expression of protein kinase A inhibitor alpha (PKI-alpha) and decreased PKA-regulated genes in chronic intermittent alcohol exposure.

    Science.gov (United States)

    Repunte-Canonigo, Vez; Lutjens, Robert; van der Stap, Lena D; Sanna, Pietro Paolo

    2007-03-23

    Intermittent models of alcohol exposure that mimic human patterns of alcohol consumption produce profound physiological and biochemical changes and induce rapid increases in alcohol self-administration. We used high-density oligonucleotide microarrays to investigate gene expression changes during chronic intermittent alcohol exposure in three brain regions that receive mesocorticolimbic dopaminergic projections and that are believed to be involved in alcohol's reinforcing actions: the medial prefrontal cortex, the nucleus accumbens and the amygdala. An independent replication of the experiment was used for RT-PCR validation of the microarray results. The protein kinase A inhibitor alpha (PKI-alpha, Pkia), a member of the endogenous PKI family implicated in reducing nuclear PKA activity, was found to be increased in all three regions tested. Conversely, we observed a downregulation of the expression of several PKA-regulated transcripts in one or more of the brain regions studied, including the activity and neurotransmitter-regulated early gene (Ania) - 1, -3, -7, -8, the transcription factors Egr1 and NGFI-B (Nr4a1) and the neuropeptide NPY. Reduced expression of PKA-regulated genes in mesocorticolimbic projection areas may have motivational significance in the rapid increase in alcohol self-administration induced by intermittent alcohol exposure.

  20. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    In the central nervous system, synaptic levels of the monoamine neurotransmitter serotonin are mainly controlled by the serotonin transporter (SERT), and drugs used in the treatment of various psychiatric diseases have SERT as primary target. SERT is a phosphoprotein that undergoes phosphorylation....../dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...