WorldWideScience

Sample records for adipose tissue leptin

  1. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase...

  2. Leptin receptor in peripheral adipose tissues of obesity subjects

    To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density Bmax and dissociation constant Kd value in peripheral adipose tissues with different body weight mass index (BMI), leptin receptor density Bmax and Kd value were assayed via radioligand competition method from 71 cases, including 32 classified as obesity, 19 weight excess and 20 normal controls. With the elevation of BMI, the leptin receptor density was significantly higher in obese and weight excess group than that in normal controls (both Pd value, there were no differences among all three groups, suggesting no correlation between the binding ability of leptin to its receptor and BMI. There was negative correlation between BMI and Bmax (r=- 0.76, P<0.01). Conclusion: Leptin receptor density correlated with the BMI in obese cases and it suggested that the down-regulation of leptin receptor may contribute to occurrence of leptin resistance and obesity afterwards

  3. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  4. Leptin receptor in peripheral adipose tissues of obese subjects

    Objective: To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density Bmax and dissociation constant Kd in peripheral adipose tissue in subjects with different body weight mass (BMI). Methods: Leptin receptor density Bmax and Kd were assayed via radioligand method in 71 cases, including 32 classified as obese, 19 over-weight and 20 normal control. Results: With the escalating of BMI, the leptin receptor density significantly decreased in obese and over-weight group compared with that in normal control (both Pd values were of no differences among all three groups suggesting no correlation between the binding ability of leptin to its receptor and BMI. A negative correlation between BMI and Bmax (r=-0.76, P<0.01) displayed after all. Conclusion: Leptin receptor density correlates with the BMI in obese cases and it suggests that the down-regulation of leptin receptor may contribute to the occurrence of leptin resistance and obesity after-wards

  5. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  6. Anticontractile effect of perivascular adipose tissue and leptin are reduced in hypertension

    Gálvez-Prieto, Beatriz; Somoza, Beatriz; Gil-Ortega, Marta; García-Prieto, Concha F.; de las Heras, Ana I.; González, M. Carmen; Arribas, Silvia; Aranguez, Isabel; Bolbrinker, Juliane; Kreutz, Reinhold; Ruiz-Gayo, Mariano; Fernández-Alfonso, Maria S.

    2012-01-01

    Leptin causes vasodilatation both by endothelium-dependent and -independent mechanisms. Leptin is synthesized by perivascular adipose tissue (PVAT). The hypothesis of this study is that a decrease of leptin production in PVAT of spontaneously hypertensive rats (SHR) might contribute to a diminished paracrine anticontractile effect of the hormone. We have determined in aorta from Wistar-Kyoto (WKY) and SHR (i) leptin mRNA and protein levels in PVAT, (ii) the effect of leptin and PVAT on contra...

  7. Anticontractile effect of perivascular adipose tissue and leptin are reduced in hypertension

    BeatrizSomoza; BeatrizGálvez-Prieto; MaríaGonzález; IsabelAranguez; JulianeBolbrinker

    2012-01-01

    Leptin causes vasodilatation both by endothelium-dependent and -independent mechanisms. Leptin is synthetized by perivascular adipose tissue (PVAT). The hypothesis of this study is that a decrease of leptin production in PVAT of spontaneously rats (SHR) might contribute to a diminished paracrine anti-contractile effect of the hormone. We have determined in aorta from Wistar Kyoto (WKY) and SHR i) leptin mRNA and protein levels in PVAT, ii) the effect of leptin and PVAT on contractile response...

  8. Leptin Action in the Dorsomedial Hypothalamus Increases Sympathetic Tone to Brown Adipose Tissue in Spite of Systemic Leptin Resistance

    Enriori, Pablo J.; Sinnayah, Puspha; Simonds, Stephanie E.; Garcia Rudaz, Cecilia; Cowley, Michael A.

    2011-01-01

    Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Con...

  9. Leptine: an hormone secreted by adipose tissue. First study in Uruguayan population sample

    The recent discovery of leptine, an hormone secreted by adipose tissue which modulates the energetic expenditure has signified a gigantic advance in studying obesity facts. In spite of a recent description of absence of leptine in humans, the obesity human model answers to leptine resistance. In this paper, we revise the actual concepts and show leptine values of a sample of 101 middle aged uruguayans, male and female, of normal weight and over weighted (table 1), correlated with corporal mass index (CMI) as an indirect measure of total body fat and waist diameter as an indirect measure of visceral fat, and hips (periferical fat). Bioimpedance studies were carried out to get the corporal composition. Results: good correlation between corporal fat and leptine, but fat distribution was not found representative. All in all, this data set confirms the correlation between leptine and total body fat mass

  10. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral γδ T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the αβ T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations

  11. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes.

    MacDougald, O A; Hwang, C. S.; Fan, H; Lane, M D

    1995-01-01

    A mutation within the obese gene was recently identified as the genetic basis for obesity in the ob/ob mouse. The obese gene product, leptin, is a 16-kDa protein expressed predominantly in adipose tissue. Consistent with leptin's postulated role as an extracellular signaling protein, human embryonic kidney 293 cells transfected with the obese gene secreted leptin with minimal intracellular accumulation. Upon differentiation of 3T3-L1 preadipocytes into adipocytes, the leptin mRNA was expresse...

  12. Lipometer subcutaneous adipose tissue topography (SAT-Top) reflects serum leptin levels varying in circadian rhythms

    Moeller, Reinhard; Tafeit, Erwin; Sudi, Karl; Vrecko, Karoline; Horejsi, Renate; Hinghofer-Szalkay, Helmut G.; Reibnegger, Gilbert

    1998-05-01

    Recent advances in obesity research have shown that the product of the ob-gene named leptin is related to total body fast mass in humans. There is, however, a debate if leptin levels are pulsatile and linked to body fat distribution. In this study we therefore investigated the subcutaneous adipose tissue topography (SAT-Top) measured by means of the newly developed device Lipometer and leptin levels during a 24 hours beginning at 0715am ending the same time in the next day. Blood samples for measurement of leptin were taken every 3 hours in a male subject. Measurements of SAT-Top were performed at 15 body sites from neck to calf at the left and right body site at the same time interval. We observed an almost symmetrically reaction of the left and right body site with a maximum of the mean value of all body sites in the evening at 0715pm. There was a negative correlation between serum leptin levels and SAT-Top using the set of certain body sites (R2 equals 0.80, p equals 0.01). If these combination of body sites is inversed and set against serum leptin levels, both curves show almost identical shape and time dependence. We conclude that SAT-Top by means of Lipometer is changed in a short time and related to leptin levels in the investigated male subject.

  13. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  14. Developmental patterns of serum leptin levels, leptin gene expression in adipose tissue and Ob-Rb gene expression in hypothalamus of Erhualian and Large White pigs

    ZHOU Jie; ZHAO Ruqian; WEI Xihui; XIA Dong; XU Qingfu; CHEN Jie

    2004-01-01

    The present study was aimed to investigate the developmental patterns of leptin mRNA expression in dorsal subcutaneous adipose tissue and Ob-Rb mRNA expression in hypothalamus in pigs of different breeds and sexes. Erhualian gilts and boars and Large White boars were sampled at birth, 3, 20, 30, 45, 90, 120 and 180 days of age, respectively. Serum concentration of leptin was measured with RIA and single tube semi-quantitative RT-PCR was applied to determine the relative abundances of mRNA expression using 18S rRNA as an internal standard. The results showed that leptin mRNA expression in adipose tissue increased with age and displayed both sex and breed differences. In Erhualian pigs, females expressed higher leptin mRNA compared with males, and Erhualian boars showed higher abundance of leptin mRNA than Large White boars (P<0.01). Serum leptin levels were in good agreement with adipose leptin mRNA, displaying similar sex and line differences. In contrast, expression of Ob-Rb mRNA in hypothalamus exhibited a distinctive pattern, decreased gradually after birth, and then increased till weaning. After weaning, Ob-Rb gene expression decreased gradually with age but rose gradually again from 120 to 180 days of age in Erhualian pigs. The expression of Ob-Rb mRNA was higher in Large White pigs than that in Erhualian pigs (P<0.01). The results suggest that the serum leptin level and leptin gene expression in adipose tissue highly correlate with adiposity.

  15. Telmisartan Ameliorates Nephropathy in Metabolic Syndrome by Reducing Leptin Release From Perirenal Adipose Tissue.

    Li, Hao; Li, Min; Liu, Ping; Wang, YaPing; Zhang, Heng; Li, HongBin; Yang, ShiFeng; Song, Yan; Yin, YanRong; Gao, Lan; Cheng, Si; Cai, Jun; Tian, Gang

    2016-08-01

    Metabolic syndrome (MetS) is associated with nephropathy. Along with common risk factors such as hypertension and hyperglycemia, adipocytokines released from perirenal adipose tissue (PRAT) are implicated in the pathogenesis of MetS nephropathy. The study was designed to elucidate the adverse effects of PRAT-derived leptin on nephropathy and to determine whether the angiotensin II type 1 receptor antagonist telmisartan exerts a renoprotective effect by decreasing the PRAT-derived leptin level in the high-fat diet-induced MetS rat. In MetS rats, PRAT-derived leptin expression increased concomitant with dysfunction of adipogenesis, and the activities of the angiotensin II-angiotensin II type 1 receptor and the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas receptor axes were imbalanced in PRAT. PRAT-derived leptin from MetS rats promoted proliferation of rat glomerular endothelial cells (GERs) by activating the p38 MAPK (mitogen-activated protein kinase) pathway, thereby contributing to the development of nephropathy. Long-term telmisartan treatment improved metabolic parameters and renal function, decreased the amount of PRAT, promoted adipogenesis, increased the expression of angiotensin-converting enzyme 2, restored balanced activities of the angiotensin II-AT1R and angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axes, and exerted an indirect renoprotective effect on MetS rats by decreasing PRAT-derived leptin release. Our results demonstrate a novel link between nephropathy and PRAT in MetS and show that telmisartan confers an underlying protective effect on visceral adipose tissue and the kidney, suggesting that it has potential as a therapeutic agent for the treatment of MetS-associated nephropathy. PMID:27296996

  16. Repeated electroacupuncture in obese Zucker diabetic fatty rats: adiponectin and leptin in serum and adipose tissue.

    Peplow, Philip V

    2015-04-01

    Fasted, male, obese, Zucker, diabetic fatty rats aged 10-16 weeks were anesthetized with 1% halothane in nitrous oxide-oxygen (3:1) on alternate weekdays over 2 weeks. Group 1 (n = 4) did not receive electroacupuncture (controls); Group 2 (n = 4) received electroacupuncture using the Zhongwan and the Guanyuan acupoints; Group 3 (n = 4) received electroacupuncture using the bilateral Zusanli acupoints; Group 4 (n = 6) received neither halothane in nitrous oxide:oxygen nor electroacupuncture. At the end of study, animals were injected with sodium pentobarbitone (60 mg/mL, i.p.), and blood and white adipose tissue were collected. Analysis of variance and Duncan's tests showed that the mean leptin in serum was significantly lower and the adiponectin:leptin ratio was significantly higher in Group 2 than in Group 1 (p insulin: glucose ratio was significantly higher than it was for Group 1 (p insulin and insulin: glucose ratio were significantly higher than they were for Groups 1 and 3 (p  0.05). No significant differences in the serum or the adipose-tissue measurements between Groups 1 and 3 were observed (p > 0.05). PMID:25952122

  17. Mimecan, a Hormone Abundantly Expressed in Adipose Tissue, Reduced Food Intake Independently of Leptin Signaling

    Huang-Ming Cao

    2015-11-01

    Full Text Available Adipokines such as leptin play important roles in the regulation of energy metabolism, particularly in the control of appetite. Here, we describe a hormone, mimecan, which is abundantly expressed in adipose tissue. Mimecan was observed to inhibit food intake and reduce body weight in mice. Intraperitoneal injection of a mimecan-maltose binding protein (-MBP complex inhibited food intake in C57BL/6J mice, which was attenuated by pretreatment with polyclonal antibody against mimecan. Notably, mimecan-MBP also induced anorexia in Ay/a and db/db mice. Furthermore, the expression of interleukin (IL-1β and IL-6 was up-regulated in the hypothalamus by mimecan-MBP, as well as in N9 microglia cells by recombinant mouse mimecan. Taken together, the results suggest that mimecan is a satiety hormone in adipose tissue, and that mimecan inhibits food intake independently of leptin signaling by inducing IL-1β and IL-6 expression in the hypothalamus.

  18. TUMOR NECROSIS FACTOR ALPHA AND GLUCOCORTICOID SYNERGISTICALLY INCREASE LEPTIN PRODUCTION IN HUMAN ADIPOSE TISSUE: ROLE FOR P38 MITOGEN-ACTIVATED PROTEIN KINASE

    TNF increases plasma leptin in humans in vivo, but previous studies showed it decreases leptin in vitro. The objective of this study was to determine the effect of TNF on leptin release from human adipose tissue (AT) from healthy subjects undergoing elective surgery or needle aspirations of AT at a ...

  19. Use of Radiometric Enzyme Assays for Elucidation of Relations between Leptin and Thyroid Hormones Metabolism in Murine White Adipose Tissue

    Pavelka, Stanislav

    Vol. 4. Kolkata: Saha Institute of Nuclear Physics, 2014 - (Lahiri, S.; Maiti, M.; Datta, A.), s. 99-100 [International Conference Application of Radiotracers and Energetic Beams in Sciences (ARCEBS-14) /3./. Kolkata (IN), 12.01.2014-18.01.2014] Institutional support: RVO:67985823 Keywords : adipose tissue * leptin * thyroid hormone Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  20. Site-specific circadian expression of leptin and its receptor in human adipose tissue Expresión circadiana específica de la localización de leptina y su receptor en tejido adiposo humano

    P. Gómez Abellán; C. Gómez Santos; Madrid, J. A.; Milagro, F.I. (Fermín Ignacio); Campion, J; J. A. Martínez; J. A. Luján; J. M.ª Ordovás; Garaulet, M.

    2011-01-01

    Introduction: Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. Objective: We investigated the ex vivo circadian behavior of leptin and its receptor expression in human adipose tissue (AT). Subjects and methods: Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥...

  1. Transplantation of wild-type white adipose tissue normalizes metabolic, immune and inflammatory alterations in leptin-deficient ob/ob mice

    Sennello, Joseph A.; Fayad, Raja; Pini, Maria; Gove, Melissa E.; Fantuzzi, Giamila

    2006-01-01

    Leptin-deficient ob/ob mice exhibit several metabolic and immune abnormalities, including thymus atrophy and markedly reduced inflammatory responses. We evaluated whether transplantation of wild type (WT) white adipose tissue (WAT) into ob/ob mice could mimic the effect of recombinant leptin administration in normalizing metabolic, immune and inflammatory abnormalities. Female ob/ob mice received a subcutaneous transplantation of WAT obtained from WT littermates. A separate group of ob/ob mic...

  2. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus.

    Wang, Meihong; Luo, Lan; Yao, Lili; Wang, Caiping; Jiang, Ketao; Liu, Xiaoyu; Xu, Muchen; Shen, Ningmei; Guo, Shaodong; Sun, Cheng; Yang, Yumin

    2016-01-01

    Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50 mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (eWAT). In addition, salidroside markedly ameliorated hyperglycemia in treated mice, which is likely due to the suppression of gluconeogenesis by salidroside as the protein levels of a gluconeogenic enzyme G6Pase and a co-activator PGC-1α were all markedly decreased. Further analysis revealed that adipogenesis in eWAT was significantly decreased in salidroside treated mice. The infiltration of macrophages in eWAT and the productions of pro-inflammatory cytokines were also markedly suppressed by salidroside. Furthermore, the leptin signal transduction in hypothalamus was improved by salidroside. Taken together, these euglycemic effects of salidroside may due to repression of adipogenesis and inflammation in eWAT and stimulation of leptin signal transduction in hypothalamus. Thus, salidroside might be used as an effective anti-diabetic agent. PMID:27145908

  3. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME.

    Bato Korac

    2008-02-01

    Full Text Available The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C and cold (4 +/- 1 degrees C were treated with L-arginine, a substrate for nitric oxide synthases (NOSs, or N?-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.

  4. Placental restriction of fetal growth decreases IGF1 and leptin mRNA expression in the perirenal adipose tissue of late gestation fetal sheep.

    Duffield, Jaime A; Vuocolo, Tony; Tellam, Ross; Yuen, Bernard S; Muhlhausler, Beverly S; McMillen, I Caroline

    2008-05-01

    Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity. PMID:18272661

  5. Subcutaneous adipose tissue topography (SAT-Top) by means of the optical device lipometer highly correlated to plasma leptin levels in obese boys

    Sudi, Karl; Moeller, Reinhard; Tafeit, Erwin; Reiterer, Elke; Borkenstein, Martin; Vrecko, Karoline; Horejsi, Renate; Reibnegger, Gilbert; Hofmann, Peter

    1998-05-01

    The product of the ob-gene named leptin is correlated with body fat mass in humans. Little evidence exists if the same holds true for body fat distribution. In this study we therefore investigated plasma leptin levels and the subcutaneous adipose tissue topography (SAT-Top) by means of the newly developed optical device Lipometer before and after a 3 week weight reduction camp. Thirty four obese boys (mean age 12a) took part in this study. Body fat distribution were assessed by means of Lipometer to measure the thickness of a subcutaneous fat layer at 15 standardized body sites (SAT- Top). Plasma leptin levels (LL) were measured by radioimmunoassay. All measurements were taken at the beginning and at the end of the camp. By dividing all boys according chronological age (group A: age less than 12a, n equals 17/group B: greater than 12a, n equals 17) we found correlations with the combination of measured body sites (MBS) before (A: MBS vs. LL, R2 equals 0.79; p less than 0.01/B: MBS vs. LL, R2 equals 0.35; n.s.) and after (A: MBS vs. LL, R2 equals 0.83; p less than 0.01/B: MBS vs. LL, R2 equals 0.70; p less than 0.01) the intervention. Our study confirms that the subcutaneous adipose tissue topography (SAT- Top) by means of the optical device Lipometer serves as a marker of plasma leptin levels in obese boys and highlights the use of this optical device in a predictive manner.

  6. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  7. Modulation of type I iodothyronine 5’-deiodinase activity in white adipose tissue by nutrition: possible involvement of leptin

    Macek Jílková, Zuzana; Pavelka, Stanislav; Flachs, Pavel; Hensler, Michal; Kůs, Vladimír; Kopecký, Jan

    2010-01-01

    Roč. 59, č. 4 (2010), s. 561-569. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) OC08007 Institutional research plan: CEZ:AV0Z50110509 Keywords : adipose tissue * thyroid hormones * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.646, year: 2010

  8. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake

    Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2013-01-01

    Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice af...

  9. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  10. Adipose tissue fibrosis

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. The...

  11. Endocrine and Metabolic Effects of Adipose Tissue in Children and Adolescents

    Kotnik Primož; Fischer Posovszky Pamela; Wabitsch Martin

    2015-01-01

    Adipose tissue is implicated in many endocrine and metabolic processes. Leptin was among the first identified adipose-secreted factors, which act in an auto-, para- and endocrine manner. Since leptin, many other adipose tissue factors were determined, some primarily secreted from the adipocytes, some from other cells of the adipose tissue. So-called adipokines are not only involved in obesity and its complications, as are insulin resistance, type 2 diabetes and other components of the metabol...

  12. Site-specific circadian expression of leptin and its receptor in human adipose tissue Expresión circadiana específica de la localización de leptina y su receptor en tejido adiposo humano

    P. Gómez Abellán

    2011-12-01

    Full Text Available Introduction: Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. Objective: We investigated the ex vivo circadian behavior of leptin and its receptor expression in human adipose tissue (AT. Subjects and methods: Visceral and subcutaneous abdominal AT biopsies (n = 6 were obtained from morbid obese women (BMI ≥ 40 kg/m². Anthropometric variables and fasting plasma glucose, leptin, lipids and lipoprotein concentrations were determined. In order to investigate rhythmic expression pattern of leptin and its receptor, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h, using quantitative real-time PCR. Results: Leptin expression showed an oscillatory pattern that was consistent with circadian rhythm in cultured AT. Similar patterns were noted for the leptin receptor. Leptin showed its achrophase (maximum expression during the night, which might be associated to a lower degree of fat accumulation and higher mobilization. When comparing both fat depots, visceral AT anticipated its expression towards afternoon and evening hours. Interestingly, leptin plasma values were associated with decreased amplitude of LEP rhythm. This association was lost when adjusting for waist circumference. Conclusion: Circadian rhythmicity has been demonstrated in leptin and its receptor in human AT cultures in a site-specific manner. This new knowledge paves the way for a better understanding of the autocrine/paracrine role of leptin in human AT.Introducción: La variabilidad circadiana de los niveles de leptina circulante se ha establecido en la última década, pero actualmente se desconoce el comportamiento circadiano de leptina y su receptor en tejido adiposo (TA humano. Objetivo: Investigar si existe un comportamiento

  13. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  14. Adipose Tissue Metabolism During Hypobaria

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  15. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  16. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  17. Subcutaneous adipose tissue classification

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  18. Adipose tissue development in extramuscular and intramuscular depots in meat animals

    The cellular and metabolic aspects of developing intramuscular adipose tissue and other adipose tissue depots have been studied including examination of the expression of a number of genes. Depot dependent or depot “marker” genes such as stearoyl-CoA desaturase and leptin for subcutaneous adipose ti...

  19. Bioengineering beige adipose tissue therapeutics

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  20. Bioengineering Beige Adipose Tissue Therapeutics.

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  1. Leptin: a multifunctional hormone

    2000-01-01

    Leptin is the protein product encoded by the obese (ob)gene. It is a circulating hormone produced primarily by the adipose tissue. ob/ob mice with mutations of the gene encoding leptin become morbidly obese, infertile, hyperphagic, hypothermic,and diabetic. Since the cloning of leptin in 1994, our knowledge in body weight regulation and the role played by leptin has increased substantially. We now know that leptin signals through its receptor, OB-R, which is a member of the cytokine receptor superfamily. Leptin serves as an adiposity signal to inform the brain the adipose tissue mass in a negative feedback loop regulating food intake and energy expenditure. Leptin also plays important roles in angiogenesis, immune function, fertility, and bone formation. Humans with mutations in the gene encoding leptin are also morbidly obese and respond to leptin treatment,demonstrating that enhancing or inhibiting leptin's activities in vivo may have potential therapeutic benefits.

  2. Analysis of changes of serum leptin, C-peptide levels and peripheral fat tissue leptin receptor expression in obesity

    Objective: To explore the mechanism of obesity and obesity accompanied type two diabetes mellitus by investigating changes of serum leptin, C-peptide (C-P) levels and leptin receptor expression in peripheral adipose tissues. Methods: Peripheral leptin receptor density was measured via radio-ligand binding method, serum leptin and C - P levels were measured via radioimmunoassay in 91 cases (38 in obesity group, 23 in over weight, and 30 in normal controls). Results: With the increase of body mass index (BMI), the peripheral leptin receptor density of the over weight and obese cases decreased and was mash less than that of normal cases (both p<0.01, respectively). There was no statistical differences for Kd value among the three groups, suggesting no associated change between the binding ability of leptin receptor to its ligand. There was a negative correlation between BMI and leptin receptor density (r = -0.70, p < 0.01). The serum leptin and C-P levels in weight excess and obese subjects with type two DM were both increased, but significantly higher in obese group than those in weight excess group (p < 0.01). The increase of C-P was much marked than that of leptin. Serum C-P level was positively correlated with BMI. Conclusion: Changes of serum leptin, C-P levels and peripheral leptin receptor expression in cases with simple obesity and obesity accompanied with type two DM were related closely with BMI. Type 2 DM in obese subjects was related with leptin resistance and insulin resistance

  3. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    Colin N. Young

    2015-04-01

    Conclusions: These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.

  4. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  5. Bioengineering Beige Adipose Tissue Therapeutics

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiolog...

  6. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization). In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal o...

  7. Adipose tissues and thyroid hormones

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  8. Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue

    Nielsen, Ninna Bo; Højbjerre, Lise; Sonne, Mette P;

    2009-01-01

    Adipokines play important regulatory roles in the pathophysiology of obesity and insulin resistance. We measured plasma and interstitial concentrations of the adipokines adiponectin, resistin, leptin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) in...... subcutaneous, abdominal and femoral adipose tissue using calibrated, large-pore microdialysis technique in 8 healthy, lean men on 2 experimental days. The interstitial leptin concentration was 2.5-fold higher in subcutaneous, femoral than abdominal adipose tissue (P<0.05), but no regional differences were...... found for the remaining adipokines (P>0.05). Adiponectin and leptin concentrations were higher in plasma than subcutaneous adipose tissue (approximately 25-fold and approximately 2-fold, respectively, P<0.05), whereas MCP-1, IL-6 and IL-8 concentrations were higher in subcutaneous adipose tissue than...

  9. Adipose tissue macrophages: amicus adipem?

    Odegaard, Justin I.; Ganeshan, Kirthana; Chawla, Ajay

    2013-01-01

    Chronic overnutrition drives complex adaptations within both professional metabolic and bystander tissues that, despite intense investigation, are still poorly understood. Xu et al. (2013) now describe the unexpected ability of adipose tissue macrophages to buffer lipids released from obese adipocytes in a manner independent of inflammatory macrophage activation.

  10. Obesity, adipose tissue function and the role of vitamin D

    Koszowska, Aneta U.; Nowak, Justyna; Dittfeld, Anna; Brończyk-Puzoń, Anna; Kulpok, Agata; Zubelewicz-Szkodzińska, Barbara

    2014-01-01

    Introduction Obesity is not just a cosmetic problem. Pathological accumulation of body fat can cause many health problems: insulin resistance, impaired glucose tolerance, and diabetes mellitus type 2. It may also increase morbidity and mortality. Adipose tissue plays an important role in body homeostasis by producing and secreting several bioactive proteins known as adipokines: adiponectin, leptin, resistin, visfatin, and apelin, which are involved in the regulation of food intake, glucose an...

  11. Leptin, IL-6, and suPAR reflect distinct inflammatory changes associated with adiposity, lipodystrophy and low muscle mass in HIV-infected patients and controls

    Langkilde, Anne; Petersen, Janne; Henriksen, Jens Henrik;

    2015-01-01

    BACKGROUND: HIV-infected patients could exhibit accelerated ageing, since age-associated complications like sarcopenia; increased inflammation; lipodystrophy with loss of subcutaneous adipose tissue and/or gain of visceral adipose tissue (VAT); and cardiovascular disease occur at an earlier age...... receptor (suPAR) were associated distinctively with adiposity, lipodystrophy and sarcopenia, in HIV-infected patients and healthy Controls. RESULTS: Systemic leptin levels were significantly higher in patients with lipodystrophy than without, whereas there was no difference in IL-6 or suPAR levels. Leptin...... adiposity- and lipodystrophy-related inflammation, but not sarcopenia. IL-6 reflected both adiposity-, but also sarcopenia-related inflammation; and suPAR was a marker of sarcopenia-related inflammation. Our results indicate that different inflammatory processes can be active simultaneously contributing to...

  12. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Urszula Skalska; Ewa Kontny

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial ...

  13. Vibrational and structural investigations on adipose tissues

    Giarola, Marco; Guella, G.; Mariotto, G.; Monti, Francesca; Rossi, Barbara; Sanson, Andrea; Sbarbati, Andrea

    2008-01-01

    Abstract Two types of adipose tissue are found in mammals, including humans: the white adipose tissue (WAT) and the brown adipose tissue (BAT). The WAT has a major role in lipid storage and body thermal insulation, while the BAT is a thermogenic tissue that produces heat by oxidizing fatty acids. Both structural characterization and spectroscopic discrimination of these different adipose tissues are matter of current interest, also in view of possible medical and ...

  14. Lipolysis in human adipose tissue during exercise

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and...

  15. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (prats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity. PMID:25194956

  16. Exercise regulation of adipose tissue.

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  17. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma

    Margareto, J. (Javier); A. Marti; MARTINEZ, J. A.

    2001-01-01

    Brown adipose tissue and skeletal muscle are known to be important sites for nonshivering thermogenesis. In this context, it is accepted that uncoupling proteins (UCPs) are involved in such process, but little is known about the physiological regulation of these proteins as affected by the intake of a high-energy (cafeteria) diet inducing fat deposition. In this study, the UCP messenger RNA (mRNA) expression in interscapular brown adipose tissue (iBAT) and skeletal muscle was assesse...

  18. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  19. Profiling of chicken adipose tissue gene expression by genome array

    Wang Shou-Zhi

    2007-06-01

    Full Text Available Abstract Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP, thyroid hormone-responsive protein (Spot14, lipoprotein lipase(LPL, insulin-like growth factor binding protein 7(IGFBP7 and major histocompatibility complex (MHC, were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1, apolipoprotein B(ApoB and insulin-like growth factor 2(IGF2, were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of

  20. Quantification of adipose tissue insulin sensitivity

    Søndergaard, Esben; Jensen, Michael D

    2016-01-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute...... to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible...... quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and...

  1. Quantification of adipose tissue insulin sensitivity.

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  2. GH对猪脂肪组织和Leptin分泌的调节%Effect of GH on adipose tissue and leptin secretion of the pig

    周杰

    2004-01-01

    一般认为生长激素(Growth hormone,GH)对动物的生长的调节是通过其受体(GH—R)介导产生胰岛素样生长因子-1(Insulin like growth factor-1,IGF-1),再以内分泌方式作用于靶器官。而GH对脂肪的作用似乎是直接的,与IGF-1无关,因为GH在体内试验的结果均可在体外试验中重现,而经IGF-1处理的猪胴体组成没有重现GH处理的效应(Etherton和Bauman,1998;Kindt等,1998)。然而有试验表明,GH处理使生长猪皮下脂肪组织IGF-1基因表达显著增高(Coleman等,1994;Brameld等,1996),去垂体大鼠经GH处理其白色脂肪组织IGF-1及IGF-1结合蛋白-3(IGFBP-3)基因表达显著增高(Petdr等,1993)。显然,至今GH对脂肪组织沉积的作用机理仍然存在争议。同时,越来越多的研究表明,脂肪组织不仅仅是被动的能量储存器官,它还能以内分泌、旁分泌和自分泌的形式在能量调节中起着重要作用(Mohamed—Ali等,2002)。脂肪细胞可分泌20余种生物活性物质(Kin和Moustaid,2002),其中最主要的是瘦蛋白(Leptin),Leptin作为白色脂肪组织分泌的一种主要激素,是机体能量储备的信号,它可以调节摄食、脂肪和葡萄糖代谢、生热、内分泌和生殖作用以及造血和免疫功能(Moschos等,2002)。本文就GH对猪脂肪细胞生长发育、脂肪组织沉积的作用及其机理,以及GH和Leptin的相互作用作一综述。

  3. Serum leptin levels in pregnant women with type 1 diabetes mellitus

    Lauszus, Finn; Schmitz, Ole; Vestergaard, H;

    2001-01-01

    Leptin is an important weight regulator and during pregnancy leptin is not only synthesized in adipose tissue but also in the placenta.......Leptin is an important weight regulator and during pregnancy leptin is not only synthesized in adipose tissue but also in the placenta....

  4. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5

    Scholze, Alexandra; Rattensperger, Dirk; Zidek, Walter;

    2007-01-01

    Leptin, secreted from adipose tissue, regulates food intake, energy expenditure, and immune function. It is unknown whether leptin predicts mortality in patients with chronic kidney disease stage 5 on hemodialysis therapy.......Leptin, secreted from adipose tissue, regulates food intake, energy expenditure, and immune function. It is unknown whether leptin predicts mortality in patients with chronic kidney disease stage 5 on hemodialysis therapy....

  5. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  6. Biochemistry of adipose tissue: an endocrine organ

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Rúben

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of n...

  7. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  8. White adipose tissue resilience to insulin deprivation and replacement.

    Lilas Hadji

    Full Text Available Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin.Using streptozotocin (STZ-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT, epididymal (eWAT and subcutaneous adipose tissues (scWAT. Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter. Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines.The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group.Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  9. Leptin levels in free ranging striped mice (Rhabdomys pumilio) increase when food decreases: the ecological leptin hypothesis

    Schradin, Carsten; Raynaud, Julien; Arrive, Mathilde; Blanc, Stephane

    2014-01-01

    Leptin is a hormone informing the body about its fat stores, reducing appetite and foraging and as such reducing fattening of individuals. In laboratory rodents, leptin secretion is highly correlated to the amount of adipose tissue. We compared this to the alternative ecological leptin hypothesis, which based on the behavioural effects of leptin predicts that leptin levels are disassociated from adipose tissue when fattening is of evolutionary advantage to survive coming periods of low food a...

  10. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  11. Transketolase Haploinsufficiency Reduces Adipose Tissue and Female Fertility in Mice

    Xu, Zheng-Ping; Wawrousek, Eric F.; Piatigorsky, Joram

    2002-01-01

    Transketolase (TKT) is a ubiquitous enzyme used in multiple metabolic pathways. We show here by gene targeting that TKT-null mouse embryos are not viable and that disruption of one TKT allele can cause growth retardation (≈35%) and preferential reduction of adipose tissue (≈77%). Other TKT+/− tissues had moderate (≈33%; liver, gonads) or relatively little (≈7 to 18%; eye, kidney, heart, brain) reductions in mass. These mice expressed a normal level of growth hormone and reduced leptin levels....

  12. Receptor-mediated regional sympathetic nerve activation by leptin.

    Haynes, W G; Morgan, D A; Walsh, S A; Mark, A L; Sivitz, W I

    1997-01-01

    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  13. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering

    Wang, Lina; Johnson, Joshua A.; Zhang, Qixu; Elisabeth K. Beahm

    2013-01-01

    Repair of soft-tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft-tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM, incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were p...

  14. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice

    Brandt, Claus; Jakobsen, Anne Hviid; Hassing, Helle Adser;

    2012-01-01

    Aim: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. Methods: Four months old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1h of treadmill exercise, where subcutaneous ad...... regulating exercise and training-induced leptin and PPAR¿ expression in adipose tissue. In addition, while IL-6 is required for TNF-a mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue....

  15. Leptin signaling

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, glucose and lipid metabolism, immune function, and other systems. The binding of leptin to its specific receptor activates various intracellular signaling pathways, including Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K), SH2-containing protein tyrosine phosphatase 2 (SHP2)/mitogen-activated protein kinase (MAPK), and...

  16. Human skeletal muscle releases leptin in vivo

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund;

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle and...... adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma...... leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin...

  17. Capillary permeability in adipose tissue

    Paaske, W P; Nielsen, S L

    1976-01-01

    A method for measurement of capillary permeability using external registration of gamma emitting isotopes after close arterial bolus injection was applied to the isolated inguinal fat pad in slightly fasting rabbits. An average extraction of 26 per cent for 51Cr-EDTA was found at a plasma flow of...... about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  18. The Adipose Tissue in Farm Animals

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura;

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  19. DETECTION OF LEPTIN IN MUSCLE TISSUES AND ORGANS OF PIGS

    Simona Kunová

    2015-02-01

    Full Text Available The aim of this study was detection of gene leptin in muscles, liver and kidneys from pigs of breed Large White. Using Real time PRC method, we determined the Ct values of leptim gene in muscle, liver, kidney. The body weight of pigs ranged from 100 kg to 103 kg. The average body weight was 101.6 kg. The thickness of backfat ranged from 10 to 20 mm, average backfat thickness was 16 mm. The minimal Ct value of leptin gene in liver was 24.05 and the maximal value was 25.79. Average Ct value of leptin gene was 24.84. The minimal Ct value of leptin gene in muscle tissue was 25.83 and the maximal value was 27.05. Average Ct value of leptin gene was 26.41. The Ct value of leptin gene in liver ranged from 24.05 to 25.79. Average Ct value of leptin gene was 24.84. Leptin gene is expressed by porcine preadipocytes and leptin gene expression is highly dependent on dexamethasone induced preadipocyte differentiation. Hormonally driven preadipocyte recruitment and subsequent fat cell size may regulate leptin gene expression in the pig.

  20. New concepts in white adipose tissue physiology

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT

  1. New concepts in white adipose tissue physiology

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  2. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  3. [Relationships of hormones of adipose tissue and ghrelin to bone metabolism].

    Zofková, I

    2009-06-01

    Body adipose tissue influences bone metabolism through mechanical load, as well as via hormones released into circulation. Such hormones are adipocytokines--leptin, adiponectin, TNF-alpha, IL-6, resistin and visfatin. Some of them exert an osteoanabolic effect, while the others activate bone resorption. An increasingly discussed adipocytokine is leptin, which fundamental role is regulation of food intake ensuring survival of the organism during starvation. Leptin also stimulates osteoblasts and activates bone formation. The direct osteotropic effect of leptin is modulated by interaction with hypothalamic centers and neurohormones. Apparently, the most important leptin sensitive pathway involved in bone regulation is the beta-adrenergic system. While activation of beta-1-adrenergic receptors by leptin enhances bone formation, activation of beta-2-adrenergic receptors in hypothalamus and in the skeleton increases bone resorption. In humans, an anabolic effect on the skeleton prevails. In pubertal girls, leptin extensively released into circulation at the moment when adipose tissue reaches a critical volume, stimulates synthesis of GnRH and induces puberty, which is followed by striking increases in bone mass. Low leptin levels in anorexia nervosa are associated with amenorrhoea, which slows down increase of bone mass and may induce osteopenia. Important adipocytokine with an unambiguous negative effect on bone is adiponectin. Decreased production of this hormone explains in part the lower prevalence of osteoporosis in obese persons. In this article, the osteotropic importance ofleptin-sensitive neurohormonal mechanisms and other hormones related to adipose tissue are discussed. Clinical importance of the above mentioned hormones to integrity of the skeleton has not yet been verified. PMID:19662887

  4. Adipose Tissue Biology: An Update Review

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  5. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  6. Molecular characterization of adipose tissue in the African elephant (Loxodonta africana).

    Nilsson, Emeli M; Fainberg, Hernan P; Choong, Siew S; Giles, Thomas C; Sells, James; May, Sean; Stansfield, Fiona J; Allen, William R; Emes, Richard D; Mostyn, Alison; Mongan, Nigel P; Yon, Lisa

    2014-01-01

    Adipose tissue (AT) is a dynamic and flexible organ with regulatory roles in physiological functions including metabolism, reproduction and inflammation; secreted adipokines, including leptin, and fatty acids facilitate many of these roles. The African elephant (Loxodonta africana) is experiencing serious challenges to optimal reproduction in captivity. The physiological and molecular basis of this impaired fertility remains unknown. AT production of leptin is a crucial molecular link between nutritional status, adiposity and fertility in many species. We propose that leptin has a similar function in the African elephant. African elephant visceral and subcutaneous adipose tissue (AT) was obtained from both sexes and a range of ages including females with known pregnancy status. RNA was extracted and histological sections created and analyzed by microarray, PCR and immunohistochemistry respectively. Gas-chromatography was used to determine the fatty acid composition of AT. Microarray expression profiling was used to compare gene expression profiles of AT from pre-pubertal versus reproductively competent adult African elephants. This study demonstrates, for the first time, leptin mRNA and protein expression in African elephant AT. The derived protein sequence of the elephant leptin protein was exploited to determine its relationship within the class I helical cytokine superfamily, which indicates that elephant leptin is most closely related to the leptin orthologs of Oryctolagus cuniculus (European rabbit), Lepus oiostolus (woolly hare), and members of the Ochotonidae (Pika). Immunohistological analysis identified considerable leptin staining within the cytoplasm of adipocytes. Significant differences in fatty acid profiles between pregnant and non-pregnant animals were revealed, most notably a reduction in both linoleic and α linoleic acid in pregnant animals. This report forms the basis for future studies to address the effect of nutrient composition and body

  7. Molecular characterization of adipose tissue in the African elephant (Loxodonta africana.

    Emeli M Nilsson

    Full Text Available Adipose tissue (AT is a dynamic and flexible organ with regulatory roles in physiological functions including metabolism, reproduction and inflammation; secreted adipokines, including leptin, and fatty acids facilitate many of these roles. The African elephant (Loxodonta africana is experiencing serious challenges to optimal reproduction in captivity. The physiological and molecular basis of this impaired fertility remains unknown. AT production of leptin is a crucial molecular link between nutritional status, adiposity and fertility in many species. We propose that leptin has a similar function in the African elephant. African elephant visceral and subcutaneous adipose tissue (AT was obtained from both sexes and a range of ages including females with known pregnancy status. RNA was extracted and histological sections created and analyzed by microarray, PCR and immunohistochemistry respectively. Gas-chromatography was used to determine the fatty acid composition of AT. Microarray expression profiling was used to compare gene expression profiles of AT from pre-pubertal versus reproductively competent adult African elephants. This study demonstrates, for the first time, leptin mRNA and protein expression in African elephant AT. The derived protein sequence of the elephant leptin protein was exploited to determine its relationship within the class I helical cytokine superfamily, which indicates that elephant leptin is most closely related to the leptin orthologs of Oryctolagus cuniculus (European rabbit, Lepus oiostolus (woolly hare, and members of the Ochotonidae (Pika. Immunohistological analysis identified considerable leptin staining within the cytoplasm of adipocytes. Significant differences in fatty acid profiles between pregnant and non-pregnant animals were revealed, most notably a reduction in both linoleic and α linoleic acid in pregnant animals. This report forms the basis for future studies to address the effect of nutrient composition

  8. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  9. Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue

    Bellas, Evangelia; Marra, Kacey G.; Kaplan, David L

    2013-01-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31...

  10. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-: Chapter 7: Imaging of Adipose Tissue

    Berry, Ryan; Church, Christopher; Gericke, Martin T; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998),...

  11. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-01-01

    Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by str...

  12. Leptin-independent programming of adult body weight and adiposity in mice.

    Cottrell, Elizabeth C; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; Luan, Jian'an; Berends, Lindsey M; Ozanne, Susan E

    2011-02-01

    Low birth weight and rapid postnatal weight gain are independent and additive risk factors for the subsequent development of metabolic disease. Despite an abundance of evidence for these associations, mechanistic data are lacking. The hormone leptin has received significant interest as a potential programming factor, because differences in the profile of leptin in early life have been associated with altered susceptibility to obesity. Whether leptin alone is a critical factor for programming obesity has, until now, remained unclear. Using the leptin-deficient ob/ob mouse, we show that low birth weight followed by rapid catch-up growth during lactation (recuperated offspring) leads to a persistent increase in body weight in adult life, both in wild-type and ob/ob animals. Furthermore, recuperated offspring are hyperphagic and epididymal fat pad weights are significantly increased, reflecting greater adiposity. These results show definitively that factors other than leptin are crucial in the programming of energy homeostasis in this model and are powerful enough to alter adiposity in a genetically obese strain. PMID:21209019

  13. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity

    Pang, Can; Gao, Zhanguo; Yin, Jun; Zhang, Jin; Jia, Weiping; Ye, Jianping

    2008-01-01

    The biological role of macrophage infiltration into adipose tissue in obesity remains to be fully understood. We hypothesize that macrophages may act to stimulate angiogenesis in the adipose tissue. This possibility was examined by determining macrophage expression of angiogenic factor PDGF (platelet-derived growth factor) and regulation of tube formation of endothelial cells by PDGF. The data suggest that endothelial cell density was reduced in the adipose tissue of ob/ob mice. Expression of...

  14. CT-demonstration of adipose tissue of the sinus cavernosus

    Adipose bodies of the sinus cavernosus - the only genuine intracranial adipose tissue - can be demonstrated well by CT. They appear as polymorph well defined hypodense objects in unilateral or bilateral manifestation. Adipose bodies most frequently show a size between 4 and 9 mm and densities about -20 to -40 HE. Occasionally the adipose bodies directly lead into the adipose tissue of the orbit. (orig.)

  15. Aetiological factors behind adipose tissue inflammation

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A;

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  16. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice.

    Bing, C; Russell, S; Becket, E; Pope, M; Tisdale, M J; Trayhurn, P; Jenkins, J R

    2006-10-23

    Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPalpha), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPalpha and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. PMID:17047651

  17. Echocardiographic Assessment of Epicardial Adipose Tissue - A Marker of Visceral Adiposity

    Singh, Navneet; Singh, Harleen; Khanijoun, Harleen K; Iacobellis, Gianluca

    2007-01-01

    Visceral adipose tissue predicts an unfavorable cardiovascular and metabolic risk profile in humans. Existing methods to assess visceral adipose tissue have been limited. Thus, echocardiographic assessment of epicardial adipose tissue as a marker of visceral adiposity was suggested. The technique has been shown to be a very reliable method and an excellent measure of visceral adiposity. In this article, epicardial adipose tissue’s localization on the heart, function, method of assessment and ...

  18. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in pa...

  19. Influencing Factors of Thermogenic Adipose Tissue Activity

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beig...

  20. Injectable Biomaterials for Adipose Tissue Engineering

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifi...

  1. Obesity and adipose tissue endocrine function

    Joshi, Anuradha Rajiv

    2013-01-01

    Many studies have profoundly changed the concept of adipose tissue from being an energy depot to an active endocrine organ. Adipose tissue secretes bioactive peptides, termed as ‘adipokines’.They act through autocrine, paracrine and endocrine pathways. In obesity, increased production of most adipokines affects multiple functions such as appetite and energy balance, immunity, insulin sensitivity, angiogenesis, blood pressure, lipid metabolism and haemostasis. Increased activity of the tumor n...

  2. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis

    Birsoy, Kıvanç; Berry, Ryan; Wang, Tim; Ceyhan, Ozge; Tavazoie, Saeed; Friedman, Jeffrey M.; Rodeheffer, Matthew S.

    2011-01-01

    Obesity is characterized by an expansion of white adipose tissue mass that results from an increase in the size and the number of adipocytes. However, the mechanisms responsible for the formation of adipocytes during development and the molecular mechanisms regulating their increase and maintenance in adulthood are poorly understood. Here, we report the use of leptin-luciferase BAC transgenic mice to track white adipose tissue (WAT) development and guide the isolation and molecular characteri...

  3. Influencing Factors of Thermogenic Adipose Tissue Activity.

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  4. Common genetic variation in the SERPINF1 locus determines overall adiposity, obesity-related insulin resistance, and circulating leptin levels.

    Anja Böhm

    Full Text Available OBJECTIVE: Pigment epithelium-derived factor (PEDF belongs to the serpin family of peptidase inhibitors (serpin F1 and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. SUBJECTS/METHODS: A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05 in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI and spectroscopy (MRS. RESULTS: After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094 and fasting leptin concentrations (p = 0.0035 as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182 and clamp-derived insulin sensitivity (p = 0.0251. The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8. Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436, and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all. CONCLUSION: In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity

  5. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    Alexey A. Tinkov

    2016-03-01

    Full Text Available Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and methods. A total of 48 adult female Wistar rats were used in the present study. Rats were fed either control (10% of fat or high fat diet (31.6% of fat. Adipose tissue zinc content was assessed using inductively coupled plasma mass spectrometry. Rats’ serum was examined for adiponectin, leptin, insulin, interleukin-6, and tumor necrosis factor-α using enzyme-linked immunosorbent assay kits. Serum glucose and apolipoprotein spectrum were also evaluated. Results. High fat feeding resulted in a significant 34% decrease in adipose tissue zinc content in comparison to the control values. Fat pad zinc levels were significantly inversely associated with morphometric param- eters, circulating leptin, insulin, tumor necrosis factor-α levels and HOMA-IR values. At the same time,      a significant correlation with apolipoprotein A1 concentration was observed. Conclusion. Generally, the obtained data indicate that (1 high fat feeding results in decreased adipose tis- sue zinc content; (2 adipose tissue zinc content is tightly associated with excessive adiposity, inflammation, insulin resistance and potentially atherogenic changes.

  6. A Ketogenic Diet Increases Brown Adipose Tissue Mitochondrial Proteins and UCP1 Levels in Mice

    Srivastava, Shireesh; Baxa, Ulrich; Niu, Gang; Chen, Xiaoyuan; Veech, Richard L.

    2012-01-01

    We evaluated the effects of feeding a ketogenic diet (KD) for a month on general physiology with emphasis on brown adipose tissue (BAT) in mice. KD did not reduce the caloric intake, or weight or lipid content of BAT. Relative epididymal fat pads were 40% greater in the mice fed the KD (P = 0.06) while leptin was lower (P < 0.05). Blood glucose levels were 30% lower while D-β-hydroxybutyrate levels were about 3.5-fold higher in the KD group. Plasma insulin and leptin levels in the KD group we...

  7. Brown Adipose Tissue Growth and Development

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  8. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  9. Adipose tissue, the skeleton and cardiovascular disease

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  10. Adipose tissue, the skeleton and cardiovascular disease

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  11. Expression of inflammatory cytokines by adipose tissue from patients with endometrial cancer.

    Zemlyak, A; Zakhaleva, J; Pearl, M; Mileva, I; Gelato, M; Mynarcik, D; McNurlan, M

    2012-01-01

    Obesity results in increased mortality from many forms of cancer. We looked at the levels of gene expression for TNFalpha, IL-6, IkappaB kinase (inhibitor of NF-kappaB), CD 68 (glycoprotein expressed on macrophages) and leptin in samples of adipose tissue from individuals with endometrial cancer versus patients with benign conditions. This is a prospective study which included patients of a gynecologic oncology group. A piece of omental tissue was harvested from them during surgery. RNA was purified from all samples. Relative amounts of RNA for IkappaB, TNFalpha, IL-6, CD68 and leptin were calculated. Pearson's correlation method was used to correlate RNA levels with BMI. Logistic regression method was used to compare gene expression for cancer and control groups. The total sample size was 56 (24 endometrial cancer and 32 controls). IkappaB, TNFalpha and IL-6 levels increased linearly with increasing BMI in the control group. There was no correlation of IkappaB, TNFalpha, IL-6 or CD-68 levels with cancer status of the patients. Leptin had a weak protective effect against endometrial cancer (odds ratio = 0.92). Obesity is associated with increased expression of certain inflammatory cytokines in the adipose tissue. However, increased levels of these inflammatory markers in the adipose tissue of the omentum are not associated with presence of endometrial cancer. PMID:23091891

  12. Adipose Tissue - Adequate, Accessible Regenerative Material.

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-11-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  13. Direct and Indirect Effects of Leptin on Adipocyte Metabolism

    Ruth B.S. Harris

    2013-01-01

    Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for lep...

  14. Leptin and Hormones: Energy Homeostasis.

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  15. Mest and Sfrp5 are biomarkers for healthy adipose tissue.

    Jura, Magdalena; Jarosławska, Julia; Chu, Dinh Toi; Kozak, Leslie P

    2016-05-01

    Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass. PMID:26001362

  16. Three questions about leptin and immunity

    Fantuzzi, Giamila

    2008-01-01

    Leptin is a protein produced by adipocytes (and other cell types) that acts in the brain to regulate appetite and energy expenditure accordingly to the amount of energy stored in adipose tissue. Leptin also exerts a variety of other functions, including important roles as a regulator of immune and inflammatory reactions. The present article is not meant to be a comprehensive review on leptin and immunity, but rather highlights a few controversial issues about leptin's place in the complex net...

  17. Serum leptin in renal transplant patients

    Rafieian-Kopaei, Mahmoud; Nasri, Hamid

    2013-01-01

    Leptin is a small peptide hormone that is mainly produced in adipose tissues. Leptin plays animportant role in regulating appetite and energy expenditure and may be involved in modulatingbone mineralization. This study was designed to test the association of serum leptin kidneyfunction in renal transplant recipients. We studied 72 kidney transplanted recipients. In thisstudy a significant difference of serum leptin between males and females with higher values infemales was seen (p>0.05). Ther...

  18. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  19. Obesity is associated with macrophage accumulation in adipose tissue

    Weisberg, Stuart P.; McCann, Daniel; Desai, Manisha; Rosenbaum, Michael; Leibel, Rudolph L.; Ferrante, Anthony W

    2003-01-01

    Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We fou...

  20. Effect of polymorphisms linked to LEP gene on its expression on adipose tissues in beef cattle.

    Passos, D T; Hepp, D; Moraes, J C F; Weimer, T A

    2007-06-01

    In cattle, genetic markers at the leptin (LEP) gene and at those linked to the gene have been described as affecting calving interval (markers LEPSau3AI and IDVGA51), or daily weight gain (BMS1074 and BM1500). This work investigated the effect of these alleles on LEP mRNA levels in cattle subcutaneous and omental adipose tissues. A sample of 137 females of a Brangus-Ibage beef cattle herd was analysed to evaluate the distribution of the polymorphisms; then, animals having at least one of the IDVGA51*181 (allele 181 at marker IDVGA51; six animals), LEPSau3AI*2 (four), BMS1074*151 (13), BM1500*135 (six) alleles and a control group composed of animals without any of these alleles (four animals) were submitted to surgery to obtain omental and subcutaneous adipose tissues. Leptin mRNA expression was quantified by TaqMan RT-PCR, using 18S rRNA as internal control and adjusted for the effect of body condition score, through regression analysis. Omental fat had LEP gene expression 33% lower than the subcutaneous tissue. Carriers of IDVGA*181 and BMS1074*151 showed subcutaneous fat leptin mRNA levels higher than the controls. Leptin controls feed intake and coordinates reproduction; therefore, animals with higher LEP gene expression will probably have lower daily weight gain than others with similar forage offer and nutritional condition and probably will also have longer calving interval. PMID:17550358

  1. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Skalska, Urszula; Kontny, Ewa

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS) and peripheral blood mononuclear cells (PBMCs) from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs. PMID:26681953

  2. Carotenoids in Adipose Tissue Biology and Obesity.

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  3. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Harry J. Mersmann; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. ...

  4. Injectable biomaterials for adipose tissue engineering

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  5. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats.

    Bai Xue

    Full Text Available Type 2 diabetes (T2DM is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic

  6. [White adipose tissue dysfunction observed in obesity].

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects. PMID:27234867

  7. Adipose tissue and fat cell biology

    Kopecký, Jan

    New York: Springer International Publishing, 2015 - (Pappas, A.), s. 201-224 ISBN 978-3-319-09942-2 R&D Projects: GA MŠk(CZ) 7E12073; GA ČR(CZ) GA13-00871S Institutional support: RVO:67985823 Keywords : adipose tissue * endocrine function * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  8. Adipose tissue plasticity from WAT to BAT and in between

    Lee, Yun-Hee; Mottillo, Emilio P.; Granneman, James G.

    2013-01-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticit...

  9. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  10. Advances in our understanding of adipose tissue homeostasis

    Stern, Jennifer H.; Scherer, Philipp E.

    2014-01-01

    In 2014, numerous noteworthy papers focusing on adipose tissue physiology were published. Many of these articles showed the promise of adipose-tissue-targeted approaches for therapeutic intervention in obesity and type 2 diabetes mellitus. Here, we highlight advances in the development and maintenance of brown and/or beige adipocytes and the metabolic implications of infammation in adipose tissues.

  11. Orexin modulates brown adipose tissue thermogenesis

    Madden, Christopher J.; Tupone, Domenico; Morrison, Shaun F.

    2012-01-01

    Non-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framewor...

  12. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche

    Zach S. Templeton

    2015-12-01

    Full Text Available BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014 and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006 and IL-1β (P = .001 in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.

  13. Adipose Tissue Engineering for Soft Tissue Regeneration

    Choi, Jennifer H.; Gimble, Jeffrey M.; Lee, Kyongbum; Marra, Kacey G.; Rubin, J. Peter; Yoo, James J; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2010-01-01

    Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerat...

  14. Measuring adiposity in patients: the utility of body mass index (BMI, percent body fat, and leptin.

    Nirav R Shah

    Full Text Available BACKGROUND: Obesity is a serious disease that is associated with an increased risk of diabetes, hypertension, heart disease, stroke, and cancer, among other diseases. The United States Centers for Disease Control and Prevention (CDC estimates a 20% obesity rate in the 50 states, with 12 states having rates of over 30%. Currently, the body mass index (BMI is most commonly used to determine adiposity. However, BMI presents as an inaccurate obesity classification method that underestimates the epidemic and contributes to failed treatment. In this study, we examine the effectiveness of precise biomarkers and duel-energy x-ray absorptiometry (DXA to help diagnose and treat obesity. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study of adults with BMI, DXA, fasting leptin and insulin results were measured from 1998-2009. Of the participants, 63% were females, 37% were males, 75% white, with a mean age = 51.4 (SD = 14.2. Mean BMI was 27.3 (SD = 5.9 and mean percent body fat was 31.3% (SD = 9.3. BMI characterized 26% of the subjects as obese, while DXA indicated that 64% of them were obese. 39% of the subjects were classified as non-obese by BMI, but were found to be obese by DXA. BMI misclassified 25% men and 48% women. Meanwhile, a strong relationship was demonstrated between increased leptin and increased body fat. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the prevalence of false-negative BMIs, increased misclassifications in women of advancing age, and the reliability of gender-specific revised BMI cutoffs. BMI underestimates obesity prevalence, especially in women with high leptin levels (>30 ng/mL. Clinicians can use leptin-revised levels to enhance the accuracy of BMI estimates of percentage body fat when DXA is unavailable.

  15. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in t...

  16. Determinants of human adipose tissue gene expression

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José;

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...... controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases....

  17. Peptides from adipose tissue in mental disorders

    Wędrychowicz, Andrzej; Zając, Andrzej; Pilecki, Maciej; Kościelniak, Barbara; Tomasik, Przemysław J

    2014-01-01

    Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical pr...

  18. Central Control of Brown Adipose Tissue Thermogenesis

    ShaunF.Morrison

    2012-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally-regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the c...

  19. Hypothalamic Control of Brown Adipose Tissue Thermogenesis

    Alexandre Caron; Bartness, Timothy J.

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system, which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The charac...

  20. Hypothalamic control of brown adipose tissue thermogenesis

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The ...

  1. Epicardial adipose tissue and atrial fibrillation.

    Hatem, Stéphane N; Sanders, Prashanthan

    2014-05-01

    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF. PMID:24648445

  2. Serum adipokines and adipose tissue distribution in rheumatoid arthritis and ankylosing spondylitis. A comparative study.

    ERIC eTOUSSIROT

    2013-12-01

    Full Text Available Rheumatoid arthritis (RA and ankylosing spondylitis (AS are inflammatory rheumatic diseases that may modify body composition. Adipose tissue has the ability to release a wide range of products involved in physiologic functions, but also in various pathological processes, including the inflammatory/immune response. RA and AS are both associated with the development of cardiovascular complications. It is has been established that central/abdominal and particularly intra-abdominal or visceral adiposity is closely linked to cardiovascular events. Thus, in this study, we aimed to evaluate the body composition of patients with RA or AS compared to healthy controls (HC with a special emphasis on the visceral region. In parallel, we measured adipose products or adipokines, namely leptin, adiponectin and its high molecular weight (HMW isoform, resistin, and ghrelin, a gastric peptide that plays a role in energetic balance. The homeostasis model assessment for insulin resistance (HOMA-IR and atherogenic index were used to evaluate cardiovascular risk. One hundred and twelve subjects were enrolled (30 patients with RA, 31 with AS and 51 HC. Body composition was measured using dual-energy X-ray absorptiometry (DXA to determine total fat mass and lean mass, adiposity, fat in the android and gynoid regions, and visceral fat. Patients and HC did not differ in terms of body mass index. On the contrary, adiposity was increased in RA (p= 0.01 while visceral fat was also increased, but only in women (p=0.01. Patients with AS tended to have lower total fat mass (p=0.07 and higher lean mass compared to HC (p = 0.07. Leptin and leptin/fat mass were decreased in male patients with AS (p

  3. Insulin degradation by adipose tissue is increased in human obesity

    Rafecas Jorba, Immaculada; Fernández López, José Antonio; Salinas, Isabel; X. Formiguera Sala; Remesar Betlloch, Xavier; Foz Sala, M. (Màrius); Alemany, Marià

    1995-01-01

    White adipose tissue samples from obese and lean patients were used for the estimation ofinsulin protease and insulin:glutathione transhydrogenase using 1251-labeled insulin. There was no activity detected in the absence of reduced glutathione, which indicates that insulin is cleaved in human adipose "tissue through reduction of the disulfide bridge between the chains. O bese patients showed higher transhydrogenase activity (per U tissue protein wt, per U tissue wt, and in the total adipose t...

  4. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  5. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  6. Differential fatty acid profile in adipose and non-adipose tissues in obese mice

    Li, Mengting; Fu, Weisi; Li, Xiang-An

    2010-01-01

    Obesity is a metabolic disease characterized by chronic inflammation. Early studies indicated that adipose tissue from obese mice contains more saturated fatty acids and that the saturated fatty acids activate TLR4-mediated inflammatory signaling, which contributes to inflammation in adipose tissue. In this study, we determined fatty acid profile in non-adipose tissues from obese (db/db) mice and compared with that from lean mice. Unexpectedly, in contrast to a significant increase in saturat...

  7. Relationship between Plasma Leptin Level and Chronic Kidney Disease

    Anoop Shankar; Shirmila Syamala; Jie Xiao; Paul Muntner

    2012-01-01

    Background. Leptin is an adipose tissue-derived hormone shown to be related to several metabolic, inflammatory, and hemostatic factors related to chronic kidney disease. Recent animal studies have reported that infusion of recombinant leptin into normal rats for 3 weeks fosters the development of glomerulosclerosis. However, few studies have examined the association between leptin and CKD in humans. Therefore, we examined the association between plasma leptin levels and CKD in a representativ...

  8. The Effects of Leptin Replacement on Neural Plasticity

    Paz-Filho, Gilberto J.

    2016-01-01

    Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intr...

  9. Central Leptin Receptor Action and Resistance in Obesity

    Bjørbæk, Christian

    2009-01-01

    The discovery of leptin in 1994 has lead to remarkable advances in obesity research. We now know that leptin is a cytokine-like hormone that is produced in adipose tissue and plays a pivotal role in regulation of energy balance and in a variety of additional processes via actions in the central nervous system. This symposium review covers current understandings of neuronal leptin receptor signaling, mechanisms of obesity-related leptin resistance in the central nervous system, and provides re...

  10. Relationship between peripheral leptin receptor and leptin in obese subjects

    Objective: To investigate the relationship between leptin resistance and leptin receptor in obese subjects. Methods: Forty-four individuals undergoing surgery, exclusive of diabetic mellitus, chronic inflammatory and malignant diseases, were divided into 3 groups according to the body mass index (BMI), normal controls (n=15), weight excess (n=14), and obesity group (n=15). Fasting serum leptin were detected via ELISA kits, leptin receptor (Bmax) in peripheral adipose tissues was detected by radioligand assay. Results: Serum leptin levels were higher significantly in weight excess and obesity cases groups (10.3±4.45 and 13.2±3.26 vs 5.51±3.23 μg/L, both P<0.05, respectively) compared with normal control group, suggesting the existence of leptin resistance, while the leptin receptor of the weight excess and obese groups decreased significantly than that of normal control group (36.9 ± 5.89 and 24.3 ± 3.95 vs 76.5 ± 35.3 fmol/mg protein, both P<0.01, respectively), there was no statistical differences for Kd value among three groups. Also, there was a negative correlation between BMI and leptin receptor (r=-0.613, P<0.05), and no significant correlation was found between serum leptin and peripheral leptin receptor. Conclusion: The result suggested that there was expression of leptin receptor in peripheral adipose tissues and low level of leptin receptor expression may contribute to the development of leptin resistance and obesity

  11. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  12. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo; Monteiro Cátia; Cunha Virgínia; Oliveira Maria; Freitas Mariana; Fraga Avelino; Príncipe Paulo; Lobato Carlos; Lobo Francisco; Morais António; Silva Vítor; Sanches-Magalhães José; Oliveira Jorge; Pina Francisco; Mota-Pinto Anabela

    2012-01-01

    Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) ...

  13. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several...

  14. Rapid Cellular Turnover in Adipose Tissue

    Alessandra Rigamonti; Kristen Brennand; Frank Lau; Cowan, Chad A.

    2011-01-01

    It was recently shown that cellular turnover occurs within the human adipocyte population. Through three independent experimental approaches — dilution of an inducible histone 2B-green fluorescent protein (H2BGFP), labeling with the cell cycle marker Ki67 and incorporation of BrdU — we characterized the degree of cellular turnover in murine adipose tissue. We observed rapid turnover of the adipocyte population, finding that 4.8% of preadipocytes are replicating at any time and that between 1–...

  15. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  16. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  17. Congenital leptin deficiency and thyroid function

    Paz-Filho Gilberto; Delibasi Tuncay; Erol Halil K; Wong Ma-Li; Licinio Julio

    2009-01-01

    Abstract Thyroid function is closely related to leptin's secretion by the adipose tissue. In states of leptin-deficiency, the circadian rhythm of TSH is altered, leading to central hypothyroidism in animal models. In humans, central hypothyroidism has also been described in rare cases of congenital leptin deficiency. However, the thyroid phenotype in these cases is heterogeneous, with the occurrence of central hypothyroidism in a minority of cases. Here we describe thyroid function in four l...

  18. Leptin levels in free ranging striped mice (Rhabdomys pumilio) increase when food decreases: the ecological leptin hypothesis.

    Schradin, Carsten; Raynaud, Julien; Arrivé, Mathilde; Blanc, Stéphane

    2014-09-15

    Leptin is a hormone informing the body about its fat stores, reducing appetite and foraging and as such reducing fattening of individuals. In laboratory rodents, leptin secretion is highly correlated to the amount of adipose tissue. We compared this to the alternative ecological leptin hypothesis, which based on the behavioural effects of leptin predicts that leptin levels are disassociated from adipose tissue when fattening is of evolutionary advantage to survive coming periods of low food availability. Studying a species that has to survive a dry season with low food availability, we tested the ecological leptin hypothesis, predicting low leptin levels when food availability and thus adiposity is high promoting foraging and fattening, but high leptin levels in the seasons of low food availability, reducing energetic costs due to foraging. We measured leptin levels in 154 samples of free living African striped mice (Rhabdomys pumilio). Striped mice gain significant body mass during the moist season to survive the following dry season with low food availability. We found a strong seasonal effect, with higher leptin levels in the dry season with low food availability, which was in contrast to the hypothesis deriving from studies on laboratory rodents, but in agreement with ecological leptin hypothesis: leptin levels remained low in the period of high food availability, allowing fattening, but increased during periods of low food availability, possibly suppressing energetically costly foraging in an environment where foraging success would have been very low. Leptin correlated significantly and negatively with testosterone levels, and high testosterone levels in the moist season could explain why leptin levels were low even though food availability was high. However, analysing samples from an experimental laboratory study where testosterone levels were increased via implants found no support for a suppressive role of testosterone on leptin. In sum, our study

  19. The effect of four weeks restricted diet on serum soluble leptin receptor levels and adipocyte leptin receptor density in normoweight rattus norvegicus strain Wistar

    M. R. Indra; Wibi Riawan

    2006-01-01

    One of the five possible mechanisms of leptin resistance in human obesity is the defect in the leptin receptor (Ob-R). Evidence has accumulated that leptin-binding activity in human serum is related to a soluble form of the leptin receptor, and restriction of energy intake resulted a decrease in circulating leptin levels. Aim of this study is to examine the difference of serum soluble leptin receptor level and leptin receptor density in rat adipose tissue of adventitial aorta after four weeks...

  20. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease. PMID:26569380

  1. The role of hormones of adipose tissue in the development pregnancy complications in obese women

    N A Petunina

    2013-03-01

    Full Text Available Obesity in pregnancy is a risk factor for complications for both the mother and of the fetus. Adipose tissue hormones (leptin, adiponectin, resistin are secreted by the human placenta and regulate the function of trophoblast.The review presents data from the literature on the role of adipocytokines in the development of gestational diabetes and preeclampsia in obesity women. The article considers the criteria and algorithms for the diagnosis of gestational diabetes recommended by the World Health Organization and the International Association of research groups for diabetes and pregnancy.

  2. Preadipocyte transplantation: an in vivo study of direct leptin signaling on adipocyte morphogenesis and cell size

    Guo, Kaiying; Mogen, Jonathan; Struzzi, Samuel; Zhang, Yiying

    2009-01-01

    Leptin has profound effects on adipose tissue metabolism. However, it remains unclear whether direct leptin signaling in adipocytes is involved. We addressed this question by transplanting inguinal adipose tissue stromal vascular cells (SVCs) from 4- to 5-wk-old wild-type (WT) and leptin receptor-deficient [Leprdb/db (db)] mice to inguinal and sternal subcutaneous sites in Ncr nude mice. Both WT and db SVCs gave rise to mature adipocytes with normal morphologies 3 mo after the transplantation...

  3. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  4. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Verde Roberta; Riccardi Gabriele; Bozzetto Lutgarda; Costabile Giuseppina; Giacco Rosalba; Patti Lidia; Di Marino Lucrezia; Piscitelli Fabiana; Annuzzi Giovanni; Petrosino Stefania; Rivellese Angela A; Di Marzo Vincenzo

    2010-01-01

    Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar ...

  5. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  6. Clinical significance of the leptin and leptin receptor expressions in prostate tissues

    Jung Hoon Kim; Shin Young Lee; Soon Chul Myung; Young Sun Kim; Tae-Hyoung Kim; Mi Kyung Kim

    2008-01-01

    Aim: To evaluate the expression of leptin and leptin receptor in benign prostatic hyperplasia (BPH) and prostate cancer (Pca), and to investigate whether they are associated with the development and progression of Pca. Methods:Immunohistochemical staining was performed to examine the expression of leptin and leptin receptor in BPH and Pca.Pca was divided into three groups: localized Pca, locally advanced Pca and metastatic Pca. The positive staining was identified and the percentage of the positive staining was graded. We also assessed the relationship between both the Gleason score and body mass index (BMI) and Pca. Results: The percentage of the leptin expression in Pca was significantly higher than that in BPH (P < 0.01). For the Pca group, the expressed levels of leptin showed a considerable correlation with localized Pca and metastatic Pca (P < 0.05). Leptin receptor, however, did not reveal a definite difference between BPH and Pca. The expression of leptin indicated a significant difference between well-differen-tiated Pca (Gleason score < 6) and poorly differentiated Pca (Gleason score 8-10) (P < 0.05), The relation between the leptin expression level in Pca and the BMI was not remarkable (P = 0.447). Conclusion: Our results suggest that leptin might have a promoting effect on the carcinogenesis and progression of Pca.

  7. EFFECT OF SOME MEDICINAL PLANT PREPARATIONS OF ADIPOSE TISSUE METABOLISM

    Bambhole, V. D.

    1988-01-01

    Powder in fine suspension, water and alcoholic extract preparations of Cyperus Rotundus (Mustak), Iris versicolor (Haimavati) and Holoptelai integrifolia (Chirubilva) were used in adipose cell suspension and also administered orally to evaluate the effect of these plant preparations on adipose tissue metabolism in rats. The result, showed that the preparations from these medicinal plants exhibited lipolytic action to mobilize fat from adipose tissues in rats and consequently helped in the red...

  8. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α.

    Kim Aubin

    Full Text Available Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks. Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on

  9. Prunus mume and Lithospermum erythrorhizon Extracts Synergistically Prevent Visceral Adiposity by Improving Energy Metabolism through Potentiating Hypothalamic Leptin and Insulin Signalling in Ovariectomized Rats.

    Ko, Byoung-Seob; Kim, Da Sol; Kang, Suna; Ryuk, Jin Ah; Park, Sunmin

    2013-01-01

    We investigated the antiobesity and hypoglycemic properties of Prunus mume Sieb. et Zucc (PMA; Japanese apricot) and Lithospermum erythrorhizon Sieb. et Zucc (LES; gromwell) extracts in ovariectomized (OVX) rats that impaired energy and glucose homeostasis. OVX rats consumed either 5% dextrose, 5% PMA extract, 5% LES extract, or 2.5% PMA+2.5% LES extract in the high fat diet. After 8 weeks of treatment, PMA+LES prevented weight gain and visceral fat accumulation in OVX rats by lowering daily food intake and increasing energy expenditure and fat oxidation. PMA+LES prevented the attenuation of leptin and insulin signaling by increasing the expression of leptin receptor in the hypothalamus in OVX rats. PMA+LES significantly reversed the decrease of energy expenditure in OVX rats by increasing expression of UCP-1 in the brown adipose tissues and UCP-2 and UCP-3 in the quadriceps muscles. PMA+LES also increased CPT-1 expression and decreased FAS, ACC, and SREBP-1c in the liver and quadriceps muscles to result in reducing triglyceride accumulation. PMA+LES improved insulin sensitivity in OVX rats. In conclusion, PMA+LES synergistically prevented the impairment of energy, lipid, and glucose metabolism by OVX through potentiating hypothalamic leptin and insulin signaling. PMA+LES may be a useful intervention for alleviating the symptoms of menopause in women. PMID:24319483

  10. Prunus mume and Lithospermum erythrorhizon Extracts Synergistically Prevent Visceral Adiposity by Improving Energy Metabolism through Potentiating Hypothalamic Leptin and Insulin Signalling in Ovariectomized Rats

    Byoung-Seob Ko

    2013-01-01

    Full Text Available We investigated the antiobesity and hypoglycemic properties of Prunus mume Sieb. et Zucc (PMA; Japanese apricot and Lithospermum erythrorhizon Sieb. et Zucc (LES; gromwell extracts in ovariectomized (OVX rats that impaired energy and glucose homeostasis. OVX rats consumed either 5% dextrose, 5% PMA extract, 5% LES extract, or 2.5% PMA+2.5% LES extract in the high fat diet. After 8 weeks of treatment, PMA+LES prevented weight gain and visceral fat accumulation in OVX rats by lowering daily food intake and increasing energy expenditure and fat oxidation. PMA+LES prevented the attenuation of leptin and insulin signaling by increasing the expression of leptin receptor in the hypothalamus in OVX rats. PMA+LES significantly reversed the decrease of energy expenditure in OVX rats by increasing expression of UCP-1 in the brown adipose tissues and UCP-2 and UCP-3 in the quadriceps muscles. PMA+LES also increased CPT-1 expression and decreased FAS, ACC, and SREBP-1c in the liver and quadriceps muscles to result in reducing triglyceride accumulation. PMA+LES improved insulin sensitivity in OVX rats. In conclusion, PMA+LES synergistically prevented the impairment of energy, lipid, and glucose metabolism by OVX through potentiating hypothalamic leptin and insulin signaling. PMA+LES may be a useful intervention for alleviating the symptoms of menopause in women.

  11. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  12. Identification of progesterone receptor in human subcutaneous adipose tissue.

    O'Brien, S N; Welter, B H; Mantzke, K A; Price, T M

    1998-02-01

    Sex steroids are postulated to play a role in adipose tissue regulation and distribution, because the amount and location of adipose tissue changes during puberty and menopause. Because of the nature of adipose tissue, receptors for the female sex steroids have been difficult to demonstrate. To date, estrogen receptor messenger RNA and protein have been identified in human subcutaneous adipose tissue, but the presence of progesterone receptor (PR) has not been reported. In this study, we demonstrate PR message by Northern blot analysis in RNA isolated from the abdominal subcutaneous adipose tissue of premenopausal women. These preliminary studies revealed that PR messenger RNA levels are higher in the stromal-vascular fraction as opposed to the adipocyte fraction. Western blot analysis demonstrates both PR protein isoforms (human PR-A and human PR-B) in human subcutaneous adipose tissue. Using an enzyme-linked immunosorbent assay, total PR could be quantitated. These studies substantiate that sex steroid receptors are present in human adipose tissue, thereby providing a direct route for regulation of adipose tissue by female sex steroids. PMID:9467566

  13. Altered autophagy in human adipose tissues in obesity

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  14. Characterization of the human visceral adipose tissue secretome

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  15. Cell supermarket: Adipose tissue as a source of stem cells

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  16. Albumin induced cytokine expression in porcine adipose tissue explants

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  17. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice.

    Choi, Youngshim; Jang, Suhyeon; Choi, Myung-Sook; Ryoo, Zae Young; Park, Taesun

    2016-06-01

    Fibroblast growth factors (FGFs) are pleiotropic growth factors that control cell proliferation, migration, and differentiation. Herein, we evaluated whether visceral adiposity of mice is accompanied by the alteration of signaling molecules mediated by fibroblast growth factor receptor 1 (FGFR1) induced by using two different male C57BL/6J mice models of obesity namely high-fat diet (HFD)-induced obesity for 12 weeks or mice with genetic deletion of leptin (ob/ob). Both HFD-fed and ob/ob mice exhibited significantly higher messenger RNA (mRNA) levels of FGF1, cyclin D (cycD), transcription factor E2F1, peroxisome proliferator-activated receptor-gamma 2 (PPAR-γ2), CCAAT-enhancer-binding protein alpha (C/EBPα), and adipocyte protein 2 (aP2) genes in their epididymal adipose tissues compared to those of the normal diet (ND)-fed and lean control mice, respectively. In addition, immunoblot analyses of the epididymal adipose tissues revealed that both mice exposed to HFD and ob/ob mice exhibited elevated phosphorylation of FGFR1, extracellular-signal-regulated kinase (ERK), and retinoblastoma (Rb) proteins. These data support the notion that FGF1-mediated signaling represents an important signaling cascade related to adipogenesis, at least partially, among other known signaling pathways. These new findings regarding the molecular mechanisms controlling adipose tissue plasticity provide a novel insight about the functional network with potential therapeutic application against obesity. PMID:26847131

  18. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice

    Halaas, Jeffrey L.; Boozer, Carol; Blair-West, John; Fidahusein, Naseem; Denton, Derek A.; Friedman, Jeffrey M.

    1997-01-01

    Recent data have identified leptin as an afferent signal in a negative-feedback loop regulating the mass of the adipose tissue. High leptin levels are observed in obese humans and rodents, suggesting that, in some cases, obesity is the result of leptin insensitivity. This hypothesis was tested by comparing the response to peripherally and centrally administered leptin among lean and three obese strains of mice: diet-induced obese AKR/J, New Zealand Obese (NZO), and Ay. Subcutaneous leptin inf...

  19. Sıçan midesinde leptin ekspresyonunun immunohistokimyasal olarak gösterilmesi

    K, Gülle; Y, Uyanıkgil; E, Karaöz

    2009-01-01

    Introduction: Leptin is a 16-kDA-protein molecule, expressed by the ob gene. It has first been found in the adipose tissue and several tissues in the body have recently been described to express leptin. Various reports have suggested that leptin can also involve in stomach functions. This study was focused on the expression and distribution of leptin in rat stomach using immunohistochemistry. Material and Methods: The study was conducted on male rats weighing 190–210 g. For light m...

  20. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan; Larsen, Rasmus

    This paper presents a method for automatically segmenting abdominal adipose tissue from 3-dimensional magnetic resonance images. We distinguish between three types of adipose tissue; visceral, deep subcutaneous and superficial subcutaneous. Images are pre-processed to remove the bias field effect...... of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...... are separated using deformable models, incorporating information from the clustering. The subcutaneous adipose tissue is subdivided into a deep and superficial part by means of dynamic programming applied to a spatial transformation of the image data. Regression analysis shows good correspondences...

  1. Epicardial adipose tissue and coronary artery disease: an article review

    Sareh Mousavi

    2014-12-01

    Full Text Available Adipose tissue surrounding the heart may contribute in the progression of coronary atherosclerosis due to its proximity to the coronary arteries. In addition, epicardial adipose tissue has paracrine and endocrine functions. It can secrete numerous bioactive molecules. Most previous studies examined the relation between coronary artery disease and epicardial adipose tissue have used echocardiography and have reported controversial results, probably due to differences in measurement techniques and study populations. This study aimed to give a brief review on the value of echocardiographic assessment of epicardial adipose tissue in the prediction of coronary artery disease severity.Epicardial adipose tissue, easily and non-invasively evaluated by transthoracic echocardiography, can be considered as an adjunctive marker to classical risk factors despite all the limitations. Moreover, it might be recommended as a useful quantitative screening examination for the prediction of the presence and the severity of coronary artery disease and the extent of atherosclerosis.

  2. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  3. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle.

    Varela-Rodríguez, B M; Pena-Bello, L; Juiz-Valiña, P; Vidal-Bretal, B; Cordido, F; Sangiao-Alvarellos, S

    2016-01-01

    Irisin is processed from fibronectin type III domain-containing protein 5 (FNDC5). However, a controversy exists concerning irisin origin, regulation and function. To elucidate the relationship between serum irisin and FNDC5 mRNA expression levels, we evaluated plasma irisin levels and FNDC5 gene expression in the hypothalamus, gastrocnemius muscle and different depots of adipose tissue in models of altered metabolism. In normal rats, blood irisin levels diminished after 48-h fast and with leptin, insulin and alloxan treatments, and serum irisin concentrations increased in diabetic rats after insulin treatment and acute treatments of irisin increased blood insulin levels. No changes were observed during long-term experiments with different diets. We suggested that levels of circulating irisin are the result of the sum of the irisin produced by different depots of adipose tissue and skeletal muscle. This study shows for the first time that there are differences in FNDC5 expression depending on white adipose tissue depots. Moreover, a considerable decrease in visceral and epididymal adipose tissue depots correlated with increased FNDC5 mRNA expression levels, probably in an attempt to compensate the decrease that occurs in their mass. Hypothalamic FNDC5 expression did not change for any of the tested diets but increased with leptin, insulin and metformin treatments suggesting that the regulation of central and peripheral FNDC5/irisin expression and functions are different. PMID:27432282

  4. Regulation of leptin in involution of mammary gland

    LI Meng; LI Qingzhang

    2007-01-01

    Leptin, a protein hormone produced and secreted predominantly by white adipose tissue, has a critical role in the regulation and coordination of energy metabolism. Leptin is produced in the mammary gland by the fat tissue or by the mammary epithelium. In vitro study has shown that leptin triggers apoptosis in mammary epithelial cells. Mammary gland involution is characterized by extensive apoptosis of the epithelial cells. At the onset of involution, STAT3 is specifically activated. Various studies show that leptin act as a paracrine and autocrin factor to influence mammary epithelial cell proliferation and differentiation. This paper reviewed the function of leptin to the involution of mammary gland.

  5. Cardio-adipose tissue cross-talk

    Lindberg, Søren; Jensen, Jan Skov; Bjerre, Mette;

    2014-01-01

    increases adiponectin secretion, indicating that NPs may improve adipose tissue function and in this way function as a cardio-protective agent in HF. Accordingly we investigated the interplay between plasma adiponectin, plasma proBNP, and development of HF. METHODS AND RESULTS: We prospectively followed...... 5574 randomly selected men and women from the community without ischaemic heart disease or HF. Plasma adiponectin and proBNP were measured at study entry. Median follow-up time was 8.5 years (interquartile range 8.0-9.1 years). During follow-up 271 participants developed symptomatic HF. Plasma...... and diastolic blood pressure, lipid profile, high sensitivity C-reactive protein, estimated glomerular filtration rate, and physical activity) by Cox regression analysis, adiponectin remained an independent predictor of HF: the hazard ratio (HR) per 1 standard deviation (SD) increase in adiponectin...

  6. Adipose tissue and adipokines--energy regulation from the human perspective.

    Trayhurn, Paul; Bing, Chen; Wood, I Stuart

    2006-07-01

    There has been a rapid rise in the incidence of obesity, primarily as a result of changes in lifestyle (diet and activity levels). Obesity has provided considerable impetus for the investigation of the fundamental mechanisms involved in the regulation of energy balance. Important developments include the identification of novel factors involved in the control of appetite, such as ghrelin, orexin A, and the endogenous cannabinoids, and the emergence of the concept of "nonexercise activity thermogenesis" (NEAT) provided new perspectives on energy expenditure. Studies on white adipose tissue have led to the recognition that it is an important endocrine organ, communicating with the brain and peripheral tissues through the secretion of leptin and other adipokines. There is a rapidly expanding list of protein factors released by white adipose tissue, including the key hormone, adiponectin. Of particular note is the range of cytokines, chemokines, and other inflammation-related proteins secreted by white fat as tissue mass rises; indeed, obesity is characterized by chronic mild inflammation. The adipokines provide an extensive network of communication both within adipose tissue and with other organs, and some are implicated directly in the pathologies associated with obesity, particularly the metabolic syndrome. Although the focus remains very much on obesity in humans, the disorder and its sequelae are also a growing concern in companion animals. PMID:16772463

  7. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  8. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  9. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  10. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    Toda, Shuji; Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate...

  11. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice.

    Shen Yon Toh

    Full Text Available Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/- mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs from wildtype and Fsp27(-/- mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT and white adipose tissue (WAT and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/- mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/- mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/- mice. Remarkably, Fsp27(-/- MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3. Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.

  12. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  13. Adipose tissue and skeletal muscle blood flow during mental stress

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  14. Adipose tissue and skeletal muscle blood flow during mental stress

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  15. A retrospective analysis of thyroid lesions containing mature adipose tissue

    Recep Bedir

    2014-06-01

    Full Text Available Objectives: The aim of this retrospective study was to investigate the lesions containing mature adipose tissues in surgical materials of the patients who underwent thyroidectomy operation owing to the diagnosis of nodular goiter. Methods: A total of 2800 pathologic specimens of thyroidectomies stained with hematoxylin-eosin were collected between January 2010 and November 2013 in Recep Tayyip Erdogan University School of Medicine. Pathologic sections were selected from pathology archive and re-examined. Upon examination, we determined 10 lesions with mature adipose tissue within thyroid parenchyma. Results: Thyroid lesions containing mature adipose tissue were observed in 10 (0.004 % of 2800 thyroidectomy materials. Eight of the patients were female and two of them were male. Minimum, maximum and median age of the patients were found to be 31, 74 and 52 years respectively. All of the cases had underwent a bilateral total thyroidectomy operation. In macroscopic examination of the only one cases, a homogenous yellow-gray color was observed. In other cases a large number of colloid-rich nodules of various sizes were observed. On microscopic examination, five adipose tissues in the nodules (adenolipoma-thyrolipoma, four scattered foci of mature adipose tissues (heterotopic adiposis and one diffuse infiltrating mature adipose tissue on entire thyroid gland (diffuse thyrolipomatosis were determined among mature adipose tissue containing lesions. A follicular variant of papillary microcarcinoma was found in two of thyrolipoma cases. Conclusion: Nodular thyroid lesions containing mature adipose tissue, as a result of particularly on the outer surface of the gland and parathyroid glands containining mature adipose tissue may mimic parathyroid gland lesion. Therefore, to prevent from inappropriate treatments, pathologists should be aware of these kinds of lesions, especially when they are investigating the lesions of parathyroid glands during an

  16. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. PMID:27122310

  17. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    8-mo study period. The adipose tissue fatty acid composition of each individual was determined by gas chromatography as the mean of two gluteal biopsies, obtained in the first and the last month of the study. The daily consumption of fish and of marine n-3 PUFAs in absolute terms (g/d) was...... significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  18. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  19. Soy Isoflavones in Nutritionally Relevant Amounts Have Varied Nutrigenomic Effects on Adipose Tissue

    Elena Giordano

    2015-01-01

    Full Text Available Soy consumption has been suggested to afford protection from cardiovascular disease (CVD. Indeed, accumulated albeit controversial evidence suggests that daily consumption of ≥25 g of soy protein with its associated phytochemicals intact can improve lipid profiles in hypercholesterolemic humans. However, the belief that soy foods and supplements positively impact human health has become increasingly controversial among the general public because of the reported estrogenic activities of soy isoflavones. In this study, we investigated the nutrigenomic actions of soy isoflavones (in nutritionally-relevant amounts with a specific focus on the adipose tissue, due to its pivotal role in cardiometabolism. Young C57BL/6 mice were maintained for eight weeks under two different diet regimes: (1 purified control diet; or (2 purified control diet supplemented with 0.45 g% soybean dry purified extract (a genistein/daidzein mix. Soy isoflavones increased plasma total cholesterol concentrations and decreased triglyceride ones. Circulating leptin levels was also increased by soy consumption. Differentially expressed genes in adipose tissue were classified according to their role(s in cellular or metabolic pathways. Our data show that soy isoflavones, administered in nutritionally-relevant amounts, have diverse nutrigenomic effects on adipose tissue. Taking into account the moderate average exposure to such molecules, their impact on cardiovascular health needs to be further investigated to resolve the issue of whether soy consumption does indeed increase or decrease cardiovascular risk.

  20. Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats.

    Barbu, Andreea; Hedlund, Gabriella Persdotter; Lind, Jenny; Carlsson, Carina

    2009-02-27

    In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat. PMID:19084046

  1. RELATIONSHIP OF SERUM ADIPONECTIN LEVELS WITH ADIPOSITY, GLUCOCORTICOIDS, LEPTIN AND INSULIN

    杨颖; 唐金凤; 汪启迪; 李凤英; 顾卫琼; 洪洁; 张一波; 周丽斌; 李荣英; 陈名道

    2005-01-01

    Objective To investigate the relationship between serum adiponectin levels with adiposity,glucocorticoids , insulin and leptin in Cushing' s syndrome, obesity and non-obese subjects. Methods The serum adiponectin concentrations were measured in 104 non-obese and 57 overweight or obese (BMI≥25) subjects by RIA. 15 patients with Cushing's syndrome, 10 with obesity and 9 non-obese subjects were investigated, with their serum adiponectin, glucocorticoids, insulin and leptin levels measured at 8: 00, 12: 00, 16: 00, 20: 00, 24: 00 and 3:00. Dexamethasone suppression tests in both obesity and Cushing's syndrome were performed at the dose of lmg,2mg and 5mg. Results The serum adiponectin concentrations in non-obese were (10.15±6.33) mg/L in male and (13.82 ±6. 09 ) mg/L in female, and those in overweight or obese ones were(5. 78 ±3.55)mg/L in male and (8. 13 ± 4. 32 ) mg/L in female. In both men and women, the fasting adiponectin levels in overweight or obese subjects were lower than those of the non-obese ones, and serum adiponectin concentrations were significantly nagetively correlated with BMI, % Fat and waist circumference. The circadian rhythmicity of adiponectin was not distinct, but the adiponectin levels in obesity were lower than those of the non-obese subjects at all 6 time spots. The serum adiponectin area under curve (AUC) were significantly nagetively correlated with BMI, waist circumference and insulin AUC. The adiponectin levels with dexamethasone administration for a short-term both at higher doses and lower doses did not change, but was decreased after surgery. Conclusion Adiponectin is a hormone secreted by adipocytes which may intimately related to obese and insulin resistance. Therefore, any treatment that could be used to increase adiponectin should be beneficial. Neither long-term endogenous hyper-glucocorticoid nor short-term dexamethasone administration may affect the adiponectin levels, and similarly, no change with elevated postprandial

  2. Leptin and the Regulation of Renal Sodium Handling and Renal Na+-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension

    Bełtowski, Jerzy

    2010-01-01

    Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of...

  3. Salsalate activates brown adipose tissue in mice.

    van Dam, Andrea D; Nahon, Kimberly J; Kooijman, Sander; van den Berg, Susan M; Kanhai, Anish A; Kikuchi, Takuya; Heemskerk, Mattijs M; van Harmelen, Vanessa; Lombès, Marc; van den Hoek, Anita M; de Winther, Menno P J; Lutgens, Esther; Guigas, Bruno; Rensen, Patrick C N; Boon, Mariëtte R

    2015-05-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients. PMID:25475439

  4. Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue.

    Lundbom, J; Hakkarainen, A; Lundbom, N; Taskinen, M-R

    2013-04-01

    Upper body abdominal subcutaneous adipose tissue (SAT) can be divided into deep SAT (DSAT) and superficial SAT (SSAT) depots. Studies on adipose tissue fatty acid (FA) composition have made no distinction between these two depots. The aim of this study is to determine whether DSAT and SSAT differ in FA composition. We studied the FA composition of DSAT and SSAT in 17 male and 13 female volunteers using non-invasive proton magnetic resonance spectroscopy in vivo. Magnetic resonance imaging was used to differentiate between DSAT and SSAT. Adipose tissue spectra were analysed for lipid unsaturation, or double bond (DB) content, and polyunsaturation (PU), according to previously validated methods. The DSAT depot was more saturated than the SSAT depot, in both men (0.833 ± 0.012 vs 0.846 ± 0.009 DB, P<0.002) and women (0.826 ± 0.018 vs 0.850 ± 0.018 DB, P<0.002). In contrast, PU did not differ between DSAT and SSAT in either men (0.449 ± 0.043 vs 0.461 ± 0.044 PU, P=0.125) or women (0.411 ± 0.070 vs 0.442 ± 0.062 PU, P=0.234) and displayed a close correlation between the depots (R=0.908, P<0.001, n=30). The higher saturation in DSAT compared with SSAT can be attributed to a higher ratio of saturated to monounsaturated FAs. These results should be taken into account when determining the FA composition of SAT. PMID:22641063

  5. Studies on leptin utilizing to obesity

    Leptin is a hormone synthesized and secreted by lipid cells. It is a product encoded and expressed by the obese gene. Administration of recombinant leptin decreases food intake, increases energy expenditure and promotes weight loss. Most studies indicate that leptin is a main regulating factor of catabolism and anabolism of adipose tissue. The circulating leptin level is a sensitive index which indicates the confusion of the rate of lipid metabolism such as hyperlipemia, lipo-liver and so on. The human leptin radioimmunoassay has been developed to quantitate human leptin in plasma or serum, and to further investigate the relationship between serum leptin concentration and body fat, gender, age, sexual hormones, endocrine of insulin, etc. Especially, serum leptin concentrations are correlated with body-mass-index (BMI), suggesting that most obese persons are resistant to leptin; Those who are relatively deficient of leptin may become the good candidates of leptin treatment in the future. The discovery and application of leptin make the study of obesity, non-insulin dependent diabetes and other correlation diseases enter a new stage

  6. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure

    Barnes, Maria J.; David Harry McDougal

    2014-01-01

    Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activ...

  7. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure

    Barnes, Maria J.; McDougal, David H.

    2014-01-01

    Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity...

  8. LEPTIN SIGNALING IN THE NUCLEUS TRACTUS SOLITARII INCREASES SYMPATHETIC NERVE ACTIVITY TO THE KIDNEY

    Mark, Allyn L.; Agassandian, Khristofor; Morgan, Donald A.; Liu, Xuebo; Cassell, Martin D.; Rahmouni, Kamal

    2008-01-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors (Ob-Rb) in extra-hypothalamic sites, including the nucleus tractus solitarii (NTS). We previously demonstrated that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue (BAT) and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow...

  9. In ovo administration of human recombinant leptin shows dose dependent angiogenic effect on chicken chorioallantoic membrane

    Reji Manjunathan; Malathi Ragunathan

    2015-01-01

    BACKGROUND: Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effect...

  10. In ovo administration of human recombinant leptin shows dose dependent angiogenic effect on chicken chorioallantoic membrane

    Manjunathan, Reji; Ragunathan, Malathi

    2015-01-01

    Background Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects...

  11. Adiponectin and Leptin are Secreted Through Distinct Trafficking Pathways in Adipocytes

    Xie, Linglin; O'Reilly, Cormac P.; Chapes, Stephen K.; Mora, Silvia

    2008-01-01

    Adiponectin and leptin are two adipokines secreted by white adipose tissue that regulate insulin sensitivity. Previously we reported that adiponectin but not leptin release depends on GGA-coated vesicle formation, suggesting that leptin and adiponectin may follow different secretory routes. Here we have examined the intracellular trafficking pathways that lead to the secretion of these two hormones. While adiponectin and leptin displayed distinct localization in the steady-state, treatment of...

  12. Metabolic syndrome pathophysiology: the role of adipose tissue

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  13. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology

    Arner, Erik; Westermark, Pål O.; Spalding, Kirsty L.; Britton, Tom; Rydén, Mikael; Frisén, Jonas; Bernard, Samuel; Arner, Peter

    2009-01-01

    OBJECTIVE Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18–60 kg/m2. A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related ...

  14. Cytomegalovirus infection of adipose tissues induces steatitis in adult mice.

    Price, P; Eddy, K. S.; Papadimitriou, J M; Robertson, T. A.; Shellam, G R

    1990-01-01

    Young adult mice infected with MCMV were shown to develop inflammatory lesions in the peripancreatic and salivary gland adipose tissues. MCMV replication was detected by immunoperoxidase staining and electron microscopy in adipocytes, fibroblasts, endothelial cells and pericytes in brown and white adipose tissues. More infected cells were detected in C3H mice than in BALB/c, BALB.B, BALB.K or C57BL/6 mice. Peripancreatic steatitis consisted of a monocytic infiltrate surrounding focal necrosis...

  15. Browning of white adipose tissue: role of hypothalamic signaling

    Bi, Sheng; Li, Lin

    2013-01-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through non-shivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent obse...

  16. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis

    Zhang, Wei; Bi, Sheng

    2015-01-01

    Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic a...

  17. Immunohistochemical distribution of leptin in kidney tissues of melatonin treated diabetic rats.

    Elis Yildiz, S; Deprem, T; Karadag Sari, E; Bingol, S A; Koral Tasci, S; Aslan, S; Nur, G; Sozmen, M

    2015-05-01

    We examined using immunohistochemistry the distribution of leptin in kidney tissues of melatonin treated, streptozotocin (STZ) diabetic rats. The animals were divided into five groups: control, sham, melatonin-treated, diabetic and melatonin-treated diabetic. Kidney sections were prepared and stained with hematoxylin and eosin, and Crossman's triple staining for histological examination. The immunohistochemical localization of leptin in the kidney tissue was determined using the streptavidin-biotin-peroxidase method. We determined that on days 7 and 14, the leptin immunoreactivity of the diabetic and melatonin-treated diabetic groups was weaker than for the other groups. Weak immunoreactivity was found in the proximal and distal tubules of the kidney in the diabetic and melatonin-treated diabetic groups on days 7 and 14, and strong immunoreactivity was found in the control, sham and melatonin groups. Melatonin application had no significant effect on leptin production in the kidney tissues of diabetic rats. PMID:25539049

  18. Study on the plasma leptin level and leptin mRNA expression in cancerous breast tissue in patients with breast carcinoma complicated with obesity

    Objective: To study the plasma leptin level and leptin mRNA expression in cancerous breast tissue in patients with breast cancer complicated with obesity. Methods: Plasma leptin levels were measured with RIA in 48 breast cancer patients with obesity, 36 patients with various benign breast disorders and obesity and 40 controls (with simple obesity only). The leptin mRNA expression in the surgical specimens from the 84 patients with breast disease was also examined with RT-PCR, Results: The plasma leptin levels in the breast cancer patients (12.02 ± 1.23 μg/L) were significantly higher than those in patients with benign breast disorders (9.84 ± 0.98 μg/L) and controls (9.79 ± 1.16 μg/L) (both P<0.05). The expression levels of leptin mRNA in specimens from malignant breast disease (0.71 ± 0.32), were significantly higher than those in specimens from benign breast diseases (0.41 ± 0.26) (P<0.05), The plasma leptin levels and the tissue leptin mRNA expression levels were mutually positively correlated (r=0.4220 ,P 0.0180). These levels were not correlated with the presence of axillary metastasis, TMN stage, menstrual status, pathological classification and other parameters. Conclusion: Leptin might be a promotive factor in the development of breast cancer. (authors)

  19. Pivotal role of leptin in insulin effects

    R.B. Ceddia

    1998-06-01

    Full Text Available The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

  20. Leptin as a mediator between obesity and cardiac dysfunction

    Joanna Karbowska; Zdzisław Kochan

    2012-01-01

     Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasm...

  1. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  2. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    Kilpeläinen, Tuomas O.; Carli, Jayne F. Martin; Skowronski, Alicja A.; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K.; Drong, Alexander W.; Hayes, James E.; Zhao, Jinghua; Pers, Tune H.; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Greco M, Fabiola Del; Pasko, Dorota; Renström, Frida; Willems, Sara M.; Mahajan, Anubha; Rose, Lynda M.; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E.; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S.; Ju Sung, Yun; Ramos, Yolande F.; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M.; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J. N.; Crosslin, David R.; Dale, Caroline E.; Dastani, Zari; Day, Felix R.; Deelen, Joris; Delgado, Graciela E.; Demirkan, Ayse; Finucane, Francis M.; Ford, Ian; Garcia, Melissa E.; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E.; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A.; Hunter, David J.; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S.; Jørgensen, Marit E.; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A.; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P.; Myers, Richard H.; Männistö, Satu; Nalls, Mike A.; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D.; Rankinen, Tuomo; Rasmussen-Torvik, Laura J.; Rathmann, Wolfgang; Rice, Treva K.; Brent Richards, J; Ridker, Paul M.; Sattar, Naveed; Savage, David B.; Söderberg, Stefan; Timpson, Nicholas J.; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R.; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I. A.; Sarzynski, Mark A.; Rao, D. C.; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G.; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G.; Heliövaara, Markku; Knekt, Paul B.; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K.; Viikari, Jorma S.; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T.; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P.; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W.; van Duijn, Cornelia M.; Harris, Tamara B.; Bouchard, Claude; Allison, Matthew A.; Chasman, Daniel I.; Ohlsson, Claes; Lind, Lars; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; Ferrucci, Luigi; Frayling, Timothy M.; Pramstaller, Peter P.; Borecki, Ingrid B.; Waterworth, Dawn M.; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B.; Eline Slagboom, P; Grallert, Harald; Spector, Tim D.; Jukema, J.W.; Klein, Robert J.; Schadt, Erik E; Franks, Paul W.; Lindgren, Cecilia M.; Leibel, Rudolph L.; Loos, Ruth J. F.

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10−6 in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10−8) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  3. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    Highlights: ► Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. ► Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. ► Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor α (TNFα) and the positive regulator Peroxisome Proliferator-Activated Receptor-γ (PPARγ) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  4. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    Cai, Demin [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Li, Hongji [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Zhou, Bo [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Han, Liqiang [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Zhang, Xiaomei [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Yang, Guoyu, E-mail: haubiochem@163.com [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Yang, Guoqing, E-mail: gqyang@yeah.net [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  5. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  6. Relation of Absolute or Relative Adiposity to Insulin Resistance, Retinol Binding Protein-4, Leptin, and Adiponectin in Type 2 Diabetes

    You Lim Kim

    2012-12-01

    Full Text Available BackgroundCentral fat mass (CFM correlates with insulin resistance and increases the risk of type 2 diabetes and cardiovascular complications; however, peripheral fat mass (PFM is associated with insulin sensitivity. The aim of this study was to investigate the relation of absolute and relative regional adiposity to insulin resistance index and adipokines in type 2 diabetes.MethodsTotal of 83 overweighted-Korean women with type 2 diabetes were enrolled, and rate constants for plasma glucose disappearance (KITT and serum adipokines, such as retinol binding protein-4 (RBP4, leptin, and adiponectin, were measured. Using dual X-ray absorptiometry, trunk fat mass (in kilograms was defined as CFM, sum of fat mass on the lower extremities (in kilograms as PFM, and sum of CFM and PFM as total fat mass (TFM. PFM/TFM ratio, CFM/TFM ratio, and PFM/CFM ratio were defined as relative adiposity.ResultsMedian age was 55.9 years, mean body mass index 27.2 kg/m2, and mean HbA1c level 7.12±0.84%. KITT was positively associated with PMF/TFM ratio, PMF/CFM ratio, and negatively with CFM/TFM ratio, but was not associated with TFM, PFM, or CFM. RBP4 levels also had a significant relationship with PMF/TFM ratio and PMF/CFM ratio. Adiponectin, leptin, and apolipoprotein A levels were related to absolute adiposity, while only adiponectin to relative adiposity. In correlation analysis, KITT in type 2 diabetes was positively related with HbA1c, fasting glucose, RBP4, and free fatty acid.ConclusionThese results suggest that increased relative amount of peripheral fat mass may aggravate insulin resistance in type 2 diabetes.

  7. Adipose Tissue Regeneration: A State of the Art

    Alessandro Casadei

    2012-01-01

    Full Text Available Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.

  8. Gene expression profiling in adipose tissue from growing broiler chickens

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  9. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  10. Control of adipose tissue lipolysis in ectotherm vertebrates.

    Migliorini, R H; Lima-Verde, J S; Machado, C R; Cardona, G M; Garofalo, M A; Kettelhut, I C

    1992-10-01

    Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals. PMID:1329567

  11. Adipose tissue macrophages induce PPARγ-high FOXP3+ regulatory T cells

    Toshiharu Onodera; Atsunori Fukuhara; Myoung Ho Jang; Jihoon Shin; Keita Aoi; Junichi Kikuta; Michio Otsuki; Masaru Ishii; Iichiro Shimomura

    2015-01-01

    Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compare...

  12. White adipose tissue resilience to insulin deprivation and replacement

    Lilas Hadji; Emmanuelle Berger; Hédi Soula; Hubert Vidal; Alain Géloën

    2014-01-01

    Introduction: Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods: Using streptozotocin (STZ)-induced diabetes, we induced rapi...

  13. Unequivocal Identification of Brown Adipose Tissue in a Human Infant

    Hu, Houchun H.; Tovar, Jason; Pavlova, Zdena; Smith, Michelle L; Gilsanz, Vicente

    2011-01-01

    We report the unique depiction of brown adipose tissue (BAT) by MRI and computed tomography (CT) in a human three month-old infant. Based on cellular differences between BAT and more lipid-rich white adipose tissue (WAT), chemical-shift MRI and CT were both capable of generating distinct signal contrasts between the two tissues and against surrounding anatomy, utilizing fat-signal fraction metrics in the former and X-ray attenuation values in the latter. While numerous BAT imaging experiments...

  14. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  15. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M. [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States); Kannan, Kurunthachalam [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: kkannan@wadsworth.org

    2009-03-15

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time.

  16. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  17. Epikardiales Fett als Biomarker? // Epicardial Adipose Tissue as a Biomarker?

    Tscharre M

    2016-01-01

    Full Text Available Epicardial adipose tissue as the “visceral” adipose tissue of the heart is arousing more and more scientific interest, as it has numerous local and systemic effects. There is no fascia separating the epicardial adipose tissue and the myocardium and they both share its blood supply via the coronary arteries, thus allowing a possible interaction. Under normal physiological conditions, epicardial adipose tissue has mainly anti-atherogenic, thermogenic and mechanical characteristics. Under pathological conditions it becomes harmful to the myocardium and the coronary arteries. Important features in the clinical setting are correlations with coronary artery disease, heart failure, atrial fibrillation and visceral adipose tissue, thus acting as a possible biomarker of cardiovascular risk. p bKurzfassung:/b Das epikardiale Fettgewebe erweckt als „viszerales“ Fettdepot des Herzens mit zahlreichen lokalen und systemischen Effekten immer mehr wissenschaftliches Interesse. Das Fehlen einer trennenden Faszie zwischen epikardialem Fettgewebe und Myokard und die gemeinsame Blutversorgung durch die Koronararterien erlauben eine potenzielle Interaktion. Unter normalen physiologischen Verhältnissen hat das epikardiale Fettgewebe hauptsächlich anti-atherogene, thermogenetische und mechanische Funktionen. Unter pathologischen Verhältnissen schädigt es das Myokard und die Koronararterien. Einen klinischen Stellenwert hat es aufgrund von Korrelationen mit koronarer Herzerkrankung, Herzinsuffizienz, Vorhofflimmern und viszeralem Fettgewebe. Dadurch könnte es als neuer Biomarker für das kardiovaskuläre Risiko dienen.

  18. Galectin-3 inhibition prevents adipose tissue remodelling in obesity.

    Martínez-Martínez, E; Calvier, L; Rossignol, P; Rousseau, E; Fernández-Celis, A; Jurado-López, R; Laville, M; Cachofeiro, V; López-Andrés, N

    2016-06-01

    Extracellular matrix remodelling of the adipose tissue has a pivotal role in the pathophysiology of obesity. Galectin-3 (Gal-3) is increased in obesity and mediates inflammation and fibrosis in the cardiovascular system. However, the effects of Gal-3 on adipose tissue remodelling associated with obesity remain unclear. Male Wistar rats were fed either a high-fat diet (33.5% fat) or a standard diet (3.5% fat) for 6 weeks. Half of the animals of each group were treated with the pharmacological inhibitor of Gal-3, modified citrus pectin (MCP; 100 mg kg(-1) per day) in the drinking water. In adipose tissue, obese animals presented an increase in Gal-3 levels that were accompanied by an increase in pericellular collagen. Obese rats exhibited higher adipose tissue inflammation, as well as enhanced differentiation degree of the adipocytes. Treatment with MCP prevented all the above effects. In mature 3T3-L1 adipocytes, Gal-3 (10(-8 )m) treatment increased fibrosis, inflammatory and differentiation markers. In conclusion, Gal-3 emerges as a potential therapeutic target in adipose tissue remodelling associated with obesity and could have an important role in the development of metabolic alterations associated with obesity. PMID:26853916

  19. Intrinsic regulation of blood flow in adipose tissue

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...

  20. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT. PMID:25830704

  1. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    Jie Yu

    Full Text Available Prolonged and excessive glucocorticoids (GC exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g were administrated with 100 µg/ml corticosterone (CORT or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.

  2. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis.

    Birsoy, Kivanç; Berry, Ryan; Wang, Tim; Ceyhan, Ozge; Tavazoie, Saeed; Friedman, Jeffrey M; Rodeheffer, Matthew S

    2011-11-01

    Obesity is characterized by an expansion of white adipose tissue mass that results from an increase in the size and the number of adipocytes. However, the mechanisms responsible for the formation of adipocytes during development and the molecular mechanisms regulating their increase and maintenance in adulthood are poorly understood. Here, we report the use of leptin-luciferase BAC transgenic mice to track white adipose tissue (WAT) development and guide the isolation and molecular characterization of adipocytes during development using DNA microarrays. These data reveal distinct transcriptional programs that are regulated during murine WAT development in vivo. By using a de novo cis-regulatory motif discovery tool (FIRE), we identify two early gene clusters whose promoters show significant enrichment for NRF2/ETS transcription factor binding sites. We further demonstrate that Ets transcription factors, but not Nrf2, are regulated during early adipogenesis and that Ets2 is essential for the normal progression of the adipocyte differentiation program in vitro. These data identify ETS2 as a functionally important transcription factor in adipogenesis and its possible role in regulating adipose tissue mass in adults can now be tested. Our approach also provides the basis for elucidating the function of other gene networks during WAT development in vivo. Finally these data confirm that although gene expression during adipogenesis in vitro recapitulates many of the patterns of gene expression in vivo, there are additional developmental transitions in pre and post-natal adipose tissue that are not evident in cell culture systems. PMID:21989915

  3. DETECTION OF LEPTIN IN MUSCLE TISSUES AND ORGANS OF PIGS

    Simona Kunová; Miroslava Kačániová Juraj Čuboň; Peter Haščík; Ľubomír Lopašovský

    2015-01-01

    The aim of this study was detection of gene leptin in muscles, liver and kidneys from pigs of breed Large White. Using Real time PRC method, we determined the Ct values of leptim gene in muscle, liver, kidney. The body weight of pigs ranged from 100 kg to 103 kg. The average body weight was 101.6 kg. The thickness of backfat ranged from 10 to 20 mm, average backfat thickness was 16 mm. The minimal Ct value of leptin gene in liver was 24.05 and the maximal value was 25.79. Average Ct value of ...

  4. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats.

    Scarpace, Philip J; Matheny, Michael; Strehler, Kevin Y E; Toklu, Hale Zerrin; Kirichenko, Nataliya; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2016-07-01

    This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. PMID:25617379

  5. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    Eun Young Kim

    2015-02-01

    Full Text Available Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.

  6. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    Arngrim, N; Simonsen, L; Holst, Jens Juul;

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after an...... increase in ATLD was seen after the glucose load in the lean subjects. In the obese subjects, ATLD remained constant throughout the study and was significantly lower compared to the lean subjects. These results indicate a reduced ability to remove macromolecules from the interstitial space through the...... lymphatic system in obese subjects. Furthermore, they suggest that postprandial changes in ATLD taking place in lean subjects are not observed in obese subjects. This may have a role in the development of obesity-related inflammation in hypertrophic adipose tissue.International Journal of Obesity advance...

  7. The effect of hypokinesia on lipid metabolism in adipose tissue

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  8. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  9. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  10. The effect of four weeks restricted diet on serum soluble leptin receptor levels and adipocyte leptin receptor density in normoweight rattus norvegicus strain Wistar

    M. R. Indra

    2006-09-01

    Full Text Available One of the five possible mechanisms of leptin resistance in human obesity is the defect in the leptin receptor (Ob-R. Evidence has accumulated that leptin-binding activity in human serum is related to a soluble form of the leptin receptor, and restriction of energy intake resulted a decrease in circulating leptin levels. Aim of this study is to examine the difference of serum soluble leptin receptor level and leptin receptor density in rat adipose tissue of adventitial aorta after four weeks treated with different restricted diets. Soluble leptin receptor level was measured by ELISA and leptin receptor density by using immuno-histochemistry. The soluble leptin receptor in group treated with 40% of normal daily calori diet was found significantly lower than control (p = 0.02. There were no any significant differences among group treated with 40 % of normal daily calori diet, “1 day fast-1day eat”, and ”1day fast-2 days eat” groups, and among 1 day fast-1 day eat”, ”day fast - 2 days eat” and control groups as well. On the other hand, leptin receptor density in adipose tissues was higher in restricted diet group than control. Diet of 40 % normal daily calorie for 4 weeks decreased soluble leptin receptor level, but increased adipocyte leptin receptor density of the adipose tissue of rat adventitial aorta. These changes may be resulted from an up regulation mechanism in relation with homeostatic maintenance. (Med J Indones 2006; 15:145-50 Keywords: restricted diet, leptin receptor, soluble leptin receptor, adipocyte, obesity

  11. New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology

    To employ quantitative radiology more accurately, we examined phantom materials for cortical bone and adipose tissue as calibration standards and as experimental phantoms. New tissue substitutes for cortical bone and adipose tissue composed of liquid phantom were verified by computing their attenuation coefficients and observing their chemical properties. We showed that a potassium pyrophosphate (K4P2O7) solution for cortical bone was comparable to a dipotassium hydrogen phosphate (K2HPO4) solution. Also, the use of methyl alcohol for adipose tissue was more suitable than ethyl alcohol as a phantom material because of its physical and chemical properties. (author)

  12. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer; Janna Schoenmakers; Guy Vijgen; Fons Kessels; Anne-Marie Dingemans; Patrick Schrauwen; Miel Wouters; Wouter van Marken Lichtenbelt; Jaap Teule; Boudewijn Brans

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activ...

  13. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    Sun, Kai; Park, Jiyoung; Gupta, Olga T;

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst......We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model...

  14. Ratların böbrek histomorfolojisi üzerine leptin etkisinin araştırılması

    Ak, Cennet; BAYRAM, Dilek; Armağan, İlkay; Uğuz, A. Cihangir

    2015-01-01

    Aim: increasing day by day obesity, one of the preventable health problems. Obese individual increases the risk of renal disease one and a half times more compared to the non-obese individuals. Leptin is a type of adipokinin hormone which is released from adipose tissue cells in proportion to the amount of adipose tissue. It is known that leptin leads to a rise in reactive oxygen radicals in the tissue. This study aimed at investigating if leptin affects renal tissue by giving leptin to the r...

  15. Quantifying Size and Number of Adipocytes in Adipose Tissue

    Parlee, Sebastian D.; Lentz, Stephen I.; Mori, Hiroyuki; MacDougald, Ormond A.

    2014-01-01

    White adipose tissue (WAT) is a dynamic and modifiable tissue that develops late during gestation in humans and through early postnatal development in rodents. WAT is unique in that it can account for as little as 3% of total body weight in elite athletes or as much as 70% in the morbidly obese. With the development of obesity, WAT undergoes a process of tissue remodeling in which adipocytes increase in both number (hyperplasia) and size (hypertrophy). Metabolic derangements associated with o...

  16. Alterations in Adipose Tissue during Critical Illness: An Adaptive and Protective Response?

    Langouche, Lies; Vander Perre, Sarah; Thiessen, Steven; Gunst, Jan; Hermans, Greet; D'Hoore, André; Kola, Blerina; Korbonits, Márta; Van den Berghe, Greet

    2010-01-01

    Rationale: Critical illness is characterized by lean tissue wasting, whereas adipose tissue is preserved. Overweight and obese critically ill patients may have a lower risk of death than lean patients, suggestive of a protective role for adipose tissue during illness. Objectives: To investigate whether adipose tissue could protectively respond to critical illness by storing potentially toxic metabolites, such as excess circulating glucose and triglycerides. Methods: We studied adipose tissue ...

  17. Leptin as a mediator between obesity and cardiac dysfunction

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  18. Vitamin D and adipose tissue - more than storage

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  19. THP-1 macrophages and SGBS adipocytes - a new human in vitro model system of inflamed adipose tissue

    Michaela eKeuper

    2011-12-01

    Full Text Available Obesity is associated with an accumulation of macrophages in adipose tissue. This inflammation of adipose tissue is a key event in the pathogenesis of several obesity-related disorders, particularly insulin resistance.Here, we summarized existing model systems that mimic the situation of inflamed adipose tissue in vitro, most of them being murine. Importantly, we introduce our newly established human model system which combines the THP-1 monocytic cell line and the preadipocyte cell strain SGBS. THP-1 cells, which originate from an acute monocytic leukemia, differentiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS (Simpson-Golabi-Behmel syndrome was recently introduced as a unique to tool to study human fat cell functions. SGBS cells are characterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-stimulated de novo lipogenesis and beta-adrenergic-stimulated lipolysis and they secrete typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-conditioned medium or a direct co-culture of macrophages and fat cells, our model system can be used to distinguish between paracrine and cell-contact dependent effects.In conclusion, we propose this model as a useful tool to study adipose inflammation in vitro. It represents an inexpensive, highly reproducible human system. The methods described here can be easily extended for usage of primary human macrophages and fat cells.

  20. Modulation of leptin resistance by food compounds.

    Aragonès, Gerard; Ardid-Ruiz, Andrea; Ibars, Maria; Suárez, Manuel; Bladé, Cinta

    2016-08-01

    Leptin is mainly secreted by white adipose tissue and regulates energy homeostasis by inhibiting food intake and stimulating energy expenditure through its action in neuronal circuits in the brain, particularly in the hypothalamus. However, hyperleptinemia coexists with the loss of responsiveness to leptin in common obese conditions. This phenomenon has been defined as leptin resistance and the restoration of leptin sensitivity is considered to be a useful strategy to treat obesity. This review summarizes the existing literature on potentially valuable nutrients and food components to reverse leptin resistance. Notably, several food compounds, such as teasaponins, resveratrol, celastrol, caffeine, and taurine among others, are able to restore the leptin signaling in neurons by overexpressing anorexigenic peptides (proopiomelanocortin) and/or repressing orexigenic peptides (neuropeptide Y/agouti-related peptide), thus decreasing food intake. Additionally, some nutrients, such as vitamins A and D, can improve leptin transport through the blood-brain barrier. Therefore, food components can improve leptin resistance by acting at different levels of the leptin pathway; moreover, some compounds are able to target more than one feature of leptin resistance. However, systematic studies are necessary to define the actual effectiveness of each compound. PMID:26842874

  1. Myocardial regeneration potential of adipose tissue-derived stem cells

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  3. Visceral adipose tissue modulates mammalian longevity

    Muzumdar, Radhika; Allison, David B.; Huffman, Derek M.; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H.; Fishman, Sigal; Poduval, Aruna D.; McVei, Theresa; Keith, Scott W.; Barzilai, Nir

    2008-01-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal af...

  4. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  5. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  6. Impact of runting on adipokine gene expression in neonatal pig adipose tissue

    This study examined the effects of runting on adipokines in neonatal adipose tissue. Pigs were selected as runts (R) by birth weight adipose tissues were collected at d1 (n = 5), d7 (n = 7) or d21 (n...

  7. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl2, HgCl2, NaAsO2 and MnCl2 pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl2 significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl2 treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl2 significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl2 had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl2 enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl2 treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead to the development of new approaches to establishing the

  8. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u-ac.jp; Hanao, Norihide; Nishiyama, Kaori; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2012-01-01

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl{sub 2}, HgCl{sub 2}, NaAsO{sub 2} and MnCl{sub 2} pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl{sub 2} significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl{sub 2} treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl{sub 2} significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl{sub 2} had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl{sub 2} enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl{sub 2} treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead

  9. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  10. Impact of Age on the Relationships of Brown Adipose Tissue With Sex and Adiposity in Humans

    Pfannenberg, Christina; Werner, Matthias K.; Ripkens, Sabine; Stef, Irina; Deckert, Annette; Schmadl, Maria; Reimold, Matthias; Häring, Hans-Ulrich; Claussen, Claus D.; Stefan, Norbert

    2010-01-01

    OBJECTIVE Brown adipose tissue (BAT) regulates energy homeostasis and fat mass in mammals and newborns and, most likely, in adult humans. Because BAT activity and BAT mass decline with age in humans, the impact of BAT on adiposity may decrease with aging. In the present study we addressed this hypothesis and further investigated the effect of age on the sex differences in BAT activity and BAT mass. RESEARCH DESIGN AND METHODS Data from 260 subjects (98 with BAT and 162 study date–matched cont...

  11. Adipose tissue fatty acid patterns and changes in anthropometry

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue...

  12. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. PMID:26529279

  13. Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-01-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in ...

  14. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism

    Herman, Mark Andrew; Peroni, Odile Daniele; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A.; Blüher, Matthias; Klein, Samuel; Kahn, Barbara

    2012-01-01

    Summary The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regul...

  15. Natural Killer T Cells in Adipose Tissue Are Activated in Lean Mice

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or ...

  16. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in ...

  17. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta

    Hoggard, Nigel; Hunter, Leif; Duncan, Jacqueline S.; Lynda M Williams; Trayhurn, Paul; Mercer, Julian G.

    1997-01-01

    Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription–PCR and in situ hybridization. High levels of ...

  18. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, Bente; Bülow, J

    subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5% of...

  19. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  1. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  3. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  8. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  15. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  17. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  20. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  7. Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue

    Zhang, Xueli; Kuo, Chaincy; Moore, Anna; Ran, Chongzhao

    2014-01-01

    Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video repo...

  8. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  9. Exercise training decreases adipose tissue inflammation in cachectic rats.

    Lira, F S; Yamashita, A S; Rosa, J C; Koyama, C H; Caperuto, E C; Batista, M L; Seelaender, M C L

    2012-02-01

    Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti- and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1β, IL-6, TNF-α, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-α mRNA in MEAT was increased in the cachectic animals (preduction of the infiltrating monocytes both in MEAT and RPAT (p<0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT. PMID:22266827

  10. Different modulation by dietary restriction of adipokine expression in white adipose tissue sites in the rat

    Esteve Montserrat

    2009-07-01

    Full Text Available Abstract Background White adipose tissue (WAT is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome. Methods Overweight male rats had their food intake reduced a 40% compared with free-feeding controls. On day ten, the rats were killed; circulating glucose, insulin, leptin, adiponectin, triacylglycerols and other parameters were measured. The main WAT sites were dissected: mesenteric, retroperitoneal, epididymal and subcutaneous inguinal, which were weighed and frozen. Later all subcutaneous WAT was also dissected and weighed. Samples were used for DNA (cellularity analysis and mRNA extraction and semiquantitarive RT-PCR analysis of specific cytokine gene expressions. Results There was a good correlation between serum leptin and cumulative WAT leptin gene mRNA, but not for adiponectin. Food restriction reduced WAT size, but not its DNA content (except for epididymal WAT. Most cytokines were correlated to WAT site weight, but not to DNA. There was WAT site specialization in the differential expression (and probably secretion of adipokines: subcutaneous WAT showed the highest concentration for leptin, CD68 and MCP-1, mesenteric WAT for TNFα (and both tissues for the interleukins 1β and 6; resistin was highly expressed in subcutaneous and retroperitoneal WAT. Conclusion Food restriction induced different patterns for mesenteric and the other WAT sites, which may be directly related to both the response to intestine-derived energy availability, and an inflammatory-related response. However, retroperitoneal WAT, and to a lower extent, subcutaneous and epididymal, reacted decreasing the expression of

  11. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: Involvement of p53/FoxO3A axis

    Nepal, Saroj; Kim, Mi Jin; Hong, Jin Tae; Kim, Sang Hyun; Sohn, Dong-Hwan; Lee, Sung Hee; Song, Kyung; Choi, Dong Young; Lee, Eung Seok; Park, Pil-Hoon

    2015-01-01

    Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as...

  12. [Leptin and hypothalamus-hypophysis-thyroid axis].

    Riccioni, G; Menna, V; Lambo, M S; Della Vecchia, R; Di Ilio, C; De Lorenzo, A; D'Orazio, N

    2004-01-01

    The leptin system is a major regulator of food intake and metabolic rate. The leptin, an adipose tissue hormone whose plasma levels reflect energy stores, plays an important rule in the pathogenesis of such eating disorders like bulimia and anorexia. Thyroid hormones are major regulators of energy homeostasis. It is possible that leptin and thyroid hormone exert their actions on thermogenesis and energy metabolism via the same common effector patways. Leptin influences feedback regulation of the hypotalamic TRH-secreting neurons by thyroid hormone. Low serum levels of thyroid hormones reflect a dysfunction of the hypotalamic-pituitary-thyroid (HPT) and hypotalamic-pituitary-adrenal (HPA) axis in patients with nervosa anorexia. Neuroendocrine effects of leptin include effects on the HPT and HPA axis. The aim of this work is to evaluated the interactions between leptina and HPT axis on the basis of recent published works and reviews in literature. PMID:15147079

  13. The Beneficial Effects of Leptin on REM Sleep Deprivation-Induced Cognitive Deficits in Mice

    Chang, Hsiao-Fu; Su, Chun-Lin; Chang, Chih-Hua; Chen, Yu-Wen; Gean, Po-Wu

    2013-01-01

    Leptin, a 167 amino acid peptide, is synthesized predominantly in the adipose tissues and plays a key role in the regulation of food intake and body weight. Recent studies indicate that leptin receptor is expressed with high levels in many brain regions that may regulate synaptic plasticity. Here we show that deprivation of rapid eye movement…

  14. Tissue Engineering of Injectable Soft tissue Filler: Using Adipose Stem Cells and Micronized Acellular Dermal Matrix

    Yoo, Gyeol; Lim, Jin Soo

    2009-01-01

    In this study of a developed soft tissue filler, adipose tissue equivalents were constructed using adipose stem cells (ASCs) and micronized acellular dermal matrix (Alloderm). After labeling cultured human ASCs with fluorescent green protein and attaching them to micronized Alloderm (5×105 cells/1 mg), ASC-Alloderm complexes were cultured in adipogenic differentiation media for 14 days and then injected into the dorsal cranial region of nude male mice. The viabilities of ASCs in micronized Al...

  15. Heterogeneous response of adipose tissue to cancer cachexia

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  16. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    Svendsen, P F; Madsbad, S; Nilas, L;

    2009-01-01

    assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. RESULTS: Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11...... controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model...... peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1....

  17. Visceral adipose tissue modulates mammalian longevity.

    Muzumdar, Radhika; Allison, David B; Huffman, Derek M; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H; Fishman, Sigal; Poduval, Aruna D; McVei, Theresa; Keith, Scott W; Barzilai, Nir

    2008-06-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum-fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean (p fat mass, specifically VF, may be one of the possible underlying mechanisms of the anti-aging effect of CR. PMID:18363902

  18. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    Kurki Eveliina

    2012-06-01

    Full Text Available Abstract Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR. Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy, lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice

  19. Brown adipose tissue development and metabolism in ruminants.

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  20. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  1. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity

    Rahmouni, Kamal

    2010-01-01

    Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increase...

  2. Leptin and zinc relation: In regulation of food intake and immunity

    Abdulkerim Kasim Baltaci; Rasim Mogulkoc

    2012-01-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a...

  3. Memory-enhancing effects of the leptin hormone in Wistar albino rats: sex and generation differences

    KARAKAŞ, Alper; COŞKUN, Hamit; KIZILKAYA, Fevziye Umut

    2013-01-01

    Leptin is a hormone secreted by adipose tissue that informs the brain about the fat stores of the body. In this study, we examined the effects of timed leptin injections on spatial memory performances of adult and juvenile male and female Wistar rats with the Morris water maze test. We applied the injections and conducted the training trials for 4 days. On the fifth day after leptin injections, the experiments were performed. The activities were recorded and analyzed with the Noldus Ethovisio...

  4. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.

    Verlohren, Stefan; Dubrovska, Galyna; Tsang, Suk-Ying; Essin, Kirill; Luft, Friedrich C; Huang, Yu; Gollasch, Maik

    2004-09-01

    Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation. We studied mesenteric artery rings surrounded by periadventitial adipose tissue from adult male Sprague-Dawley rats. The contractile response to serotonin, phenylephrine, and endothelin I was markedly reduced in intact vessels compared with vessels without periadventitial fat. The contractile response to U46619 or depolarizing high K+-containing solutions (60 mmol/L) was similar in vessels with and without periadventitial fat. The K+ channel opener cromakalim induced relaxation of vessels precontracted by serotonin but not by U46619 or high K+-containing solutions (60 mmol/L), suggesting that K+ channels are involved. The intracellular membrane potential of smooth muscle cells was more hyperpolarized in intact vessels than in vessels without periadventitial fat. Both the anticontractile effect and membrane hyperpolarization of periadventitial fat were abolished by inhibition of delayed-rectifier K+ (K(v)) channels with 4-aminopyridine (2 mmol/L) or 3,4-diaminopyridine (1 mmol/L). Blocking other K+ channels with glibenclamide (3 micromol/L), apamin (1 micromol/L), iberiotoxin (100 nmol/L), tetraethylammonium ions (1 mmol/L), tetrapentylammonium ions (10 micromol/L), or Ba2+ (3 micromol/L) had no effect. Longitudinal removal of half the perivascular tissue reduced the anticontractile effect of fat by almost 50%, whereas removal of the endothelium had no effect. We suggest that visceral periadventitial adipose tissue controls mesenteric arterial tone by inducing vasorelaxation via K(v) channel activation in vascular smooth muscle cells. PMID:15302842

  5. Thermoluminescent dosimetry system equivalent to adipose tissue

    The dosimetric system is a fine-dispersed (size of particles 2B4O7 (0.03% Mn) and the non-luminophor [NH(C2H5)3]2B12H12 in equal quantities. The process and the results are presented measuring phantom doses absorbed by fat tissue in gamma and roentgen short-distance irradiation. A substance consisting of 55% paraffin and of 45% Li2Co3 is recommended to imitate fat tissue in phantom measurements. (author)

  6. Voluntary Exercise Improves High-Fat Diet-Induced Leptin Resistance Independent of Adiposity

    Carhuatanta, Kimberly A. Krawczewski; Demuro, Giovanna; Tschöp, Matthias H.; Pfluger, Paul T.; Benoit, Stephen C.; Obici, Silvana

    2011-01-01

    The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalam...

  7. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis.

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  8. WJD 5th Anniversary Special Issues(1): Insulin Benefits of healthy adipose tissue in the treatment of diabetes

    Subhadra; C; Gunawardana

    2014-01-01

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin.Insulin deficiency is either absolute due to destruction or failure of pancreaticβcells,or relative due to decreased sensitivity of peripheral tissues to insulin.The primary lesion being related to insulin,treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin.These therapies have their own limitations and complications,some of which can be life-threatening.For example,exogenous insulin administration can lead to fatal hypoglycemic episodes;islet/pancreas transplantation requires life-long immunosuppressive therapy;and anti-diabetic drugs have dangerous side effects including edema,heart failure and lactic acidosis.Thus the need remains for better safer long term treatments for diabetes.The ultimate goal in treating diabetes is to re-establish glucose homeostasis,preferably through endogenously generated hormones.Recent studies increasingly show that extra-pancreatic hormones,particularly those arising from adipose tissue,can compensate for insulin,or entirely replace the function of insulin under appropriate circumstances.Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism.While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines,healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties,which can complement and/or compensate for the function of insulin.Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes,and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin.Although specific adipokines may correct diabetes,administration of individual adipokines still carries risks similar to those of insulin monotherapy.Thus a better approach is to

  9. Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma.

    Zorad, Stefan; Dou, Jing-tao; Benicky, Julius; Hutanu, Daniel; Tybitanclova, Katarina; Zhou, Jin; Saavedra, Juan M

    2006-12-15

    To clarify the mechanism of the effects of angiotensin II AT(1) receptor antagonists on adipose tissue, we treated 8 week-old male Wistar Kyoto rats with the angiotensin II AT(1) receptor antagonist Candesartan cilexetil (10 mg/kg/day) for 18 weeks. Candesartan cilexetil reduced body weight gain, decreased fat tissue mass due to hypotrophy of epididymal and retroperitoneal adipose tissue and decreased adipocyte size without changing the number of adipocytes. Candesartan cilexetil decreased serum leptin levels and epididymal leptin mRNA, increased serum adiponectin levels and epididymal adiponectin mRNA, decreased epididymal tumor necrosis factor alpha (TNFalpha) mRNA, and increased fatty acid synthase mRNA. Considered free of peroxisome proliferator-activated receptor gamma (PPARgamma) agonist activity, Candesartan cilexetil increased epididymal expression of PPARgamma mRNA. The effects of Candesartan cilexetil on adipokine production and release may be attributable to PPARgamma activation and/or decrease in adipocyte cell size. In addition, Candesartan cilexetil treatment increased the expression of epididymal angiotensin II AT(2) receptor mRNA and protein and decreased the expression of renin receptor mRNA. These results suggest that Candesartan cilexetil influences lipid metabolism in adipose tissue by promoting adipose tissue rearrangement and modulating adipokine expression and release. These effects are probably consequences of local angiotensin II AT(1) receptor inhibition, angiotensin II AT(2) receptor stimulation, and perhaps additional angiotensin II-independent mechanisms. Our results indicate that the activity of local renin-angiotensin system plays an important role in adipose tissue metabolism. The decrease in the pro-inflammatory cytokine TNFalpha and the increase in the anti-inflammatory adipokine adiponectin indicate that Candesartan cilexetil may exert significant anti-inflammatory properties. PMID:17064684

  10. Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome: a case report

    Guallar Jordi P

    2008-08-01

    Full Text Available Abstract Introduction Acquired partial lipodystrophy or Barraquer-Simons syndrome is a rare form of progressive lipodystrophy. The etiopathogenesis of adipose tissue atrophy in these patients is unknown. Case presentation This is a case report of a 44-year-old woman with acquired partial lipodystrophy. To obtain insight into the molecular basis of lipoatrophy in acquired partial lipodystrophy, we examined gene expression in adipose tissue from this patient newly diagnosed with acquired partial lipodystrophy. A biopsy of subcutaneous adipose tissue was obtained from the patient, and DNA and RNA were extracted in order to evaluate mitochondrial DNA abundance and mRNA expression levels. Conclusion The expression of marker genes of adipogenesis and adipocyte metabolism, including the master regulator PPARγ, was down-regulated in subcutaneous adipose tissue from this patient. Adiponectin mRNA expression was also reduced but leptin mRNA levels were unaltered. Markers of local inflammatory status were unaltered. Expression of genes related to mitochondrial function was reduced despite unaltered levels of mitochondrial DNA. It is concluded that adipogenic and mitochondrial gene expression is impaired in adipose tissue in this patient with acquired partial lipodystrophy.

  11. Levels of chlordane, oxychlordane, and nonachlor in human adipose tissues

    Hirai, Yukio; Tomokuni, Katsumaro (Saga Medical School (Japan))

    1991-08-01

    Chlordane was used as a termiticide for more than twenty years in Japan. Chlordane is stable in the environment such as sediment and its bioaccumulation in some species of bacteria, freshwater invertebrates, and marine fish is large. Many researches were done to elucidate the levels of chlordane and/or its metabolite oxychlordane in human adipose tissues. A comprehensive review concerning chlordane was recently provided by USEPA. On the other hand, Japan authorities banned the use of chlordane in September 1986. In the last paper, the authors reported that both water and sediment of the rivers around Saga city were slightly contaminated with chlordane. In the present study, they investigated the levels of chlordane, oxychlordane and nonachlor in human adipose tissues.

  12. Fully automated adipose tissue measurement on abdominal CT

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  13. Adipose tissue is a regulated source of interleukin-10.

    Juge-Aubry, Cristiana E; Somm, Emmanuel; Pernin, Agnès; Alizadeh, Navid; Giusti, Vittorio; Dayer, Jean-Michel; Meier, Christoph A

    2005-03-21

    White adipose tissue (WAT) is the source of pro- and anti-inflammatory cytokines and we have recently shown that this tissue is a major source of the anti-inflammatory interleukin (IL)-1 receptor antagonist (IL-1Ra). We now aimed at identifying additional adipose-derived cytokines, which might serve as regulators of IL-1Ra. We demonstrate here for the first time that the antiinflammatory cytokine IL-10 is secreted by human WAT explants and that it is up-regulated by LPS and TNF-alpha in vitro, as well as in obesity in humans (2- and 6-fold increase in subcutaneous and visceral WAT, respectively) and rodents (4-fold increase). PMID:15749027

  14. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  15. Leptina e exercício físico aeróbio: implicações da adiposidade corporal e insulina Leptin and endurance exercise: implications of adiposity and insulin

    Fabiana Braga Benatti

    2007-08-01

    concentrações plasmáticas de leptina após o treinamento aeróbio, sendo a insulina a principal candidata a tal modulação. Dessa forma, esta revisão aborda os principais aspectos do hormônio leptina, sua ação, função e regulação, associação com a insulina, além dos efeitos do exercício físico agudo e crônico na síntese e secreção da leptina, e possíveis implicações da insulina e adiposidade em função desse estímulo.Obesity currently is qualified as a worldwide health epidemic and its consequences include diabetes mellitus as far as cardiac disease. Genetic and environmental factors contribute to obesity, although the genetic component is still poorly understood in humans. With the cloning of mouse ob gene and its receptor, leptin was discovered, the "satiety hormone". Leptin is expressed and secreted primarily by adipose tissue and is highly correlated to body fat mass. Nevertheless, many factors can regulate leptin synthesis and expression, such as fasting, sympathetic activity, insulin, exercise and changes in energy balance. Aerobic physical activity effects on leptin are still not very clear, seeing that there are contradictory studies about its effects on leptin regulation. Transversal studies suggest that leptin concentrations are not acutely affected after an exercise bout. However, reductions in leptin concentrations are observed following extreme bouts of exercise such as ultramarathons, where the extenuating physical activity induces a deficit in energy balance. Also, long-term (> 60 min exercise seems to be associated with a delayed reduction in leptin concentrations 48 hr after the exercise bout, possibly due to an energy imbalance. Some longitudinal studies show that aerobic exercise training does not affect leptin levels, others that any changes in leptin levels are due to possible changes in body fat, and, lastly, some studies show a reduction in leptin levels and/or expression independently of any changes in adiposity. That

  16. Regulation of Triglyceride Metabolism. IV. Hormonal regulation of lipolysis in adipose tissue

    Jaworski, Kathy; Sarkadi-Nagy, Eszter; Duncan, Robin E.; Ahmadian, Maryam; Sul, Hei Sook

    2007-01-01

    Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the...

  17. Inhibition of Sam68 triggers adipose tissue browning.

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  18. Adipose Tissue - Adequate, Accessible Regenerative Material

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cell...

  19. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89...

  20. Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice†

    Rice, Douglas R.; White, Alexander G.; Leevy, W. Matthew; Smith, Bradley D.

    2015-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we disclose a simple but effective method for non-invasive optical imaging of interscapular BAT in mice u...

  1. Insulin Regulates the Unfolded Protein Response in Human Adipose Tissue

    Boden, Guenther; Cheung, Peter; Salehi, Sajad; Homko, Carol; Loveland-Jones, Catherine; Jayarajan, Senthil; Stein, T Peter; Williams, Kevin Jon; Liu, Ming-Lin; Barrero, Carlos A.; Merali, Salim

    2014-01-01

    Endoplasmic reticulum (ER) stress is increased in obesity and is postulated to be a major contributor to many obesity-related pathologies. Little is known about what causes ER stress in obese people. Here, we show that insulin upregulated the unfolded protein response (UPR), an adaptive reaction to ER stress, in vitro in 3T3-L1 adipocytes and in vivo, in subcutaneous (sc) adipose tissue of nondiabetic subjects, where it increased the UPR dose dependently over the entire physiologic insulin ra...

  2. Insulin action in human adipose tissue in acromegaly.

    Bolinder, J.; Ostman, J; Werner, S.; Arner, P.

    1986-01-01

    The mechanisms underlying insulin resistance in acromegaly were investigated. Adipose tissue was obtained from nine patients with acromegaly who had in vivo insulin resistance and from 14 matched healthy control subjects. Receptor binding and the antilipolytic effect of insulin were determined in isolated fat cells. Insulin-induced glucose oxidation at a physiological hexose concentration was investigated in fat segments. In fat cells obtained from acromegaly patients after an overnight fast,...

  3. Effects of immunosuppressive drugs on human adipose tissue metabolism

    Pereira, Maria J

    2012-01-01

    The immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to incr...

  4. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues

    Ren Zhang

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fas...

  5. Seeking the source of adipocytes in adult white adipose tissues

    Lee, Yun-Hee; Granneman, James G.

    2012-01-01

    Adipocyte progenitors are thought to play a fundamental role in white adipose tissue (WAT) plasticity, which enables dynamic modulation of WAT metabolic and cellular characteristics in response to various stimuli. In general, two main strategies have been used to identify adipocyte progenitor cells: fluorescence-activated cell sorting (FACS)-based prospective analysis and lineage tracing. Although FACS-isolation is highly useful in defining multipotential stem cell populations for in vitro an...

  6. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana; Andi Wijaya

    2010-01-01

    BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry and gene and protein expression assays to prove conc...

  7. Adipose tissue and sustainable development: a connection that needs protection

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsu...

  8. Sympathetic and sensory innervation of brown adipose tissue

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  9. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

    Stanford, Kristin I.; Middelbeek, Roeland J.W.; Townsend, Kristy L.; An, Ding; Nygaard, Eva B.; Hitchcox, Kristen M.; Markan, Kathleen R.; Nakano, Kazuhiro; Hirshman, Michael F.; Tseng, Yu-Hua; Goodyear, Laurie J.

    2012-01-01

    Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lowe...

  10. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in...

  11. Negative Regulators of Brown Adipose Tissue (BAT)-Mediated Thermogenesis

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-01-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence therm...

  12. Brominated dioxins and dibenzofurans in human adipose tissue. Final report

    Cramer, P.H.; Stanley, J.S.; Bauer, K.; Ayling, R.E.; Thornburg, K.R.

    1990-04-11

    The report describes the analytical efforts for the determination of polybrominated dioxins (PBDDs) and furans (PBDFs) in human adipose tissues. Data on the precision and accuracy of the method for three tetra- through hexabrominated dioxins and three tetra- through hexabrominated furans (specific 2,3,7,8-substituted isomers) were generated from the analysis of 5 unspiked and 10 spiked (5 replicates at 2 spike levels) adipose tissue samples that were included with the analysis of the FY 1987 samples. In addition, data are presented on the results of the analysis of 48 composite samples for the six specific PBDD and PBDF compounds. The targeted 2,3,7,8-substituted PBDDs and PBDFs were not detected in any of the samples except those prepared as spiked QC materials. The detection limits calculated for the tetrabromo congeners in the samples ranged from 0.46 to 8.9 pg/g (lipid basis). The detection limits for the higher brominated congeners were typically greater than that observed for the tetrabrominated compounds. There is some evidence for the presence of other brominated compounds in the adipose tissue samples. Specifically, responses were noted that correspond to the qualitative criteria for polybrominated diphenyl ethers (hexa through octabromo).

  13. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana

    2010-08-01

    Full Text Available BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT. Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT imaging, immunohistochemistry and gene and protein expression assays to prove conclusively that adult humans have functional BAT. BAT is important for thermogenesis and energy balance in small mammals and its induction in mice promotes energy expenditure, reduces adiposity and protects mice from diet-induced obesity. The thermogenic capacity of BAT is impressive. In humans, it has been estimated that as little as 50g of BAT could utilize up to 20% of basal caloric needs if maximally stimulated. SUMMARY: The obesity pandemic requires new and novel treatments. The past few years have witnessed multiple studies conclusively showing that adult humans have functional BAT, a tissue that has a tremendous capacity for obesity-reducing thermogenesis. Novel therapies targeting BAT thermogenesis may be available in the near future as therapeutic options for obesity and diabetes. Thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity. KEYWORDS: brown adipose tissue, thermogenesis, energy expenditure, antiobesity therapy.

  14. Food consumption and adipose tissue DDT levels in Mexican women

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  15. Food consumption and adipose tissue DDT levels in Mexican women

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  16. Adipose tissue-derived stromal cells express neuronal phenotypes

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  17. Adipose tissue-liver axis in alcoholic liver disease

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  18. Leptin: A proliferative factor for breast cancer?

    Mammary adipose tissue is an important source of paracrine mitogens and anti-mitogens, including insulin-like growth factor, transforming growth factors, and cytokines (especially, TNFα and IL-1β). Nevertheless, it is also an important source of the adipocytokine, leptin. Recently, leptin was reported to stimulate the proliferation of various cell types (pancreatic β cells, prostate, colorectal, lung, etc.) as a new growth factor. It was also shown to stimulate the proliferation of breast cancer cell lines. In this study, we conducted an immunohistochemical analysis of leptin expression in normal tissue and benign and malignant ductal breast cell, representing the different states of the invasion process. We determined for the first time that leptin is expressed both by ductal breast tumors and by benign lesions as atypical hyperplasia. This suggests that leptin may be taken up or synthesized by all modified ductal breast cells, and may prove a proliferative factor. Moreover, leptin is unexpressed by normal tissue in the healthy breast but is exhibited by the normal tissue in near vicinity of the malignant ductal breast lesions. We also postulated that leptin may be a prognostic or diagnostic factor for ductal breast cancer. These putative hypotheses require further study

  19. Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures

    Werner, Katharina Julia

    2014-01-01

    Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the ap...

  20. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated the...... basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection of...... ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  1. Adipose tissue in imaging of the pelvis

    Fat is a fundamental contrast agent in pelvic imaging. The features of fat are typical on CT and MRI but vary on ultrasonography according to the physical caracteristics and histology. The study of pelvic fat is of great importance in pelvic exploration because fat outlines both the normal structures and their borders. Involvement or masking of the pelvic fat is a good marker of carcinologic spread. Changes in pelvic fat may also be observe in inflammatory diseases. Specific diseases of fatty pelvic connective tissue such as lipomatosis and liposarcomas, are classically described. Teratomas with a fatty component derived from pelvic structures (ovaries) are easily diagnosed using imaging methods

  2. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation

    Fitzgibbons, Timothy P.; Kogan, Sophia; Aouadi, Myriam; Hendricks, Greg M.; Straubhaar, Juerg; Czech, Michael P.

    2011-01-01

    Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and the metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually ident...

  3. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  4. Energy stores, lipid mobilization and leptin endocrinology of rainbow trout.

    Johansson, Marcus; Morgenroth, Daniel; Einarsdottir, Ingibjörg Eir; Gong, Ningping; Björnsson, Björn Thrandur

    2016-08-01

    The physiological role of leptin in fish is not fully elucidated. In the present study, the involvement of the leptin system in lipid deposition and mobilization in rainbow trout during feeding and 1, 2 and 4 weeks of fasting was investigated in two lines of rainbow trout with different muscle and visceral adiposity: a fat line (FL) with high total energy reserves, high muscle adiposity, but low visceral adiposity and a lean line (LL) with lower total energy reserves and lower muscle adiposity, but higher visceral adiposity. During 4 weeks of fasting, muscle lipids decreased by 63 % in the FL fish, while no such energy mobilization from muscle occurred in the LL fish. On the other hand, lipid stores in liver and visceral adipose tissue was utilized to a similar extent by the two fish lines during fasting. Under normal feeding conditions, plasma leptin levels were higher in the LL than the FL fish, suggesting a possible contribution of visceral adipocytes to plasma leptin levels. Plasma leptin-binding protein levels did not differ between the lines and were not affected by fasting. After 4 weeks of fasting, the long leptin receptor and the leptin-binding protein isoforms 1 and 3 muscle expression increased in the LL fish, as well as hepatic expression of leptin A1 and the two binding protein isoforms. These responses were not seen in the FL fish. The data suggest that the Lep system in rainbow trout is involved in regulation of energy stores and their mobilization. PMID:27083432

  5. Clinical aspects of leptin.

    Sinha, M K; Caro, J F

    1998-01-01

    Hyperleptinemia is an essential feature of human obesity. Total body fat mass > % body fat > BMI are the best predictors of circulating leptin levels. Although ob gene is differentially expressed in different fat compartments, apart from total body fat, upper or lower body adiposity or visceral fat does not influence basal leptin levels. Similarly, age, basal glucose levels, and ethnicity do not influence circulating leptin levels. Only in insulin-sensitive individuals do basal levels of insulin and leptin correlate positively even after factoring in body fat. Diabetes does not influence leptin secretion in both lean and obese subjects per se. Independent of adiposity, leptin levels are higher in women than in men. This sexual dimorphism is also present in adolescent children. In eating disorders anorexia nervosa and bulimea nervosa, leptin levels are not upregulated but simply reflect BMI and probably body fat. In spite of strong correlation between body fat and leptin levels, there is great heterogeneity in leptin levels at any given index of body fat. About 5% of obese populations can be regarded as "relatively" leptin deficient which could benefit from leptin therapy. Leptin has dual regulation in human physiology. During the periods of weight maintenance, when energy intake and energy output are equal, leptin levels reflect total bodyfat mass. However, in conditions of negative (weight-loss programs) and positive (weight-gain programs) energy balances, the changes in leptin levels function as a sensor of energy imbalance. This latter phenomenon is best illustrated by short-term fasting and overfeeding experiments. Within 24 h of fasting leptin levels decline to approximately 30% of initial basal values. Massive overfeeding over a 12-h period increases leptin levels by approximately 50% of initial basal values. Meal ingestion does not acutely regulate serum leptin levels. A few studies have shown a modest increase in leptin secretion at supraphysiological

  6. The importance of leptin in animal science

    Mirela Ahmadi

    2016-05-01

    Full Text Available There are two different neurons that control the energetic homeostasis in animals: appetite-stimulating and appetite-suppressing neurons. Leptin is a peptide hormone (also known as “satiety hormone”, released by adipose cells, being an anorexigenic compound which inhibit the hunger. Leptin function in animal organism is opposite by the action of ghrelin – a peptide hormone acting as an orexigenic compound that activate the hunger sensation. The quantity of leptin produced in organism is correlated by the size and the number of adipocytes, and of course by the lipid tissue mass. The action of leptin is in accordance with the neuropeptide Y that signaling the brain to increase the appetite and make the animal to eat. When the animals lose weight, the mass of adipose tissue is diminished, that has as consequence a decrease the leptin concentration in the blood. Blood leptin is correlated also with other characteristics, such as: fasting for a short term, stress, physical activity, sleep duration (prehibernation and hibernation, insulin concentration, obesity and diabetes.

  7. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production.

    Lynch, Lydia

    2012-09-21

    Invariant natural killer T (iNKT) cells are evolutionarily conserved innate T cells that influence inflammatory responses. We have shown that iNKT cells, previously thought to be rare in humans, were highly enriched in human and murine adipose tissue, and that as adipose tissue expanded in obesity, iNKT cells were depleted, correlating with proinflammatory macrophage infiltration. iNKT cell numbers were restored in mice and humans after weight loss. Mice lacking iNKT cells had enhanced weight gain, larger adipocytes, fatty livers, and insulin resistance on a high-fat diet. Adoptive transfer of iNKT cells into obese mice or in vivo activation of iNKT cells via their lipid ligand, alpha-galactocylceramide, decreased body fat, triglyceride levels, leptin, and fatty liver and improved insulin sensitivity through anti-inflammatory cytokine production by adipose-derived iNKT cells. This finding highlights the potential of iNKT cell-targeted therapies, previously proven to be safe in humans, in the management of obesity and its consequences.

  8. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D.

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from...

  9. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity.

    Heinonen, Sini; Buzkova, Jana; Muniandy, Maheswary; Kaksonen, Risto; Ollikainen, Miina; Ismail, Khadeeja; Hakkarainen, Antti; Lundbom, Jesse; Lundbom, Nina; Vuolteenaho, Katriina; Moilanen, Eeva; Kaprio, Jaakko; Rissanen, Aila; Suomalainen, Anu; Pietiläinen, Kirsi H

    2015-09-01

    Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8-36.2 years of age, who were discordant (ΔBMI >3 kg/m(2), mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m(2), n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage. PMID:25972572

  10. Adipose tissue and vascular inflammation in coronary artery disease

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  11. Common Genetic Variation in the SERPINF1 Locus Determines Overall Adiposity, Obesity-Related Insulin Resistance, and Circulating Leptin Levels

    Anja Böhm; Anna-Maria Ordelheide; Jürgen Machann; Martin Heni; Caroline Ketterer; Fausto Machicao; Fritz Schick; Norbert Stefan; Andreas Fritsche; Hans-Ulrich Häring; Harald Staiger

    2012-01-01

    OBJECTIVE: Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. SUBJECTS/METHODS: A population of 1,974 White Eu...

  12. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  13. ADCY5 gene expression in adipose tissue is related to obesity in men and mice.

    Anja Knigge

    Full Text Available Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene--encoding adenylate cyclase 5--with increased type 2 diabetes (T2D risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6 or high fat diet (HFD, n = 6. In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05. Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.

  14. Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial.

    Yaskolka Meir, Anat; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Tene, Lilac; Zelicha, Hila; Tsaban, Gal; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Zeller, Lior; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2016-08-01

    It remains unclear whether intermuscular adipose tissue (IMAT) has any metabolic influence or whether it is merely a marker of abnormalities, as well as what are the effects of specific lifestyle strategies for weight loss on the dynamics of both IMAT and thigh muscle area (TMA). We followed the trajectory of IMAT and TMA during 18-mo lifestyle intervention among 278 sedentary participants with abdominal obesity, using magnetic resonance imaging. We measured the resting metabolic rate (RMR) by an indirect calorimeter. Among 273 eligible participants (47.8 ± 9.3 yr of age), the mean IMAT was 9.6 ± 4.6 cm(2) Baseline IMAT levels were directly correlated with waist circumference, abdominal subdepots, C-reactive protein, and leptin and inversely correlated with baseline TMA and creatinine (P < 0.05 for all). After 18 mo (86.3% adherence), both IMAT (-1.6%) and TMA (-3.3%) significantly decreased (P < 0.01 vs. baseline). The changes in both IMAT and TMA were similar across the lifestyle intervention groups and directly corresponded with moderate weight loss (P < 0.001). IMAT change did not remain independently associated with decreased abdominal subdepots or improved cardiometabolic parameters after adjustments for age, sex, and 18-mo weight loss. In similar models, 18-mo TMA loss remained associated with decreased RMR, decreased activity, and with increased fasting glucose levels and IMAT (P < 0.05 for all). Unlike other fat depots, IMAT may not represent a unique or specific adipose tissue, instead largely reflecting body weight change per se. Moderate weight loss induced a significant decrease in thigh muscle area, suggesting the importance of resistance training to accompany weight loss programs. PMID:27402560

  15. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  16. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  17. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns

  18. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    T.S. Higa

    2012-10-01

    Full Text Available The relationship of body weight (BW with white adipose tissue (WAT mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT. Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18, 5 days/week for 4 weeks or maintained sedentary (S, N = 15. Citrate synthase activity increased significantly in the T group (P < 0.05. S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01. WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05. Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05 but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL. WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.

  19. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    Higa, T.S. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Bergamo, F.C. [Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Mazzucatto, F. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Fonseca-Alaniz, M.H. [Instituto do Coração, Departamento de Medicina-LIM13, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Evangelista, F.S. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Instituto do Coração, Departamento de Medicina-LIM13, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-08

    The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.

  20. Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity.

    Gil-Ortega, Marta; Stucchi, Paula; Guzmán-Ruiz, Rocío; Cano, Victoria; Arribas, Silvia; González, M Carmen; Ruiz-Gayo, Mariano; Fernández-Alfonso, Maria S; Somoza, Beatriz

    2010-07-01

    Perivascular adipose tissue (PVAT) plays a paracrine role in regulating vascular tone. We hypothesize that PVAT undergoes adaptative mechanisms during initial steps of diet-induced obesity (DIO) which contribute to preserve vascular function. Four-week-old male C57BL/6J mice were assigned either to a control [low-fat (LF); 10% kcal from fat] or to a high-fat diet (HF; 45% kcal from fat). After 8 wk of dietary treatment vascular function was analyzed in the whole perfused mesenteric bed (MB) and in isolated mesenteric arteries cleaned of PVAT. Relaxant responses to acetylcholine (10(-9)-10(-4) m) and sodium nitroprusside (10(-12)-10(-5) m) were significantly ameliorated in the whole MB from HF animals. However, there was no difference between HF and LF groups in isolated mesenteric arteries devoid of PVAT. The enhancement of relaxant responses detected in HF mice was not attributable to an increased release of nitric oxide (NO) from the endothelium nor to an increased sensitivity and/or activity of muscular guanilylcyclase. Mesenteric PVAT of HF animals showed an increased bioavailability of NO, detected by 4,5-diaminofluorescein diacetate (DAF2-DA) staining, which positively correlated with plasma leptin levels. DAF-2DA staining was absent in PVAT from ob/ob mice but was detected in these animals after 4-wk leptin replacement. The main finding in this study is that adaptative NO overproduction occurs in PVAT during early DIO which might be aimed at preserving vascular function. PMID:20410199

  1. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-r...

  2. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  3. SUBCUTANEOUS ADIPOSE TISSUE INSULIN RESISTANCE IS ASSOCIATED WITH VISCERAL ADIPOSITY IN POSTMENOPAUSAL WOMEN

    Casey, Beret A.; Kohrt, Wendy M.; Schwartz, Robert S.; Van Pelt, Rachael E.

    2014-01-01

    Objective We determined whether whole body and subcutaneous adipose tissue (SAT) insulin resistance was proportional to regional fat mass (FM). Design and Methods We studied postmenopausal women (Mean±SD; age 56±4 y, n=25) who were overweight or obese (BMI 29.9±5.1 kg/m2). Whole body and regional FM were measured by dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Women were studied during basal and insulin-stimulated (3-stage euglycemic clamp) conditions. Whole-body lipol...

  4. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...

  5. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    Gravhølt, C H; Schmitz, Ole; Simonsen, L; Bülow, J; Christiansen, J S; Møller, N

    concentrations in adipose tissue, and whether there would be regional differences between femoral and abdominal subcutaneous fat, by employing microdialysis for 6 h after administration of GH (200 microgram) or saline intravenously. Subcutaneous adipose tissue blood flow (ATBF) was measured by the local Xenon...... washout method. Baseline of interstitial glycerol was higher in adipose tissue than in blood [220 +/- 12 (abdominal) vs. 38 +/- 2 (blood) micromol/l, P <0.0005; 149 +/- 9 (femoral) vs. 38 +/- 2 (blood) micromol/l, P <0.0005] and higher in abdominal adipose tissue compared with femoral adipose tissue (P <0.......0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...

  6. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    Bülow, J; Jelnes, Rolf; Astrup, A; Madsen, J; Vilmann, P

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue was...... found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates of the...

  7. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  8. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  9. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  10. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  11. Leptin Promotes cPLA2 Gene Expression through Activation of the MAPK/NF-κB/p300 Cascade

    Pei-Sung Hsu; Chi-Sheng Wu; Jia-Feng Chang; Wei-Ning Lin

    2015-01-01

    Hyperplasia or hypertrophy of adipose tissues plays a crucial role in obesity, which is accompanied by the release of leptin. Recently, obesity was determined to be associated with various pulmonary diseases including asthma, acute lung injury, and chronic obstructive pulmonary disease. However, how obesity contributes to pulmonary diseases and whether leptin directly regulates lung inflammation remains unclear. We used cell and animal models to study the mechanisms of leptin mediation of pul...

  12. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a lo...

  13. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism

    NobuyukiItoh

    2014-01-01

    White and brown adipose tissues, which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among twenty-two FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and brown adipose tissues. FGF1 is a critical transducer in white adipose tissue remodeling. The PPARγ–F...

  14. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients

    Mracek, T.; Stephens, N. A.; Gao, D.; Bao, Y.; Ross, J A; Rydén, M; Arner, P; Trayhurn, P.; Fearon, K C H; Bing, C

    2011-01-01

    Background: Profound loss of adipose tissue is a hallmark of cancer cachexia. Zinc-α2-glycoprotein (ZAG), a recently identified adipokine, is suggested as a candidate in lipid catabolism. Methods: In the first study, eight weight-stable and 17 cachectic cancer patients (weight loss ⩾5% in previous 6 months) were recruited. Zinc-α2-glycoprotein mRNA and protein expression were assessed in subcutaneous adipose tissue (SAT), subcutaneous adipose tissue morphology was examined and serum ZAG conce...

  15. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89 years; mean age, 75 years) were prepared as transverse (6 sets), coronal (3 sets) and sagittal (10 sets) plastinated sections that were examined at both macroscopic and microscopic levels. Results Two types of the web-like fibrous networks were identified and localized in the cavernous sinus. A dural trabecular network constituted a skeleton-frame in the sinus and contributed to the sleeves of intracavernous cranial nerves III, IV, V1, V2 and VI. A fine trabecular network, or adipose tissue, was the matrix of the sinus and was mainly distributed along the medial side of the intracavernous cranial nerves, forming a dumbbell-shaped adipose zone in the sinus. Conclusions This study revealed the nature, fine architecture and localization of the fine and dural trabecular networks in the cavernous sinus and their relationship with intracavernous cranial nerves and vessels. The results may be valuable for better understanding of tissue patterning in the cranial base and better evaluation of intracavernous disorders, e.g. the growth direction and extent of intracavernous tumors. PMID:24586578

  16. Stromal vascular progenitors in adult human adipose tissue

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  17. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  18. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    change was observed during exercise. Post-exercise the IL-6 output began to increase after 30 min. Three hours post-exercise it was 58.6 +/- 22.2 pg (100 g)(-1) min(-1). In the control experiments the IL-6 output also increased, but it only reached a level of 3.5 +/- 0.8 pg (100 g)(-1) min(-1). The...... begin to increase. Thus, we suggest that the enhanced IL-6 production post-exercise in abdominal, subcutaneous adipose tissue may act locally via autocrine/paracrine mechanisms influencing lipolysis and fatty acid mobilization rate from this lipid depot....

  19. Have we entered the brown adipose tissue renaissance?

    Ravussin, E.; Kozak, L P

    2009-01-01

    In the 1970s and 1980s, it was observed that rodents could offset excess calories ingested when they were fed a human-like `cafeteria diet'. Although it was erroneously concluded that this so-called diet-induced thermogenesis was because of brown adipose tissue (BAT), it led to efforts to test whether variations in brown fat in humans may explain the susceptibility to obesity. However, from evidence on the inability of ephedrine or beta-3 adrenergic agonists to induce BAT thermogenesis, it wa...

  20. n-3 PUFA: bioavailability and modulation of adipose tissue function

    Kopecký, Jan; Rossmeisl, Martin; Flachs, Pavel; Kuda, Ondřej; Brauner, Petr; Jílková, Zuzana; Staňková, B.; Tvrzická, E.; Bryhn, M.

    2009-01-01

    Roč. 68, č. 4 (2009), s. 361-369. ISSN 0029-6651. [Meeting of the Nutrition Society. Edinburgh, 07.04.2009-08.04.2009] R&D Projects: GA ČR(CZ) GA303/08/0664; GA ČR(CZ) GD305/08/H037 Grant ostatní: EC(XE) LSHM-CT-2004-005272 Institutional research plan: CEZ:AV0Z50110509 Keywords : n-3 PUFA * DHA * adipose tissue Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.321, year: 2009

  1. ß-carotene conversion products and their effects on adipose tissue

    Tourniaire, F.; Gouranton, E.; Lintig, von J.; Keijer, J.; Bonet, M.L.; Amengual, J.; Lietz, G.; Landrier, J.F.

    2009-01-01

    Recent epidemiological data suggest that ß-carotene may be protective against metabolic diseases in which adipose tissue plays a key role. Adipose tissue constitutes the major ß-carotene storage tissue and its functions have been shown to be modulated in response to ß-carotene breakdown products, es

  2. Targeting adipose tissue in the treatment of obesity-associated diabetes.

    Kusminski, Christine M; Bickel, Perry E; Scherer, Philipp E

    2016-09-01

    Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis. PMID:27256476

  3. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B.

    Digby, J E; Chen, J; Tang, J Y; Lehnert, H; Matthews, R N; Randeva, H S

    2006-10-01

    Orexin-A and orexin-B, via their receptors orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R) have been shown to play a role in the regulation of feeding, body weight, and energy expenditure. Adipose tissue also contributes significantly to the maintenance of body weight by interacting with a complex array of bioactive peptides; however, there are no data as yet on the expression of orexin components in adipose tissue. We, therefore, analyzed the expression of OX1R and OX2R in human adipose tissue and determined functional responses to orexin-A and orexin-B. OX1R and OX2R mRNA expression was detected in subcutaneous (s.c.) and omental adipose tissue and in isolated adipocytes. Protein for OX1R and OX2R was also detected in whole adipose tissue sections and lysates. Treatment with orexin-A, and orexin-B (100 nM, 24 h) resulted in a significant increase in peroxisome proliferator-activated receptors gamma-2 mRNA expression in s.c. adipose tissue (P B treatment (P < 0.05). Glycerol release from omental adipose tissue was also significantly reduced with orexin-A treatment (P < 0.05). These findings demonstrate for the first time the presence of functional orexin receptors in human adipose tissue and suggest a role for orexins in adipose tissue metabolism and adipogenesis. PMID:17065396

  4. Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans

    Stallknecht, Bente; Lorentsen, J; Enevoldsen, L H;

    2001-01-01

    lipolysis. In SCI subjects, the exercise-induced increase in subcutaneous adipose tissue lipolysis was not lower in decentralized than in sympathetically innervated adipose tissue. During exercise the interstitial noradrenaline and adrenaline concentrations were lower in SCI compared with healthy subjects...... clavicular (Cl) and in umbilical (Um) (sympathetically decentralized in SCI) subcutaneous adipose tissue during 1 h of arm cycling exercise at approximately 60 % of the peak rate of oxygen uptake. 3. During exercise, adipose tissue blood flow (ATBF) and interstitial glycerol, lactate and noradrenaline...

  5. Uninephrectomy in rats on a fixed food intake results in adipose tissue lipolysis implicating spleen cytokines.

    Denis eArsenijevic

    2015-07-01

    Full Text Available The role of mild kidney dysfunction in altering lipid metabolism and promoting inflammation was investigated in uninephrectomized rats (UniNX compared to Sham-operated controls rats. The impact of UniNX was studied 1, 2 and 4 weeks after UniNX under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups.UniNX resulted in the reduction of fat pad weight. UniNX was associated with increased circulating levels of beta-hydroxybutyrate and glycerol, as well as increased fat pad mRNA of hormone sensitive lipase and adipose triglyceride lipase, suggesting enhanced lipolysis. No decrease in fat pad lipogenesis as assessed by fatty acid synthase activity was observed.Circulating hormones known to regulate lipolysis such as leptin, T3, ghrelin, insulin, corticosterone, angiotensin 1 and angiotensin 2 were not different between the two groups. In contrast, a select group of circulating lipolytic cytokines, including interferon-gamma and granulocyte macrophage–colony stimulating factor, were increased after UniNX. These cytokines levels were elevated in the spleen, but decreased in the kidney, liver and fat pads. This could be explained by anti-inflammatory factors SIRT1, a member of the sirtuins, and the farnesoid x receptor, which were decreased in the spleen but elevated in the kidney, liver and fat pads (inguinal and epididymal. Our study suggests that UniNX induces adipose tissue lipolysis in response to increased levels of a subset of lipolytic cytokines of splenic origin.

  6. Dietary Supplementation with Conjugated Linoleic Acid Plus n-3 Polyunsaturated Fatty Acid Increases Food Intake and Brown Adipose Tissue in Rats

    Amanda C. Morris

    2009-11-01

    Full Text Available The effect of supplementation with 1% conjugated linoleic acid and 1% n-3 long chain polyunsaturated fatty acids (CLA/n-3 was assessed in rats. Food intake increased with no difference in body weights. White adipose tissue weights were reduced whereas brown adipose tissue and uncoupling protein-1 expression were increased. Plasma adiponectin, triglyceride and cholesterol levels were reduced while leptin, ghrelin and liver weight and lipid content were unchanged. Hypothalamic gene expression measurements revealed increased expression of orexigenic and decreased expression of anorexigenic signals. Thus, CLA/n-3 increases food intake without affecting body weight potentially through increasing BAT size and up-regulating UCP-1 in rats.

  7. Interaction between Esophageal Squamous Cell Carcinoma and Adipose Tissue in Vitro.

    Nakayama, Atsushi; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Nishijima-Matsunobu, Aki; Yamamoto, Mihoko; Kakihara, Nahoko; Iwakiri, Ryuichi; Fujimoto, Kazuma; Toda, Shuji

    2016-05-01

    Esophageal squamous cell carcinoma (ESCC) develops within the squamous epithelial layer and invades the submucosa to the subadventitia that has adipose tissue (AT). AT seems critical to ESCC progression, but the underlying mechanism is unknown. We aimed to address the association between ESCC and AT in vitro. ESCC cells were cultured on rat or human subcutaneous AT-embedded or -non-embedded collagen gel. AT promoted the growth of ESCC cells and inhibited their apoptosis. AT promoted the expression of the squamous differentiation marker involucrin in ESCC cells. AT accelerated the expression of invasion-related factors in poorly differentiated ESCC cells only. AT promoted the expression of phosphorylated-insulin-like growth factor-1 receptor in ESCC cells, whereas it inhibited that of the human epidermal growth factor receptor 2. Insulin-like growth factor-1, but not leptin, adiponectin, or resistin, promoted and inhibited the growth and apoptosis of ESCC cells, respectively. In turn, ESCC cells decreased the production of these adipokines in AT and the number of preadipocytes and mesenchymal stem cell-like cells, which developed from AT. These results suggest that i) AT may influence the progression of ESCC with increased growth or invasion and decreased apoptosis through insulin-like growth factor-1/insulin-like growth factor-1 receptor signaling, ii) AT may affect human epidermal growth factor receptor 2-targeted therapy; and iii) the cancer cells may affect adipokine production in AT. PMID:26952643

  8. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A; Moore Stephen S; Dodson Michael V; Jin Weiwu; Guan Le Luo

    2010-01-01

    Abstract Background MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thi...

  9. Contribution of adipose tissue to health span and longevity.

    Huffman, Derek M; Barzilai, Nir

    2010-01-01

    Adipose tissue accounts for approximately 20% (lean) to >50% (in extreme obesity) of body mass and is biologically active through its secretion of numerous peptides and release and storage of nutrients such as free fatty acids. Studies in rodents and humans have revealed that body fat distribution, including visceral fat (VF), subcutaneous (SC) fat and ectopic fat are critical for determining the risk posed by obesity. Specific depletion or expansion of the VF depot using genetic or surgical strategies in animal models has proven to have direct effects on metabolic characteristics and disease risk. In humans, there is compelling evidence that abdominal obesity most strongly predicts mortality risk, while in rats, surgical removal of VF improves mean and maximum life span. There is also growing evidence that fat deposition in ectopic depots such as skeletal muscle and liver can cause lipotoxicity and impair insulin action. Conversely, expansion of SC adipose tissue may confer protection from metabolic derangements by serving as a 'metabolic sink' to limit both systemic lipids and the accrual of visceral and ectopic fat. Treatments targeting the prevention of fat accrual in these harmful depots should be considered as a primary target for improving human health span and longevity. PMID:20703052

  10. Algorithms for muscle oxygenation monitoring corrected for adipose tissue thickness

    Geraskin, Dmitri; Platen, Petra; Franke, Julia; Kohl-Bareis, Matthias

    2007-07-01

    The measurement of skeletal muscle oxygenation by NIRS methods is obstructed by the subcutaneous adipose tissue which might vary between muscle haemoglobin / myoglobin concentrations. First, we demonstrate by comparison with ultrasound imaging that the optical lipid signal peaking at 930 nm is a good predictor of the adipose tissue thickness (ATT). Second, the algorithm is based on measurements of the wavelength dependence of the slope ΔA/Δρ of attenuation A with respect to source detector distance ρ and Monte Carlo simulations which estimate the muscle absorption coefficient based on this slope and the additional information of the ATT. Third, we illustrate the influence of the wavelength dependent transport scattering coefficient of the new algorithm by using the solution of the diffusion equation for a two-layered turbid medium. This method is tested on experimental data measured on the vastus lateralis muscle of volunteers during an incremental cycling exercise under normal and hypoxic conditions (corresponding to 0, 2000 and 4000 m altitude). The experimental setup uses broad band detection between 700 and 1000 nm at six source-detector distances. We demonstrate that the description of the experimental data as judged by the residual spectrum is significantly improved and the calculated changes in oxygen saturation are markedly different when the ATT correction is included.

  11. Changes in lipolysis in rat adipose tissue during continuous irradiation

    Changes in lipolysis were monitored by measuring the release of non-esterified fatty acids (NEFA) and glycerol under basal conditions and after stimulation with L-noradrenaline in rat adipose tissue in the course of continuous irradiation with daily gamma doses of 0.57 Gy (60 R) for 50 days. As compared with the control animals, lipolysis in the irradiated rats was lower on days 3 to 14, and higher on days 21 to 25 to 32 and at the end of the screening period (day 50) of continuous irradiation. The changes in lipolysis in the course of irradiation reflected individual stages of the general adaptation syndrome. Many changes were modified by the effect of non-specific factors due to the experimental field and the starvation prior to the analysis. Changes in lipolysis were connected with changes in the mobilization of fatty acids and the concentrations of NEFA in white adipose tissue with changes in serum lipids predominantly in the period of 21 to 25 days of continuous irradiation. (author)

  12. Characterization of mesenchymal stem cells derived from equine adipose tissue

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  13. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  14. Peripartal feeding strategy with different n-6:n-3 ratios in sows: effect on gene expression in backfat white adipose tissue postpartum.

    Papadopoulos, Georgios A; Erkens, Tim; Maes, Dominiek G D; Peelman, Luc J; van Kempen, Theo A T G; Buyse, Johan; Janssens, Geert P J

    2009-01-01

    The aim of this study was to describe the effects of two diets differing in n-6:n-3 ratio and prepartal feeding regime on gene expression of PPARgamma1a/1b, PPARgamma1c/1d, PPARgamma2, PPARgamma coactivator 1A (PPARGC1A), GLUT4, TNFalpha, adiponectin, leptin, leptin receptor (LEPR), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL) in sows' white adipose tissue on the first day of lactation. The relationship between mRNA expression of these genes and circulating insulin, leptin and thyroid hormones was also considered. Diets contained a low (supplemented with fish oil; f group) or a high (supplemented with sunflower oil; s group) n-6:n-3 ratio and were provided from 8 (f8, s8) or 3d (f3, s3) before parturition (onset day 8 or 3). A low n-6:n-3 ratio reduced the 1d postpartum expression of PPARgamma2 and PPARGC1A but only when applied from 3 d before parturition. Circulating leptin was negatively correlated with mRNA expression of adiponectin, LEPR and LPL, whereas thyroxine was positively correlated with levels of PPARGC1A. In conclusion, the effect of dietary treatments, e.g. altering the n-6:n-3 ratio, around parturition on the expression of crucial genes in nutrient metabolism can be modulated by the duration of application before parturition. PMID:18498673

  15. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Wojciechowicz, K.; Gledhill, K; Ambler, C.A.; Manning, C B; Jahoda, C.A.B.

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before bir...

  16. Identification of the Avian RBP7 Gene as a New Adipose-Specific Gene and RBP7 Promoter-Driven GFP Expression in Adipose Tissue of Transgenic Quail

    Ahn, Jinsoo; Shin, Sangsu; Suh, Yeunsu; Park, Ju Yeon; Hwang, Seongsoo; Lee, Kichoon

    2015-01-01

    The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at ...

  17. Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity

    Arner, Erik; Mejhert, Niklas; Kulyté, Agné; Balwierz, Piotr J.; Pachkov, Mikhail; Cormont, Mireille; Lorente-Cebrián, Silvia; Ehrlund, Anna; Laurencikiene, Jurga; Hedén, Per; Dahlman-Wright, Karin; Tanti, Jean-François; Hayashizaki, Yoshihide; Rydén, Mikael; Dahlman, Ingrid

    2012-01-01

    In obesity, white adipose tissue (WAT) inflammation is linked to insulin resistance. Increased adipocyte chemokine (C-C motif) ligand 2 (CCL2) secretion may initiate adipose inflammation by attracting the migration of inflammatory cells into the tissue. Using an unbiased approach, we identified adipose microRNAs (miRNAs) that are dysregulated in human obesity and assessed their possible role in controlling CCL2 production. In subcutaneous WAT obtained from 56 subjects, 11 miRNAs were present ...

  18. A New Approach for Adipose Tissue Treatment and Body Contouring Using Radiofrequency-Assisted Liposuction

    Paul, Malcolm; Mulholland, Robert Stephen

    2009-01-01

    A new liposuction technology for adipocyte lipolysis and uniform three-dimensional tissue heating and contraction is presented. The technology is based on bipolar radiofrequency energy applied to the subcutaneous adipose tissue and subdermal skin surface. Preliminary clinical results, thermal monitoring, and histologic biopsies of the treated tissue demonstrate rapid preaspiration liquefaction of adipose tissue, coagulation of subcutaneous blood vessels, and uniform sustained heating of tissue.

  19. Effect of training on epinephrine-stimulated lipolysis determined by microdialysis in human adipose tissue

    Stallknecht, Bente; Simonsen, L; Bülow, J; Vinten, Jørgen; Galbo, H

    Trained humans (Tr) have a higher fat oxidation during submaximal physical work than sedentary humans (Sed). To investigate whether this reflects a higher adipose tissue lipolytic sensitivity to catecholamines, we infused epinephrine (0.3 nmol.kg-1.min-1) for 65 min in six athletes and six...... sedentary young men. Glycerol was measured in arterial blood, and intercellular glycerol concentrations in abdominal subcutaneous adipose tissue were measured by microdialysis. Adipose tissue blood flow was measured by 133Xe-washout technique. From these measurements adipose tissue lipolysis was calculated....... During epinephrine infusion intercellular glycerol concentrations were lower, but adipose tissue blood flow was higher in trained compared with sedentary subjects (P <0.05). Glycerol output from subcutaneous tissue (Tr: 604 +/- 322 nmol.100 g-1.min-1; Sed: 689 +/- 203; mean +/- SD) as well as arterial...

  20. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of approximately 35 ng l(-1). The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and in...... the IL-6 infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo, and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism....... the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was...

  1. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity

    Kraunsøe, Regitze; Boushel, Robert Christopher; Hansen, Christina Neigaard;

    2010-01-01

    Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human...... abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples.......05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P <0.05) lower mitochondrial respiration...

  2. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer

    Lipsey, Crystal C; Harbuzariu, Adriana; Daley-Brown, Danielle; Gonzalez-Perez, Ruben R.

    2016-01-01

    Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin le...

  3. Leptin Level and Plasma Prothrombotic Factors in Obese Subjects

    Hamdia Ezzat, (2)Eman M Abd El-Rahman,

    2006-01-01

    Obesity is associated with increased cardiovascular morbidity and mortality. Abnormalities in coagulation and haemostasis represent a well-known link between obesity and thrombosis (both arterial and venous). In human, production of a depocyte-derived peptide, leptin has been linked to adiposity; recent studies have shown that plasminogen activator inhibitor-1 (PAI-1),a prothrombotic factor associated with atherosclerosis complication is also produced in adipose tissue. Several studies report...

  4. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A

    2010-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs, a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis. However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P Conclusions MiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals.

  5. Leucine Deprivation Decreases Fat Mass by Stimulation of Lipolysis in White Adipose Tissue and Upregulation of Uncoupling Protein 1 (UCP1) in Brown Adipose Tissue

    Ying CHENG; Meng, Qingshu; Wang, Chunxia; Li, Houkai; Huang, Zhiying; Chen, Shanghai; Xiao, Fei; Guo, Feifan

    2009-01-01

    OBJECTIVE White adipose tissue (WAT) and brown adipose tissue (BAT) play distinct roles in adaptation to changes in nutrient availability, with WAT serving as an energy store and BAT regulating thermogenesis. We previously showed that mice maintained on a leucine-deficient diet unexpectedly experienced a dramatic reduction in abdominal fat mass. The cellular mechanisms responsible for this loss, however, are unclear. The goal of current study is to investigate possible mechanisms. RESEARCH DE...

  6. Leptin responses to overfeeding: relationship with body fat and nonexercise activity thermogenesis.

    Levine, J A; Eberhardt, N L; Jensen, M D

    1999-08-01

    Administration of leptin to rodents results in weight loss through decreased food intake and increased energy expenditure that occurs in part through increased spontaneous activity. In humans, low levels of spontaneous physical activity and below normal plasma leptin concentrations predict subsequent excess weight gain. We recently found that failure to increase nonexercise activity thermogenesis (NEAT) with overfeeding results in greater fat gain in humans, and subsequently evaluated whether changes in leptin are related to NEAT activation. We measured plasma leptin concentrations and adipose tissue leptin messenger ribonucleic acid together with the components of energy expenditure in 16 nonobese humans before and after overfeeding to assess the relationship between leptin responses to overfeeding and the changes in NEAT. Adipocyte leptin expression was up-regulated with overfeeding, and leptin concentrations increased. Leptin concentrations correlated with body fat before and after overfeeding. Changes in leptin with overfeeding were strongly related to changes in body fat, but not to changes in NEAT. Changes in NEAT correlated inversely with fat gain. It is, therefore, unlikely that leptin mediates activation of NEAT with overfeeding in nonobese humans; rather, leptin directly reflects body fat mass and fat mass gain. PMID:10443673

  7. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  8. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function.

    Moreno-Indias, Isabel; Oliva-Olivera, Wilfredo; Omiste, Antonio; Castellano-Castillo, Daniel; Lhamyani, Said; Camargo, Antonio; Tinahones, Francisco J

    2016-06-01

    Discordant phenotypes, metabolically healthy obese and unhealthy normal-weight individuals, are always interesting to provide important insights into the mechanistic link between adipose tissue dysfunction and associated metabolic alterations. Macrophages can release factors that impair the proper activity of the adipose tissue. Thus, studying subcutaneous and visceral adipose tissues, we investigated for the first time the differences in monocyte/macrophage infiltration, inflammation, and adipogenesis of normal-weight subjects who differed in their degree of metabolic syndrome. The study included 92 normal-weight subjects who differed in their degree of metabolic syndrome. Their anthropometric and biochemical parameters were measured. RNA from subcutaneous and visceral adipose tissues was isolated, and mRNA expression of monocyte/macrophage infiltration (CD68, CD33, ITGAM, CD163, EMR-1, CD206, MerTK, CD64, ITGAX), inflammation (IL-6, tumor necrosis factor alpha [TNFα], IL-10, IL-1b, CCL2, CCL3), and adipogenic and lipogenic capacity markers (PPARgamma, FABP4) were measured. Taken together, our data provide evidence of a different degree of macrophage infiltration between the adipose tissues, with a higher monocyte/macrophage infiltration in subcutaneous adipose tissue in metabolically unhealthy normal-weight subjects, whereas visceral adipose tissue remained almost unaffected. An increased macrophage infiltration of adipose tissue and its consequences, such as a decrease in adipogenesis function, may explain why both the obese and normal-weight subjects can develop metabolic diseases or remain healthy. PMID:26829067

  9. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  10. In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue

    Enevoldsen, L H; Simonsen, L; Stallknecht, Bente;

    2001-01-01

    We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdomin...

  11. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  12. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis

    Stallknecht, Bente; Bülow, J; Frandsen, E;

    1997-01-01

    1. Desensitization of fat cell lipolysis to catecholamine exposure has been studied extensively in vitro but only to a small extent in human adipose tissue in vivo. 2. We measured interstitial glycerol concentrations by microdialysis in subcutaneous, abdominal adipose tissue in healthy humans...

  13. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...

  14. Brown adipose tissue. III. Effect of ethanol, nicotine and caffeine exposure.

    Sidlo, J; Zaviacic, M; Trutzová, H

    1996-05-01

    Brown adipose tissue is known to be the most important organ for generating heat in non-shivering thermogenesis. Process of thermogenesis and thermoregulation may be affected by many drugs. The paper deals with actual literary data of effect of ethanol, nicotine and caffeine on brown adipose tissue, heat production and its regulation in experimental animals and in human. PMID:9560910

  15. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise

    Stich, V; de Glisezinski, I; Berlan, M;

    2000-01-01

    The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate...

  16. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  17. The role of active brown adipose tissue in human metabolism

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  18. The role of active brown adipose tissue in human metabolism

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing 18F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the 18F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  19. Leptin, IL-6, and suPAR reflect distinct inflammatory changes associated with adiposity, lipodystrophy and low muscle mass in HIV-infected patients and controls

    Langkilde, Anne; Petersen, Janne; Henriksen, Jens Henrik; Jensen, Frank Krieger; Gerstoft, Jan; Eugen-Olsen, Jesper; Andersen, Ove

    2015-01-01

    Background HIV-infected patients could exhibit accelerated ageing, since age-associated complications like sarcopenia; increased inflammation; lipodystrophy with loss of subcutaneous adipose tissue and/or gain of visceral adipose tissue (VAT); and cardiovascular disease occur at an earlier age. Inflammation is involved in age-associated complications. However, it is not understood whether it is the same inflammatory changes that are involved in the various ageing-associated complications. Our...

  20. Insulin action in adipose tissue in type 1 diabetes

    F Arrieta-Blanco

    2011-02-01

    Full Text Available F Arrieta-Blanco1, JI Botella-Carretero1, P Iglesias1, JA Balsa1, I Zamarrón1, C De la Puerta1, JJ Arrieta2, F Ramos3, C Vázquez1, A Rovira21Unit of Clinical Nutrition and Dietetics, Department of Endocrinology and Nutrition, Hospital Ramóny, Cajal, Madrid, Spain, Irycis, Ciberobn; 2Fundación Jimenez Díaz. Madrid, Spain; 3Hospital Sureste de ArgandaBackground: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI, and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes.Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject.Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = -0.70, P < 0.05 and basal and maximum insulin-stimulated glucose transport (r = -0.87, P < 0.01, and r = -0.88, P < 0.01, respectively. Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01. Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01. No correlation was found between BMI and insulin action.Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a

  1. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    Tobin, L; Simonsen, L; Galbo, H; Bülow, Jens

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging....... Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue.Results:ATBF increased similarly in both groups during the adrenaline...

  2. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal ad......), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance....... elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...

  3. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  4. Leucine supplementation improves leptin sensitivity in high-fat diet fed rats

    Xue-Wei Yuan

    2015-06-01

    Full Text Available Background: Several studies have reported the favorable effect of leucine supplementation on insulin resistance or insulin sensitivity. However, whether or not leucine supplementation improves leptin sensitivity remains unclear. Design: Forty-eight male Sprague-Dawley rats were fed with either a high-fat diet (HFD or HFD supplemented with 1.5, 3.0, and 4.5% leucine for 16 weeks. At the end of the experiment, serum leptin level was measured by ELISA, and leptin receptor (ObR in the hypothalamus was examined by immunohistochemistry. The protein expressions of ObR and leptin-signaling pathway in adipose tissues were detected by western blot. Results: No significant differences in body weight and food/energy intake existed among the four groups. Serum leptin levels were significantly lower, and ObR expression in the hypothalamus and adipose tissues was significantly higher in the three leucine groups than in the control group. These phenomena suggested that leptin sensitivity was improved in the leucine groups. Furthermore, the expressions of JAK2 and STAT3 (activated by ObR were significantly higher, and that of SOCS3 (inhibits leptin signaling was significantly lower in the three leucine groups than in the control group. Conclusions: Leucine supplementation improves leptin sensitivity in rats on HFD likely by promoting leptin signaling.

  5. Protein turnover in adipose tissue from fasted or diabetic rats

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  6. Adipose tissue resistin gene expression in DIO and DR rats

    Yuanyuan Zhao; Yuhui Ni; Xirong Guo; Haixia Gong; Xia Chi; Ronghua Chen

    2006-01-01

    Objective: To investigate the expression of resistin gene in diet-induced obesity (DIO) and diet resistance (DR)rats. Methods: DIO and DR models were prepared with male SD rats after 6 weeks feeding by a diet of relatively high fat, sucrose, and caloric content (HE diet). Body-weight, fat mass, and the concentration of serum insulin were measured, and the expression of resistin and Peroxisome proliferator-activated receptory-γ(PPAR-γ) gene in whit adipose tissue (WAT) was also detected by RT-PCR. Results: ①Body weight, fat mass and the concentration of serum insulin were significantly increased in DIO rats and decreased in DR rats. ② The expression of resistin and PPARγ gene was upregulated in DIO group and supressed in DR group, but the expression of resistin was not detectable in all samples within three groups. Conclusion: Resistin may serve as a link between obesity and insulin resistance, but the individual difference is enormous.

  7. Activation of brown adipose tissue mitochondrial GDP binding sites

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of [3H]-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time

  8. Activation of brown adipose tissue mitochondrial GDP binding sites

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  9. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  10. Adipose tissue gene expression and metabolic health of obese adults.

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  11. Adipocyte Hypertrophy, Inflammation and Fibrosis Characterize Subcutaneous Adipose Tissue of Healthy, Non-Obese Subjects Predisposed to Type 2 Diabetes

    A M Josefin Henninger; Björn Eliasson; Jenndahl, Lachmi E.; Ann Hammarstedt

    2014-01-01

    BACKGROUND: The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes. ...

  12. Investigation of Leptin gene in broiler and layer chicken lines Investigação do gene da Leptina em linhagens de aves de corte e postura

    Kerli Ninov; Mônica Corrêa Ledur; Helena Javiel Alves; Millor Fernandes do Rosário; Kátia Nones; Luiz Lehmann Coutinho

    2008-01-01

    Leptin, a polypeptide hormone secreted mainly by adipose tissue, plays an important role in feed intake regulation, energy metabolism and reproduction in several species. Its function has been intensively studied in mammals; however, in birds limited information is available. The cDNA sequence for chicken leptin has been reported, and high hepatic expression levels of leptin were associated with fat deposition in selected bird lines. However, controversies still remain concerning to the chick...

  13. Quantitative Analysis of Lower Leg Adipose Tissue Distribution in Youth with Myelomeningocele.

    Lorenzana, Daniel J; Mueske, Nicole M; Ryan, Deirdre D; Van Speybroeck, Alexander L; Wren, Tishya A L

    2016-07-01

    Children with myelomeningocele have a high prevalence of obesity and excess fat accumulation in their lower extremities. However, it is not known if this is subcutaneous or intramuscular fat, the latter of which has been associated with insulin resistance and metabolic disorders. This study quantified lower leg bone, muscle, and adipose tissue volume in children with myelomeningocele, classifying adipose as subcutaneous or muscle-associated. Eighty-eight children with myelomeningocele and 113 children without myelomeningocele underwent lower leg computed tomographic scans. Subcutaneous and muscle-associated adipose were classified based on location relative to the crural fascia. No differences were seen in subcutaneous adipose. Higher level disease severity was associated with increased muscle-associated adipose volume and decreased muscle volume. Bone volume tended to decrease with higher levels of involvement. Increases in lower leg adiposity in children with myelomeningocele are primarily attributable to accumulation of muscle-associated adipose, which may signify increased risk for metabolic disorders. PMID:26961265

  14. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  15. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  16. Increased adipose tissue in male and female estrogen receptor-α knockout mice

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  17. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  18. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  4. CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity.

    Morris, David L; Oatmen, Kelsie E; Mergian, Taleen A; Cho, Kae Won; DelProposto, Jennifer L; Singer, Kanakadurga; Evans-Molina, Carmella; O'Rourke, Robert W; Lumeng, Carey N

    2016-06-01

    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice. PMID:26658005

  5. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  6. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple 40K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques

  7. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Gilberto Paz-Filho; Claudio Mastronardi; Ma-Li Wong; Julio Licinio

    2012-01-01

    Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insu...

  8. Regulation of gene expression by FSP27 in white and brown adipose tissue

    Xue Bofu

    2010-07-01

    Full Text Available Abstract Background Brown and white adipose tissues (BAT and WAT play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27, a member of the cell death-inducing DFF45-like effector (CIDE family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis. Results BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-β signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBPα/β, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory

  9. Effects of Electroacupuncture on Pro-/Anti-inflammatory Adipokines in Serum and Adipose Tissue in Lean and Diet-induced Obese Rats.

    Liaw, Jacqueline J T; Peplow, Philip V

    2016-04-01

    The effects of electroacupuncture (EA) on pro-/anti-inflammatory cytokines and blood glucose (BG) in lean and obese Long Evans rats were investigated. Group 1 and Group 3 had five lean and seven obese rats, respectively, and received EA at the Zhongwan/Guanyuan acupoints on Day 1, Day 3, Day 5, Day 8, Day 10, and Day 12. Group 2 and Group 4, with five lean and seven obese rats, respectively, did not undergo EA. After induction of anesthesia, BG was measured at 10 minutes and 20 minutes. EA was applied for 30 minutes, and BG was measured again. At the end of the study, blood and white adipose tissue were collected. Analyses showed that for all groups, the mean BG at 20 minutes (baseline) and 50 minutes were significantly greater on Day 1 than on any other day. Compared with Group 2, the baseline BG in Week 1 for Group 1 was significantly lower, but Groups 3 and 4 showed no difference. Group 1 had significantly higher serum interleukin-10 and tumor necrosis factor-α than Group 2, while Group 3's serum leptin was greater than Group 4's. White adipose tissue interleukin-10 and adiponectin:leptin ratio were higher for Group 1 than Group 2. EA affected no significant differences in any other components measured for lean and obese animals. PMID:27079227

  10. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep with a......, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over...... time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial...

  11. Central Leptin Regulation of Obesity and Fertility

    Tong, Qingchun; Xu, Yong

    2012-01-01

    The current obesity epidemic and lack of efficient therapeutics demand a clear understanding of the mechanism underlying body weight regulation. The cloning of leptin, a key body weight regulating adipokine released in proportion to the adipose tissue mass, has revolutionized our understanding of the mechanism by which the body weight is controlled. It is now well established that the brain, especially the hypothalamus, maintains body weight homeostasis by effectively adjusting food intake an...

  12. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Toh, Shen Yon; Gong, Jingyi; Du, Guoli; Li, John Zhong; Yang, Shuqun; Ye, Jing; Yao, Huilan; Zhang, Yinxin; Xue, Bofu; Li, Qing; Yang, Hongyuan; Wen, Zilong; Li, Peng

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27 −/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse st...

  13. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Shen Yon Toh; Jingyi Gong; Guoli Du; John Zhong Li; Shuqun Yang; Jing Ye; Huilan Yao; Yinxin Zhang; Bofu Xue; Qing Li; Hongyuan Yang; Zilong Wen; Peng Li

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse s...

  14. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications

    Prashant Mathur; Priyanka Jain; Sandeep Kumar Mathur

    2011-01-01

    Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large...

  15. Penetration of Moxifloxacin into Healthy and Inflamed Subcutaneous Adipose Tissues in Humans

    Joukhadar, Christian; Stass, Heino; Müller-Zellenberg, Ulrike; Lackner, Edith; Kovar, Florian; Minar, Erich; Müller, Markus

    2003-01-01

    The present study addressed the ability of moxifloxacin to penetrate into healthy and inflamed subcutaneous adipose tissues in 12 patients with soft tissue infections (STIs). Penetration of moxifloxacin into the interstitial space fluid of healthy and inflamed subcutaneous adipose tissues was measured by use of in vivo microdialysis following administration of a single intravenous dosage of 400 mg in six diabetic and six nondiabetic patients with STIs. For the entire study population, the mea...

  16. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  17. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation. PMID:25510249

  18. Molecular imaging of brown adipose tissue in health and disease

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18F-FDG, other radiopharmaceuticals such as 99mTc-sestamibi, 123I-metaiodobenzylguanidine (MIBG), 18F-fluorodopa and 18F-14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  19. Organochlorine pesticides and PCBs in human adipose tissues in Poland

    Ludwicki, J.K.; Goralczyk, K. (National Institute of Hygiene, Warsaw (Poland))

    1994-03-01

    Most of the persistent organochlorine (OC) pesticides, excluding lindane, were banned in Poland in 1975/76. The first restrictions concerning the use and marketing of lindane (gamma-HCH) became effective in 1980 and were gradually extended until it's agricultural use was ultimately banned in 1989. Unfortunately, there are no detailed data on the use and release of PCBs to the environment in Poland. The former studies showed that in the late seventies the concentrations of OC pesticides and their metabolites in men reached considerable high levels. Despite of the restrictions or bans of these pesticides in most of the countries of the temperate climate, they still circulate in various food chains and eventually concentrate in man. Many authors claim an uneven distribution of the OC compounds in the population and report different levels in men and women and also some relations between OC compounds levels in fat tissues and age. Environmental contamination also plays an important role in the magnitude of OC compounds levels in man. The aim of this paper is to present the actual concentrations of HCB, p,p[prime]-DDT, p,p[prime]-DDE, isomers of HCH (alpha, beta, gamma), and PCBs in human adipose tissues particularly regarding age and sex as possible factors influencing the levels of these compounds and to contribute to the general discussion on the distribution patterns of the organochlorine compounds in the population. 12 refs., 3 tabs.

  20. Quantum dots for labeling adipose tissue-derived stem cells.

    Yukawa, Hiroshi; Mizufune, Shogo; Mamori, Chiharu; Kagami, Yukimasa; Oishi, Koichi; Kaji, Noritada; Okamoto, Yukihiro; Takeshi, Manabu; Noguchi, Hirofumi; Baba, Yoshinobu; Hamaguchi, Michinari; Hamajima, Nobuyuki; Hayashi, Shuji

    2009-01-01

    Adipose tissue-derived stem cells (ASCs) have a self-renewing ability and can be induced to differentiate into various types of mesenchymal tissue. Because of their potential for clinical application, it has become desirable to label the cells for tracing transplanted cells and for in vivo imaging. Quantum dots (QDs) are novel inorganic probes that consist of CdSe/ZnS-core/shell semiconductor nanocrystals and have recently been explored as fluorescent probes for stem cell labeling. In this study, negatively charged QDs655 were applied for ASCs labeling, with the cationic liposome, Lipofectamine. The cytotoxicity of QDs655-Lipofectamine was assessed for ASCs. Although some cytotoxicity was observed in ASCs transfected with more than 2.0 nM of QDs655, none was observed with less than 0.8 nM. To evaluate the time dependency, the fluorescent intensity with QDs655 was observed until 24 h after transfection. The fluorescent intensity gradually increased until 2 h at the concentrations of 0.2 and 0.4 nM, while the intensity increased until 4 h at 0.8 nM. The ASCs were differentiated into both adipogenic and osteogenic cells with red fluorescence after transfection with QDs655, thus suggesting that the cells retain their potential for differentiation even after transfected with QDs655. These data suggest that QDs could be utilized for the labeling of ASCs. PMID:19775521

  1. Molecular imaging of brown adipose tissue in health and disease

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  2. Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats.

    Lopes, Bruna P; Gaique, Thaiane G; Souza, Luana L; Paula, Gabriela S M; Kluck, George E G; Atella, Georgia C; Gomes, Anne Caroline C; Simas, Naomi K; Kuster, Ricardo M; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C; Oliveira, Karen J

    2015-10-01

    In models of metabolic disorders, cinnamon improves glucose and lipid metabolism. This study explores the effect of chronic supplementation with aqueous cinnamon extract (CE) on the lipid metabolism of rats. Male adult Wistar rats were separated into a control group (CTR) receiving water and a CE Group receiving aqueous cinnamon extract (400 mg of cinnamon per kg body mass per day) by gavage for 25 consecutive days. Cinnamon supplementation did not change the food intake or the serum lipid profile but promoted the following changes: lower body mass gain (P = 0.008), lower relative mass of white adipose tissue (WAT) compartments (P = 0.045) and higher protein content (percentage of the carcass) (P = 0.049). The CE group showed lower leptin mRNA expression in the WAT (P = 0.0017) and an important tendency for reduced serum leptin levels (P = 0.059). Cinnamon supplementation induced lower mRNA expression of SREBP1c (sterol regulatory element-binding protein 1c) in the WAT (P = 0.001) and liver (P = 0.013) and lower mRNA expression of SREBP2 (P = 0.002), HMGCoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase) (P = 0.0003), ACAT1 (acetyl-CoA acetyltransferase 1) (P = 0.032) and DGAT2 (diacylglycerol O-acyltransferase 2) (P = 0.03) in the liver. These changes could be associated with the reduced esterified cholesterol and triacylglycerol content detected in this tissue. Our results suggest that chronic ingestion of aqueous cinnamon extract attenuates lipogenic processes, regulating the expression of key enzymes and transcriptional factors and their target genes, which are directly involved in lipogenesis. These molecular changes possibly promote adaptations that would prevent an increase in circulating cholesterol and triacylglycerol levels and prevent lipid accumulation in tissues, such as liver and WAT. Therefore, we speculate that cinnamon may also be useful for preventing or retarding the development of lipid disorders. PMID:26237537

  3. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  4. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    Hammarstedt Ann

    2012-09-01

    Full Text Available Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. Method 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. Results Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011 and protein (R = 0.51, p = 0.004 expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009. In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = −0.61, 0 = 0.003 and adipocyte cell size (R = −0.40, p = 0.022. Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found

  5. Mapping, expression and regulation of the TRα gene in porcine adipose tissue.

    Cai, Z-W; Sheng, Y-F; Zhang, L-F; Wang, Y; Jiang, X-L; Lv, Z-Z; Xu, N-Y

    2011-01-01

    Thyroid hormone receptors (TR) are members of the nuclear receptor superfamily. There are at least two TR isoforms, TRα and TRβ. The TRα isoform plays a critical role in mediating the action of thyroid hormone in adipose tissue. We mapped the porcine TRα gene to chromosome 12 p11-p13, by using the ImpRH panel. We examined tissue-localization of TRα and determined expression patterns of TRα in porcine adipose tissue with quantitative real-time PCR. TRα was expressed in all tissues, including heart, liver, spleen, stomach, pancreas, brain, small intestine, skeletal muscle, and subcutaneous adipose tissue. In the adipose tissue, the expression of TRα decreased postnatally. Compared to Yorkshire pigs, Jinhua pigs had significantly lower expression levels of TRα gene in the subcutaneous fat tissue. The expression levels of β2-AR, HSL and ATGL were also significantly lower in Jinhua pigs than in Yorkshire pigs. However, no significant differences in PPARγ and SREBP-1C expression levels were found between Jinhua and Yorkshire pigs. Incubation of porcine adipose tissue explants with high doses of isoproterenol (100 and 1000 nM) significantly increased the expression levels of TRα. We conclude that there is considerable evidence that TRα plays an important role in fat deposition in porcine adipose tissue. PMID:21751158

  6. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis?

    Enrichot, Elvire; Juge-Aubry, Cristiana E; Pernin, Agnès; Pache, Jean-Claude; Velebit, Valdimir; Dayer, Jean-Michel; Meda, Paolo; Chizzolini, Carlo; Meier, Christoph A

    2005-01-01

    Obesity is associated with an increased risk for cardiovascular disease. Although it is known that white adipose tissue (WAT) produces numerous proinflammatory and proatherogenic cytokines and chemokines, it is unclear whether adipose-derived chemotactic signals affect the chronic inflammation in atherosclerosis.

  7. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic; Pendergast, Felicity J.; Han Morgan; Silas Villas-Boas; Caldow, Marissa K.; Larsen, Amy E.; Andrew J. Sinclair; David Cameron-Smith

    2015-01-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage ...

  8. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, B; Bülow, J

    1993-01-01

    Elevated plasma adrenaline is known to increase whole body energy expenditure. We studied the thermogenic effect and the effects on substrate utilization in man during infusion of adrenaline. Two series were performed: in one series skeletal muscle metabolism was investigated and in another series...... subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5...

  9. Waves of adipose tissue growth in the genetically obese Zucker fatty rat.

    Jennifer MacKellar

    Full Text Available BACKGROUND: In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue; consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo. METHODOLOGY: In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena. CONCLUSIONS: Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent.

  10. Feeding feedlot steers fish oil alters the fatty acid composition of adipose and muscle tissue.

    Wistuba, T J; Kegley, E B; Apple, J K; Rule, D C

    2007-10-01

    Sixteen steers (441±31.7kg initial body weight) consumed two high concentrate diets with either 0 or 3% fish oil to determine the impact of fish oil, an omega-3 fatty acid source, on the fatty acid composition of beef carcasses. Collected tissue samples included the Longissimus thoracis from the 6th to 7th rib section, ground 10th to 12th rib, liver, subcutaneous adipose tissue adjacent to the 12th rib, intramuscular adipose tissue in the 6th to 7th rib sections, perirenal adipose tissue, and brisket adipose tissue. Including fish oil in the diet increased most of the saturated fatty acids (Pniche marketing if there are no deleterious effects on consumer satisfaction. PMID:22061591

  11. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease.

    Fuster, José J; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-05-27

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  12. Cellular heterogeneity in superficial and deep subcutaneous adipose tissues in overweight patients.

    Boulet, Nathalie; Estève, David; Bouloumié, Anne; Galitzky, Jean

    2013-09-01

    Human abdominal adipose tissue (AAT) can be divided into two compartments according to anatomical location to dermis layer, i.e. superficial and deep compartments (sAAT and dAAT). In morbidly obese patients, dAAT mass has been linked to obesity-associated pathologies. In the present study, we characterized in overweight healthy individuals human sAAT and dAAT cellular composition and adipogenic potential. Twelve paired sAAT and dAAT samples were collected. sAAT compared to dAAT adipocytes are larger. In agreement with increased size, real-time PCR analyses performed on isolated adipocytes showed that sAAT adipocytes exhibited higher leptin transcript levels but also higher expression of genes involved in metabolism including hormone-sensitive lipase compared to dAAT adipocytes. Flow cytometry analyses performed on stroma-vascular fraction (SVF) showed no difference in the numbers of progenitor cells, endothelial cells and macrophages between sAAT and dAAT. Macrophage phenotypes were not distinct between both AAT compartments. However, CD3+ T lymphocyte number was higher in dAAT than in sAAT. Adipogenic potential of dAAT SVF was lower than sAAT SVF whereas the one of isolated progenitor cells was not distinct whatever the AAT compartments. Therefore, in overweight patients, both sAAT and dAAT compartments exhibit differences in terms of adipocytes and T lymphocyte accumulation. dAAT is characterized by higher T lymphocyte accumulation together with smaller less metabolically active adipocytes. The lower adipogenic potential of dAAT SVF is not due to intrinsic progenitor cell properties but more likely to the increased T lymphocyte accumulation. PMID:23184733

  13. The clinical significance of serum Leptin in the pathogenesis of 2DM and obesity

    Objective: To study the relationship between serum Leptin ad insulin, body fat distribution and testosterone in 2-DM patients. Methods: The fasting blood serum Leptin and insulin levels in 65 2DM patients and 42 controls were measured by radioimmunoassay. Abdominal subcutaneous adipose tissue volume (ASF) and abdominal visceral adipose tissue volume (AVF) were measured by spiral CT SSD soft-ware in 32 2DM patients. The authors also measured the Leptin before and 2h after a 75 g OGTT in 34 2DM patients and fasting plasma testosterone in 30 2DM males. Results: DM group and normal group had equal number of females and were matched in BMI. Baseline plasma Leptin concentrations were not significantly different between the groups (P 14 mmol/L) had lower Leptin levels (P < 0.05). Sex, BMI, ASF were important factors contributing to the serum Leptin. The Leptin concentrations were significantly positively correlated with BMI (r 0.57, P0.0001), ASF(r = 0.67 P0.025) and insulin (r = 0.47, P0.0013) and was negative correlated with the serum testosterone (r = -0.061, P0.025). Conclusion: There were no abnormal Leptin levels in 2DM implies, suggesting that Leptin might not be the main causing factor in 2DM. The poorly metabolic controlled patients might have lack of Leptin. The lower Leptin levels in men might be caused by testosterone, sex BMI, ASF were important factors contributing to the serum Leptin levels

  14. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  15. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity

  16. A functional leptin system is essential for sodium tungstate antiobesity action.

    Canals, Ignasi; Carmona, María C; Amigó, Marta; Barbera, Albert; Bortolozzi, Analía; Artigas, Francesc; Gomis, Ramon

    2009-02-01

    Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean animals, tungstate administration reduced body weight gain and food intake and increased energy expenditure. However, in animals with deficiencies in the leptin system, treatment did not modify these parameters. In ob/ob mice in which leptin deficiency was restored through adipose tissue transplantation, treatment restored the tungstate-induced body weight gain and food intake reduction as well as energy expenditure increase. Furthermore, in animals in which tungstate administration increased energy expenditure, changes in the expression of key genes involved in brown adipose tissue thermogenesis were detected. Finally, the gene expression of the hypothalamic neuropeptides, Npy, Agrp, and Cart, involved in the leptin regulation of energy homeostasis, was also modified by tungstate in a leptin-dependent manner. In summary, the results indicate that the effectiveness of tungstate in reducing body weight gain is completely dependent on a functional leptin system. PMID:18845634

  17. Effect of Leptin on In Vitro Nuclear Maturation and Apoptosis of Buffalo (Bubalus bubalis) Oocyte

    Amir Khaki; Rouzali Batavani; Gholamreza Najafi; Hamid Tahmasbian; Abolfazl Belbasi; Aram Mokarizadeh

    2014-01-01

    Background: Leptin, as a 16 kDa adipokine, is a pleiotropic cytokine-like hormone that primarily secreted from adipose tissue. It also involves in the regulation of energy homeostasis, neuroendocrine function, immunity, lipid and glucose homeostasis, fatty acid oxidation, angiogenesis, puberty and reproduction. The aim of this study was to investigate the effects of in vitro addition of leptin to in vitro maturation (IVM) medium on buffalo oocyte maturation and apoptosis. Materials and Method...

  18. Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin.

    Bełtowski, Jerzy; Wójcicka, Grazyna; Jamroz-Wiśniewska, Anna; Wojtak, Andrzej

    2010-01-01

    Apart from controlling energy balance, leptin, secreted by adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have demonstrated that acutely administered leptin stimulates natriuresis and vascular nitric oxide (NO) production and that these effects are impaired in obese animals. However, the mechanism of resistance to leptin is not clear. Because obesity is associated with chronically elevated leptin, we examined if long-term hyperleptinemia impairs acute effects of leptin on sodium excretion and NO production in the absence of obesity. Hyperleptinemia was induced in lean rats by administration of exogenous leptin at a dose of 0.5mg/kg/day for 7 days, and then acute effect of leptin (1mg/kg i.v.) was studied under general anesthesia. Leptin increased fractional sodium excretion and decreased Na(+),K(+)-ATPase activity in the renal medulla. In addition, leptin increased the level of NO metabolites and cyclic GMP in plasma and aortic wall. These acute effects of leptin were impaired in hyperleptinemic animals. In both control and hyperleptinemic groups the effect of leptin on Na(+) excretion and renal Na(+),K(+)-ATPase was abolished by phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, but not by protein kinase B/Akt inhibitor, triciribine,. In contrast, acute effect of leptin on NO metabolites and cGMP was abolished by triciribine but not by wortmannin. Leptin stimulated Akt phosphorylation at Ser(473) in aortic tissue but not in the kidney, and this effect was comparable in control and hyperleptinemic groups. These results suggest that hyperleptinemia may mediate "renal" and "vascular" leptin resistance observed in obesity. PMID:19854228

  19. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    Kim Aubin; Meryem Safoine; Maryse Proulx; Marie-Alice Audet-Casgrain; Jean-François Côté; Félix-André Têtu; Alphonse Roy; Julie Fradette

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuri...

  20. Adipose tissue and sustainable development: a connection that needs protection

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.