WorldWideScience

Sample records for adhesive protein inspired

  1. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  2. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  3. High-performance mussel-inspired adhesives of reduced complexity

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-10-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (~50 mJ m-2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  4. Mechanically Robust, Negative-Swelling, Mussel-Inspired Tissue Adhesives

    Barrett, Devin G.; Grace G. Bushnell; Messersmith, Phillip B.

    2012-01-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. Herein, we describe the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties o...

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  6. Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality.

    Ji, Yali; Ji, Ting; Liang, Kai; Zhu, Lei

    2016-02-01

    Marine mussels tightly adhering to various underwater surfaces inspires human to design adhesives for wet tissue adhesion in surgeries. Characterization of mussel adhesive plaques describes a matrix of proteins containing 3,4-dihydroxyphenylalanine (DOPA), which provides strong adhesion in aquatic conditions. Several synthetic polymer systems have been developed based on this DOPA chemistry. Herein, a citrate-based tissue adhesives (POEC-d) was prepared by a facile one-pot melt polycondensation of two diols including 1,8-octanediol and poly(ethylene oxide) (PEO), citric acid (CA) and dopamine, and the effects of hydrophilic and soft PEO on the properties of adhesives were studied. It was found that the obtained adhesives exhibited water-soluble when the mole ratio of PEO to 1,8-octanediol was 70%, and the equilibrium swelling percentage of cured adhesive was about 144%, and degradation rate was in the range of 1-2 weeks. The cured adhesives demonstrated soft rubber-like behavior. The lap shear adhesion strength measured by bonding wet pig skin was in the range of 21.7-33.7 kPa, which was higher than that of commercial fibrin glue (9-15 kPa). The cytotoxicity tests showed the POEC-d adhesives had a low cytotoxicity. Our results supports that POEC-d adhesives, which combined strong wet adhesion with good biodegradability, acceptable swelling ratio, good elasticity and low cytotoxicity, have potentials in surgeries where surgical tissue adhesives, sealants, and hemostatic agents are used. PMID:26704547

  7. A biodegradable and biocompatible gecko-inspired tissue adhesive

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W.; Chan, Edwin P.; Carter, David J. D.; Bettinger, Chris J.; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T.; Faquin, William

    2008-01-01

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multipl...

  8. Gecko-Inspired, Controlled Adhesion and Its Applications

    Menguc, Yigit

    This thesis work is primarily concerned with taking inspiration from the principles of gecko-adhesion in order to control the attachment of synthetic structured adhesives. We present gecko-inspired angled elastomer micropillars with flat or round tip endings as compliant pick-and-place micromanipulators. The pillars are 35 mum in diameter, 90 mum tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick-to-release adhesive forces was measured as 39 to 1. We find that a flat tip shape and shear displacement control provide a higher pick-to-release adhesion ratio than a round tip and vertical displacement control, respectively. We present a model of forces to serve as a framework for the operation of this micromanipulator. Finally, demonstrations of pick-and-place manipulation of mum-scale silicon microplatelets and a cm-scale glass cover slip serve as proofs of concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments. We present a study of the self-cleaning and contamination resistance phenomena of synthetic gecko-inspired adhesives made from elastomeric polyurethane. The phenomenon of self-cleaning makes the adhesive foot of the gecko robust against dirt, and makes it effectively sticky throughout the lifetime of the material (within the molting cycles

  9. A design methodology for biologically inspired dry fibrillar adhesives

    Aksak, Burak

    Realization of the unique aspects of gecko adhesion and incorporating these aspects into a comprehensive design methodology is essential to enable fabrication of application oriented gecko-inspired dry fibrillar adhesives. To address the need for such a design methodology, we propose a fibrillar adhesion model that evaluates the effect of fiber dimensions and material on adhesive performance of fiber arrays. A fibrillar adhesion model is developed to predict the adhesive characteristics of an array of fibrillar structures, and quantify the effect of fiber length, radius, spacing, and material. Photolithography techniques were utilized to fabricate elastomer microfiber arrays. Fibers that are fabricated from stiff SU-8 photoresist are used to fabricate a flexible negative mold that facilitates fabrication of fiber arrays from various elastomers with high yield. The tips of the cylindrical fibers are modified to mushroom-like tip shapes. Adhesive strengths in excess of 100 kPa is obtained with mushroom tipped elastomer microfibers. Vertically aligned carbon nanofibers (VACNFs) are utilized as enhanced friction materials by partially embedding inside soft polyurethanes. Friction coefficients up to 1 were repeatedly obtained from the resulting VACNF composite structures. A novel fabrication method is used to attach Poly(n-butyl acrylate) (PBA) molecular brush-like structures on the surface of polydimethylsiloxane (PDMS). These brushes are grown on unstructured PDMS and PDMS fibers with mushroom tips. Pull-off force is enhanced by up to 7 times with PBA brush grafted micro-fiber arrays over unstructured PDMS substrate. Adhesion model, initially developed for curved smooth surfaces, is extended to self-affine fractal surfaces to better reflect the adhesion performance of fiber arrays on natural surfaces. Developed adhesion model for fiber arrays is used in an optimization scheme which estimates optimal design parameters to obtain maximum adhesive strength on a given

  10. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives.

    Barrett, Devin G; Bushnell, Grace G; Messersmith, Phillip B

    2013-05-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. This paper describes the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties of the resulting thermosensitive gels were characterized. Catechol oxidation at or below room temperature rapidly resulted in a chemically cross-linked network, with subsequent warming to physiological temperature inducing a thermal hydrophobic transition in the PPO domains and providing a mechanism for volumetric reduction and mechanical toughening. The described approach can be easily adapted for other thermally sensitive block copolymers and cross-linking strategies, representing a general approach that can be employed to control swelling and enhance mechanical properties of polymer hydrogels used in a medical context. PMID:23184616

  11. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  12. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    Kim, Yongkwan

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical. The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important. The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives. The following three chapters examine parameters that affect macroscale friction of

  13. A bio-inspired approach for in situ synthesis of tunable adhesive

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  14. Adhesives from modified soy protein

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  15. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.; Han, Songi

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were f...

  16. The present and future of biologically inspired adhesive interfaces and materials.

    Brubaker, Carrie E; Messersmith, Phillip B

    2012-01-31

    The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed. PMID:22224862

  17. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  18. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    Jeong, Hoon Eui

    2009-08-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  19. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin;

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive for...

  20. Mussel-mimetic protein-based adhesive hydrogel.

    Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

    2014-05-12

    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications. PMID:24650082

  1. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    Kim, Yongkwan

    2014-01-01

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique ha...

  2. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials

    Liu, Kesong; Du, Jiexing; Wu, Juntao; Jiang, Lei

    2012-01-01

    Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a ``mechanical hand'' to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.

  3. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s i...

  4. Adhesive behaviour of gecko-inspired nanofibrillar arrays: combination of experiments and finite element modelling

    A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories. (fast track communication)

  5. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  6. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives

    Kim, Seok; Sitti, Metin

    2006-12-01

    Being inspired by gecko foot hairs, microfibers with flat spatulate tips are proposed as repeatable adhesives. They are fabricated by molding a master template fabricated using deep reactive ion etching and the notching effect. Fabricated polyurethane fiber arrays with 4.5μm fiber and 9μm tip diameter demonstrated macroscale adhesion pressures up to 18N/cm2 and overall work of adhesion up to 11J/m2 on a 6mm diameter glass hemisphere for a preload pressure of 12N/cm2. These results show around four times higher adhesion and five times higher overall work of adhesion as compared to the flat polyurethane surface.

  7. Gecko-inspired surfaces: a path to strong and reversible dry adhesives.

    Boesel, Luciano F; Greiner, Christian; Arzt, Eduard; del Campo, Aránzazu

    2010-05-18

    The amazing adhesion of gecko pads to almost any kind of surfaces has inspired a very active research direction over the last decade: the investigation of how geckos achieve this feat and how this knowledge can be turned into new strategies to reversibly join surfaces. This article reviews the fabrication approaches used so far for the creation of micro- and nanostructured fibrillar surfaces with adhesive properties. In the light of the pertinent contact mechanics, the adhesive properties are presented and discussed. The decisive design parameters are fiber radius and aspect ratio, tilt angle, hierarchical arrangement and the effect of the backing layer. Also first responsive systems that allow thermal switching between nonadhesive and adhesive states are described. These structures show a high potential of application, providing the remaining issues of robustness, reliability, and large-area manufacture can be solved. PMID:20349430

  8. Importance of loading and unloading procedures for gecko-inspired controllable adhesives.

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2013-08-27

    The importance of loading and unloading procedures has been shown in a variety of different methods for biological dry adhesives, such as the fibers on the feet of the Tokay gecko, but biomimetic dry adhesives have yet to be explored in a similar manner. To date, little work has systematically varied multiple parameters to discern the influence of the testing procedure, and the effect of the approach angle remains uncertain. In this study, a synthetic adhesive is moved in 13 individual approach and retraction angles relative to a flat substrate as well as 9 different shear lengths to discern how loading and unloading procedures influence the preload, adhesion, and shear/friction forces supported. The synthetic adhesive, composed of vertical 10 μm diameter semicircular poly(dimethylsiloxane) fibers, is tested against a 4 mm diameter flat glass puck on a home-built microtribometer using both vertical approach and retraction tests and angled approach and retraction tests. The results show that near maximum adhesion and friction can be obtained for most approach and retraction angles, provided that a sufficient shear length is performed. The results also show that the reaction forces during adhesive placement can be significantly reduced by using specific approach angles, resulting for the vertical fibers in a 38-fold increase in the ratio of adhesion force to preload force, μ', when compared to that when using a vertical approach. These results can be of use to those currently researching gecko-inspired adhesives when designing their testing procedures and control algorithms for climbing and perching robots. PMID:23875720

  9. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives. PMID:25244526

  10. Rabbit cationic protein enhances leukocyte adhesiveness.

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  11. Biologically-inspired synthetic dry adhesives for wall-climbing robots

    Murphy, Michael P.

    Animals such as insects, spiders, and lizards are capable of clinging to and climbing on a variety of surfaces, from rough stone to smooth silicon. Hairy microscale arrays of structures on their feet conform to surface roughness to create millions of points of contact, creating a large overall contact area. Weak intermolecular forces (van der Waals forces) between each fiber tip and the surface sum to large overall forces due to the high number of contacts. In this work we present the fabrication, characterization, and demonstration of synthetic polyurethane fibrillar adhesives inspired by these animals. Angled polymer micro-fiber arrays are fabricated and characterized. A tip modification technique is presented which enables fabrication of fibers with flat mushroom shaped tips which greatly increase the adhesion of the fibers, up to 5N/cm 2 (normal direction), and with a magnitude within the range of geckos (10 N/cm2) in the shear direction on smooth surfaces. We present a fabrication technique to create fibers with angled flat mushroom-shaped tips which replicate the directional characteristics of geckos, gripping in one direction (within the range of gecko adhesion) and releasing easily in the other. Multilevel hierarchical structures with specialized tips for roughness adaptation are also presented. Fiber hierarchies from the millimeter scale to the sub-micron scale are demonstrated, including three-level fiber fabrication with specialized tips. Hierarchical structures demonstrate up to 5 times the adhesion of an unstructured sample, and requiring up to 10 times the detachment energy. Finally, an agile, wireless, palm-sized wall climbing robot which uses the synthetic fibrillar dry adhesives to climb is presented. Waalbot , named after the van der Waals forces it uses to climb, exploits the attachment and detachment characteristics of the developed dry adhesives, capabilities include climbing smooth surfaces such as glass in any orientation on any surface slope

  12. Sticking to the story: outstanding challenges in gecko-inspired adhesives.

    Niewiarowski, Peter H; Stark, Alyssa Y; Dhinojwala, Ali

    2016-04-01

    The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads. PMID:27030772

  13. Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects

    Kaur, Sarbjit

    Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation

  14. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces.

    Song, Yi; Dai, Zhendong; Wang, Zhouyi; Ji, Aihong; Gorb, Stanislav N

    2016-01-01

    To attach reliably on various inclined rough surfaces, many insects have evolved both claws and adhesive pads on their feet. However, the interaction between these organs still remains unclear. Here we designed an artificial attachment device, which mimics the structure and function of claws and adhesive pads, and tested it on stiff spheres of different dimensions. The results show that the attachment forces of claws decrease with an increase of the sphere radius. The forces may become very strong, when the sphere radius is smaller or comparable to the claw radius, because of the frictional self-lock. On the other hand, adhesive pads generate considerable adhesion on large sphere diameter due to large contact areas. The synergy effect between the claws and adhesive pads leads to much stronger attachment forces, if compared to the action of claw or adhesive pads independently (or even to the sum of both). The results carried out by our insect-inspired artificial attachment device clearly demonstrate why biological evolution employed two attachment organs working in concert. The results may greatly inspire the robot design, to obtain reliable attachment forces on various substrates. PMID:27198650

  15. Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces.

    Yang, Xi; Zhu, Liping; Tada, Seiichi; Zhou, Di; Kitajima, Takashi; Isoshima, Takashi; Yoshida, Yasuhiro; Nakamura, Mariko; Yan, Weiqun; Ito, Yoshihiro

    2014-01-01

    Recombinant human gelatin was conjugated with dopamine using carbodiimide as a surface modifier. This dopamine-coupled human gelatin (D-rhG) was characterized by (1)H-nuclear magnetic resonance, mass spectroscopy, and circular dichroism. D-rhG-coated surface properties were analyzed by physicochemical methods. Additionally, cell attachment and growth on the modified surfaces was assessed using human umbilical endothelial cells. Binding of gelatin onto titanium was significantly enhanced by dopamine conjugation. The thickness of the D-rhG coating depended on the treatment pH; thicker layers were formed at higher pH values, with a maximum thickness of 30 nm. D-rhG enhanced the binding of collagen-binding vascular endothelial growth factor and cell adhesion as compared with gelatin alone, even at the same surface concentration. The D-rhG surface modifier enhanced substrate binding by creating an adhesive nanointerface that increased specific protein binding and cell attachment. PMID:24920909

  16. Design of structurally distinct proteins using strategies inspired by evolution.

    Jacobs, T M; Williams, B; Williams, T; Xu, X; Eletsky, A; Federizon, J F; Szyperski, T; Kuhlman, B

    2016-05-01

    Natural recombination combines pieces of preexisting proteins to create new tertiary structures and functions. We describe a computational protocol, called SEWING, which is inspired by this process and builds new proteins from connected or disconnected pieces of existing structures. Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C. High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models. This method provides a new strategy to rapidly create large numbers of diverse and designable protein scaffolds. PMID:27151863

  17. Laser processing of natural mussel adhesive protein thin films

    Doraiswamy, A. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Narayan, R.J. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States)]. E-mail: roger_narayan@unc.edu; Cristescu, R. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Chrisey, D.B. [United States Naval Research Laboratory, Washington, DC (United States)

    2007-04-15

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications.

  18. Laser processing of natural mussel adhesive protein thin films

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications

  19. Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces

    Yang X

    2014-05-01

    Full Text Available Xi Yang,1,2 Liping Zhu,1 Seiichi Tada,1 Di Zhou,3 Takashi Kitajima,1 Takashi Isoshima,1 Yasuhiro Yoshida,1,4 Mariko Nakamura,1,5 Weiqun Yan,2 Yoshihiro Ito1,3 1Nano Medical Engineering Laboratory, RIKEN, Saitama, Japan; 2School of Pharmaceutical Sciences, Jilin University, Jilin, People’s Republic of China; 3Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 4Department of Biomaterials and Bioengineering, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, 5Dental Hygiene Program, Kibi International College, Okayama, Japan Abstract: Recombinant human gelatin was conjugated with dopamine using carbodiimide as a surface modifier. This dopamine-coupled human gelatin (D-rhG was characterized by 1H-nuclear magnetic resonance, mass spectroscopy, and circular dichroism. D-rhG-coated surface properties were analyzed by physicochemical methods. Additionally, cell attachment and growth on the modified surfaces was assessed using human umbilical endothelial cells. Binding of gelatin onto titanium was significantly enhanced by dopamine conjugation. The thickness of the D-rhG coating depended on the treatment pH; thicker layers were formed at higher pH values, with a maximum thickness of 30 nm. D-rhG enhanced the binding of collagen-binding vascular endothelial growth factor and cell adhesion as compared with gelatin alone, even at the same surface concentration. The D-rhG surface modifier enhanced substrate binding by creating an adhesive nanointerface that increased specific protein binding and cell attachment. Keywords: recombinant human gelatin, dopamine, natural catechols, cell adhesion, cell culture, titanium

  20. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Chen Peijian; Peng Juan; Zhao Yucheng; Gao Feng

    2014-01-01

    Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simulta...

  1. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the repulsive electrostatics against part of the bare adhesion. A theory similar in spirit is developed at nonzero concentrations by assuming an appropriate Baxter model as the reference state. The first-...

  2. Soy protein isolate molecular level contributions to bulk adhesive properties

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  3. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the rep

  4. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kwak, Moon Kyu; Moon, Sang Heup; Suh, Kahp Yang

    2010-01-01

    We present analysis of adhesion properties of angled polymer nanohairs with a wide range of leaning angles from 0° to 45° and ultraviolet (UV)-curable polyurethane acrylate (PUA) materials of two different elastic moduli (19.8 and 320 MPa). It is demonstrated that shear adhesion and adhesion hysteresis can be greatly enhanced by increasing the leaning angle of nanohairs both for soft and hard materials due to increased contact area and reduced structural stiffness.

  5. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  6. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-01

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives. PMID:22779923

  7. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion

    Jeong, Hoon Eui

    2010-01-01

    We present analysis of adhesion properties of angled polymer nanohairs with a wide range of leaning angles from 0° to 45° and ultraviolet (UV)-curable polyurethane acrylate (PUA) materials of two different elastic moduli (19.8 and 320 MPa). It is demonstrated that shear adhesion and adhesion hysteresis can be greatly enhanced by increasing the leaning angle of nanohairs both for soft and hard materials due to increased contact area and reduced structural stiffness. © 2010 American Institute of Physics.

  8. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Peijian, Chen; Juan, Peng; Yucheng, Zhao; Feng, Gao

    2014-06-01

    Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  9. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Chen Peijian

    2014-06-01

    Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  10. Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes.

    Miao, Jinlei; Liu, Haihui; Li, Wei; Zhang, Xingxiang

    2016-05-31

    For the scalable fabrication of transparent electrodes and optoelectronic devices, excellent adhesion between the conductive films and the substrates is essential. In this work, a novel mussel-inspired polydopamine-functionalized graphene/silver nanowire hybrid nanomaterial for transparent electrodes was fabricated in a facile manner. Graphene oxide (GO) was functionalized and reduced by polydopamine while remaining stable in water without precipitation. It is shown that the polydopamine-functionalized GO (PFGO) film adhered to the substrate much more easily and more uniformly than the GO film. The PFGO film had a sheet resistance of ∼3.46 × 10(8) Ω/sq and a transparency of 78.2%, with excellent thermal and chemical stability; these characteristics are appropriate for antistatic coatings. Further reduced PFGO (RPFGO) as a conductive adhesion promoter and protective layer for the Ag nanowire (AgNW) significantly enhanced the adhesion force between AgNW networks and the substrate. The RPFGO-AgNW electrode was found to have a sheet resistance of 63 Ω/sq and a transparency of 70.5%. Moreover, the long-term stability of the RPFGO-AgNW electrode was greatly enhanced via the effective protection of the AgNW by RPFGO. These solution-processed antistatic coatings and electrodes have tremendous potential in the applications of optoelectronic devices as a result of their low production cost and facile processing. PMID:27142815

  11. An experimental study on adhesive or antiadhesiveand strong bio-inspired nanomaterials

    Lepore, Emiliano

    2012-01-01

    This experimental PhD thesis presents the results of research performed in five different facilities: in the Laboratory of Bio-inspired Nanomechanics "Giuseppe Maria Pugno" at the Politecnico of Torino, the "Nanofacility Piemonte" at the INRIM Institute in Torino, the Division of Dental Sciences and Biomaterials of the Department of Biomedicine at the University of Trieste, the Physics Department of the Politecnico of Torino, the Toscano- Buono Veterinary Surgery in Torino and the Department ...

  12. Protein kinase C involvement in focal adhesion formation

    Woods, A; Couchman, J R

    1992-01-01

    still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form...... then treated with kinase inhibitors H7 and HA1004 for 2h, IRM indicated a reduction in focal adhesion formation at concentrations where protein kinase C (PKC) should be inhibited. In contrast, focal adhesions formed normally at concentrations of these inhibitors where cyclic AMP- or cyclic GMP......-dependent kinases should be inactivated. Inhibition of PKC, but not that of cyclic AMP- or cyclic GMP-dependent kinases, also prevented the formation of stress fibers and induced a dispersal of talin and vinculin, but not integrin beta 1 subunits, from small condensations present at 1h. Consistent with the...

  13. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  14. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558

  15. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  16. The Mussel Adhesive Protein (Mefp-1) : A GREEN Corrosion Inhibitor

    Zhang, Fan

    2013-01-01

    Corrosion of metallic materials is a natural process, and our study shows that even in an alkaline environment severe corrosion may occur on a carbon steel surface. While corrosion cannot be stopped it can be retarded. Many of the traditional anti-corrosion approaches such as the chromate process are effective but hazardous to the environment and human health. Mefp-1, a protein derived from blue mussel byssus, is well known for its extraordinary adhesion and film forming properties. Moreover,...

  17. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors

    Hamann, Jörg; Aust, Gabriela; Araç, Demet;

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic ...

  18. Dissecting signaling and functions of adhesion G protein-coupled receptors

    Araç, Demet; Aust, Gabriela; Calebiro, Davide;

    2012-01-01

    G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matri...

  19. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive.

    Liu, Dagang; Chen, Huihuang; Chang, Peter R; Wu, Qinglin; Li, Kaifu; Guan, Litao

    2010-08-01

    Despite the biodegradability, non-toxicity, and renewability, commercially available soy protein-based adhesives still have not been widely adopted by industry, partially due to their disappointing performances, i.e., low glue strength in the dry state and no glue strength in the wet state. In this study, biomimetic soy protein/CaCO(3) hybrid wood glue was devised and an attempt made to improve the adhesion strength. The structure and morphology of the adhesive and its fracture bonding interface and adhesion strength were investigated. Results showed that the compact rivets or interlocking links, and ion crosslinking of calcium, carbonate, hydroxyl ions in the adhesive greatly improving the water-resistance and bonding strength of soy protein adhesives. Glue strength of soy protein hybrid adhesive was higher than 6 MPa even after three water-immersion cycles. This green and sustainable proteinous hybrid adhesive, with high glue strength and good water-resistance, is a good substitute for formaldehyde wood glues. PMID:20307978

  20. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  1. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of ...

  2. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  3. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  4. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz

    2011-04-01

    Full Text Available In this study, secondary sludge (SS from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as recovered sludge protein (RSP was tested for crude protein, moisture, and other contents. A significant process yield of 90% in terms of precipitation of soluble protein from disintegrated sludge was estimated through calorimetric studies, whereas an overall material balance confirmed a RSP yield of up to 23% based on total suspended solids of raw sludge. The RSP containing 30% crude protein was used as a wood adhesive and its adhesion performance was compared with soy protein isolate (SPI and phenol formaldehyde (PF resin. The testing of plywood lap joints has shown up to 41% shear strength level of RSP adhesive compared to PF. This work demonstrates the technical feasibility and potential of SS as a biomass resource to develop eco-friendly adhesives for wood composite applications.

  5. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  6. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  7. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  8. Study of green film-forming corrosion inhibitor based on mussel adhesive protein

    Holmér, Camilla

    2013-01-01

    Today there are numerous methods to slow down a corrosion process of metallic materials. However, due to environmental effects and health risk issues, several traditional corrosion inhibitors have to be phased out. Hence, it is of great importance to develop new corrosion inhibitors that are “green”, safe, smart and multifunctional. In this essay, the focus is on mussel adhesive protein (MAP) and its possibility to reduce the rate of the corrosion process. The protein exhibit great adhesive s...

  9. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and...

  10. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz; Mohini Sain

    2011-01-01

    In this study, secondary sludge (SS) from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as reco...

  11. Effect of adhesion proteins and surface chemistry on the procoagulant state of adherent platelets

    Grunkemeier, John Mark

    Poor hemocompatibility of a blood contacting device can lead to blood clotting, reduced blood flow, and depletion of platelets from the blood. Improved understanding of the processes by which blood-material contact leads to these responses could result in more hemocompatible materials. Platelets accelerate blood clotting by adhesion, aggregation, secretion of proteins and agonists and acceleration of thrombin generation. Platelets are said to be "procoagulant" after phosphatidylserine residues flip from the cytosolic to the extracellular face of the lipid bilayer. This then allows for the assembly of the prothrombinase complex (Xa, Va and calcium) on the platelet membrane, which can rapidly convert prothrombin to thrombin. In this study, three different methods confirmed that adhesion causes platelets to become procoagulant: shortening of clotting times of recalcified plasma, binding of FITC-annexin V, and generation of thrombin in the presence of Va, Xa and prothrombin by adherent platelets. Adherent platelets were 10--23 times more activated than bulk phase unactivated platelets and 10--24 times less activated than bulk phase platelets activated by calcium ionophore. The role of adsorbed fibrinogen, vWF, mixtures of fibrinogen and vWF, fibronectin, whole and dilute plasma, and plasma deficient in adhesion proteins in stimulating platelet procoagulant activity was investigated. The results of these experiments suggested that adhesion proteins affect procoagulant activation to varying degrees and that surfaces preadsorbed with mixtures of adhesion proteins are more activating that surfaces preadsorbed with single adhesion proteins. The hypothesis that materials that affect tightness of binding of adsorbed adhesion proteins affect platelet procoagulant activity was investigated. These studies showed that increasing fluorine content of RFGD polymerized films caused reduced platelet adhesion, but increased procoagulant activity, possibly due to their ability to adsorb

  12. Extracellular matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through Wnt/PCP signaling and FAK/SRC pathway.

    Sun, Li; Wang, Defeng; Li, Xiaotian; Zhang, Lingling; Zhang, Hui; Zhang, Yingjie

    2016-07-01

    Despite the advances in cancer treatment and the progresses in tumor biological, ovarian cancer remains a bad situation. In current study, we found a novel extracellular matrix protein, ITGBL1, which is highly expressed in ovarian cancer tissues by immunohistochemistry examination. The expression pattern of ITGBL1 in malignant tissues inspired us to investigate its role in ovarian cancer progression. Both loss- and gain-function assays revealed that ITGBL1 could promote ovarian cancer cell migration and adhesion. As it's a secreted protein, we further used recombinant ITGBL1 protein treated cancer cells and found that ITGBL1 promotes cell migration and adhesion in a concentration dependent manner. Furthermore, we found that ITGBL1 not only influences the activity of Wnt/PCP signaling but also affects FAK/src pathway in vitro. Taken together, our results suggest that highly expressed ITGBL1 could promotes cancer cell migration and adhesion in ovarian cancer and as a secreted protein, ITGBL1 might be a novel biomarker for ovarian cancer diagnosis. PMID:27261588

  13. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths.

    Thormann, Esben; Mizuno, Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M Soledad; Arias, José Luis; Rutland, Mark W; Pai, Ranjith Krishna; Bergström, Lennart

    2012-07-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO(3). The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. PMID:22653376

  14. Effect of Monocyte Chemotactic Protein-1 on the Intraperitoneal Adhesion Formation

    2000-01-01

    In order to study the role of monocyte chemotactic protein-1 (MCP-1) in the intra-peritoneal adhesion formation, 23 infertile patients undergoing laparoscopic operation were divided into two groups: experimental group including 12 patients with intra-peritoneal adhesion and control group including 11 patients without intra-peritoneal adhesion. Peritoneal fluid (PF) and peritoneum were collected from these patients during laparoscopic examination. The expression levels of MCP-l protein and MCP-1 mRNA were detected by using enzyme-linked immunosorbent assay (ELISA) and dot blot analysis method respectively. It was found that the levels of MCP-1 protein in PF of the patients with peritoneal adhesion were significantly higher than in the control group (0. 44±0.11 ng/ml vs 0. 19+0. 09 ng/ml respectively, P<0. 01 ). The level of MCP-1 mRNA in the peritoneum of the patients with peritoneal adhesion was significantly higher than in the control group (48.61±3.72 vs 19. 87±2.54 respectively, P<0. 01). It was suggested that MCP-1 might play a role in the adhesion formation, and chemotactic cytokines expressing in the peritoneal mesothelial cells might be take part in the process.

  15. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  16. Staphylococcus aureus and Staphylococcus epidermidis adhesion to nanohydroxyapatite in the presence of model proteins

    Bacterial infections can have adverse effects on the efficacy, lifetime, and safety of an implanted device. The aim of this study was to investigate the initial adhesion of several strains, namely S. aureus and S. epidermidis, on two distinct types of nanohydroxyapatite (nanoHA), sintered at 725 °C and 1000 °C. A comparison was also made with nanohydroxyapatite having adsorbed fetal bovine serum (FBS), human fibronectin (FN) and human serum albumin (HSA). Adhered bacterial cells were examined by scanning electron microscopy and quantified as colony forming units after being released by sonication. The wettability of the sample surface with and without adsorbed protein was assessed by contact-angle measurements. NanoHA sintered at 1000 °C showed lower bacterial adhesion than this heat-treated at 725 °C. Adsorption of FBS onto the nanoHA surface caused a decrease in the adhesion of all strains on both materials. The bacterial adhesion patterns in the presence of FN were different for both nanoHA substrates; the adherence of the bacterial strains, except for the clinical strain of S. epidermidis, was significantly higher on nanoHA 1000 in comparison to nanoHA 1000 without protein and the bacterial adhesion on the FN-coated nanoHA 725 was lower in comparison to the bare nanoHA 725. The effect of HSA on bacterial adhesion was concentration and bacterial strain dependent. (paper)

  17. Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue†

    Danner, Eric W.; Kan, Yajing; Hammer, Malte U.; Israelachvili, Jacob N.; Waite, J. Herbert

    2012-01-01

    Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4 dihydroxyphenylalanine (Dopa) (~30 mol%) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using ...

  18. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  19. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  20. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion

    Zhang, Ning

    2012-05-18

    POx bottle-brush brushes (BBBs) are synthesized by SIPGP of 2-isopropenyl-2-oxazoline and consecutive LCROP of 2-oxazolines on 3-aminopropyltrimethoxysilane-modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region...

  2. Low-Cost Soybean Protein Products as Extenders in Plywood Adhesives

    Soybean flour and meal were evaluated as alternate protein extenders in plywood adhesives. This research is part of our laboratory’s efforts to develop new uses for the proteinaceous co-products from soybean and cereal processing. Ground soybean meal was tested as replacement for wheat flour in gl...

  3. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  4. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  5. STRUCTURAL AND FUNCTIONAL CHARACTERISATION OF MUCUS ADHESION PROTEINS OF LACTOBACILLUS REUTERI

    Etzold, Sabrina

    2013-01-01

    Mucus is the first point of contact between the gut microbiota and the host. Mucus adhesins are thought to be key mediators in the mucus adhesion of commensal Lactobacillus species. However, knowledge on the structural or functional basis of adhesin interaction with mucin glycoproteins, the main component of mucus, is limited. This work describes the biochemical and structural properties of two cell-surface proteins from Lactobacillus reuteri, the mucus-binding protein (MUB) and the Lar0958 p...

  6. Gecko adhesion pad: a smart surface?

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  7. Gecko adhesion pad: a smart surface?

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  8. Gecko adhesion pad: a smart surface?

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  9. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board. PMID:19329303

  10. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed. PMID:25832889

  11. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  12. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  13. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  14. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing; Michael Niehues; Anna Shevtsova; Thomas Borén; Andreas Hensel

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with beta-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ...

  15. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas.

    Zhang, Y.; Luo, Y.; Emmett, K; Snell, W J

    1996-01-01

    Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar...

  16. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration

    Cornelia Peeters, Miriam; Fokkelman, Michiel; Boogaard, Bob;

    2015-01-01

    Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which origin...... the adhesion GPCR ADGRG2 is critically involved in the adhesion and migration of certain breast cancer cells through mechanisms including a non-canonical NFkB pathway and that ADGRG2 could be a target for treatment of certain types of cancer.......Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which...... activity through the adhesion- and migration-related transcription factors serum response element (SRE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) presumably via coupling to Gα12/13 and Gαq. However, activation of these two pathways appears to occur through distinct molecular...

  17. Phosphorylation of the beta-subunit of CD11/CD18 integrins by protein kinase C correlates with leukocyte adhesion.

    Valmu, L; Autero, M; Siljander, P; Patarroyo, M; Gahmberg, C G

    1991-11-01

    Adhesion of activated leukocytes to cells is of critical functional importance. The adhesion is known to be mediated mainly by the CD11/CD18 integrins, also known as leukocytic cell adhesion molecules, or Leu-CAM. We have now studied the phosphorylation of Leu-CAM by protein kinase C and the correlation of phosphorylation with the generation of the adhesive phenotype among human peripheral blood mononuclear leukocytes during cell activation. We here show that a good correlation exists between the phosphorylation of the beta subunit of Leu-CAM (CD18), and the extent of cell-to-cell adhesion. The phosphorylated CD18 subunit was associated with both CD11a and CD11b. Purified protein kinase C was able to phosphorylate the beta subunit of isolated Leu-CAM in vitro. The phosphorylation occurred mainly on serine residues. PMID:1682156

  18. Writing Inspired

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  19. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  20. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  1. Proteins Play Important Role in Intercellular Adhesion Affecting on Fruit Textural Quality

    Bahadur Adhikari, Khem; Shomer, Ilan

    2012-01-01

    Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA strength......Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA...... strengthening was exempli ed in Medjoul date (Phoenix dactylifera L.) fruit, as a model. Fruit mesocarp sensitively responded to culture environment which was assayed in vitro at pH 3.5(< pKa) and pH 6.5(> pKa) in presence of organic acid molecules. The max penetration force, as a measure of ICA strength, of p......H 3.5 (< pKa) incubated mesocarp (~10.5 N) was signi cantly higher than that of pH 6.5 (> pKa) incubated fruits (~2 N). The protein bands at ~29 kDa, ~75 kDa, ~32 kDa and 87 kDa were exclusively or prominently found in ICA strengthened fruits (pH 3.5< pKa) compared to texturally injured fruits (pH 6...

  2. Protein micro patterned lattices to probe a fundamental lengthscale involved in cell adhesion

    Guillou, Herve; Chaussy, Jacques; Block, Marc R

    2009-01-01

    Cell adhesion, a fundamental process of cell biology is involved in the embryo development and in numerous pathologies especially those related to cancers. We constrained cells to adhere on extracellular matrix proteins patterned in a micro lattices. The actin cytoskeleton is particularly sensitive to this constraint and reproducibly self organizes in simple geometrical patterns. Such highly organized cells are functional and proliferate. We performed statistical analysis of spread cells morphologies and discuss the existence of a fundamental lengthscale associated with active processes required for spreading.

  3. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... cells ( HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using...

  4. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-01-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assemble...

  5. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    Brown, Alan; Turner, Louise; Christoffersen, Stig;

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The...

  6. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  7. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  8. Understanding Marine Mussel Adhesion

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  9. Understanding marine mussel adhesion.

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  10. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  11. Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material.

    Choi, Yoo Seong; Kang, Dong Gyun; Lim, Seonghye; Yang, Yun Jung; Kim, Chang Sup; Cha, Hyung Joon

    2011-08-01

    Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ∼1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. PMID:21770718

  12. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p astrocytoma. PMID:26935340

  13. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  14. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Melnichuk, Iurii, E-mail: iurii.melnichuk@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Choukourov, Andrei, E-mail: choukourov@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Bilek, Marcela, E-mail: m.bilek@physics.usyd.edu.au [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); School of Physics, University of Sydney, NSW 2006 (Australia); Weiss, Anthony, E-mail: tony.weiss@sydney.edu.au [School of Molecular Bioscience, University of Sydney, NSW 2006 (Australia); Vandrovcová, Marta, E-mail: Marta.Vandrovcova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Bačáková, Lucie, E-mail: Lucie.Bacakova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Hanuš, Jan, E-mail: jan.hanus@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Kousal, Jaroslav, E-mail: jarda@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Shelemin, Artem, E-mail: artem.shelemin@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Solař, Pavel, E-mail: pawell.solar@seznam.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); and others

    2015-10-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment.

  15. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.

    Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

    2012-01-01

    Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes. PMID:22439774

  16. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    Tao Caihong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); China and Graduate University of Chinese Academy of Sciences, Beijing 100080 (China); Yang Shengrong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Zhang Junyan, E-mail: zhangjunyan@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Wang Jinqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China)

    2009-10-15

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  17. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  18. Adhesion G protein-coupled receptors in nervous system development and disease.

    Langenhan, Tobias; Piao, Xianhua; Monk, Kelly R

    2016-09-01

    Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system. PMID:27466150

  19. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes

    2009-01-01

    This article concerns the investigation of blood protein adsorption on carbon paper and multi-wall carbon nanotubes (MWCNTs). Mouse fibroblast cell adhesion and growth on MWCNTs was also studied. The results showed that fibrinogen adsorption on carbon paper was much lower than that on MWCNTs, which means that platelets readily aggregate on the surface of MWCNTs. Mouse fibroblast cells implanted on MWCNTs tended to grow more prolifically than those implanted on carbon paper. The cell concentration observed on MWCNTs increased from 1.2×105/mL for a single day culture to 2×105/mL for a 7-day culture. No toxicity reaction was observed during the culturing period. These results indicated that MWCNTs possessed excellent tissue compatibility.

  20. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs)

    Xuchen Xu; Ming Li; Qian Liu; Zhaojun Jia; Yuying Shi; Yan Cheng; Yufeng Zheng; L.Q. Ruan

    2014-01-01

    Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA) active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  1. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs

    Xuchen Xu

    2014-10-01

    Full Text Available Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  2. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1–0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  3. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  4. The recognition of adsorbed and denatured proteins of different topographies by β2 integrins and effects on leukocyte adhesion and activation

    Brevig, T.; Holst, B.; Ademovic, Z.;

    2005-01-01

    Leukocyte beta(2) integrins Mac-1 and p150,95 are promiscuous cell-surface receptors that recognise and mediate cell adhesion to a variety of adsorbed and denatured proteins. We used albumin as a model protein to study whether leukocyte adhesion and activation depended on the nm-scale topography ...

  5. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  6. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny

    2004-04-01

    Full Text Available Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants.

  7. Influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis

    Qing-Zhou He; Qian-Shu Hu

    2016-01-01

    Objective:To observe the influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis. Methods:A total of 50 patients with pulmonary tuberculosis who had been treated in our hospital from March 2014 to April 2015 were randomly divided into the control group (conventional treatment) and the observation group (conventional treatment plus levofloxacin). Each group had 25 cases. Then, the soluble selection,interleukin,adhesion molecule and pulmonary surfactant protein levels of the two groups at the second, fourth and sixth months before and after treatment were compared. Results:Before treatment, the differencess of the levels of the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of the two groups were significant (P>0.05), while the detection levels of all the aspects of the observation group at the second, fourth and sixth months after treatment were all significantly lower than those of the control group (P<0.05). The detection results of the two groups at the second, fourth and sixth months after treatment showed significant differences. Conclusions:Lvofloxacin has significant effect on the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis.

  8. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces

    In vitro, degradable aliphatic polyesters are widely used as cell carriers for bone tissue engineering, despite their lack of biological cues. Their biological active surface is rather determined by an adsorbed layer of proteins from the surrounding media. Initial cell fate, including adhesion and proliferation, which are key properties for efficient cell carriers, is determined by the adsorbed layer of proteins. Herein we have investigated the ability of human bone marrow derived stem cells (hBMSC) to adhere to extracellular matrix (ECM) proteins, including fibronectin and vitronectin which are present in plasma and serum. hBMSC expressed integrins for collagens, laminins, fibronectin and vitronectin. Accordingly, hBMSC strongly adhered to these purified ECM proteins by using the corresponding integrins. Although purified fibronectin and vitronectin adsorbed to aliphatic polyesters to a lower extent than to cell culture polystyrene, these low levels were sufficient to mediate adhesion of hBMSC. It was found that plasma- and serum-coated polystyrene adsorbed significant levels of both fibronectin and vitronectin, and fibronectin was identified as the major adhesive component of plasma for hBMSC; however, aliphatic polyesters adsorbed minimal levels of fibronectin under similar conditions resulting in impaired cell adhesion. Altogether, the results suggest that the efficiency of aliphatic polyesters cell carriers could be improved by increasing their ability to adsorb fibronectin. (paper)

  9. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  10. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability

    Wijma, Hein J.; Floor, Robert J.; Janssen, Dick B.; Hollfelder, Florian; Lutz, Stefan

    2013-01-01

    Protein engineering strategies for increasing stability can be improved by replacing random mutagenesis and high-throughput screening by approaches that include bioinformatics and computational design. Mutations can be focused on regions in the structure that are most flexible and involved in the ea

  11. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-01-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine...

  12. Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)

    Fischer, Liane; Wilde, Caroline; Schöneberg, Torsten; Liebscher, Ines

    2016-01-01

    Background: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. Results: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nu...

  13. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  14. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model.

    Siu, Erica R; Wong, Elissa W P; Mruk, Dolores D; Sze, K L; Porto, Catarina S; Cheng, C Yan

    2009-07-01

    Several integral membrane proteins that constitute the blood-testis barrier (BTB) in mammalian testes, in particular rodents, are known to date. These include tight junction (TJ) proteins (e.g. occludin, junctional adhesion molecule-A, claudins), basal ectoplasmic specialization proteins (e.g. N-cadherin), and gap junction proteins (e.g. connexin43). However, the regulators (e.g. protein kinases and phosphatases) that affect these proteins, such as their interaction with the cytoskeletal actin, which in turn confer cell adhesion at the TJ, remain largely unknown. We report herein that focal adhesion kinase (FAK) is a putative interacting partner of occludin, but not claudin-11 or junctional adhesion molecule-A. Immunohistochemistry and fluorescence microscopy studies illustrated that the expression of FAK in the seminiferous epithelium of adult rat testes was stage specific. FAK colocalized with occludin at the BTB in virtually all stages of the seminiferous epithelial cycle but considerably diminished in stages VIII-IX, at the time of BTB restructuring to facilitate the transit of primary leptotene spermatocytes. Using Sertoli cells cultured in vitro with established TJ-permeability barrier and ultrastructures of TJ, basal ectoplasmic specialization and desmosome-like junction that mimicked the BTB in vivo, FAK was shown to colocalize with occludin and zonula occludens-1 (ZO-1) at the Sertoli-Sertoli cell interface. When these Sertoli cell cultures were treated with CdCl(2) to perturb the TJ-barrier function, occludin underwent endocytic-mediated internalization in parallel with FAK and ZO-1. Thus, these findings demonstrate that FAK is an integrated regulatory component of the occludin-ZO-1 protein complex, suggesting that functional studies can be performed to study the role of FAK in BTB dynamics. PMID:19213829

  15. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling.

    de Lima, Camila Bento; Tamura, Eduardo K; Montero-Melendez, Trindad; Palermo-Neto, João; Perretti, Mauro; Markus, Regina P; Farsky, Sandra Helena Poliselli

    2012-01-13

    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. PMID:22209795

  16. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  17. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  18. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  19. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  20. INSPIRE - Premission

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  1. Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients.

    Maciorkowska, Dominika; Zbroch, Edyta; Malyszko, Jolanta

    2015-11-01

    The aim of the study was to estimate and correlate circulating levels of renalase, vascular adhesion protein-1 (VAP-1), catecholamines in patients with primary hypertension. The renalase, VAP-1, and catecholamines concentration was estimated in 121 hypertensive patients. The correlation between renalase, VAP-1 levels and catecholamine concentration in blood, blood pressure control, pharmacological therapy, and medical history were taken in to consideration. The median office blood pressure was 145.5/86 mm Hg and was significantly higher than the median home blood pressure measurement value, which was 135/80 mm Hg, P hypertension comparing to healthy individuals (3.83 μg/mL and 248.37 ng/mL, P blood was observed (r = 0.549; P Hypertensive patients with diabetes mellitus had almost statistically significant higher VAP-1 concentration compared with hypertensive patients without diabetes mellitus (Me = 403.22 ng/mL vs. Me = 326,68 ng/mL, P = .064). In multiple regression analysis, renalase was predicted by plasma dopamine and norepinephrine as also diastolic office blood pressure and left ventricle ejection fraction. Circulating renalase and VAP-1 levels are elevated in patients with poor blood pressure control. Its correlation with noradrenalin concentration need further studies to find out the role of renalase as also VAP-1 in pathogenesis and treatment of hypertension. PMID:26403854

  2. Plasmodium vivax thrombospondin related adhesion protein: immunogenicity and protective efficacy in rodents and Aotus monkeys

    Angélica Castellanos

    2007-06-01

    Full Text Available The thrombospondin related adhesion protein (TRAP is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.

  3. Bio-inspired Silicification of Silica-binding Peptide-Silk Protein Chimeras: Comparison of Chemically and Genetically Produced Proteins

    Canabady-Rochelle, Laetitia L.S.; Belton, David J.; Deschaume, Olivier; Currie, Heather A.; Kaplan, David L; Perry, Carole C.

    2012-01-01

    Novel protein chimeras constituted of ‘silk’ and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG]n) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 25 equivalents of t...

  4. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

    Alcaide, M.; Papaioannou, S.; Taylor, Andrew; Fekete, Ladislav; Gurevich, L.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 27, č. 5 (2016), s. 90. ISSN 0957-4530 Grant ostatní: FUNBIO(XE) CZ.2.16/3.1.00/21568; FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : protein adsorption * fibroblasts adhesion * nanocrystalline diamond * boron doping * topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.587, year: 2014

  5. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    Goode, K. R.; Bowen, J.; Akhtar, N; Robbins, P. T.; Fryer, P. J.

    2013-01-01

    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements ...

  6. Role of Streptococcus gordonii Amylase-Binding Protein A in Adhesion to Hydroxyapatite, Starch Metabolism, and Biofilm Formation

    Rogers, Jeffrey D.; Palmer, Robert J.; Kolenbrander, Paul E; Scannapieco, Frank A.

    2001-01-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. α-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (Ab...

  7. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny; Lima Renato de; Willer Emerson

    2004-01-01

    Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the eff...

  8. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  9. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  10. Effects of ovarian cancer G protein coupled receptor 1 on the proliferation, migration, and adhesion of human ovarian cancer cells

    REN Juan; ZHANG Long

    2011-01-01

    Background OGR1 was found as a G-protein coupled receptor (GPCR) and proton sensor. Our previous studies have found that OGR1 has inhibitory effect on the metastasis of prostate cancer. In order to investigate the roles of OGR1 gene in the biological activities of ovarian cancer, we studied the OGR1 effects on ovarian cancer cells, HEY cells.Methods OGR1 gene was transfected into HEY cell, in which endogenous expression is low. OGR1-overxepressed cells and vector-transfected cells were compared in different assays. Western blotting was employed to confirm the high expression level of OGR1. Cell proliferation was determined by MTT assay and cell doubling time assay. Cell migration assay (transwell assay) and cell adhesion assay were performed to determine the migration and adhesion potential of cells. Student's t test was employed for statistical analysis.Results Proliferation of OGR1-overexpressed cells was significantly reduced (P <0.01); cell migration was significantly inhibited in the OGR1-transfected cells (P <0.01); cell adhesion to extracellular matrix including fibronectin, vitronectin,collagen Ⅰ/Ⅳ was significantly increased (P <0.01).Conclusions OGR1 expression in human ovarian cancer cells significantly inhibited the cell proliferation and migration,but significantly enhanced cell adhesion to the extracellular matrix. It indicated that OGR1 may be a tumor suppressor gene for ovarian cancer.

  11. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells

    Grebeňová, D.; Roeselová, M.; Pluskalová, M.; Halada, Petr; Roesel, D.; Suttnar, J.; Brodská, B.; Otevřelová, P.; Kuželová, K.

    2012-01-01

    Roč. 77, DEC 2012 (2012), s. 406-422. ISSN 1874-3919 Institutional support: RVO:61388971 Keywords : SAHA * Adhesion * Cofilin Subject RIV: EE - Microbiology, Virology Impact factor: 4.088, year: 2012

  12. Protein kinase C, focal adhesions and the regulation of cell migration

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  13. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  14. Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins.

    Bin Xia

    Full Text Available We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT complex, also localizes at the trans-Golgi network (TGN, where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of beta1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of beta1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to beta1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as beta1 integrin.

  15. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  16. Analysis of the behaviours mediating barnacle cyprid reversible adhesion.

    Aldred, Nick; Høeg, Jens T; Maruzzo, Diego; Clare, Anthony S

    2013-01-01

    When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic 'walking' behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as 'footprints' on previously explored surfaces. The attachment structures, the antennular discs, of cyprids also present a complex morphology reminiscent of both the hairy appendages used by some terrestrial invertebrates for temporary adhesion and a classic 'suction cup'. Despite the numerous analytical approaches so-far employed, it has not been possible to resolve conclusively the respective contributions of viscoelastic adhesion via the proteinaceous 'temporary adhesive', 'dry' adhesion via the cuticular villi present on the disc and the behavioural contribution by the organism. In this study, high-speed photography was used for the first time to capture the behaviour of cyprids at the instant of temporary attachment and detachment. Attachment is facilitated by a constantly sticky disc surface - presumably due to the presence of the proteinaceous temporary adhesive. The tenacity of the resulting bond, however, is mediated behaviourally. For weak attachment the disc is constantly moved on the surface, whereas for a strong attachment the disc is spread out on the surface. Voluntary detachment is by force, requiring twisting or peeling of the bond - seemingly without any more subtle detachment behaviours. Micro-bubbles were observed at the adhesive interface as the cyprid detached, possibly an adaptation for energy dissipation. These observations will allow future work to focus more specifically on the cyprid temporary adhesive proteins, which appear to be fundamental to adhesion, inherently sticky and

  17. Analysis of the behaviours mediating barnacle cyprid reversible adhesion.

    Nick Aldred

    Full Text Available When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic 'walking' behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as 'footprints' on previously explored surfaces. The attachment structures, the antennular discs, of cyprids also present a complex morphology reminiscent of both the hairy appendages used by some terrestrial invertebrates for temporary adhesion and a classic 'suction cup'. Despite the numerous analytical approaches so-far employed, it has not been possible to resolve conclusively the respective contributions of viscoelastic adhesion via the proteinaceous 'temporary adhesive', 'dry' adhesion via the cuticular villi present on the disc and the behavioural contribution by the organism. In this study, high-speed photography was used for the first time to capture the behaviour of cyprids at the instant of temporary attachment and detachment. Attachment is facilitated by a constantly sticky disc surface - presumably due to the presence of the proteinaceous temporary adhesive. The tenacity of the resulting bond, however, is mediated behaviourally. For weak attachment the disc is constantly moved on the surface, whereas for a strong attachment the disc is spread out on the surface. Voluntary detachment is by force, requiring twisting or peeling of the bond - seemingly without any more subtle detachment behaviours. Micro-bubbles were observed at the adhesive interface as the cyprid detached, possibly an adaptation for energy dissipation. These observations will allow future work to focus more specifically on the cyprid temporary adhesive proteins, which appear to be fundamental to adhesion

  18. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro.

    Jensen, Hanne; Roos, Stefan; Jonsson, Hans; Rud, Ida; Grimmer, Stine; van Pijkeren, Jan-Peter; Britton, Robert A; Axelsson, Lars

    2014-04-01

    Lactobacillus reuteri, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of Lactobacillus reuteri ATCC PTA 6475 in adhesion to Caco-2 cells and mucus in vitro. This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in hmpref0536_10255 encoding srtA resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the hmpref0536_10633 gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of hmpref0536_10633 in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by hmpref0536_10633 plays a critical role in binding of Lactobacillus reuteri ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA). PMID:24473252

  19. Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells

    Although the effects of progesterone on cell cycle progression are well known, its role in spreading and adhesion of breast cancer cells has not attracted much attention until recently. Indeed, by controlling cell adhesion proteins, progesterone may play a direct role in breast cancer invasion and metastasis. Progesterone has also been shown to modulate epidermal growth factor (EGF) effects in neoplasia, although EGF effects on progesterone pathways and targets are less well understood. In the present study we identify an effect of EGF on a progesterone target, namely desmoplakin. Initially flow cytometry was used to establish the growing conditions and demonstrate that the T47D breast cancer cell line was responding to progesterone and EGF in a classical manner. Differential display RT-PCR was employed to identify differentially expressed genes affected by progesterone and EGF. Western and Northern blotting were used to verify interactions between EGF and progesterone in three breast cancer cell lines: T47D, MCF-7, and ZR-75. We found the cell adhesion protein desmoplakin to be upregulated by progesterone – a process that was suppressed by EGF. This appears to be a general but not universal effect in breast cancer cell lines. Our findings suggest that progesterone and EGF may play opposing roles in metastasis. They also suggest that desmoplakin may be a useful biomarker for mechanistic studies designed to analyze the crosstalk between EGF and progesterone dependent events. Our work may help to bridge the fields of metastasis and differentiation, and the mechanisms of steroid action

  20. Inspired Landscapes

    Brandon, Robert; Spruch, Arthur

    2008-01-01

    It has been nearly 400 years since Harvard College was created, and since then, thousands of colleges and universities have been built across the United States. From the classically inspired lines of Thomas Jefferson's University of Virginia to the Spanish architecture at Stanford University, every campus has its own personality. It's not unusual,…

  1. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    ), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently......The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma...... transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor...

  2. Mussel-inspired surface chemistry for multifunctional coatings.

    Lee, Haeshin; Dellatore, Shara M; Miller, William M; Messersmith, Phillip B

    2007-10-19

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules. PMID:17947576

  3. Supporting data for characterization of non-coding RNAs associated with the Neuronal growth regulator 1 (NEGR1) adhesion protein.

    Kaur, Prameet; Tan, Jun Rong; Karolina, Dwi Setyowati; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Peter Wong, Tsun-Hon; Jeyaseelan, Kandiah

    2016-06-01

    Long non-coding RNAs and microRNAs control gene expression to determine central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that plays an important role in neurite outgrowth during neuronal development and its precise expression is crucial for correct brain development. The data described here is related to the research article titled "A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of Neuronal growth regulator 1 (NEGR1) adhesion protein" [1]. This data article contains detailed bioinformatics analysis of genetic signatures at the Negr1 gene locus retrieved from the UCSC genome browser. This approach could be adopted to identify putative regulatory non-coding RNAs in other tissues and diseases. PMID:26977442

  4. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  5. Identification, characterization, and expression levels of putative adhesive proteins from the tube-dwelling polychaete Sabellaria alveolata.

    Becker, Pierre T; Lambert, Aurélie; Lejeune, Annabelle; Lanterbecq, Déborah; Flammang, Patrick

    2012-10-01

    The shelter of the tube-dwelling polychaete Sabellaria alveolata is composed of mineral particles assembled with spots of a proteinaceous cement. The adhesive proteins constituting the cement were identified on the basis of their sequence similarity with proteins of a phylogenetically related species, Phragmatopoma californica. Two positively charged proteins, Sa-1 and Sa-2, share common features: they both have a mass of 22 kDa; are rich in glycine, tyrosine and basic residues; and show repeated peptide motifs. The consensus repeat of Sa-1 is KGAYGAKGLGYGNKAGYGAYG (occurring 6-8 times), while Sa-2 displays the consensus heptapeptide VHKAAWG (5 times) and undecapeptide VHKAAGYGGYG (8 times). Two variants of a serine-rich protein, Sa-3A (22 kDa) and Sa-3B (21 kDa), were also identified. Their serine residues account for 75 mol% and are probably phosphorylated, meaning that Sa-3 is very acidic and negatively charged. Moreover, tyrosine residues of all adhesive proteins are presumably modified into DOPA. Although protein sequences are not well-conserved between S. alveolata and P. californica, their main characteristics (including amino acid composition, post-translational modifications, repeated patterns, isoelectric point, and mass) are shared by both species. This suggests that these features are more important for their function than the primary structure of the proteins. The mRNA abundance for each protein was estimated by quantitative real-time PCR, revealing relative expression levels of about 5, 11, 1.5, and 1 for Sa-1, -2, -3A, and -3B, respectively. These levels could be indicative of charge neutralization phenomena or could reflect their function (interface vs. bulk) in the cement. PMID:23111133

  6. Bacterial Adhesion & Blocking Bacterial Adhesion

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  7. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  8. The adhesive protein of Choromytilus chorus (Molina, 1782) and Aulacomya ater (Molina, 1782): a proline-rich and a glycine-rich polyphenolic protein.

    Burzio, L A; Saéz, C; Pardo, J; Waite, J H; Burzio, L O

    2000-06-15

    The adhesive polyphenolic proteins from Aulacomya ater and Choromytilus chorus with apparent molecular masses of 135000 and 105000, respectively, were digested with trypsin and the peptides produced resolved by reversed phase liquid chromatography. About 5 and 12 major peptides were obtained from the protein of A. ater and C. chorus, respectively. The major peptides were purified by reverse-phase chromatography and the amino acid sequence indicates that both polyphenolic proteins consisted of repeated sequence motifs in their primary structure. The major peptides of A. ater contain seven amino acids corresponding to the consensus sequence AGYGGXK, whereas the tyrosine was always found as 3, 4-dihydroxyphenylalanine (Dopa), the X residue in position 6 was either valine, leucine or isoleucine, and the carboxy terminal was either lysine or hydroxylysine. On the other hand, the major peptides of C. chorus ranged in size from 6 to 21 amino acids and the majority correspond to the consensus sequence AKPSKYPTGYKPPVK. Both proteins differ markedly in the sequence of their tryptic peptides, but they share the common characteristics of other adhesive proteins in having a tandem sequence repeat in their primary structure. PMID:11004549

  9. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Bernadette Sosa-García

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  10. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses

    Nielsen, Janne; Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    interactions, thereby modulating a range of biological processes. This review summarizes interactions between NCAM and other CAMs and ECM proteins. Additionally, the role of NCAM as a receptor for rabies virus, and its implications in rabies infections is briefly described. Interactions between NCAM and its...

  11. Cdc42 Effector Protein 2 (XCEP2 is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis

    Nelson Richard W

    2004-10-01

    Full Text Available Abstract Background Rho GTPases and their downstream effector proteins regulate a diverse array of cellular processes during embryonic development, including reorganization of cytoskeletal architecture, cell adhesion, and transcription. Changes in the activation state of Rho GTPases are converted into changes in cellular behavior by a diversity of effector proteins, which are activated in response to changes in the GTP binding state of Rho GTPases. In this study we characterize the expression and function of one such effector, XCEP2, that is present during gastrulation stages in Xenopus laevis. Results In a search for genes whose expression is regulated during early stages of embryonic development in Xenopus laevis, a gene encoding a Rho GTPase effector protein (Xenopus Cdc42 effector protein 2, or XCEP2 was isolated, and found to be highly homologous, but not identical, to a Xenopus sequence previously submitted to the Genbank database. These two gene sequences are likely pseudoalleles. XCEP2 mRNA is expressed at constant levels until mid- to late- gastrula stages, and then strongly down-regulated at late gastrula/early neurula stages. Injection of antisense morpholino oligonucleotides directed at one or both pseudoalleles resulted in a significant delay in blastopore closure and interfered with normal embryonic elongation, suggesting a role for XCEP2 in regulating gastrulation movements. The morpholino antisense effect could be rescued by co-injection with a morpholino-insensitive version of the XCEP2 mRNA. Antisense morpholino oligonucleotides were found to have no effect on mesodermal induction, suggesting that the observed effects were due to changes in the behavior of involuting cells, rather than alterations in their identity. XCEP2 antisense morpholino oligonucleotides were also observed to cause complete disaggregation of cells composing animal cap explants, suggesting a specific role of XCEP2 in maintenance or regulation of cell

  12. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

    Musílková, Jana; Kotelnikov, Ilya; Novotná, Katarína; Pop-Georgievski, Ognen; Rypáček, František; Bačáková, Lucie; Proks, Vladimír

    2015-01-01

    Roč. 26, č. 11 (2015), s. 253. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GAP108/11/1857; GA ČR(CZ) GAP108/12/1168; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61389013 Keywords : protein repulsive surface * cell adhesion * RGD * endothelial cells Subject RIV: EI - Biotechnology ; Bionics; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.587, year: 2014

  13. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  14. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R; Woods, Anne

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC......, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase....

  15. Evaluation of C-Reactive Protein, Endothelin-1, Adhesion Molecule(s), and Lipids as Inflammatory Markers in Type 2 Diabetes Mellitus Patients

    2007-01-01

    This study compared lipids, the product of lipid peroxidation malondialdehyde (MDA), the acute phase reactant high-sensitive C-reactive protein (hsCRP), endothelin-1 (ET-1), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) between healthy controls, subjects with ischemic heart disease (IHD) and type 2 diabetes mellitus (DM) subjects who did not perform coronary artery bypass graft (CABG) surgery as well as type 2 DM subjects who performed ...

  16. Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility

    Highlights: ► We generated stable transduced HE4 overexpression and knockdown cells. ► HE4 was associated with EOC cell adhesion and motility. ► HE4 might have some effects on activation of EGFR-MAPK signaling pathway. ► HE4 play an important role in EOC tumorigenicity. -- Abstract: Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.

  17. Marine biofouling of surfaces: morphology, and nanomechanics of Barnacle Cyprid adhesion proteins by AFM

    Phang, In Yee

    2008-01-01

    The understanding of biointerfaces in contact with seawater is crucially important in tackling the problems of marine biofouling. Such biointerfaces involve the bioadhesives used by marine organisms to attach temporary or permanently to the surfaces immersed in water. The aim of this Thesis is to address a particular problem, i.e. barnacle adhesion, to the biointerface and the corresponding fouling process. We try to understand the first steps of the fouling process of this species, and help ...

  18. Influence of preadsorbed milk proteins on adhesion of Listeria monocytogenes to hydrophobic and hydrophilic silica surfaces.

    al-Makhlafi, H; McGuire, J.; Daeschel, M

    1994-01-01

    The adsorption of beta-lactoglobulin, bovine serum albumin, alpha-lactalbumin, and beta-casein for 8 h and beta-lactoglobulin and bovine serum albumin for 1 h at silanized silica surfaces of low and high hydrophobicity, followed by incubation in buffer and contact with Listeria monocytogenes, resulted in different numbers of cells adhered per unit of surface area. Adhesion to both surfaces was greatest when beta-lactoglobulin was present and was lowest when bovine serum albumin was present. P...

  19. Effect of Milk Proteins on Adhesion of Bacteria to Stainless Steel Surfaces

    Barnes, L. M.; Lo, M. F.; Adams, M. R.; Chamberlain, A. H. L.

    1999-01-01

    Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. m...

  20. Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics.

    Perisic, Ljubica; Lal, Mark; Hulkko, Jenny; Hultenby, Kjell; Önfelt, Björn; Sun, Ying; Dunér, Fredrik; Patrakka, Jaakko; Betsholtz, Christer; Uhlen, Mathias; Brismar, Hjalmar; Tryggvason, Karl; Wernerson, Annika; Pikkarainen, Timo

    2012-11-01

    Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative α-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes. PMID:22832517

  1. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112

    Peeters, Miriam C; Mos, Iris; Lenselink, Eelke B;

    2016-01-01

    The adhesion G protein-coupled receptors (ADGRs/class B2 G protein-coupled receptors) constitute an ancient family of G protein-coupled receptors that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight into the struct......The adhesion G protein-coupled receptors (ADGRs/class B2 G protein-coupled receptors) constitute an ancient family of G protein-coupled receptors that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight...... identified several potential equivalent motifs and subjected those to mutational analysis. The importance of the mutated residues was evaluated by examining their effect on the high constitutive activity of the N-terminally truncated ADGRG4/GPR112 in a 1-receptor-1-G protein Saccharomyces cerevisiae...

  2. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  3. A role for the WH-30 protein in sperm-sperm adhesion during rouleaux formation in the guinea pig.

    Flaherty, S P; Swann, N J; Primakoff, P; Myles, D G

    1993-03-01

    Mammalian spermatozoa participate in specific cell adhesion phenomena during their development and functional lifespan; this includes interaction with Sertoli cells, the zona pellucida, and the oolemma. In some species such as the guinea pig, an additional sperm-sperm adhesion occurs during epididymal maturation which results in the formation of rouleaux in which the sperm heads are stacked one upon the other and the periacrosomal plasma membranes of adjacent sperm are linked by periodic cross-bridges. In this study, we have used a monoclonal antibody to investigate the role of the WH-30 protein on the sperm surface in the formation of the junctional zones between adjacent guinea pig sperm in rouleaux. WH-30 monoclonal antibodies caused a dose- and time-dependent dissociation of rouleaux and an increase in the percentage of single, acrosome-intact sperm; there were no effects on sperm motility (maintained at 80-90%) or ultrastructure during the 120-min incubations. The maximal effect of about 80% single sperm was obtained with a 1:4 dilution of the WH-30 hybridoma supernatant or 5-50 micrograms/ml of purified WH-30 IgG. In contrast, incubation of sperm in AH-20 IgG, myeloma cell supernatants, or purified, nonspecific mouse IgG1 had no effect on rouleaux. Treatment of sperm with a WH-30 Fab fragment resulted in almost complete dissociation of rouleaux without any observed effect on sperm motility or acrosomal status. Surface labeling of sperm followed by immunoprecipitation and SDS-PAGE revealed that the WH-30 antibody recognizes a single polypeptide of 43-45 kDa. Using immunofluorescence, the WH-30 protein was localized over the entire surface of the sperm head (whole-head pattern), and immunogold labeling showed that WH-30 is localized in the glycocalyx on both the dorsal and ventral surfaces of the periacrosomal and postacrosomal plasma membranes. These results indicate that the WH-30 protein on the sperm surface is a cell adhesion protein which is involved in

  4. Mussel-inspired dendritic polymers as universal multifunctional coatings.

    Wei, Qiang; Achazi, Katharina; Liebe, Hendrik; Schulz, Andrea; Noeske, Paul-Ludwig Michael; Grunwald, Ingo; Haag, Rainer

    2014-10-20

    A rapid and universal approach for multifunctional material coatings was developed based on a mussel-inspired dendritic polymer. This new kind of polymer mimics not only the functional groups of mussel foot proteins (mfps) but also their molecular weight and molecular structure. The large number of catechol and amine groups set the basis for heteromultivalent anchoring and crosslinking. The molecular weight reaches 10 kDa, which is similar to the most adhesive mussel foot protein mfp-5. Also, the dendritic structure exposes its functional groups on the surface like the folded proteins. As a result, a very stable coating can be prepared on virtually any type of material surface within 10 min by a simple dip-coating method, which is as fast as the formation of mussel byssal threads in nature. PMID:25200129

  5. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). PMID:20645195

  6. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs.

    Shimazaki, A; Tanaka, Y; Shinosaki, T; Ikeda, M; Watada, H; Hirose, T; Kawamori, R; Maeda, S

    2006-11-01

    We have previously identified the engulfment and cell motility 1 (ELMO1) as a susceptibility gene for diabetic nephropathy. To elucidate the role of ELMO1 in the pathogenesis of chronic renal injury, we examined the expression of Elmo1 in the kidney of a rat model for chronic glomerulonephritis (uninephrectomy plus anti-Thy1.1 antibody [E30] injection). We found that the expression of the Elmo1 was significantly increased in the renal cortex and glomeruli of uninephrectomized rats injected with E30 compared to controls. By in situ hybridization, the expression of Elmo1 was shown to be elevated in the diseased kidney, especially in glomerular epithelial cells. In COS cells, the overexpression of ELMO1 resulted in a substantial increase in fibronectin expression, whereas the depletion of the ELMO1 by small interfering RNA (siRNA) targeting ELMO1 significantly suppressed the fibronectin expression in ELMO1 overexpressing and control cells. We also found that the expression of integrin-linked kinase (ILK) was significantly increased in ELMO1 overexpressing cells, and the ELMO1-induced increase in fibronectin was partially, but significantly, inhibited by siRNA targeting ILK. Furthermore, we identified that the cell adhesion to ECMs was considerably inhibited in cells overexpressing ELMO1. These results suggest that the ELMO1 contributes to the development and progression of chronic glomerular injury through the dysregulation of ECM metabolism and the reduction in cell adhesive properties to ECMs. PMID:17021600

  7. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival

    Conway, Anne E.; Van Nostrand, Eric L.; Pratt, Gabriel A.; Aigner, Stefan; Wilbert, Melissa L.; Sundararaman, Balaji; Freese, Peter; Lambert, Nicole J.; Sathe, Shashank; Liang, Tiffany Y.; Essex, Anthony; Landais, Severine; Burge, Christopher B.; Jones, D. Leanne; Yeo, Gene W.

    2016-01-01

    SUMMARY Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3′UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. PMID:27068461

  8. Abdominal Adhesions

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  9. Surface-tethered polymers to influence protein adsorption and microbial adhesion

    Norde, Willem

    2007-01-01

    In various applications it is desired that biological cells or protein molecules are immobilized at surfaces. Examples are enzymes or cells in bioreactors and biosensors, immuno-proteins in solid-state diagnostics and proteinaceous farmacons in drug delivery systems. In order to retain biological ac

  10. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    Xiaohui Zou

    Full Text Available Mycoplasma bovis (M. bovis is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX. Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX. Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL, and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  11. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development.

    Woo, Jooyeon; Kwon, Seok-Kyu; Nam, Jungyong; Choi, Seungwon; Takahashi, Hideto; Krueger, Dilja; Park, Joohyun; Lee, Yeunkum; Bae, Jin Young; Lee, Dongmin; Ko, Jaewon; Kim, Hyun; Kim, Myoung-Hwan; Bae, Yong Chul; Chang, Sunghoe; Craig, Ann Marie; Kim, Eunjoon

    2013-06-10

    Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2. PMID:23751499

  12. RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility

    Vomastek, Tomáš; Iwanicki, M. P.; Schaeffer, J.; J.; Tarcsafalvi, A.; Parsons, J. T.; Weber, M. J.

    2007-01-01

    Roč. 27, č. 23 (2007), s. 8296-8305. ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * adhesion * cell Subject RIV: EE - Microbiology, Virology Impact factor: 6.420, year: 2007

  13. Guanine Nucleotide-Binding Proteins of the G(12) Family Shape Immune Functions by Controlling CD4(+) T Cell Adhesiveness and Motility

    S. Herroeder; P. Reichardt; A. Sassmann; B. Zimmermann; D. Jaeneke; J. Hoeckner; M.W. Hollmann; K.D. Fischer; S. Vogt; R. Grosse; N. Hogg; M. Gunzer; S. Offermanns; N. Wettschureck

    2009-01-01

    Integrin-mediated adhesion plays a central role in T cell trafficking and activation. Genetic inactivation of the guanine nucleotide-binding (G) protein alpha-subunits G alpha(12) and G alpha(13) resulted in an increased activity of integrin leukocyte-function-antigen-1 in murine CD4(+) T cells. The

  14. WHEY PROTEIN-BASED WATER RESISTANT AND ENVIRONMENTALLY SAFE ADHESIVES FOR PLYWOOD

    Zongyan Zhao; Wenbo Wang; Zhenhua Gao; Mingruo Guo

    2011-01-01

    Whey protein is a renewable and environmentally safe biomaterial, a by-product of cheese production. It can be utilized for non-food applications for value-added products. The substances glyoxal (GO), glutaraldehyde (GA), polymeric methylene biphenyl diisocyanate (p-MDI), urea-formaldehyde (UF) resin, and phenol-formaldehyde oligomer (PFO) that contain reactive groups were applied together with whey protein as modifier in order to increase crosslinking density and molecular weight for improvi...

  15. Fabrication and Analysis of Bio-Inspired Smart Surfaces

    Röhrig, Michael

    2013-01-01

    This work introduces novel techniques for the fabrication of bio-inspired hierarchical micro- and nanostructures. The enormous potential of these techniques is demonstrated by presenting a synthetic gecko-like adhesive matching the adhesion and self-cleaning of geckos very closely and a nanofur which is superhydrophobic, superoleophilic, underwater air-retaining, and even self-healing when surface treated.

  16. AND-34, a novel p130Cas-binding thymic stromal cell protein regulated by adhesion and inflammatory cytokines.

    Cai, D; Clayton, L K; Smolyar, A; Lerner, A

    1999-08-15

    We have characterized a novel cDNA whose steady state mRNA levels rise in the thymus 2 to 6 h following the induction of CD4+CD8+ thymocyte apoptosis by in vivo cross-linking of CD3 epsilon. This cDNA, AND-34-1, contains an open reading frame (ORF) encoding a protein with an amino-terminal Src homology 2 (SH2) domain and a carboxyl-terminal domain homologous to GDP-exchange factors (GEFs). Northern analysis demonstrates widespread expression of the AND-34 gene. Anti-CD3 epsilon treatment induces up-regulation of the AND-34 mRNA levels in total thymic RNA but not in RNA from purified thymocytes, suggesting that this transcript is derived from a thymic stromal cell population. IL-1 and TNF increase AND-34 transcript levels in thymic cortical reticular, thymic nurse, and fibroblast cell lines. In the thymic cortical reticular cell line, IL-1 and TNF induce a protein of the predicted 93-kDa size reactive with anti-AND-34 peptide antisera. Fifteen minutes of serum stimulation of vanadate-pretreated AND-34-1-transfected NIH3T3 fibroblasts induces tyrosine phosphorylation of AND-34 as well as coprecipitating 95-, 125-, and 130-kDa proteins. One of these tyrosine phosphorylated proteins is identified as p130Cas (Crk-associated substrate), a signaling molecule previously known to bind to a GDP-exchange factor (C3G) and inducibly associate with the focal adhesion complex. Consistent with such an association, AND-34 tyrosine phosphorylation is induced following adherence of trypsinized fibroblasts to fibronectin or poly-L -lysine-coated surfaces. PMID:10438950

  17. ADHESION-INDUCE PROTEIN TYROSINE PHOSPHORY-LATION IS ASSOCIATED WITH INVASIVE AND METASTATIC POTENTIALS IN B16-BL6 MELANOMA CELLS

    Yan Chunhong; Han Rui

    1998-01-01

    Objective: The interaction of cancer cell with extracellular matrix (ECM) happens as an earlier and specific event in the invasive and metastatic cascade. To explore the key element(s) in cancer metastasis and observe the cell-ECM interaction and its role. Methods:To interrupt the cell-ECM interaction by suppression of adhesion-induced protein tyrosine phosphorylation with protein tyrosine kinase inhibitor genistein in B16-B16mouse melanoma cells. Results: When B16-BL6 cells attached to Matrigel, a solubilized basement membrane preparation from EHS sarcoma, a 125 kDa protein increased its phosphotyrosine content dramatically. In contrast, when the cells were pretreated with 20μM or 30μM genistein for 3 days, it was revealed a less increase in the phosphotyrosine content of this 125 kDa protein inresponse to cell attachment to ECM was revealed with immunoblot analysis. Accompanied by the lower level of adhesion-induced protein tyrosine phosphorylation the genistein-treated cells exhibited a decrease in their capabilities of adhesion to Matrigel and invasion through reconstituted basement membrane. The potentials of and forming lung metastatic nodules were also shown to be decreased dramatically in these genistein-treated cells.Conclusion: It was suggested that protein tyrosine phosphorylation in cell-ECM interaction might be associated with invasive and metastatic potentials in cancer cells.

  18. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133

    Ines Liebscher

    2014-12-01

    Full Text Available Adhesion G protein-coupled receptors (aGPCRs comprise the second largest yet least studied class of the GPCR superfamily. aGPCRs are involved in many developmental processes and immune and synaptic functions, but the mode of their signal transduction is unclear. Here, we show that a short peptide sequence (termed the Stachel sequence within the ectodomain of two aGPCRs (GPR126 and GPR133 functions as a tethered agonist. Upon structural changes within the receptor ectodomain, this intramolecular agonist is exposed to the seven-transmembrane helix domain, which triggers G protein activation. Our studies show high specificity of a given Stachel sequence for its receptor. Finally, the function of Gpr126 is abrogated in zebrafish with a mutated Stachel sequence, and signaling is restored in hypomorphic gpr126 zebrafish mutants upon exogenous Stachel peptide application. These findings illuminate a mode of aGPCR activation and may prompt the development of specific ligands for this currently untargeted GPCR family.

  19. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  20. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  1. The role of heparan sulfate on adhesion of 47 and 51 kDa outer membrane proteins of Helicobacter pylori to gastric cancer cells.

    López-Bolaños, Claudia C; Guzmán-Murillo, Maria A; Ruiz-Bustos, Eduardo; Ascencio, Felipe

    2009-04-01

    Helicobacter pylori is a common gastrointestinal pathogenic bacterium in humans and the usual preference for the stomach's outer membrane proteins (OMPs) are antigens involved in the adhesion process. Through SDS-PAGE and blotting analyses, using horseradish peroxidase-labeled heparan sulfate (HRP-HS) as a probe, we identified H. pylori OMPs with affinity for heparan sulfate (OMP-HS). Biotin-streptavidin bacterial-adhesion assay was used to evaluate participation of OMP-HS in the adhesion of H. pylori to semi-confluent HeLa S3 and Kato III cell monolayers. The results provide evidence that induction of antibodies against 2 OMP-HSs (HSBP-47 and HSBP-51) could reduce binding of H. pylori to both cell lines and induce detachment of cell-bound bacteria from infected cultured cells. PMID:19396245

  2. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F.; Srinivasan, Prakash; Nold, Michael J.; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan

    2015-01-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study in...

  3. Unbinding and unfolding of adhesion protein complexes through stretching: Interplay between shear and tensile mechanical clamps

    Rozycki, Bartosz; Mioduszewski, Lukasz; Cieplak, Marek

    2015-01-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pull...

  4. A fucan from the brown seaweed Spatoglossum schröederi inhibits Chinese hamster ovary cell adhesion to several extracellular matrix proteins

    Rocha H.A.O.

    2001-01-01

    Full Text Available Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1 and the mutant type deficient in xylosyltransferase (CHO-745. The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5(and CHO-745 (2 x 10(5 and 5 x 10(5 cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.

  5. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  6. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    Wei, Jiang; Bagge, Dorthe; Gram, Lone;

    2003-01-01

    . The chemical composition and uniformity of the surfaces were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) in the imaging mode. The effects of PEI concentration and different substrate pre-cleaning methods on the structure....... The surface density of PEI was shown to increase with increasing PEI concentration (up to 30 mg/ml), as determined from XPS measurements, and subsequently produced the PEG layer with the highest density of attached chains. In model experiments using beta-lactoglobulin no protein adsorption was detected...

  7. Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps.

    Różycki, Bartosz; Mioduszewski, Łukasz; Cieplak, Marek

    2014-11-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pulling and may take place in several pathways. Interestingly, the CD48-2B4 interface can be divided into three distinct patches that act as units when resisting the pulling forces. At experimentally accessible pulling speeds, the characteristic mechanostability forces are in the range between 100 and 200 pN, depending on the pulling direction. These characteristic forces need not be associated with tensile forces involved in the act of separation of the complex because prior shear-involving unraveling within individual proteins may give rise to a higher force peak. PMID:25142868

  8. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor

    Jørgensen, Jakob Ploug; Lauridsen, Anne-Marie; Kristensen, Poul; Dissing, Karen; Johnsen, Anders H; Hendil, Klavs B; Hartmann-Petersen, Rasmus

    2006-01-01

    We have identified Adrm1 as a novel component of the regulatory ATPase complex of the 26 S proteasome: Adrm1 was precipitated with an antibody to proteasomes and vice versa. Adrm1 co-migrated with proteasomes on gel-filtration chromatography and non-denaturing polyacrylamide gel electrophoresis....... Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon......-existing 26 S proteasomes in cell extracts. Adrm1 may be distantly related to the yeast proteasome subunit Rpn13, mutants of which are reported to display no obvious phenotype. Accordingly, knock-down of Adrm1 in HeLa cells had no effect on the amount of proteasomes, or on degradation of bulk cell protein, or...

  9. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. PMID:27309944

  10. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  11. Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning.

    Chung, Hoyong; Glass, Paul; Pothen, Jewel M; Sitti, Metin; Washburn, Newell R

    2011-02-14

    We present a study on the effects of cross-linking on the adhesive properties of bio-inspired 3,4-dihydroxyphenylalanine (DOPA). DOPA has a unique catechol moiety found in adhesive proteins in marine organisms, such as mussels and polychaete, which results in strong adhesion in aquatic conditions. Incorporation of this functional group in synthetic polymers provides the basis for pressure-sensitive adhesives for use in a broad range of environments. A series of cross-linked DOPA-containing polymers were prepared by adding divinyl cross-linking agent ethylene glycol dimethacrylate (EGDMA) to monomer mixtures of dopamine methacrylamide (DMA) and 2-methoxyethyl acrylate (MEA). Samples were prepared using a solvent-free microwave-assisted polymerization reaction and compared to a similar series of cross-linked MEA materials. Cross-linking with EGDMA tunes the viscoelastic properties of the adhesive material and has the advantage of not reacting with the catechol group that is responsible for the excellent adhesive performance of this material. Adhesion strength was measured by uniaxial indentation tests, which indicated that 0.001 mol % of EGDMA-cross-linked copolymer showed the highest work of adhesion in dry conditions, but non-cross-linked DMA was the highest in wet conditions. The results suggest that there is an optimal cross-linking degree that displays the highest adhesion by balancing viscous and elastic behaviors of the polymer but this appears to depend on the conditions. This concentration of cross-linker is well below the theoretical percolation threshold, and we propose that subtle changes in polymer viscoelastic properties can result in significant improvements in adhesion of DOPA-based materials. The properties of lightly cross-linked poly(DMA-co-MEA) were investigated by measurement of the frequency dependence of the storage modulus (G') and loss modulus (G''). The frequency-dependence of G' and magnitude of G'' showed gradual decreases with the

  12. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  13. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  14. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  15. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model

    Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

    2004-07-01

    Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

  16. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri.

    Mackenzie, Donald A; Jeffers, Faye; Parker, Mary L; Vibert-Vallet, Amandine; Bongaerts, Roy J; Roos, Stefan; Walter, Jens; Juge, Nathalie

    2010-11-01

    Mucus-binding proteins (MUBs) have been revealed as one of the effector molecules involved in mechanisms of the adherence of lactobacilli to the host; mub, or mub-like, genes are found in all of the six genomes of Lactobacillus reuteri that are available. We recently reported the crystal structure of a Mub repeat from L. reuteri ATCC 53608 (also designated strain 1063), revealing an unexpected recognition of immunoglobulins. In the current study, we explored the diversity of the ATCC 53608 mub gene, and MUB expression levels in a large collection of L. reuteri strains isolated from a range of vertebrate hosts. This analysis revealed that the MUB was only detectable on the cell surface of two highly related isolates when using antibodies that were raised against the protein. There was considerable variation in quantitative mucus adhesion in vitro among L. reuteri strains, and mucus binding showed excellent correlation with the presence of cell-surface ATCC 53608 MUB. ATCC 53608 MUB presence was further highly associated with the autoaggregation of L. reuteri strains in washed cell suspensions, suggesting a novel role of this surface protein in cell aggregation. We also characterized MUB expression in representative L. reuteri strains. This analysis revealed that one derivative of strain 1063 was a spontaneous mutant that expressed a C-terminally truncated version of MUB. This frameshift mutation was caused by the insertion of a duplicated 13 nt sequence at position 4867 nt in the mub gene, producing a truncated MUB also lacking the C-terminal LPxTG region, and thus unable to anchor to the cell wall. This mutant, designated 1063N (mub-4867(i)), displayed low mucus-binding and aggregation capacities, further providing evidence for the contribution of cell-wall-anchored MUB to such phenotypes. In conclusion, this study provided novel information on the functional attributes of MUB in L. reuteri, and further demonstrated that MUB and MUB-like proteins

  17. Preparation and characterization of a photocrosslinkable bioadhesive inspired by marine mussel.

    Xue, Jie; Wang, Tao; Nie, Jun; Yang, Dongzhi

    2013-02-01

    Synthetic adhesives inspired by marine mussel have attracted great attention due to its excellent water-resistance and good biocompatibility. In this study, a photocrosslinkable bioadhesive containing 3,4-Dihydroxy-l-phenylalanine (DOPA) functional group, which is central to curing mussel adhesive proteins, was prepared by ultraviolet (UV) irradiation of a new photocurable monomer ethylene glycol acrylate methacrylate-dopamine (EGAMA-DOPA) and a UV photocrosslinkable crosslinking agent poly(vinyl alcohol) (UV-PVA) derivative. The chemical structures of EGAMA-DOPA and UV-PVA were confirmed by Fourier Transform Infrared Reflection (FTIR) and (1)H NMR spectroscopy, respectively. The effects of UV light intensity, content of photoinitiator, EGAMA-DOPA and UV-PVA on the photopolymerization kinetics were studied, and the effects of the content of UV-PVA and temperature on the adhesive strength were also investigated. It was found that the higher UV light intensity, the faster polymerization rate and the higher final conversion that was the same as the trend of photoinitiator, EGAMA-DOPA and UV-PVA. And the adhesion strength measurement showed that, for gels with 30wt.% EGAMA-DOPA, the adhesion strength was obviously improved by about 150% with 3.0wt.% UV-PVA instead of pure PVA, and for gels containing 40wt.% EGAMA-DOPA, the adhesion strength sharply enhanced by 123% with increasing the content of UV-PVA from 1.0wt.% to 3.0wt.%. Cell attachment results showed good cell viability of L929 cell on the EGAMA-DOPA/UV-PVA adhesive gels. Thanks to its strong adhesion strength and good biocompatibility, such photocrosslinkable gels could be applied to the areas of biomedical field. PMID:23313836

  18. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein.

    Chen, Yang; Wennman, Anneli; Karkehabadi, Saeid; Engström, Åke; Oliw, Ernst H

    2016-08-01

    The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains β-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels. PMID:27313058

  19. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains.

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F; Srinivasan, Prakash; Nold, Michael J; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M; Muratova, Olga; Jin, Albert; Reed, Steven G; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E; MacDonald, Nicholas J; Narum, David L

    2015-10-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine. PMID:26169272

  20. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F.; Srinivasan, Prakash; Nold, Michael J.; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M.; Muratova, Olga; Jin, Albert; Reed, Steven G.; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E.; MacDonald, Nicholas J.

    2015-01-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine. PMID:26169272

  1. EFFECTS OF SYSTEMIC FLUCONAZOLE THERAPY ON IN VITRO ADHESION OF CANDIDA ALBICANS TO BUCCAL EPITHELIAL CELLS AND CHANGES OF THE CELL SURFACE PROTEINS OF THE EPITHELIAL CELLS

    吴绍熙; 郭宁如; 侯幼红

    1996-01-01

    This paper presented the effects of systemic fluconazole therapy via intravenous (IV) and oral (PO) administrations on the adhesion of Candida albicans (C. albicans) to the huccal epithelial ceils (BEC) from five treated patients with three candidosis, one mucornlycosis and one sporotrichosis and at the same time,an analysis of the cell surface proteins involving candidal adherent receptor in the BEC of the patients in the course of 7 days were exposed to 3H-leucine radiolabaled C. atbicans for in vitro eandidal adherent assay,and the BEC from first intake day and the last intake day of the patients were extracted by dithiothreitol(DTT)-iodoacetamide treatment for SDS-PAGE. These results indicate that the systemic iluconazole therapy resuks in the inhibitory effect of candldal adhesion to BEC of treated patients to prevent them from oral candidosis for a prolonged time, which is based on the absent surface protein (35KDa) of the BEC.

  2. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  3. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  4. Lactobacillus Adhesion to Mucus

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  5. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  6. Cytocompatibility studies of a biomimetic copolymer with simplified structure and high-strength adhesion.

    Brennan, M Jane; Meredith, Heather J; Jenkins, Courtney L; Wilker, Jonathan J; Liu, Julie C

    2016-04-01

    The development of adhesives suitable for biomedical applications has been challenging given that these materials must exhibit sufficient adhesion strengths and biocompatibility. Biomimetic materials inspired by mussel adhesive proteins appear to contain many of the necessary characteristics for biomedical adhesives. In particular, poly[(3,4-dihydroxystyrene)-co-styrene] has been shown to be a high strength adhesive material with bonding comparable to or even greater than several commercial glues. Herein, a thorough study on the cytocompatibility of this copolymer provides insights on the suitability of a mussel-mimicking adhesive for applications development. The cytotoxicity of poly[(3,4-dihydroxystyrene)-co-styrene] was evaluated through assessment of the viability, proliferation rate, and morphology of NIH/3T3 fibroblasts when cultured with copolymer extracts or directly in contact with the adhesive. After 1 and 3 days of culture, both the copolymer alone and copolymer cross-linked with periodate exhibited minimal effects on cell viability. Likewise, cells cultured on the copolymer displayed proliferation rates and morphologies similar to cells on the poly-l-lysine control. These results indicate that poly[(3,4-dihydroxystyrene)-co-styrene] is highly cytocompatible and therefore a promising material for use where biological contact is important. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 983-990, 2016. PMID:26714824

  7. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation.

    Punde, Tushar H; Wu, Wen-Hao; Lien, Pei-Chun; Chang, Ya-Ling; Kuo, Ping-Hsueh; Chang, Margaret Dah-Tsyr; Lee, Kang-Yun; Huang, Chien-Da; Kuo, Han-Pin; Chan, Yao-Fei; Shih, Po-Chen; Liu, Cheng-Hsien

    2015-02-01

    This study reports a biomimetic microsystem that reconstitutes the lung microenvironment for monitoring the role of eosinophil cationic protein (ECP) in lung inflammation. ECP induces the airway epithelial cell expression of CXCL-12, which in turn stimulates the migration of fibrocytes towards the epithelium. This two-layered microfluidic system provides a feasible platform for perfusion culture, and was used in this study to reveal that the CXCL12-CXCR4 axis mediates ECP induced fibrocyte extravasation in lung inflammation. This 'lung-on-a-chip' microdevice serves as a dynamic transwell system by introducing a flow that can reconstitute the blood vessel-tissue interface for in vitro assays, enhancing pre-clinical studies. We made an attempt to develop a new microfluidic model which could not only simulate the transwell for studying cell migration, but could also study the migration in the presence of a flow mimicking the physiological conditions in the body. As blood vessels are the integral part of our body, this model gives an opportunity to study more realistic in vitro models of organs where the blood vessel i.e. flow based migration is involved. PMID:25486073

  8. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. PMID:27397581

  9. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  10. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J;

    2015-01-01

    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites......-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly....... Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE...

  11. A SAP domain-containing protein shuttles between the nucleus and cell membranes and plays a role in adhesion and migration in D. discoideum

    Jessica S. Kelsey

    2013-02-01

    The AmpA protein reduces cell adhesion, thereby influencing cell migration in Dictyostelium. To understand how ampA influences cell migration, second site suppressors of an AmpA overexpressing cell line were created by REMI mutagenesis. Mutant candidates were identified by their ability to suppress the large plaques that the AmpA overexpressing cells form on bacterial lawns as a result of their increased rate of migration. One suppressor gene, sma, encodes an uncharacterized protein, which contains a SAP DNA-binding domain and a PTEN-like domain. Using sma gene knockouts and Sma-mRFP expressing cell lines, a role for sma in influencing cell migration was uncovered. Knockouts of the sma gene in a wild-type background enhanced chemotaxis. An additional role for Sma in influencing cell–cell adhesion was also demonstrated. Sma protein transitions between cytosolic and nuclear localizations as a function of cell density. In growing cells migrating to folic acid it is localized to regions of actin polymerization and absent from the nucleus. A role for Sma in influencing ampA mRNA levels is also demonstrated. Sma additionally appears to be involved in ampA pathways regulating cell size, actin polymerization, and cell substrate adhesion. We present insights to the SAP domain-containing group of proteins in Dictyostelium and provide evidence of a role for a SAP domain-containing protein shuttling from the nucleus to sites of actin polymerization during chemotaxis to folic acid and influencing the efficiency of migration.

  12. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone

    Zhou, Ming; Pesika, Noshir; Zeng, Hongbo; Wan, Jin; Zhang, Xiangjun; Meng, Yonggang; Wen, Shizhu; Tian, Yu(School of Physics, University of Chinese Academy of Sciences, Beijing, 100049, China)

    2012-01-01

    Despite successful fabrication of gecko-inspired fibrillar surfaces with strong adhesion forces, how to achieve an easy-removal property becomes a major concern that may restrict the wide applications of these bio-inspired surfaces. Research on how geckos detach rapidly has inspired the design of novel adhesive surfaces with strong and reversible adhesion capabilities, which relies on further fundamental understanding of the peeling mechanisms. Recent studies showed that the peel-zone plays a...

  13. Upregulation of adhesion complex proteins and fibronectin by human keratinocytes treated with an aqueous extract from the leaves of Chromolaena odorata (Eupolin).

    Phan, T T; Allen, J; Hughes, M A; Cherry, G; Wojnarowska, F

    2000-01-01

    The fresh leaves and extract of the plant Chromolaena odorata are a traditional herbal treatment in developing countries for burns, soft tissue wounds and skin infections. We have previously shown that the extract had an effect on the growth and proliferation of keratinocytes and fibroblasts in culture. This study has demonstrated that Eupolin extract increased expression of several components of the adhesion complex and fibronectin by human keratinocytes. Using indirect immunofluorescence we found increased expression (dose-dependent) of laminin 5, laminin 1, collagen IV, and fibronectin. The expression of the b1 and b4 integrins was upregulated by the extract at low concentrations (0.1 and 1 microg/ml), but the expression was decreased at higher doses of Eupolin (10 microg-150 microg/ml). A number of clinical studies carried out by Vietnamese and international medical investigators have demonstrated the efficacy of this extract on the wound healing process. In this study we have shown that Eupolin stimulated the expression of many proteins of the adhesion complex and fibronectin by human keratinocytes. The adhesion complex proteins are essential to stabilise epithelium and this effect could contribute to the clinical efficacy of Eupolin in healing. PMID:11056422

  14. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  15. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate- reactive proteins (glycosidases and lectins) and fibronectin

    1981-01-01

    The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase- coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly diffe...

  16. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    McCaskie Andrew W

    2010-05-01

    Full Text Available Abstract Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products and medicine (tissue engineering, prosthetic implants, cancer and developmental biology. We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements. In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days and long term (weeks effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.

  17. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via

  18. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. PMID:27104583

  19. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  20. Bio-inspired strategies for anti-icing.

    Lv, Jianyong; Song, Yanlin; Jiang, Lei; Wang, Jianjun

    2014-04-22

    Undesired ice accumulation leads to severe economic issues and, in some cases, loss of lives. Although research on anti-icing has been carried out for decades, environmentally harmless, economical, and efficient strategies for anti-icing remain to be developed. Recent researches have provided new insights into the icing phenomenon and shed light on some promising bio-inspired anti-icing strategies. The present review critically categorizes and discusses recent developments. Effectively trapping air in surface textures of superhydrophobic surfaces weakens the interaction of the surfaces with liquid water, which enables timely removal of impacting and condensed water droplets before freezing occurs. When ice already forms, ice adhesion can be significantly reduced if liquid is trapped in surface textures as a lubricating layer. As such, ice could be shed off by an action of wind or its gravity. In addition, bio-inspired anti-icing strategies via trapping or introducing other media, such as phase change materials and antifreeze proteins, are discussed. PMID:24592934

  1. Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes.

    Hung-Yuan Li

    Full Text Available Diabetes is the leading cause of end-stage renal disease (ESRD worldwide. Vascular adhesion protein-1 (VAP-1 participates in inflammation and catalyzes the deamination of primary amines into aldehydes, hydrogen peroxide, and ammonia, both of which are involved in the pathogenesis of diabetic complications. We have shown that serum VAP-1 is higher in patients with diabetes and in patients with chronic kidney disease (CKD, and can predict cardiovascular mortality in subjects with diabetes. In this study, we investigated if serum VAP-1 can predict ESRD in diabetic subjects.In this prospective cohort study, a total of 604 type 2 diabetic subjects were enrolled between 1996 to 2003 at National Taiwan University Hospital, Taiwan, and were followed for a median of 12.36 years. The development of ESRD was ascertained by linking our database with the nationally comprehensive Taiwan Society Nephrology registry. Serum VAP-1 concentrations at enrollment were measured by time-resolved immunofluorometric assay.Subjects with serum VAP-1 in the highest tertile had the highest incidence of ESRD (p<0.001. Every 1-SD increase in serum VAP-1 was associated with a hazard ratio of 1.55 (95%CI 1.12-2.14, p<0.01 for the risk of ESRD, adjusted for smoking, history of cardiovascular disease, body mass index, hypertension, HbA1c, duration of diabetes, total cholesterol, use of statins, ankle-brachial index, estimated GFR, and proteinuria. We developed a risk score comprising serum VAP-1, HbA1c, estimated GFR, and proteinuria, which could predict ESRD with good performance (area under the ROC curve = 0.9406, 95%CI 0.8871-0.9941, sensitivity = 77.3%, and specificity = 92.8%. We also developed an algorithm based on the stage of CKD and a risk score including serum VAP-1, which can stratify these subjects into 3 categories with an ESRD risk of 0.101%/year, 0.131%/year, and 2.427%/year, respectively.In conclusion, serum VAP-1 can predict ESRD and is a useful biomarker to

  2. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues.

    Jakava-Viljanen, Miia; Palva, Airi

    2007-10-01

    Surface-layer proteins (Slps) of lactobacilli have been shown to confer tissue adherence. This study aimed to isolate and identify Slps carrying Lactobacillus species from the porcine intestine and faeces and to characterize these S-layer-expressing strains for their ability to adhere to the pig and human intestinal cells and to extracellular matrix (ECM) proteins. In total 99 strains, putatively belonging to the genus Lactobacillus, were isolated as pure cultures. SDS-PAGE and a gene probe specific for the Lactobacillus brevis ATCC 8287 S-layer protein gene (slpA) were used to screen the presence of strains possessing putative Slps. Eight of the 99 pure cultures exhibited Slps according to the SDS-PAGE analyses. In these strains the presence of genes encoding Slps was confirmed by PCR and partial sequencing. Only one isolate of the 99 strains gave a positive hybridisation signal with the L. brevis slpA probe but did not appear to produce S-layer protein. Their taxonomic identification, based on phenotyping and the 16S rRNA sequences, revealed that the eight S-layer protein-producing strains were closely related to Lactobacillus amylovorus, Lactobacillus sobrius and Lactobacillus crispatus. The strain with the slpA positive hybridisation result was identified as Lactobacillus mucosae. The SDS-extractable protein profile, the size of the putative S-layer protein and binding capability of the strains varied greatly, even among the isolates belonging to the same Lactobacillus cluster. Removal of the intact Slps from the bacterial surface by extraction with guanidine hydrochloride reduced the adhesion of some strains to fibronectin and laminin, whereas, the adhesiveness to laminin increased with some strains. PMID:17544232

  3. Recent advances in nanostructured biomimetic dry adhesives

    CarloMenon

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  4. Retina-inspired Filter

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2016-01-01

    This paper introduces a novel filter which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model “virtual retina”. This model is the cornerstone to derive the non-separable spatiotemporal OPL retina-inspired filter, briefly renamed retina- insp...

  5. Bioarchitecture - Inspirations From Nature

    eryıldız, semih halil; MEZINI, Ledita

    2012-01-01

    Engineers, architects, and artists often refer to nature as a basis. Many engineers find their structural inspiration from plant life, in a spider’s web, a piece of coral, a beehive, or in the structural development of animals. Bioarchitecture is a particular moment in which architecture, engineering, and art converge as they are using the same inspirations. By taking a look around, designers can find inspiration everywhere – particularly in nature. Nature provides us with an amaz...

  6. Surgical adhesives

    I. A. THOMAZINI-SANTOS

    2001-12-01

    Full Text Available The authors have performed a literature review of surgical adhesives, such as cyanoacrylate, collagen gelatin, and fibrin glue. They have included different types of commercial and non-commercial fibrin sealants and have reported on the different components in these adhesives, such as fibrinogen, cryoprecipitate, bovine thrombin, and thrombin-like fraction of snake venom.

  7. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae.

    Soares de Lima, Cristiana; Zulianello, Laurence; Marques, Maria Angela de Melo; Kim, Heejin; Portugal, Michelle Iespa; Antunes, Sérgio Luiz; Menozzi, Franco Dante; Ottenhoff, Tom Henricus Maria; Brennan, Patrick Joseph; Pessolani, Maria Cristina Vidal

    2005-07-01

    Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein. PMID:15919224

  8. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  9. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  10. Aplysia cell adhesion molecule and a novel protein kinase C activity in the postsynaptic neuron are required for presynaptic growth and initial formation of specific synapses

    Hu, Jiang-Yuan; Chen, Yang; Bougie, Joanna K; Sossin, Wayne S.; Schacher, Samuel

    2010-01-01

    To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating a...