WorldWideScience

Sample records for adherens junction integrity

  1. Adherens junction function and regulation during zebrafish gastrulation

    Schepis, Antonino; Nelson, W. James

    2012-01-01

    The adherens junction (AJ) comprises multi-protein complexes required for cell-cell adhesion in embryonic development and adult tissue homeostasis. Mutations in key proteins and mis-regulation of AJ adhesive properties can lead to pathologies such as cancer. In recent years, the zebrafish has become an excellent model organism to integrate cell biology in the context of a multicellular organization. The combination of classical genetic approaches with new tools for live imaging and biophysica...

  2. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Kunihiko Hatanaka

    Full Text Available BACKGROUND: The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. METHODS AND FINDINGS: In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. CONCLUSIONS: These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  3. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury

    Gu, Changping; LIU, MENGJIE; Zhao, Tao; Wang, Dong; Wang, Yuelan

    2015-01-01

    Background Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI. Methods Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R...

  4. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins.

    Guerrera, Diego; Shah, Jimit; Vasileva, Ekaterina; Sluysmans, Sophie; Méan, Isabelle; Jond, Lionel; Poser, Ina; Mann, Matthias; Hyman, Anthony A; Citi, Sandra

    2016-05-20

    PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions. PMID:27044745

  5. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions.

    Dorland, Yvonne L; Malinova, Tsveta S; van Stalborch, Anne-Marieke D; Grieve, Adam G; van Geemen, Daphne; Jansen, Nicolette S; de Kreuk, Bart-Jan; Nawaz, Kalim; Kole, Jeroen; Geerts, Dirk; Musters, René J P; de Rooij, Johan; Hordijk, Peter L; Huveneers, Stephan

    2016-01-01

    Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell-cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue. PMID:27417273

  6. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Chaika, Nina [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Tolkunova, Elena; Davydov-Sinitsyn, Alexander [Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064 (Russian Federation); Gapon, Svetlana [Boston Children' s Hospital, Boston, MA 02115 (United States); Thomas, Peter [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); O’Brien, Stephen [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  7. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein

  8. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization.

    Fornetti, J; Flanders, K C; Henson, P M; Tan, A-C; Borges, V F; Schedin, P

    2016-02-01

    After weaning, during mammary gland involution, milk-producing mammary epithelial cells undergo apoptosis. Effective clearance of these dying cells is essential, as persistent apoptotic cells have a negative impact on gland homeostasis, future lactation and cancer susceptibility. In mice, apoptotic cells are cleared by the neighboring epithelium, yet little is known about how mammary epithelial cells become phagocytic or whether this function is conserved between species. Here we use a rat model of weaning-induced involution and involuting breast tissue from women, to demonstrate apoptotic cells within luminal epithelial cells and epithelial expression of the scavenger mannose receptor, suggesting conservation of phagocytosis by epithelial cells. In the rat, epithelial transforming growth factor-β (TGF-β) signaling is increased during involution, a pathway known to promote phagocytic capability. To test whether TGF-β enhances the phagocytic ability of mammary epithelial cells, non-transformed murine mammary epithelial EpH4 cells were cultured to achieve tight junction impermeability, such as occurs during lactation. TGF-β3 treatment promoted loss of tight junction impermeability, reorganization and cleavage of the adherens junction protein E-cadherin (E-cad), and phagocytosis. Phagocytosis correlated with junction disruption, suggesting junction reorganization is necessary for phagocytosis by epithelial cells. Supporting this hypothesis, epithelial cell E-cad reorganization and cleavage were observed in rat and human involuting mammary glands. Further, in the rat, E-cad cleavage correlated with increased γ-secretase activity and β-catenin nuclear localization. In vitro, pharmacologic inhibitors of γ-secretase or β-catenin reduced the effect of TGF-β3 on phagocytosis to near baseline levels. However, β-catenin signaling through LiCl treatment did not enhance phagocytic capacity, suggesting a model in which both reorganization of cell junctions and

  9. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  10. The asymmetric self-assembly mechanism of adherens junctions: a cellular push–pull unit

    To form adherens junctions (AJ), cells first establish contact by sending out lamellipodia onto neighboring cells. We investigated the role of contacting cells in AJ assembly by studying an asymmetric AJ motif: finger-like AJ extending across the cell–cell interface. Using a cytoskeleton replica and immunofluorescence, we observed that actin bundles embedded in the lamellipodia are co-localized with stress fibers in the neighboring cell at the AJ. This suggests that donor lamellipodia present actin fingers, which are stabilized by acceptor lamellae via acto-myosin contractility. Indeed, we show that changes in actin network geometry promoted by Rac overexpression lead to corresponding changes in AJ morphology. Moreover, contractility inhibition and enhancement (via drugs or local traction) lead respectively to the disappearance and further growth of AJ fingers. Thus, we propose that receiving lamellae exert a local pull on AJ, promoting further polymerization of the donor actin bundles. In spite of different compositions, AJ and focal contacts both act as cellular mechanosensors

  11. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila.

    Gabrielle Goldenberg

    Full Text Available During Drosophila gastrulation, amnioserosa (AS cells flatten and spread as an epithelial sheet. We used AS morphogenesis as a model to investigate how adherens junctions (AJs distribute along elongating cell-cell contacts in vivo. As the contacts elongated, total AJ protein levels increased along their length. However, genetically blocking this AJ addition indicated that it was not essential for maintaining AJ continuity. Implicating other remodeling mechanisms, AJ photobleaching revealed non-directional lateral mobility of AJs along the elongating contacts, as well as local AJ removal from the membranes. Actin stabilization with jasplakinolide reduced AJ redistribution, and live imaging of myosin II along elongating contacts revealed fragmented, expanding and contracting actomyosin networks, suggesting a mechanism for lateral AJ mobility. Actin stabilization also increased total AJ levels, suggesting an inhibition of AJ removal. Implicating AJ removal by endocytosis, clathrin endocytic machinery accumulated at AJs. However, dynamin disruption had no apparent effect on AJs, suggesting the involvement of redundant or dynamin-independent mechanisms. Overall, we propose that new synthesis, lateral diffusion, and endocytosis play overlapping roles to populate elongating cell-cell contacts with evenly distributed AJs in this in vivo system.

  12. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Loredo, María L; Barrera-Oviedo, Diana; Pinzón, Enrique; Rodríguez-Rangel, Daniela Saraí; Pedraza-Chaverri, José

    2016-01-20

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity. PMID:26467482

  13. Negative pressure induces p120-catenin-dependent adherens junction disassembly in keratinocytes during wound healing.

    Huang, Ching-Hui; Hsu, Chih-Chin; Chen, Carl Pai-Chu; Chow, Shu-Er; Wang, Jong-Shyan; Shyu, Yu-Chiau; Lu, Mu-Jie

    2016-09-01

    A negative-pressure of 125mmHg (NP) has been widely used to treat chronic wounds in modern medicine. Keratinocytes under NP treatment have shown accelerated cell movement and decreased E-cadherin expression. However, the molecular mechanism of E-cadherin regulation under NP remains incompletely understood. Therefore, we investigated the E-cadherin regulation in keratinocytes (HaCaT cells) under NP. HaCaT cells were treated at ambient pressure (AP) and NP for 12h. Cell movement was measured by traditional and electric wound healing assays at the 2 different pressures. Mutants with overexpression of p120-catenin (p120(ctn)) were used to observe the effect of NP on p120(ctn) and E-cadherin expression during wound healing. Cell fractionation and immunoblotting data showed that NP increased Y228-phosphorylated p120(ctn) level and resulted in the translocation of p120(ctn) from the plasma membrane to cytoplasm. Immunofluorescence images revealed that NP decreased the co-localization of p120(ctn) and E-cadherin on the plasma membrane. Knockdown of p120(ctn) reduced E-cadherin expression and accelerated cell movement under AP. Overexpression of the Y228-phosphorylation-mimic p120(ctn) decreased E-cadherin membrane expression under both AP and NP. Phosphorylation-deficient mutants conferred restored adherens junctions (AJs) under NP. The Src inhibitor blocked the phosphorylation of p120(ctn) and impeded cell migration under NP. In conclusion, Src-dependent phosphorylation of p120(ctn) can respond rapidly to NP and contribute to E-cadherin downregulation. The NP-induced disassembly of the AJ further accelerates wound healing. PMID:27220534

  14. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  15. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells.

    Bellett, Gemma; Carter, Jane M; Keynton, Jennifer; Goldspink, Deborah; James, Colin; Moss, David K; Mogensen, Mette M

    2009-10-01

    Apico-basal polarisation of epithelial cells involves a dramatic reorganisation of the microtubule cytoskeleton. The classic radial array of microtubules focused on a centrally located centrosome typical of many animal cells is lost or greatly reduced and a non-centrosomal apico-basal array develops. The molecules and mechanisms responsible for the assembly and positioning of these non-centrosomal microtubules have not been fully elucidated. Using a Nocodazole induced regrowth assay in invitro culture (MDCK) and in situ epithelial (cochlear Kolliker's) cell models we establish that the apico-basal array originates from the centrosome and that the non-centrosomal microtubule minus-end anchoring sites do not contribute significantly to their nucleation. Confocal and electron microscopy revealed that an extended radial array assembles with microtubule plus-ends targeting cadheren sites at adherens junctions and EB1 and CLIP-170 co-localising with beta-catenin and dynein clusters at the junction sites. The extended radial array is likely to be a vital intermediate step in the assembly process with cortical anchored dynein providing the mechanical force required for microtubule release, translocation and capture. Ultrastructural analyses of the apico-basal arrays in fully polarised MDCK and Kolliker's cells revealed microtubule minus-end association with the most apical adherens junction (Zonula adherens). We propose that a release and capture model involving both microtubule plus- and minus-end capture at adherens junctions is responsible for the generation of non-centrosomal apico-basal arrays in most centrosome containing polarised epithelial cells. PMID:19479825

  16. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    Hideaki Yamamoto

    Full Text Available Adherens junctions (AJs play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  17. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells.

    Franke, Werner W; Rickelt, Steffen; Zimbelmann, Ralf; Dörflinger, Yvette; Kuhn, Caecilia; Frey, Norbert; Heid, Hans; Rosin-Arbesfeld, Rina

    2015-03-01

    Proteins of the striatin family (striatins 1-4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E-N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the "multimodulator" scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs. PMID:25501894

  18. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  19. Radiation effects on adherens contacts in cultured Madin-Darby canine kidney (MDCK) cells

    The cell contacts (junctions) are considered to be sensitive and important targets of ionizing radiation. In this work, the effect of X-irradiation was studied on the localization and relative quantity of two structural proteins of adherent junction, i.e. cadherins and b-catenin, in cultured Madin-Darby canine kidney (MDCK) cells by immunohistochemical and Western blotting procedures. Irradiation was found to induce the rapid redistribution and quantitative loss in these proteins resulting in their separation from the adherens junction sites. As a consequence, the structure and functionality of adherent junctions are also suggested to be affected by ionizing radiation in MDCK cells. Since morphological alteration of cell contact sites is also leading to temporary or permanent disturbances in adherens junction related functions (i.e. paracellular permeability), cell junctions might really be regarded as primary biomembrane target areas for radiation effects. The radiation-induced loss of b-catenin is probably related to the altered Wnt-signaling, too. (author)

  20. Scaling of electroresistance effect in fully integrated ferroelectric tunnel junctions

    Abuwasib, Mohammad; Lu, Haidong; Li, Tao; Buragohain, Pratyush; Lee, Hyungwoo; Eom, Chang-Beom; Gruverman, Alexei; Singisetti, Uttam

    2016-04-01

    Systematic investigation of the scalability for tunneling electroresistance (TER) of integrated Co/BaTiO3/SrRuO3 ferroelectric tunnel junctions (FTJs) has been performed from micron to deep submicron dimensions. Pulsed measurements of the transient currents confirm the ferroelectric switching behavior of the FTJs, while the hysteresis loops measured by means of piezoresponse force microscopy verify the scalability of these structures. Fully integrated functional FTJ devices with the size of 300 × 300 nm2 exhibiting a tunneling electroresistance (TER) effect of the order of 2.7 × 104% have been fabricated and tested. Measured current density of 75 A/cm2 for the ON state and a long polarization retention time of ON state (>10 h) show a lot of promise for implementation of high-density BaTiO3-based FTJ memory devices in future.

  1. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  2. Integrated power divider/combiner at hybrid orthogonal junctions

    El Sherif, Mohamed H.; Ahmed, Osman S.; Bakr, Mohamed H.

    2014-03-01

    We propose an integrated power divider/combiner at the interface between silicon nanowire and plasmonic slot waveguide (PSW). The proposed configuration facilitates light access and manipulation in planar nano-plasmonic circuits. The light is incident from a standard silicon nanowire to be accessed by a nano-plasmonic circuit providing subwavelength confinement. The structure overcomes the losses associated with long distance light propagation in nanoplasmonic splitters as coupling and splitting are performed at the same interface with minimal losses. Two PSWs placed orthogonally to the silicon nanowire forming hybrid junctions are exploited for the power dividing/combining functionality. The power splitter has been analyzed using the finite difference time domain (FDTD) numerical method. The ultra-compact proposed device provides wide-band power splitting functionality. A splitting of 34.7%, over most of the wavelength spectrum from 0.8 μm - 2.5 μm, is demonstrated.

  3. Integration of organic based Schottky junctions for crossbar non-volatile memory applications

    Katsia, E.; Tallarida, G.; Ferrari, S.;

    2008-01-01

    Small size Schottky junctions using two different synthesized organic semiconductors (oligophenylene-vinylenes) were integrated by standard UV lithography into crossbar arrays. The proposed integration scheme can be applied to a wide class of organics without affecting material properties. Curren...

  4. Diffusion stop-layers for superconducting integrated circuits and qubits with Nb-based Josephson junctions

    Tolpygo, Sergey K.; Amparo, Denis; Hunt, Richard T.; Vivalda, John A.; Yohannes, Daniel T.

    2010-01-01

    New technology for superconductor integrated circuits has been developed and is presented. It employs diffusion stoplayers (DSLs) to protect Josephson junctions (JJs) from interlayer migration of impurities, improve JJ critical current (Ic) targeting and reproducibility, eliminate aging, and eliminate pattern-dependent effects in Ic and tunneling characteristics of Nb/Al/AlOx/Nb junctions in integrated circuits. The latter effects were recently found in Nb-based JJs integrated into multilayer...

  5. Terahertz applications of integrated circuits based on intrinsic Josephson junctions in high Tc superconductors

    Wang, Huabing; Wu, Peiheng; Yamashita, Tsutomu

    2001-10-01

    Using a newly developed double-side fabrication method, an IJJ stack plus a bow-tie antenna and chokes were integrated in a slice 200 nm thick and singled out from inside a bulk Bi2Sr2CaCu2O8+x (BSCCO) single crystal. The junctions in the fabricated stack were very uniform, and the number of junctions involved was rather controllable. In addition to this method, which can be used to fabricate integrated circuits based on intrinsic Josephson junctions in high temperature (Tc) superconductors, also reported will be terahertz responses of IJJs, and the possible applications in quantum voltage standard, spectroscopy, and so on.

  6. High reliability Pb-alloy Josephson junctions for integrated circuits

    The process developed and recently used at IBM for fabricating experimental Pb-alloy Josephson tunnel-junction devices, and the factors which influence the stability of such devices during repeated cycling between 300 K and 4.2 K are reviewed. A new, fine-grained Pb.84In.12Au.04 alloy base electrode material has been developed that has excellent thermal cycling stability. In an experiment carried out to evaluate the cyclability of devices prepared with this material, excellent results were obtained: the cyclability of large-area junctions was improved by approx. equal to 100x compared to that of similar junctions prepared with the recently used, larger-grained Pb.84In.12Au.04 base electrodes. In the best cases, populations of 2600 large junctions and 2350 interferometers were found to withstand 400 and 700 thermal cycles to 4.2 K, respectively, before the first failures were observed. These results indicate that with the use of fine-grained electrodes, Pb-alloy Josephson devices have good potential for meeting the cycling requirements of computer systems. (orig.)

  7. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity.

    Hongbing Xiao

    Full Text Available BACKGROUND: Small GTPases (guanosine triphosphate, GTP are involved in many critical cellular processes, including inflammation, proliferation, and migration. GTP loading and isoprenylation are two important post-translational modifications of small GTPases, and are critical for their normal function. In this study, we investigated the role of post-translational modifications of small GTPases in regulating endothelial cell inflammatory responses and junctional integrity. METHODS AND RESULTS: Confluent human umbilical vein endothelial cell (HUVECs treated with atorvastatin demonstrated significantly decreased lipopolysaccharide (LPS-mediated IL-6 and IL-8 generation. The inhibitory effect of atorvastatin (Atorva was attenuated by co-treatment with 100 µM mevalonate (MVA or 10 µM geranylgeranyl pyrophosphate (GGPP, but not by 10 µM farnesyl pyrophosphate (FPP. Atorvastatin treatment of HUVECs produced a time-dependent increase in GTP loading of all Rho GTPases, and induced the translocation of small Rho GTPases from the cellular membrane to the cytosol, which was reversed by 100 µM MVA and 10 µM GGPP, but not by 10 µM FPP. Atorvastatin significantly attenuated thrombin-induced HUVECs permeability, increased VE-cadherin targeting to cell junctions, and preserved junction integrity. These effects were partially reversed by GGPP but not by FPP, indicating that geranylgeranylation of small GTPases plays a major role in regulating endothelial junction integrity. Silencing of small GTPases showed that Rho and Rac, but not Cdc42, play central role in HUVECs junction integrity. CONCLUSIONS: In conclusion, our studies show that post-translational modification of small GTPases plays a vital role in regulating endothelial inflammatory response and endothelial junction integrity. Atorvastatin increased GTP loading and inhibited isoprenylation of small GTPases, accompanied by reduced inflammatory response and preserved cellular junction integrity.

  8. A Novel and Facile Method to Prepare Integrated Electrospun Nanofibrous Membrane with Soldered Junctions.

    Shen, Lingdi; Chen, Jiajia; Hong, Guishan; Wang, Xuefen

    2016-01-01

    Integrated electrospun nanofibrous membrane was prepared by creating soldered junctions between nanofibers via a facile strategy. Polyacrylonitrile (PAN) mixed with poly(vinylidene fluoride) (PVDF) at different ratios of PVDF were prepared in N,N'-dimethyl formamide (DMF), then electrospun to fabricate PAN/PVDF membranes. PVDF can form microgels in DMF which slows down volatile speed of DMF and affects the solidification of PAN/PVDF nanofibers. The resulting membranes were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic water contact angle and tensile testing to confirm the morphology and mechanical properties. Soldered junctions were observed between nanofibers with the increase of PVDF content. These junctions made the membrane integrated and greatly enhanced tensile strength from 5.1 to 8.1 MPa (increased by ~60%) and tensile modulus from 49.4 to 117.9 MPa (increased by ~139%) without compromising porosity when the content of PVDF increased from 0 to 60 wt%. PMID:27398532

  9. Upscaling, integration and electrical characterization of molecular junctions

    Hal, P.A. van; Smits, E.C.P.; Geuns, T.C.T.; Akkerman, H.B.; Brito, B.C. de; Perissinotto, S.; Lanzani, G.; Kronemeijer, A.J.; Geskin, V.; Cornil, J.; Blom, P.W.M.; Boer, B. de; Leeuw, D.M. de

    2008-01-01

    The ultimate target of molecular electronics is to combine different types of functional molecules into integrated circuits, preferably through an autonomous self-assembly process. Charge transport through self-assembled monolayers has been investigated previously, but problems remain with reliabili

  10. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice

    Rifampicin is a well-known hepatotoxicant, but little is known about the mechanism of rifampicin-induced hepatotoxicity. The aim of this study was to characterize the expression and localization of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Cholestasis was induced by administration of rifampicin (200 mg/kg) for 7 consecutive days or treatment with a single dose of rifampicin (200 mg/kg) by gastric intubation. The expression of mRNA for hepatic zonula occludens (ZO)-1, ZO-2, ZO-3, occludin and claudin-1 was determined using RT-PCR. Localization of ZO-1 and occludin was detected using immunofluorescence. Results showed that there was an 82-fold increase in the conjugated bilirubin in serum in rifampicin-treated mice. In addition, an 8-fold increase in total bile acid in serum was observed after a seven-day administration of rifampicin. The integrity of hepatocyte ZO-1 and occludin was altered by a seven-day administration of rifampicin. Importantly, the integrity and intensity of hepatocyte tight junctions were altered as early as 30 min after a single dose of rifampicin. The expression of hepatic ZO-1 and ZO-2 mRNA was significantly decreased, beginning as early as 30 min and remaining a lower level 12 h after a single dose of rifampicin. Taken together, these results suggest that the altered integrity and internalization of hepatocyte tight junctions are associated with rifampicin-induced cholestasis.

  11. A monolithically integrated power JFET and Junction Barrier Schottky diode in 4H Silicon Carbide

    Radhakrishnan, Rahul

    Efficiency of power management circuits depends significantly on their constituent switches and rectifiers. The demands of technology are increasingly running up against the intrinsic properties of Si based power devices. 4H-Silicon Carbide (SiC) has superior properties that make it attractive for high power applications. SiC rectifiers are already a competitive choice and SiC switches have also been commercialized recently. Junction Barrier Schottky (JBS) diodes, which combine the advantages of PN and Schottky, have higher Figure of Merit (FOM) as rectifiers. Among switches, a robust and mature process has been developed for Silicon Carbide Vertical Junction Field Effect Transistors (VJFETs), which currently gives it the highest unipolar FOM. Switches are frequently combined with anti-parallel diodes in power circuits. This thesis describes the development of a SiC-based monolithically integrated power switch and diode. Monolithic integration increases reliability and efficiency, and reduces cost. Because of their superior properties and similarities in fabrication, we chose the SiC VJFET and JBS diode as the switch and rectifier. Detailed design, fabrication and characterization of the integrated switch to block above 800 V and conduct current beyond 100 A/cm2 is explained. In this process, the first physics-based 2-D compact model is developed for reverse leakage in a JBS diode as a function of design parameters. Since the gate-channel junctions of SiC VJFETs cannot be assumed to be abrupt, an existing analytical model for Si VJFETs is extended to account for graded gate-channel junctions. Using these analytical models, design rules are developed for the VJFET and JBS diode. Finite element simulations are used to find the best anode layout of the JBS diode and optimize electric field termination in the integrated device to ensure their capability to operate at high voltage. Finally, a spin-on glass based process is developed for filling the gate trenches of the

  12. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlOx/Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlOx/Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlOx/Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  13. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  14. Endothelial Cell Permeability and Adherens Junction Disruption Induced by Junín Virus Infection

    Lander, Heather M.; Grant, Ashley M.; Albrecht, Thomas; Hill, Terence; Peters, Clarence J.

    2014-01-01

    Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (...

  15. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction

    Mate Suzanne E

    2011-05-01

    Full Text Available Abstract Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ. We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.

  16. Integrated SiC Super Junction Transistor-Diode Devices for High-Power Motor Control ModulesOoperating at 500 C Project

    National Aeronautics and Space Administration — Monolithic Integrated SiC Super Junction Transistor-JBS diode (MIDSJT) devices are used to construct 500

  17. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers

  18. THE CELULAR JUNCTIONS AND THE EMERGENCE OF ANIMALS

    Urquiza-Bardone, Sergio

    2013-07-01

    Full Text Available The emergence of multicellularity and epithelia in relation to the appearance of cellular junctions, in order to illustrate the first steps of animal evolution, is discussed. We analyzed the structure and roles of adherens and occludins, considered to be the oldest. Also treated are some aspects of the main proteins that constitute them, the cadherins and claudins, as well as the related structures observed in sponges and choanoflagellates, the most ancient animals and the ancestors of these, respectively. It was concluded that the animal ancestor probably possessed some kind of adherens and possibly occludins, appearing as the first of major importance. These junctions increased in complexity through until the complexity observed in modern times.

  19. Ultrastructural studies of the junctional complex in the musculature of the arrow-worm (Sagitta setosa) (Chaetognatha).

    Duvert, M; Gros, D; Salat, C

    1980-01-01

    In the A fibres of the primary musculature of Sagitta, the junctional complex is made up of three kinds of junctions. From the apex to the base they occur in the following order: an apical zonula adherens, a columnar zonula then columnar maculae intermingled with gap junction. Each columnar junction joins two intracellular filament networks in adjacent cells; this cytoskeleton is largely developed around the nucleus of the A fibres and in close relation with the contractile apparatus, especially at the I band level. The B fibres, which never reach the general cavity, lack zonula adherens and columnar zonula. The columnar junction constitutes a new type of junction which seems to belong to the adherens kind. At their level fibrous columns cross the extracellular space, joining the membranes. Each column faces two cytoplasmic densities localized against the cytoplasmic leaflets of the membranes. A cytoskeleton composed of bunldes of cytoplasmic filaments is in close contact with these cytoplasmic densities. The great number of columnar junctions and associated cytoskeleton assure the cohesion of the tissue and the distribution of contractile forces in the absence of connective tissue. The abundance of gap junctions can account for the metabolic and ionic coupling of the fibres. PMID:7189067

  20. Characterization of pure boron depositions integrated in silicon diodes for nanometer-deep junction applications

    Sarubbi, F.

    2010-01-01

    Doping technologies for formation of ultrashallow and highly-doped p+ junctions are continuously demanded to face the challenges in front-end processing that have emerged due to the aggressive downscaling of vertical dimensions for future semiconductor devices. As an alternative to implantations, cu

  1. Integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities

    Cai, Wei; Gao, Xumin; Yuan, Wei; Yang, Yongchao; Yuan, Jialei; Zhu, Hongbo; Wang, Yongjin

    2016-05-01

    We propose, fabricate, and demonstrate integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities on a GaN-on-silicon platform. Suspended devices with a common n-contact are realized using a wafer-level process. For the integrated devices, part of the light emitted by a light-emitting diode (LED) is guided in-plane through a suspended waveguide and is sensed by another photodiode. The induced photocurrent is tuned by the LED. The integrated devices can act as two independent LEDs to deliver different signals simultaneously for free-space visible light communication. Furthermore, the suspended devices can be used as two separate photodiodes to detect incident light with a distinct on/off switching performance.

  2. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi

  3. Characterization of pure boron depositions integrated in silicon diodes for nanometer-deep junction applications

    Sarubbi, F.

    2010-01-01

    Doping technologies for formation of ultrashallow and highly-doped p+ junctions are continuously demanded to face the challenges in front-end processing that have emerged due to the aggressive downscaling of vertical dimensions for future semiconductor devices. As an alternative to implantations, current solutions are based on in-situ boron (B) doping during Si/SiGe chemical vapor deposition (CVD) by using diborane (B2H6) as the dopant gas. In this context, a few studies have demonstrated p+-...

  4. A Novel Role of Human Holliday Junction Resolvase GEN1 in the Maintenance of Centrosome Integrity

    Gao, M.; Danielsen, Jannie Michaela Rendtlew; Wei, L.-Z.;

    2012-01-01

    The maintenance of genomic stability requires accurate genome replication, repair of DNA damage, and the precise segregation of chromosomes in mitosis. GEN1 possesses Holliday junction resolvase activity in vitro and presumably functions in homology driven repair of DNA double strand breaks......, which is required and sufficient for centrosome localization. We report that GEN1 depletion results in aberrant centrosome numbers associated with the formation of multiple spindle poles in mitosis, an increased number of cells with multi-nuclei, increased apoptosis and an elevated level of spontaneous...

  5. Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture

    Ranaweera, Manoj; Kim, Jung-Sik

    2016-05-01

    Understanding the cell temperature distribution of solid oxide fuel cell (SOFC) stacks during normal operation has multifaceted advantages in performance and degradation studies. Present efforts on measuring temperature from operating SOFCs measure only the gas channel temperature and do not reveal the cell level temperature distribution, which is more important for understanding a cell's performance and its temperature-related degradation. The authors propose a cell-integrated, multi-junction thermocouple array for in-situ cell surface temperature monitoring of an operational SOFC. The proposed thermocouple array requires far fewer numbers of thermoelements than that required by sets of thermocouples for the same number of temperature sensing points. Hence, the proposed array causes lower disturbance to cell performance than thermocouples. The thermoelement array was sputter deposited on the cathode of a commercial SOFC using alumel (Ni:Al:Mn:Si - 95:2:2:1 by wt.) and chromel (Ni:Cr - 90:10 by wt.). The thermocouple array was tested in a furnace over the entire operating temperature range of a typical SOFC. The individual sensing points of the array were shown to measure temperature independently from each other with equivalent accuracy to a thermocouple. Thus, the concept of multi-junction thermocouples is experimentally validated and its stability on a porous SOFC cathode is confirmed.

  6. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression.

    Putaala, Heli; Salusjärvi, Tuomas; Nordström, Malin; Saarinen, Markku; Ouwehand, Arthur C; Bech Hansen, Egon; Rautonen, Nina

    2008-01-01

    Controversy exists as to whether contact between a probiotic bacterial cell and an epithelial cell in the gut is needed to confer beneficial effects of probiotics, or whether metabolites from probiotics are sufficient to cause this effect. To address this question, Caco-2 cells were treated with cell-free supernatants of four probiotics, Bifidobacterium lactis 420, Bifidobacterium lactis HN019, Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, and by a cell-free supernatant of a pathogenic bacteria, Escherichia coli O157:H7 (EHEC). Tight junction integrity as well as expression of cyclo-oxygenases, which are prostaglandin-producing enzymes, were measured. Probiotic-specific as well as EHEC-specific effects on tight junction integrity and cyclo-oxygenase expression were evident, indicating that live bacterial cells were not necessary for the manifestation of the effects. B. lactis 420 cell-free supernatant increased tight junction integrity, while EHEC cell-free supernatant induced damage on tight junctions. In general, EHEC and probiotics had opposite effects upon cyclo-oxygenase expression. Furthermore, B. lactis 420 cell-free supernatant protected the tight junctions from EHEC-induced damage when administered prior to the cell-free supernatant of EHEC. These results indicate that probiotics produce bioactive metabolites, suggesting that consumption of specific probiotic bacteria might be beneficial in protecting intestinal epithelial cells from the deleterious effects of pathogenic bacteria. PMID:18783733

  7. Silicon drift detector with integrated p-JFET for continuous discharge of collected electrons through the gate junction

    The paper describes the design and the performance of a silicon drift detector with integrated front-end electronics for large area, high resolution X-ray spectroscopy. The detector features a new type of p-JFET embedded in the collecting anode and operated with the gate-to-channel junction forward biased by the detector leakage current. This unusual condition performs, at the same time, the amplification of the signal and the continuous discharge of the collected charge eliminating any additional component or system for resetting. The particular design of the transistor allows the anode region to be very compact without affecting the collection of the charge. Using a test device with an active area of 3 mm2 the detector has reached an energy resolution of 19 electrons rms at an operating temperature of 208 K. (orig.)

  8. Integration of organic based Schottly junctions into crossbar arrays by standard UV lithography

    Katsia, E.; Tallarida, G.; Kutrzeba-Kotowska, B.;

    2008-01-01

    The integration of polymers into microelectronic devices is a challenging task, because the standard processes used in device fabrication, most notably photolithography, are not fully compatible with such materials. In this study, we demonstrate a possible route for the integration of micron size...

  9. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  10. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Zhang, Yong-Hang [Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Landini, Barbara; Campman, Ken [Sumika Electronic Materials, Inc., Phoenix, Arizona 85034 (United States)

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.

  11. Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat

    Marcinkevicius, Emily; Zallen, Jennifer A.

    2013-01-01

    The atypical cadherin Fat is a conserved regulator of planar cell polarity, but the mechanisms by which Fat controls cell shape and tissue structure are not well understood. Here, we show that Fat is required for the planar polarized organization of actin denticle precursors, adherens junction proteins and microtubules in the epidermis of the late Drosophila embryo. In wild-type embryos, spatially regulated cell-shape changes and rearrangements organize cells into highly aligned columns. Junc...

  12. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  13. Gap Junctions

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hex...

  14. Gap Junctions

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of ...

  15. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli.

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  16. Event-specific qualitative and quantitative PCR detection of roundup ready event GT73 based on the 3'-integration junction.

    Yang, Rong; Xu, Wentao; Luo, Yunbo; Guo, Feng; Lu, Yun; Huang, Kunlun

    2007-10-01

    With the development of genetically modified organisms, labeling regulations have been introduced, which require appropriate detection methods. Event-specific qualitative and quantitative polymerase chain reaction (PCR) detection methods have become the internationally agreed state-of-art. This paper describes an event-specific PCR method for qualitative and quantitative of Roundup Ready canola event GT73. The 3'-integration junction was characterized by two methods: inverse-PCR and thermal asymmetric interlaced-PCR. In the conventional qualitative PCR assay, the event-specific primers designed were confirmed to be specific and the limit of detection (LOD) was 0.05% (approximates to ten haploid genome copies). In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were five and ten haploid genome copies, respectively. In addition, for further quantitative detection, a reference molecule which contained the canola endogenous gene and event-specific sequence was constructed and standard curves were set up. The goodness of the linearity and high efficiency of the PCR reaction indicated the usability of the plasmid and the established PCR system. Moreover, mixed samples with different GT73 content (6, 3, 1 and 0.5%) were quantified using the established real-time PCR system to evaluate the trueness and precision of the system. The trueness expressed as bias varied from 2.00 to 18.00%. The precision expressed as variation coefficient were different from 6.40 to 32.95%. From above results, we believed that the established event-specific qualitative and quantitative PCR systems for GT73 in this study were acceptable and suitable for genetic modified canola detection. PMID:17554542

  17. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus.

    Yoo, Dae Young; Yim, Hee Sun; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Seong, Je Kyung; Yoon, Yeo Sung; Kim, Dae Won; Hwang, In Koo

    2016-07-01

    In the present study, we investigated the effects of type 2 diabetes-induced hyperglycemia on the integrity of the blood-brain barrier and tight junction markers in the rat hippocampus. Forty-week-old diabetic (Zucker diabetic fatty, ZDF) rats and littermate control (Zucker lean control, ZLC) rats were used in this study. We evaluated the integrity of the blood-brain barrier by measuring sodium fluorescein extravasation and blood vessel ultrastructure. In addition, tight junction markers, such as zona occludens-1, occludin and claudin-5, were quantified by western blot analysis. ZDF rats showed significantly increased sodium fluorescein leakage in the hippocampus. Tight junction markers, such as occludin and claudin-5, were significantly decreased in the hippocampi of ZDF rats compared to those of ZLC rats. In addition, ZDF rats showed ultrastructural changes with phagocytic findings in the blood vessels. These results suggest that chronic untreated diabetes impairs the permeability of the hippocampal blood-brain barrier by down-regulating occludin and claudin-5, indicating that chronic untreated diabetes may cause hippocampus-dependent dysfunction. PMID:26876499

  18. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  19. A computational method for modeling arbitrary junctions employing different surface integral equation formulations for three-dimensional scattering and radiation problems

    Gomez-Sousa, Hipolito; Martinez-Lorenzo, Jose Angel; Arias-Acuña, Marcos

    2015-01-01

    This paper presents a new method, based on the well-known method of moments (MoM), for the numerical electromagnetic analysis of scattering and radiation from metallic or dielectric structures, or both structure types in the same simulation, that are in contact with other metallic or dielectric structures. The proposed method for solving the MoM junction problem consists of two separate algorithms, one of which comprises a generalization for bodies in contact of the surface integral equation (SIE) formulations. Unlike some other published SIE generalizations in the field of computational electromagnetics, this generalization does not require duplicating unknowns on the dielectric separation surfaces. Additionally, this generalization is applicable to any ordinary single-scatterer SIE formulations employed as baseline. The other algorithm deals with enforcing boundary conditions and Kirchhoff's Law, relating the surface current flow across a junction edge. Two important features inherent to this latter algorit...

  20. Quantum Junction Solar Cells

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  1. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  2. Integrating Atomic Layer Deposition and Ultra-High Vacuum Physical Vapor Deposition for In Situ Fabrication of Tunnel Junctions

    Elliot, Alan J.; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Yiu, Haifeng; Zhao, Shiping; Wu, Judy Z.

    2014-01-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barrier using ALD is controlling the nucleation of dielectrics on metals with minimal formation of n...

  3. NbN-MgO-NbN tunnel junctions integrated in aluminum strip lines for terahertz quasiparticle mixers

    Schicke, M; Plathner, B; Gundlach, KH; Aoyagi, M; Takada, S; Dieleman, P; Jegers, JBM; Klapwijk, TM; van de Stadt, H; Rogalla, H; Blank, DHA

    1997-01-01

    NbN tunnel junctions are of great interest for THz heterodyne receivers because their large gap voltage of V-gap approximate to 5 mV implies an upper frequency limit of 4 Delta/h approximate to 2.6 THz as compared to 1.4 THz of Nb. However, due to the high ac losses in NbN films for frequencies abov

  4. Calcium-Ask1-MKK7-JNK2-c-Src Signaling Cascade Mediates Disruption of Intestinal Epithelial Tight Junctions by Dextran Sulfate Sodium

    Samak, Geetha; Chaudhry, Kamaljit K.; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2015-01-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with the symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca2+ concentration, and depletion of intracellular Ca2+ by BAPTA or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of Ask1 or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased Tyr-phosphorylation of occludin, ZO-1, E-cadherin and β-catenin. SP600125 abrogated DSS-induced Tyr-phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto phosphorylation of c-Src. This study demonstrates that Ca2+-Ask1-MKK7-JNK2-cSrc signaling cascade mediates DSS-induced tight junction disruption and barrier dysfunction. PMID:25377781

  5. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine.

    Shukla, Pradeep K; Gangwar, Ruchika; Manda, Bhargavi; Meena, Avtar S; Yadav, Nikki; Szabo, Erzsebet; Balogh, Andrea; Lee, Sue Chin; Tigyi, Gabor; Rao, RadhaKrishna

    2016-05-01

    The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2-24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding. PMID:26822914

  6. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

    Duan, Yi; Gotoh, Nanami; Yan, Qingshang; Du, Zhaopeng; Weinstein, Alan M; Wang, Tong; Weinbaum, Sheldon

    2008-08-12

    In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption. PMID:18685100

  7. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  8. Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes.

    Müller, Juliane S; Jepson, Catherine D; Laval, Steven H; Bushby, Kate; Straub, Volker; Lochmüller, Hanns

    2010-05-01

    The small signalling adaptor protein Dok-7 has recently been reported as an essential protein of the neuromuscular junction (NMJ). Mutations resulting in partial loss of Dok-7 activity cause a distinct limb-girdle subtype of the inherited NMJ disorder congenital myasthenic syndromes (CMSs), whereas complete loss of Dok-7 results in a lethal phenotype in both mice and humans. Here we describe the zebrafish orthologue of Dok-7 and study its in vivo function. Dok-7 deficiency leads to motility defects in zebrafish embryos and larvae. The relative importance of Dok-7 at different stages of NMJ development varies; it is crucial for the earliest step, the formation of acetylcholine receptor (AChR) clusters in the middle of the muscle fibre prior to motor neuron contact. At later stages, presence of Dok-7 is not absolutely essential, as focal and non-focal synapses do form when Dok-7 expression is downregulated. These contacts however are smaller than in the wild-type zebrafish, reminiscent of the neuromuscular endplate pathology seen in patients with DOK7 mutations. Intriguingly, we also observed changes in slow muscle fibre arrangement; previously, Dok-7 has not been linked to functions other than postsynaptic AChR clustering. Our results suggest an additional role of Dok-7 in muscle. This role seems to be independent of the muscle-specific tyrosine kinase MuSK, the known binding partner of Dok-7 at the NMJ. Our findings in the zebrafish model contribute to a better understanding of the signalling pathways at the NMJ and the pathomechanisms of DOK7 CMSs. PMID:20147321

  9. Quantifying esophagogastric junction contractility with a novel HRM topographic metric, the EGJ-Contractile Integral: normative values and preliminary evaluation in PPI non-responders

    Nicodème, Frédéric; Pipa-Muniz, Maria; Khanna, Kern; Kahrilas, Peter J.; Pandolfino, John E.

    2015-01-01

    Background Despite its obvious pathophysiological relevance, the clinical utility of measures of esophagogastric junction (EGJ) contractility is unsubstantiated. High-resolution manometry (HRM) may improve upon this with its inherent ability to integrate the magnitude of contractility over time and length of the EGJ. This study aimed to develop a novel HRM metric summarizing EGJ contractility and test its ability distinguish among subgroups of proton pump inhibitor non-responders (PPI-NRs). Methods 75 normal controls and 88 PPI-NRs were studied. All underwent HRM. PPI-NRs underwent pH-impedance monitoring on PPI therapy scored in terms of acid exposure, number of reflux events, and reflux-symptom correlation and grouped as meeting All Criteria, Some Criteria, or No Criteria of abnormality. Control HRM studies were used to establish normal values for candidate EGJ contractility metrics, which were then compared in their ability to differentiate among PPI-NR subgroups. Results The EGJ contractile integral (EGJ-CI), a metric integrating contractility across the EGJ for three respiratory cycles, best distinguished the All Criteria PPI-NR subgroup from controls and other PPI-NR subgroups. Normal values (median, [IQR]) for this measure were 39 mmHg-cm [25–55 mmHg-cm]. The correlation between the EGJ-CI and a previously proposed metric, the lower esophageal sphincter-pressure integral, that used a fixed 10s time frame and an atmospheric as opposed to gastric pressure reference was weak. Conclusion Among HRM metrics tested, the EGJ-CI was best in distinguishing PPI-NRs meeting All Criteria of abnormality on pH-impedance testing. Future prospective studies are required to explore its utility in management of broader groups of GERD patients. PMID:24460814

  10. Molecular beam epitaxy of InP single junction and InP/In0.53Ga0.47As monolithically integrated tandem solar cells using solid phosphorous source material

    This work reports the first InP solar cells, InP/In0.53Ga0.47As tandem solar cells and InP tunnel junctions to be grown using a solid phosphorous source cracker cell in a molecular beam epitaxy system. High p-type doping achieved with this system allowed for the development of InP tunnel junctions. These junctions which allow for improved current matching in subsequent monolithically integrated tandem devices also do not absorb photons which can be utilized in the InGaAs structure. Photocurrent spectral responses compared favorably to devices previously grown in a chemical beam epitaxy system. High resolution x-ray scans demonstrated good lattice matching between constituent parts of the tandem cell. AM0 efficiencies of both InP and InP/InGaAs tandem cells are reported

  11. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. PMID:22146107

  12. Mapping the λ Integrase bridges in the nucleoprotein Holliday junction intermediates of viral integrative and excisive recombination

    Tong, Wenjun; Warren, David; Seah, Nicole E.; Laxmikanthan, Gurunathan; Van Duyne, Gregory D.; Landy, Arthur

    2014-01-01

    The bacteriophage encoded λ Int protein is distinguished from other well-studied and widely exploited tyrosine recombinase family members as a heterobivalent DNA binding protein. With the help of accessory DNA bending proteins, Int bridges two different classes of DNA sites within the unique 400-kDa recombinogenic complexes of integrative and excisive recombination. The absence of any overarching investigations or structural models for these key complexes stems from the inability to determine...

  13. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode.

    Fan, Shizhao; AlOtaibi, Bandar; Woo, Steffi Y; Wang, Yongjie; Botton, Gianluigi A; Mi, Zetian

    2015-04-01

    H2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers. Here, by exploiting the lateral carrier extraction scheme of one-dimensional nanowire structures, we have demonstrated that a dual absorber photocathode, consisting of p-InGaN/tunnel junction/n-GaN nanowire arrays and a Si solar cell wafer, can operate efficiently without the strict current matching requirement. The monolithically integrated photocathode exhibits an applied bias photon-to-current efficiency of 8.7% at a potential of 0.33 V versus normal hydrogen electrode and nearly unity Faradaic efficiency for H2 generation. Such an adaptive multijunction architecture can surpass the design and performance restrictions of conventional tandem photoelectrodes. PMID:25811636

  14. Development FD-SOI MOSFET Amplifiers for Integrated Read-Out Circuit of Superconducting-Tunnel-Junction Single-Photon-Detectors

    Kiuchi, Kenji; et al.

    2015-07-27

    We proposed a new high-resolution single-photon infrared spectrometer for search for radiative decay of cosmic neutrino background (CνB). The superconducting-tunnel-junctions(STJs) are used as a single-photon counting device. Each STJ consists of Nb/Al/AlxOy/Al/Nb layers, and their thicknesses are optimized for the operation temperature at 370 mK cooled by a 3He sorption refrigerator. Our STJs achieved the leak current 250 pA, and the measured data implies that a smaller area STJ fulfills our requirement. FD-SOI MOSFETs are employed to amplify the STJ signal current in order to increase signal-to-noise ratio (S/N). FD-SOI MOSFETs can be operated at cryogenic temperature of 370 mK, which reduces the noise of the signal amplification system. FD-SOI MOSFET characteristics are measured at cryogenic temperature. The Id-Vgs curve shows a sharper turn on with a higher threshold voltage and the Id-Vds curve shows a nonlinear shape in linear region at cryogenic temperature. Taking into account these effects, FD-SOI MOSFETs are available for read-out circuit of STJ detectors. The bias voltage for STJ detectors is 0.4 mV, and it must be well stabilized to deliver high performance. We proposed an FD-SOI MOSFET-based charge integrated amplifier design as a read-out circuit of STJ detectors. The requirements for an operational amplifier used in the amplifier is estimated using SPICE simulation. The op-amp is required to have a fast response (GBW ≥ 100 MHz), and it must have low power dissipation as compared to the cooling power of refrigerator.

  15. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation.

    Allan F Wiechmann

    Full Text Available The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium.Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2, membrane type 1-MMP (MT1-MMP and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime.MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface

  16. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

    Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and β-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 μM sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and β-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of β-catenin and activation of protein kinase Cα (PKCα) were observed. Inhibition of PKCα restored VE-cadherin and β-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of β-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKCα, which leads to increased PY of β-catenin downstream of PKCα activation. Phosphorylation of β-catenin plausibly severs the association of VE-cadherin and β-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis

  17. Tight junctions in Hailey-Hailey and Darier’s diseases

    Laura Raiko

    2009-11-01

    Full Text Available Hailey-Hailey disease (HHD and Darier’s disease (DD are caused by mutations in Ca2+-ATPases with the end result of desmosomal disruption and suprabasal acantholysis. Tight junctions (TJ are located in the granular cell layer in normal skin and contribute to the epidermal barrier. Aberrations in the epidermal differentiation, such as in psoriasis, have been shown to lead to changes in the expression of TJ components. Our aim was to elucidate the expression and dynamics of the TJ proteins during the disruption of desmosomes in HHD and DD lesions. Indirect immunofluorescence and avidin-biotin labeling for TJ, desmosomal and adherens junction proteins, and subsequent analyses with the confocal laser scanning microscope were carried out on 14 HHD and 14 DD skin samples. Transepidermal water loss (TEWL was measured in normal and lesional epidermis of nine HHD and eight DD patients to evaluate the function of the epidermal barrier in HHD and DD skin. The localization of TJ proteins claudin-1, claudin-4, ZO-1, and occludin in perilesional HHD and DD epidermis was similar to that previously described in normal skin. In HHD lesions the tissue distribution of ZO-1 expanded to the acantholytic spinous cells. In agreement with previous findings, desmoplakin was localized intracellularly. In contrast claudin-1 and ZO-1 persisted in the cell-cell contact sites of acantholytic cells. TEWL was increased in the lesional skin. The current results suggest that TJ components follow different dynamics in acantholysis of HHD and DD compared to desmosomal and adherens junction proteins.

  18. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    Gaëlle Gendronneau

    Full Text Available The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo.We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury.The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis.These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  19. Solitons in Josephson junctions

    Ustinov, A. V.

    1998-11-01

    Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.

  20. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.

    Ozden, Sehmus; Yang, Yang; Tiwary, Chandra Sekhar; Bhowmick, Sanjit; Asif, Syed; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2016-01-13

    Here we report a unique method to locally determine the mechanical response of individual covalent junctions between carbon nanotubes (CNTs), in various configurations such as "X", "Y", and "Λ"-like. The setup is based on in situ indentation using a picoindenter integrated within a scanning electron microscope. This allows for precise mapping between junction geometry and mechanical behavior and uncovers geometry-regulated junction stiffening. Molecular dynamics simulations reveal that the dominant contribution to the nanoindentation response is due to the CNT walls stretching at the junction. Targeted synthesis of desired junction geometries can therefore provide a "structural alphabet" for construction of macroscopic CNT networks with tunable mechanical response. PMID:26618517

  1. Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions.

    Tanvi Agrawal

    Full Text Available Japanese encephalitis virus (JEV is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20-30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.

  2. Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability

    Krouwer Vincent J D

    2012-08-01

    Full Text Available Abstract Background Cellular senescence is associated with cellular dysfunction and has been shown to occur in vivo in age-related cardiovascular diseases such as atherosclerosis. Atherogenesis is accompanied by intimal accumulation of LDL and increased extravasation of monocytes towards accumulated and oxidized LDL, suggesting an affected barrier function of vascular endothelial cells. Our objective was to study the effect of cellular senescence on the barrier function of non-senescent endothelial cells. Methods Human umbilical vein endothelial cells were cultured until senescence. Senescent cells were compared with non-senescent cells and with co-cultures of non-senescent and senescent cells. Adherens junctions and tight junctions were studied. To assess the barrier function of various monolayers, assays to measure permeability for Lucifer Yellow (LY and horseradish peroxidase (PO were performed. Results The barrier function of monolayers comprising of senescent cells was compromised and coincided with a change in the distribution of junction proteins and a down-regulation of occludin and claudin-5 expression. Furthermore, a decreased expression of occludin and claudin-5 was observed in co-cultures of non-senescent and senescent cells, not only between senescent cells but also along the entire periphery of non-senescent cells lining a senescent cell. Conclusions Our findings show that the presence of senescent endothelial cells in a non-senescent monolayer disrupts tight junction morphology of surrounding young cells and increases the permeability of the monolayer for LY and PO.

  3. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  4. Molecular electronic junction transport

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative......, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering...

  5. Current trends in salivary gland tight junctions.

    Baker, Olga J

    2016-01-01

    Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  6. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  7. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  8. Magnetic tunnel junctions (MTJs)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  9. Stacked Josephson Junctions

    Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2010-01-01

    Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...

  10. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation

    Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis

  11. Cell junction proteins within the cochlea:A review of recent research

    Bo Wang; Bohua Hu; Shiming Yang

    2015-01-01

    Cell—cell junctions in the cochlea are highly complex and well organized. The role of these junctions is to maintain structural and functional integrity of the cochlea. In this review, we describe classification of cell junction-associated proteins identified within the cochlea and provide a brief overview of the function of these proteins in adherent junctions, gap junctions and tight junctions. Copyright © 2016, PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  12. Role of autophagy in the regulation of epithelial cell junctions.

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  13. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon

  14. Reciprocal influence of connexins and apical junction proteins on their expressions and functions

    Derangeon, Mickaël; Spray, David C.; Bourmeyster, Nicolas; Sarrouilhe, Denis; Hervé, Jean-Claude

    2008-01-01

    Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present inte...

  15. Gap Junctions and Biophysical Regulation of Bone Cells

    Lloyd, Shane A. J.; Donahue, Henry J.

    2010-01-01

    Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell–cell communication via gap junctions has been established. In this review, we demonstrate the integral role of gap junctional intercellular communicat...

  16. Junction-FET dosimeter

    The performance of a new junction-FET dosimeter and its application to the beam profile measurement are presented. One of the two junction FET's making up an astable multivibrator is used as a small-size (approx.0.4x0.4 mm) high-level dose detector. The irradiated dose can be estimated by the amount of the decrease of the oscillator period of the multivibrator. The distinct advantages in its small size and superior resistive property to radiation effect enable us to measure the cross-sectional profile of the electron beam from a linac with high spatial resolution of about 0.4 mm

  17. Submicron NbN Josephson tunnel junctions for digital applications

    Submicron NbN/MgO/NbN Josephson tunnel junctions have been investigated to make Josephson integrated circuits. The junctions have been fabricated successfully by the cross-line-patterning (CLIP) method with an electron-beam (EB) direct-writing technique. All refractory fabrication process for logic circuits using the CLIP method is presented. This process is applied to fabrication of a logic gate of 4JL containing 0.8 μm-square junctions as an example of digital applications. The logic gate has been fabricated by this process. The authors also discuss the characteristics of the gate

  18. Laminin 332 in junctional epidermolysis bullosa

    Kiritsi, Dimitra; Has, Cristina; Bruckner-Tuderman, Leena

    2013-01-01

    Laminin 332 is an essential component of the dermal-epidermal junction, a highly specialized basement membrane zone that attaches the epidermis to the dermis and thereby provides skin integrity and resistance to external mechanical forces. Mutations in the LAMA3, LAMB3 and LAMC2 genes that encode the three constituent polypeptide chains, α3, β3 and γ2, abrogate or perturb the functions of laminin 332. The phenotypic consequences are diminished dermal-epidermal adhesion and, as clinical sympto...

  19. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  20. Disordered graphene Josephson junctions

    Munoz, W. A.; Covaci, L.; Peeters, F. M.

    2014-01-01

    A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single atom vacancies, we observe a strong suppressio...

  1. Integration

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  2. Resistance oscillations in junctions of superconductor-magnetic system

    Resistance oscillations as a function of magnetic field were observed in superconductor-magnetic tunnel junctions of Nb-Fe-FeOx-SiO2-Au-Nb. Junctions involving superconductor-magnetic layer superconductor system are exciting because for certain regime of ferromagnetic layer thickness, a Josephson coupling with an intrinsic phase difference of π might be stabilized. For fabrication of the tunnel junctions the thin films were deposited by RF/DC magnetron sputtering. Using photolithography and reactive ion etching, square junctions of size varying from 50 μm to 250 μm were defined. I-V characteristics and R vs. H characteristics were studied at 4.2 K. When the magnetic field is applied parallel to the junction plane, measurements of the junction resistance as a function of magnetic field at a fixed temperature show resistance peaks whenever the total magnetic flux through the junction equals an integral multiple of flux quantum. The penetration depth of the superconducting electrodes was estimated from the positions of the resistance peaks.

  3. Laminin 332 in junctional epidermolysis bullosa.

    Kiritsi, Dimitra; Has, Cristina; Bruckner-Tuderman, Leena

    2013-01-01

    Laminin 332 is an essential component of the dermal-epidermal junction, a highly specialized basement membrane zone that attaches the epidermis to the dermis and thereby provides skin integrity and resistance to external mechanical forces. Mutations in the LAMA3, LAMB3 and LAMC2 genes that encode the three constituent polypeptide chains, α3, β3 and γ2, abrogate or perturb the functions of laminin 332. The phenotypic consequences are diminished dermal-epidermal adhesion and, as clinical symptoms, skin fragility and mechanically induced blistering. The disorder is designated as junctional epidermolysis bullosa (JEB). This article delineates the signs and symptoms of the different forms of JEB, the mutational spectrum, genotype-phenotype correlations as well as perspectives for future molecular therapies. PMID:23076207

  4. Dissipation and traversal time in Josephson junctions

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time τ of the barrier with regard to dissipation can be established, according to which Δτ/τ > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results from a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.

  5. Expression of occludin, tight-junction-associated protein, in human digestive tract.

    Kimura, Y; Shiozaki, H.; Hirao, M; Maeno, Y.; Doki, Y.; Inoue, M; Monden, T.; Ando-Akatsuka, Y.; Furuse, M; Tsukita, S; Monden, M

    1997-01-01

    The tight junction seals cells together at a subapical location and functionally separates the plasma membrane into an apical and a basolateral domain. This junction is one of the most characteristic structural markers of the polarized epithelial cell. Recently, occludin has been identified as an integral transmembrane protein localizing at the tight junction and directly associated with ZO-1, an undercoat-constitutive cytoplasmic protein. We have investigated occludin expression in conjuncti...

  6. Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers

    Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers (NbN-αSi-Nb) have been prepared using processing that is fully compatible with integrated circuit fabrication. These junctions are of suitable quality and uniformity for digital circuit and S-I-S detector applications. The junction quality depends critically upon the properties of the NbN surface, and seems to correlate well with the UV/visible reflectivity of this surface

  7. Age-dependant expression of alpha-macula adherens protein in rat heart%α-黏着斑蛋白在大鼠心脏表达分布随增龄变化的特征

    张光谋; 吴俊琢; 张艳芬; 郭志坤

    2005-01-01

    BACKGROUND: Macula adherens protein is found closely associated with congenital cardiac malformation and myocardial differentiation. OBJECTIVE: To investigate the expression characteristics of α-macula adherens protein in rat heart, as well as the property of age-dependant expression during myocardial growth. DESIGN: Randomized controlled, observational comparative study. SETTING: Department of Cell Biology of Xinxiang Medical College; Department of Bioengineering and Agricultural Economics of Puyang Vocational Technical School. MATERIALS: This study was conducted at the Morphological Laboratory of Xinxiang Medical College between January and June 2003. Totally 28 Wistar rats of clean grade were divided into infant group, youth group,middle-age group, and old-age group with 7 rats in each group. METHODS: All rats were anaesthetized and then cardiac tissues were cut into consecutive coronal slices of 5 μm thick. The expression of α-macula adherens protein in rat myocardium of infant, youth, middle-age and oldage groups was detected using IHC method. The positive cells displayed brownish yellow granules on the surface, cytoplasm and intercalated disc. Routine HE staining was performed on all specimens for structural comparison. MAIN OUTCOME MEASURES: The expression of α-macula adherens protein in rat myocardium of different groups. RESULTS: All the 28 rats entered the final results analysis. ① α-macula adherens protein was found to be expressed in myocardium in atrium, ventricle, papilla muscles and interventricular septum. ② In infant rats, the expression of α-macula adherens protein was mainly observed in intercalated disc at the end of myocardium, with less expression on cell surface and in cytoplasm; in contrast, α-macula adherens protein in young, middleaged and old rats was found to be typically expressed in intercalated disc at the end of myocardium. CONCLUSION: The expression of α-macula adherens protein displays age-dependant manner during rat

  8. Josephson junction simulation of neurons

    Crotty, Patrick; Schult, Daniel; Segall, Ken

    2010-01-01

    With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present superconducting circuits containing Josephson junctions that model biologically realistic neurons. These "Josephson junction neurons" reproduce many characteristic behaviors of biological neurons such as action potentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical and chemical synapses. Using existing fabrication technologies, lar...

  9. Fluid Flow at Branching Junctions

    Sochi, Taha

    2013-01-01

    The flow of fluids at branching junctions plays important kinematic and dynamic roles in most biological and industrial flow systems. The present paper highlights some key issues related to the flow of fluids at these junctions with special emphasis on the biological flow networks particularly blood transportation vasculature.

  10. Josephson junction in a thin film

    The phase difference φ(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density φ'(y)/2π. We study the integral equation for φ(y) and show that the phase is sensitive to the ratio l/Λ, where l=λJ2/λL, Λ=2λL2/d, λL, and λJ are the London and Josephson penetration depths, and d is the film thickness. For l2=λJ2λL/d/y2; i.e., it diverges as T→Tc. For l>>Λ, both the core and the tail have nearly the same characteristic length lΛ

  11. Herlitz junctional epidermolysis bullosa.

    Laimer, Martin; Lanschuetzer, Christoph M; Diem, Anja; Bauer, Johann W

    2010-01-01

    Junctional epidermolysis bullosa type Herlitz (JEB-H) is the autosomal recessively inherited, more severe variant of "lucidolytic" JEB. Characterized by generalized, extensive mucocutaneous blistering at birth and early lethality, this devastating condition is most often caused by homozygous null mutations in the genes LAMA3, LAMB3, or LAMC2, each encoding for 1 of the 3 chains of the heterotrimer laminin-332. The JEB-H subtype usually presents as a severe and clinically diverse variant of the EB group of mechanobullous genodermatoses. This article outlines the epidemiology, presentation, and diagnosis of JEB-H. Morbidity and mortality are high, necessitating optimized protocols for early (including prenatal) diagnosis and palliative care. Gene therapy remains the most promising perspective. PMID:19945616

  12. The human myotendinous junction

    Knudsen, A B; Larsen, M; Mackey, Abigail;

    2015-01-01

    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never...... from all 14 patients. TEM images displayed similarities to observations in animals: Sarcolemmal evaginations observed as finger-like processes from the tendon and endomysium surrounding the muscle fibers, with myofilaments extending from the final Z-line of the muscle fiber merging with the tendon...... been described in three dimensions (3D). The aim of this study was to describe the ultrastructure of the human MTJ and render 3D reconstructions. Fourteen subjects (age 25 ± 3 years) with isolated injury of the anterior cruciate ligament (ACL), scheduled for reconstruction with a semitendinosus...

  13. Disordered graphene Josephson junctions

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2015-02-01

    A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.

  14. NbN/MgO/NbN SIS tunnel junctions for submm wave mixers

    Stern, J. A.; Hunt, B. D.; Leduc, H. G.; Judas, A.; Mcgrath, W. R.; Cypher, S. R.; Khanna, S. K.

    1989-01-01

    The authors report on the fabrication and testing of all-refractory NbN/MgO/NbN SIS (superconductor-insulator-superconductor) tunnel junctions for use as high-frequency mixers. Progress in the development of techniques for the fabrication of submicron-area tunnel junctions is described. Junction structures which have been investigated include mesa, crossline, and edge geometries. Using reactive sputtering techniques, NbN tunnel junctions with critical currents in excess of 104 A/sq cm have been fabricated with Vm values as high as 65 mV and areas down to 0.1 sq micron. Specific capacitance measurements on NbN/MgO/NbN mesa-type tunnel junctions give values in the range 60-90 fF/sq micron. These SIS tunnel junctions have been integrated with antennas and coupling structures for mixer tests in a waveguide receiver at 207 GHz. Preliminary mixer results are reported.

  15. Electronic properties of nanotube junctions

    Lambin, Ph.; Meunier, V.

    1998-08-01

    The possibility of realizing junctions between two different nanotubes has recently attracted a great interest, even though much remains to be done for putting this idea in concrete form. Pentagon-heptagon pair defects in the otherwise perfect graphitic network make such connections possible, with virtually infinite varieties. In this paper, the literature devoted to nanotube junctions is briefly reviewed. A special emphasize is put on the electronic properties of C nanotube junctions, together with an indication on how their current-voltage characteristics may look like.

  16. TRANSITIONAL FLOW IN CHANNEL JUNCTIONS

    NI Han-gen; LIU Ya-kun

    2004-01-01

    On the basis of energy and continuity equations a simple one-dimensional formulation was proposed to predict the transitional flow at an open-channel junction. An empilical relation between the junction losses, the junction angle, and the discharge ratio was suggested which agrees well with the experimental results. The results calculated by the present formulation for the depth ratio were compared with the results of earlier one-dimensional formulations and experiments. It is found that the present results coincide better with experiments than those of others.

  17. 'Integration'

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions of...

  18. SIS junction reactance complete compensation

    SIS junction geometrical capacitance together with out of phase current Ikk impedance component forms sufficient junction reactance XSIS = (ωC + BQ)-1. This paper suggests the way to resonate out both ωC and BQ by using additional identical SIS junction connected to the first through a long line impedance inverter and RF + DC biased symmetrically to the first. Pumped IV curves without quantum reactance and frequency impedance patterns of the system were calculated. Calculations demonstrated the presence of high and even negative induced dynamic resistance regions at high order quasiparticle steps for the case of SIS junction reactance complete compensation. The suggested method may be used in SIS mixers and detectors for a better RF matching

  19. Thermal conductance of superlattice junctions

    Lu, Simon; McGaughey, Alan J. H., E-mail: mcgaughey@cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-05-15

    We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  20. Thermal conductance of superlattice junctions

    Simon Lu

    2015-05-01

    Full Text Available We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  1. Electronic thermometry in tunable tunnel junction

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  2. Josephson junctions with ferromagnetic interlayer

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlOx/Pd0.82Ni0.18/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness dF=6 nm of the ferromagnetic Pd0.82Ni0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd0.82Ni0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  3. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  4. Neuromuscular junctional disorders.

    Girija, A S; Ashraf, V V

    2008-07-01

    Neuromuscular junctional disorders (NMJ) in children are distinct entity. They may be acquired or hereditary. They pose problem in diagnosis because of the higher occurrence of sero negative Myasthenia Gravis (MG) cases in children. The identity of MusK antibody positivity in a good percentage of sero negative cases further adds to problems in diagnosis. The Congenital Myasthenic Syndrome (CMS) which are rare disorders of hereditary neuromuscular transmission (NMT) has to be differentiated because immunotherapy has no benefit in this group. Molecular genetic studies of these diseases helps to identify specific type of CMS which is important as other drugs like Fluoxetine, Quinidine are found to be effective in some. In infancy, all can manifest as floppy infant syndrome. The important key to diagnosis is by detailed electrophysiological studies including repetitive nerve stimulation at slow and high rates and its response to anticholinesterases and estimation of Acetyl choline receptor antibodies. Other causes of neuromuscular transmission defects viz. snake venom poisoning and that due to drugs are discussed. PMID:18716738

  5. Confocal Annular Josephson Tunnel Junctions

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  6. Confocal Annular Josephson Tunnel Junctions

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  7. Charge transport in nanoscale junctions.

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support. PMID:21694407

  8. Gap junctions in developing thalamic and neocortical neuronal networks.

    Niculescu, Dragos; Lohmann, Christian

    2014-12-01

    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex. PMID:23843439

  9. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  10. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  11. Transport properties of molecular junctions

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  12. Gap Junctions in C. elegans

    ChristianC.Naus

    2014-02-01

    Full Text Available As in other multicellular organisms, the nematode Caenorhabditis elegans uses gap junctions to provide direct cell-to-cell contact. The nematode gap junctions are formed by innexins (invertebrate analogs of the connexins; a family of proteins that surprisingly share no primary sequence homology, but do share structural and functional similarity with connexins. The model organism C. elegans contains 25 innexin genes and innexins are found in virtually all cell types and tissues. Additionally, many innexins have dynamic expression patterns during development, and several innexins are essential genes in the nematode. C. elegans is a popular invertebrate model due to several features including a simple anatomy, a complete cell lineage, sequenced genome and an array of genetic resources. Thus the worm has potential to offer valuable insights into the various functions of gap junction mediated intercellular communication.

  13. NbN tunnel junctions

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 2500C

  14. Ochratoxim A alters cell adhesion and gap junction intercellular communication in MDCK cells

    Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 μM) for up to 24 h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of Cx43, E-cadherin and β-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in Cx43 expression. In contrast to Cx43, OTA did not alter total amount of the adherens junction proteins E-cadherin and β-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a ∼78 kDa fragment of β-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of β-catenin. Immunofluorescence analysis also revealed changes in the pattern of both β-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell

  15. GAP junctional communication in brain secondary organizers.

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. PMID:27273333

  16. Josephson junctions based on pnictide superconductors

    Josephson junctions are a powerful tool for understanding more about the physical behaviour of pnictide superconductors. We built different kinds of Josephson junctions based on pnictide thin films. Planar junctions, edge type junctions, and junctions on bicrystalline substrates were prepared. We present manufacturing techniques and also the electronical properties of the different junctions and compare them. The measurement of I-V-characteristics show a strong excess current. We have to mind this when calculating the IcRN product. The effective IcRN values are 6.5 μV for the grain boundary junction, 7.9 μV for the planar structure, and 7.5 μV for the edge junction.

  17. Nano-Molecular Junctions on STM Tips

    Chun Huang∗; Jianshu Yang

    2011-01-01

    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions. The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Current-voltage characteristics of a Tour wire and a new molecular rectifier are presented.

  18. Interfacial thermal transport in atomic junctions

    Zhang, Lifa; Keblinski, Pawel; Wang, Jian-Sheng; Li, Baowen

    2011-01-01

    We study ballistic interfacial thermal transport across atomic junctions. Exact expressions for phonon transmission coefficients are derived for thermal transport in one-junction and two-junction chains, and verified by numerical calculation based on a nonequilibrium Green's function method. For a single-junction case, we find that the phonon transmission coefficient typically decreases monotonically with increasing freqency. However, in the range between equal frequency spectrum and equal ac...

  19. Dynamics of pi-junction interferometer circuits

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.; Ovsyannikov, G.A.; Pedersen, Niels Falsig

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...... dependence on magnetic field are discussed. Experimental results for dc interferometers with 0 and pi high-T-c bi-crystal Josephson junctions are reported and discussed in comparison with numerical simulation....

  20. Josephson tunnel junction microwave attenuator

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.;

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...

  1. Dynamics of pi-junction interferometer circuits

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.;

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  2. delta-biased Josephson tunnel junctions

    Monaco, R.; Mygind, Jesper; Koshelet, V.;

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect the...

  3. Soliton excitations in Josephson tunnel junctions

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...

  4. Soliton bunching in annular Josephson junctions

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter;

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used to...

  5. Molecular transport junctions: vibrational effects

    Transport of electrons in a single molecule junction is the simplest problem in the general subject area of molecular electronics. In the past few years, this area has been extended to probe beyond the simple tunnelling associated with large energy gaps between electrode Fermi level and molecular levels, to deal with smaller gaps, with near-resonance tunnelling and, particularly, with effects due to interaction of electronic and vibrational degrees of freedom. This overview is devoted to the theoretical and computational approaches that have been taken to understanding transport in molecular junctions when these vibronic interactions are involved. After a short experimental overview, and discussion of different test beds and measurements, we define a particular microscopic model Hamiltonian. That overall Hamiltonian can be used to discuss all of the phenomena dealt with subsequently. These include transition from coherent to incoherent transport as electron/vibration interaction increases in strength, inelastic electron tunnelling spectroscopy and its interpretation and measurement, affects of interelectronic repulsion treated at the Hubbard level, noise in molecular transport junctions, non-linear conductance phenomena, heating and heat conduction in molecular transport junctions and current-induced chemical reactions. In each of these areas, we use the same simple model Hamiltonian to analyse energetics and dynamics. While this overview does not attempt survey the literature exhaustively, it does provide appropriate references to the current literature (both experimental and theoretical). We also attempt to point out directions in which further research is required to answer cardinal questions concerning the behaviour and understanding of vibrational effects in molecular transport junctions. (topical review)

  6. A single flux quantum circuit with a ferromagnet-based Josephson π-junction

    We report on the functionality of a Nb-based superconducting single flux quantum (SFQ) toggle flip-flop (TFF) circuit, comprising a complementary superconductor-ferromagnet-superconductor (SFS) Josephson π-junction. The SFS junction was used as a phase shifting element inserted in the storage loop of the TFF. The fabricated circuits demonstrated correct functionality with the operation parameter ranges of ± 20%. The application of SFS π-junctions makes the SFQ circuits very compact, may substantially improve their stability, and may also be suitable for integration with Josephson quantum circuits (qubits).

  7. Stability of fluxon motion in long Josephson junctions at high bias

    Pagano, S.; Sørensen, Mads Peter; Christiansen, Peter Leth; Parmentier, R. D.

    1988-01-01

    on by numerical integration of the model equation, the perturbed sine-Gordon equation, simulating junctions of overlap and annular geometry. A detailed description of the mechanism for the switching from the top of the zero-field step for both geometries is reported. Moreover, the effect of the...... various dissipations and of the junction length on the switching-current value is investigated. A simple boundary model is able to describe, for junctions of overlap geometry, the qualitative dependence of the switching current on the system parameters....

  8. Symmetric Waveguide Orthomode Junctions

    Wollack, E. J.; Grammer, W.

    2003-01-01

    Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.

  9. Hepatic tight junctions:From viral entry to cancer metastasis

    Nikki; P; Lee; John; M; Luk

    2010-01-01

    The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the "great wall" against external agents and the surrounding hostile environment. During the host-pathogen evolution, viruses somehow found the key to unlock the gate for their entry into cells and to exploit and exhaust the host cells. In the liver, an array of TJ molecules is localized along the bile canaliculi forming the blood-...

  10. ESD test for triple-junction solar cells with monolithic diode

    Nozaki, Yukishige; Masui, Hirokazu; Toyoda, Kazuhiro; 野崎 幸重; 増井 博一; 豊田 和弘; Cho, Mengu

    2008-01-01

    Recently many spacecraft use Triple-Junction (TJ) solar cells as their primary electrical power source because of their excellent efficiency. However it is also known that triple-junction solar cells are easy to be broken by a low reverse bias voltage. Therefore a discrete by-pass diode should be connected to every solar cell in parallel for the shadow protection. Under these circumstances, TJ solar cells with integrate Monolithic Diode (MD) have been introduced to market recently. In the CIC...

  11. Cell-free synthesis and assembly of connexins into functional gap junction membrane channels.

    Falk, M M; Buehler, L K; Kumar, N.M.; Gilula, N B

    1997-01-01

    Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No...

  12. Fabrication of high quality ferromagnetic Josephson junctions

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)

    2006-05-15

    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.

  13. Fabrication of high quality ferromagnetic Josephson junctions

    We present ferromagnetic Nb/Al2O3/Ni60Cu40/Nb Josephson junctions (SIFS) with an ultrathin Al2O3 tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j c spreads less than 2% was obtained

  14. Capacitively Coupled Hot-Electron Nanobolometer with SIN Tunnel Junctions

    Kuzmin, Leonid S.; Fominsky, M.; Kalabukhov, A.; Golubev, D.; Tarasov, M.

    2003-02-01

    A capacitively coupled hot-electron nanobolometer (CC-HEB) is the simplest and most effective antenna-coupled bolometer. The bolometer consists of a small absorber connected to the superconducting antenna by tunnel junctions. The tunnel junctions used for high-frequency coupling also give perfect thermal isolation of hot electrons in the small volume of the absorber. The same tunnel junctions are used for temperature measurements and electron cooling. This bolometer does not suffer from the frequency limitations in the submillimeter range due to the high potential barrier of the tunnel junctions as does the microbolometer with Andreev mirrors (A-HEB), which is limited by the superconducting gap. Theoretical analyses show that the two-junction configuration more than doubles the sensitivity of the bolometer in current-biased mode compared to the single-junction configuration used for A-HEB. Another important advantage of CC-HEB is its simple two-layer technology for sample fabrication. Samples were fabricated with an absorber made of a bilayer of Cr and Al to match the impedance of the antenna. Electrodes were made of Al and tunnel junctions were formed over the Al oxide layer. The coupling capacitances of the tunnel junctions, C ≍ 20 fF, in combination with the inductance of the 10 μm absorber create a bandpass filter with a central frequency around 300 GHz. Bolometers are integrated with log-periodic and double-dipole planar antennas made of Au. The temperature response of bolometer structures was measured at temperatures down to 256 mK. In our experiment we observed dV/dT=1.3 mV/K, corresponding to responsivity S=0.2.109 V/W. For amplifier noise Vna=3nV/Hz1/2 at 1 kHz the estimated total noise equivalent power is NEP=1.5.10-17 W/Hz1/2. The intrinsic bolometer self noise Vnbol=0.5 nV/Hz1/2 corresponds to NEP=3.10-18 W/Hz1/2. For microwave evaluation of bolometer sensitivity we used a black body radiation source comprising a thin NiCr stimulator placed on the

  15. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Abdelaziz Amine; Yamina Mir; Mimoun Zazoui

    2013-01-01

    Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The p...

  16. Seebeck effect in molecular junctions

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron–phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  17. Seebeck effect in molecular junctions

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron–phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions. (topical review)

  18. How coherent are Josephson junctions?

    Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J

    2011-01-01

    Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.

  19. Electron transport in molecular junctions

    Jin, Chengjun

    charge position are in quantitative agreement with the experiments, while pure DFT is not. This is the consequence of the accurate energy level alignment, where the DFT+∑ method corrects the self-interaction error in the standard DFT functional and uses a static image charge model to include the image......This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...... the lowest unoccupied molecular level (LUMO) of the 44BP molecule hybridizes strongly with Ni 3d orbitals, the gating is auxiliary by the so-called spinterface. Finally, the correlation effect of the image charge beyond the energy level renormalization has been studied. It is shown that the finite response...

  20. Counting Statistics in Nanoscale Junctions

    Liu, Yu-Shen; Chen, Yu-Chang

    2010-01-01

    We present first-principles calculations for moments of the current up to the third order in atomic-scale junctions. The quantum correlations of the current are calculated using the current operator in terms of the wave functions obtained self-consistently within the static density-functional theory. We investigate the relationships of the conductance, the second, and the third moment of the current for carbon atom chains of various lengths bridging two metal electrodes in the linear and nonl...

  1. Imaging of cervicothoracic junction trauma

    Kaewlai, Rathachai

    2013-01-01

    Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a...

  2. Thermoelectric efficiency of molecular junctions.

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions. PMID:27420149

  3. Algorithms for Junctions in Directed Acyclic Graphs

    Ferreira, Carlos Eduardo

    2012-01-01

    Given a pair of distinct vertices u, v in a graph G, we say that s is a junction of u, v if there are in G internally vertex disjoint directed paths from s to u and from s to v. We show how to characterize junctions in directed acyclic graphs. We also consider the two problems in the following and derive efficient algorithms to solve them. Given a directed acyclic graph G and a vertex s in G, how can we find all pairs of vertices of G such that s is a junction of them? And given a directed acyclic graph G and k pairs of vertices of G, how can we preprocess G such that all junctions of k given pairs of vertices could be listed quickly? All junctions of k pairs problem arises in an application in Anthropology and we apply our algorithm to find such junctions on kinship networks of some brazilian indian ethnic groups.

  4. Palladium Electrodes for Molecular Tunnel Junctions

    Chang, Shuai; Sen, Suman; Zhang, Peiming; Gyarfas, Brett; Ashcroft, Brian; Lefkowitz, Steven; Peng, Hongbo; Lindsay, Stuart

    2012-01-01

    Gold has been the metal of choice for research on molecular tunneling junctions, but it is incompatible with CMOS fabrication because it forms deep level traps in silicon. Palladium electrodes do not contaminate silicon, and also give higher tunnel current signals in the molecular tunnel junctions we have studied. The result is cleaner signals in a recognition-tunneling junction that recognizes the four natural DNA bases as well as 5-methyl cytosine, with no spurious background signals. More ...

  5. Electron optics with ballistic graphene junctions

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-01-01

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. M...

  6. Hysteresis development in superconducting Josephson junctions

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  7. The Fluxion in a Curved Josephson Junction

    Dobrowolski, Tomasz

    2014-01-01

    The curved Josephson junction is described. In the framework of the Maxwell equations the equation that describes the influence of the curvature on the fluxion motion was obtained. The method of geometrical reduction of the sine-Gordon model from three to lower dimensional manifold was applied to the long Josephson junction. It was argued that the geometrical reduction describes the junctions with slowly varying curvatures.

  8. Gap Junctions Couple Astrocytes and Oligodendrocytes

    Orthmann-Murphy, Jennifer L.; ABRAMS, CHARLES K.; Scherer, Steven S.

    2008-01-01

    In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a “glial syncytium.” Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes req...

  9. String junction as a baryonic constituent

    Kalashnikova, Yu S

    1995-01-01

    We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction.We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.

  10. Analysis of vertebrate gap junction protein.

    Finbow, M E; Shuttleworth, J.; Hamilton, A.E.; Pitts, J D

    1983-01-01

    A new method for the purification of gap junctions is described which depends on the extraction of cell monolayers or tissue homogenates with Triton X-100. The major band on SDS-polyacrylamide gel electrophoresis (PAGE) of junctional preparations from a variety of vertebrate sources has an apparent mol. wt. of 16,000 (16 K). Further evidence for the junctional origin of the 16 K protein is provided by the results of four different experimental approaches. (i) The junctions form a sharp band i...

  11. Microwave photonics with Josephson junction arrays

    Zueco, David; Solano, Enrique; García-Ripoll, Juan José

    2011-01-01

    We introduce an architecture for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. As a relevant application, we discuss the creation of stationary entanglement between two superconducting qubits interacting through a disordered media.

  12. Thermodynamics of two-dimensional Josephson junctions

    We derive the effective free energy of a two-dimensional Josephson junction in the presence of an external current and predict that the junction has a phase transition at a temperature TJ below the bulk transition temperature Tc. In the range TJ c is reduced by thermal fluctuations; for a junction of size L, Ic ∝ Lb(T) where b(T) J c vanishes at L → ∞) while 0 J. Our results may account for the absence of an observable supercurrent at temperatures below Tc in YBa2Cu3Ox-and Bi2Sr2CaCu2O8-based junctions. (orig.)

  13. 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells

    Pereira Paulo

    2004-06-01

    Full Text Available Abstract Background Connexin43 (Cx43 is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols affect gap junction intercellular communication (GJIC. Results Primary cultures of lens epithelial cells (LEC were incubated with 7-ketocholesterol (7-Keto, 25-hydroxycholesterol (25-OH or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake. Conclusions Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication

  14. Black Diamonds at Brane Junctions

    Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Timothy J. Hollowood

    2000-01-01

    We discuss the properties of black holes in brane-world scenarios where our universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane wh...

  15. Effects of junction geometry in crossover temperature to macroscopic quantum tunneling regime of intrinsic Josephson junctions

    We investigated the phase dynamics of Bi-2212 intrinsic Josephson junctions with two types of junction geometry. We found that a crossover temperature to the macroscopic quantum tunneling regime was quite different between the two types of junction geometry. The observed behavior is discussed in terms of an edge effect in long Josephson junctions dependent on the junction geometry. We investigated the phase dynamics of long intrinsic Josephson junctions, which were fabricated on a narrow bridge structure of Bi2Sr2CaCu2Oy (Bi-2212) single crystals by using a focused ion-beam etching. We measured the probability distribution of the switching events from the zero-voltage state for two types of junction geometry. One is a junction where the bridge width (L1) is larger than the Josephson penetration depth, λJ, and the distance between two slits (L2) is comparable to λJ, while the other is a junction where L1 is comparable to λJ and L2 is larger than λJ. We found that a crossover temperature from the thermally activated regime to the macroscopic quantum tunneling regime was quite different between the two types of junction geometry. We discuss the observed behavior in terms of an edge effect in long Josephson junctions dependent on the junction geometry.

  16. Electron transport through molecular junctions

    At present, metal–molecular tunnel junctions are recognized as important active elements in molecular electronics. This gives a strong motivation to explore physical mechanisms controlling electron transport through molecules. In the last two decades, an unceasing progress in both experimental and theoretical studies of molecular conductance has been demonstrated. In the present work we give an overview of theoretical methods used to analyze the transport properties of metal–molecular junctions as well as some relevant experiments and applications. After a brief general description of the electron transport through molecules we introduce a Hamiltonian which can be used to analyze electron–electron, electron–phonon and spin–orbit interactions. Then we turn to description of the commonly used transport theory formalisms including the nonequilibrium Green’s functions based approach and the approach based on the “master” equations. We discuss the most important effects which could be manifested through molecules in electron transport phenomena such as Coulomb, spin and Frank–Condon blockades, Kondo peak in the molecular conductance, negative differential resistance and some others. Bearing in mind that first principles electronic structure calculations are recognized as the indispensable basis of the theory of electron transport through molecules, we briefly discuss the main equations and some relevant applications of the density functional theory which presently is often used to analyze important characteristics of molecules and molecular clusters. Finally, we discuss some kinds of nanoelectronic devices built using molecules and similar systems such as carbon nanotubes, various nanowires and quantum dots.

  17. Grand Junction Remedial Action Program

    The Grand Junction Remedial Action Program (hereinafter referred to as the Program) originated in 1972 due to a recognized need to reduce the levels of radiation found in some of the structures identified in Grand Junction, Colorado that were constructed in part with uranium mill tailings. Out of over 640 locations eventually identified as qualifying for corrective action, the Program performed remedial construction on 594 of them. The owners of over 45 unremediated structures either did not wish to participate in the voluntary Program, or the structures were torn down, burned down, or were abandoned before the Program could take action on them. Because this was the first remedial action program of its type, and because its task was to reduce the radiation levels as soon as practical, there was no time for lengthly research and development of remedial methods or techniques. Trial and error combined with basic engineering and health physics produced a Program that learned as it progressed. At a cost of $22.7 million over a 15-year period, a substantial portion of the community had radiation exposure reduced because many public buildings such as schools, churches, and businesses, as well as private residences were remediated. 21 refs., 10 figs., 6 tabs

  18. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  19. Shot noise in YBCO bicrystal Josephson junctions

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.; Mygind, Jesper; Pedersen, Niels Falsig

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise me...

  20. Genetics Home Reference: junctional epidermolysis bullosa

    ... Junctional epidermolysis bullosa results from mutations in the LAMA3 , LAMB3 , LAMC2 , and COL17A1 genes. Mutations in each ... of all cases of junctional epidermolysis bullosa . The LAMA3 , LAMB3 , and LAMC2 genes each provide instructions for ...

  1. Gap junctions and connexin-interacting proteins

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  2. Electrophysiological study in neuromuscular junction disorders

    Cherian, Ajith; Baheti, Neeraj N.; Iype, Thomas

    2013-01-01

    This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS), congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG) helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS). SFEMG requires skill and patience and its availability i...

  3. Hall effect in NS and SNS junctions

    Zhou, F.; Spivak, B.

    1997-01-01

    Hall effect in SN and SNS junctions is considered. It is shown that at small temperature the Hall voltage is significantly suppressed as compared to its normal metal value. The time dependence of the Hall voltage in SNS junctions has a form of narrow pulses with the Josephson frequency.

  4. Zipper and freeway shear zone junctions

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  5. Measuring quantum systems with tunnel junctions

    Full text: We present a formalism that allows to describe a quantum system modulating the transmission of a tunnel junction. The tunnel junction acts as an environment for the quantum system. Contrary to the conventional approach to open quantum systems we retain a degree of freedom of the environment, the charge passed through the junction, after averaging over the bath degrees of freedom, employing a projection operator technique. The resulting object characterizing the joint dynamics of the system and the charge is the charge specific density matrix. We derive a master equation describing the time evolution of the charge specific density matrix. We consider two examples of quantum systems coupled to the junction: a spin and a harmonic oscillator. In the spin case we are able to analyze a quantum measurement process in detail. For the oscillator we investigate the noise in the tunnel junction induced by the coupling. (author)

  6. Spin accumulation in triplet Josephson junction

    We employ a Hamiltonian method to study the equal-spin pairing triplet Josephson junction with different orbital symmetries of pair potentials. Both the spin/charge supercurrent and possible spin accumulation at the interface of the junction are analyzed by means of the Keldysh Green's function. It is found that a spontaneous angle-resolved spin accumulation can form at the junction's interface when the orbital symmetries of Cooper pairs in two triplet superconductors are different, the physical origin is the combined effect of the different orbital symmetries and different spin states of Cooper pairs due to the misalignment of two d vectors in triplet leads. An abrupt current reversal effect induced by misalignment of d vectors is observed and can survive in a strong interface barrier scattering because the zero-energy state appears at the interface of the junction. These properties of the p-wave Josephson junction may be helpful for identifying the order parameter symmetry.

  7. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  8. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair.

    Solan, Joell L; Lampe, Paul D

    2016-02-01

    Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. PMID:26706150

  9. Recent Progress and Spectral Robustness Study for Mechanically Stacked Multi-junction Solar Cells

    Zhao, Lu; Flamand, Giovanni; Poortmans, Jef

    2010-10-01

    Multi-terminal mechanically stacked multi-junction solar cells are an attractive candidate for terrestrial concentrator photovoltaics applications. Unlike monolithically integrated multi-junction solar cells which require current matching, all the available photon currents can be fully extracted from each junction of a mechanically stacked solar cell. Therefore, it has a high performance potential, and more importantly is less sensitive to spectrum variations. Lower losses due to current mismatch translate into a higher annual energy output for the mechanical stack. This paper presents the baseline processing developed at imec for the mechanical stacking process, and the most recent cell results by means of this technology. A GaAs-Ge dual-junction mechanically stacked multi-junction solar cell is demonstrated, with 24.7% plus 2.52% under AM1.5g, and 27.7% plus 4.42% under 30Suns concentration. In addition, spectral sensitivity is studied for both monolithically stacked and mechanically stacked solar cells, to learn the influence of spectrum variations on multi-junction solar cell performance. SMARTS model is used to predict the spectral irradiances, with solar radiation and meteorological elements from typical meteorological year 3 (TMY3) data set. The generated spectra are then fed into TCAD numerical simulation tool, to simulate the device performance. The simulation results show a reduced spectral sensitivity for mechanically stacked cell, and there is a 6% relative gain in annual energy production for the site studied (Las Vegas), compared with the monolithic stack.

  10. Chaos in junctions and devices

    The plan of the paper is as follows. Section 2 is an introduction into chaos in dissipative systems with an emphasis on period doubling and intermittency. The logistic map and the circle map are discussed and their significance as describing systems of continuous dynamics is emphasized. Section 3 is subdivided into two parts after the introduction of the RSJ equations. The first is on the ac driven Josephson junction without a dc bias and the second on the same with a dc current. Each of these subdivisions includes a discussion of experiments as well. There is also a section on investigations that do not fit into either of the above categories. Section 4 is devoted to the dc-SQUID, in the first part as a magnetic flux gauge and in the second as a four dimensional dynamical system, which can be simulated with great accuracy and compared with one dimensional models. (orig./BUD)

  11. Cylindrical Josephson junctions in magnetic fields

    The radial Josephson current I/sub J/ between co-axial cylinders was measured as a function of axial and azimuthal magnetic fields. The junctions were of two types: 0.25 mm diameter Nb-oxide-Sn single junctions and 0.25 mm film diameter Nb-oxide-Sn film double junctions. The Sn film of the single junctions was 160 nm or 200 nm. The Sn films of the double junctions were both either 155 nm or 230 nm. For a pair of cylinders I/sub J/ is zero except when both members are in the same fluxoid quantum state. When I/sub J/not equal to O, the relative phase is independent of aximuthal angle theta. In all measurements the cylinders were in fluxoid state zero. There was a critical value of axial field B/sub s/ which destroyed the Josephson coupling for each junction. This critical field is smallest for the outer tin junction of the double junction. It depends upon geometry and film thickness but is independent of the value of I/sub J/. The calculated value of the Gibbs function per unit volume of the tin films is, however, nearly the same for all junctions at their respective critical fields. Th Josephson current for the 160 nm Sn film single cylindrical junction was measured as a function of axial field B/sub z/ and azimuthal field B/sub theta/. When the axial field was zero the Josephson current as a function of azimuthal field showed the Fraunhofer like pattern of a flat junction in a magnetic field. As the axial field was increased, the central lobe of the Fraunhofer pattern decreased and disappeared at the critical field leaving the side lobes broadened. It is well known that a Josephson junction may switch to the voltage state at any current less than the maximum Josephson current. For some cylindrical junctions the switching currents are not continuously distributed but discrete with certain values occurring repeatedly. This observation is not understood

  12. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  13. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    Kristin Elfers

    Full Text Available Diets fed to ruminants should contain nitrogen (N as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ and adherens junction (AJ proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  14. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    Elfers, Kristin; Marr, Isabell; Wilkens, Mirja R; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  15. Microwave integrated circuit for Josephson voltage standards

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  16. Electric field breakdown in single molecule junctions.

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  17. SummonChimera infers integrated viral genomes with nucleotide precision from NGS data

    Katz, Joshua P.; Pipas, James M.

    2014-01-01

    Background Viral integration into a host genome is defined by two chimeric junctions that join viral and host DNA. Recently, computational tools have been developed that utilize NGS data to detect chimeric junctions. These methods identify individual viral-host junctions but do not associate chimeric pairs as an integration event. Without knowing the chimeric boundaries of an integration, its genetic content cannot be determined. Results Summonchimera is a Perl program that associates chimera...

  18. Graded junction termination extensions for electronic devices

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  19. Palladium electrodes for molecular tunnel junctions.

    Chang, Shuai; Sen, Suman; Zhang, Peiming; Gyarfas, Brett; Ashcroft, Brian; Lefkowitz, Steven; Peng, Hongbo; Lindsay, Stuart

    2012-10-26

    Gold has been the metal of choice for research on molecular tunneling junctions, but it is incompatible with complementary metal-oxide-semiconductor fabrication because it forms deep level traps in silicon. Palladium electrodes do not contaminate silicon, and also give higher tunnel current signals in the molecular tunnel junctions that we have studied. The result is cleaner signals in a recognition-tunneling junction that recognizes the four natural DNA bases as well as 5-methyl cytosine, with no spurious background signals. More than 75% of all the recorded signal peaks indicate the base correctly. PMID:23037952

  20. Palladium electrodes for molecular tunnel junctions

    Gold has been the metal of choice for research on molecular tunneling junctions, but it is incompatible with complementary metal–oxide–semiconductor fabrication because it forms deep level traps in silicon. Palladium electrodes do not contaminate silicon, and also give higher tunnel current signals in the molecular tunnel junctions that we have studied. The result is cleaner signals in a recognition-tunneling junction that recognizes the four natural DNA bases as well as 5-methyl cytosine, with no spurious background signals. More than 75% of all the recorded signal peaks indicate the base correctly. (paper)

  1. Supercurrent decay in extremely underdamped Josephson junctions

    We present an experimental study of the effective dissipation relevant in the thermally activated supercurrent decay of extremely underdamped Josephson junctions. Data referring to the supercurrent decay of Nb/AlOx/Nb Josephson junctions are compared with the Kramers theory. Our measurements allow us to obtain the open-quotes effectiveclose quotes resistance to be used in the resistively shunted junction model that results to be the subgap resistance due to the presence of thermally activated quasiparticles. The extremely low dissipation level obtained at low temperatures renders our result quite interesting in view of experiments in the quantum limit. copyright 1998 The American Physical Society

  2. δ-biased Josephson tunnel junctions

    The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements on a number of δ-biased samples having different electrical and geometrical parameters.

  3. Plasticity of single-atom Pb junctions

    Müller, M.; Salgado, C.; Néel, N.; Palacios, J. J.; Kröger, J.

    2016-06-01

    A low-temperature scanning tunneling microscope was used to fabricate atomic contacts on Pb(111). Conductance characteristics of the junctions were simultaneously recorded with forming and subsequent breaking of the contacts. A pronounced hysteresis effect in conductance traces was observed from junctions comprising the clean Pb(111) surface. The hysteretic behavior was less profound in contacts to single Pb atoms adsorbed to Pb(111). Density-functional calculations reproduced the experimental results by performing a full ab initio modeling of plastic junction deformations. A comprehensive description of the experimental findings was achieved by considering different atomic tip apex geometries.

  4. Motorway junction design with emphasis on traffic performance and safety assesment - case study junction Ljubljana Rudnik

    Mlaker, Pavel

    2013-01-01

    Thesis encompasses reconstruction predesign of the motorway junction Ljubljana Rudnik into motorway interchange. In this area is intended to be the junction of main arterial road with highway network, while today serves only as a minor junction of Rudnik and Ig area on the motorway. The purpose of reconstruction is to enable free traffic flow on most congested directions of the interchange, but also preserve the present function, in which Ig and Rudnik area are connected with the motorway. Bu...

  5. Molecular junctions: Single-molecule contacts exposed

    Nichols, Richard J.; Higgins, Simon J.

    2015-05-01

    Using a scanning tunnelling microscopy-based method it is now possible to get an atomistic-level description of the most probable binding and contact configuration for single-molecule electrical junctions.

  6. Josephson tunnel junctions in niobium films

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  7. Superconducting switch made of graphene nanoribbon junctions

    Liang, Qifeng; Dong, Jinming

    2008-09-01

    The transmission of superconductor-graphene nanoribbon-superconductor junctions (SGS) has been studied by the non-equilibrium Green's function method. It is found that the on-site potential U in the center zigzag graphene nanoribbon (ZGNR) of the SGS junction plays an important role in the magnitude of the supercurrent Ic. As the effective Fermi energy μeff (μeff = μF-U) goes from negative to positive, the SGS junction would suddenly transform from an 'OFF' state to an 'ON' state. And, as μeff increases further, the Ic will continue to increase. This switching behavior of the SGS junction shares the same origin with the zigzag GNR valley-isospin valve (Rycerz et al 2007 Nat. Phys. 3 172). Besides the valley-isospin, the density of states will also have an effect on the suppression of Ic.

  8. Chirality effect in disordered graphene ribbon junctions

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  9. Heat dissipation in atomic-scale junctions

    Lee, Woochul; Kim, Kyeongtae; Jeong, Wonho; Zotti, Linda Angela; Pauly, Fabian; Cuevas, Juan Carlos; Reddy, Pramod

    2013-01-01

    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimenta...

  10. Spinal Gap Junction Channels in Neuropathic Pain

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  11. Controllable spin transport in ferromagnetic graphene junctions

    Yokoyama, Takehito

    2008-01-01

    We study spin transport in normal/ferromagnetic/normal graphene junctions where a gate electrode is attached to the ferromagnetic graphene. We find that due to the exchange field of the ferromagnetic graphene, spin current through the junctions has an oscillatory behavior with respect to the chemical potential in the ferromagnetic graphene, which can be tuned by the gate voltage. Especially, we obtain a controllable spin current reversal by the gate voltage. Our prediction of high controllabi...

  12. Degradation of connexins and gap junctions

    Falk, Matthias M.; Kells, Rachael M.; Berthoud, Viviana M.

    2014-01-01

    Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting f...

  13. Supercurrent Switch in Graphene π Junctions

    Linder, Jacob; Yokoyama, Takehito; Huertas-Hernando, Daniel; Sudbø, Asle

    2008-05-01

    We study the supercurrent in a superconductor/ferromagnet/superconductor graphene junction. In contrast to its metallic counterpart, the oscillating critical current in our setup decays only weakly upon increasing the exchange field and junction width. We find an unusually large residual value of the supercurrent at the oscillatory cusps due to a strong deviation from a sinusoidal current-phase relationship. Our findings suggest a very efficient device for dissipationless supercurrent switching.

  14. Supercurrent switch in graphene pi junctions.

    Linder, Jacob; Yokoyama, Takehito; Huertas-Hernando, Daniel; Sudbø, Asle

    2008-05-01

    We study the supercurrent in a superconductor/ferromagnet/superconductor graphene junction. In contrast to its metallic counterpart, the oscillating critical current in our setup decays only weakly upon increasing the exchange field and junction width. We find an unusually large residual value of the supercurrent at the oscillatory cusps due to a strong deviation from a sinusoidal current-phase relationship. Our findings suggest a very efficient device for dissipationless supercurrent switching. PMID:18518411

  15. Exotic hadron and string junction model

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M4, B5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  16. Black diamonds at brane junctions

    Chamblin, Andrew; Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-08-01

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.

  17. Black Diamonds at Brane Junctions

    Chamblin, A; Erlich, J; Hollowood, Timothy J; Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-01-01

    We discuss the properties of black holes in brane-world scenarios where ouruniverse is viewed as a four-dimensional sub-manifold of somehigher-dimensional spacetime. We consider in detail such a model wherefour-dimensional spacetime lies at the junction of several domain walls in ahigher dimensional anti-de Sitter spacetime. In this model there may be anynumber p of infinitely large extra dimensions transverse to the brane-world. Wepresent an exact solution describing a black p-brane which will induce on thebrane-world the Schwarzschild solution. This exact solution is unstable to theGregory-Laflamme instability, whereby long-wavelength perturbations cause theextended horizon to fragment. We therefore argue that at late times anon-rotating uncharged black hole in the brane-world is described by a deformedevent horizon in p+4 dimensions which will induce, to good approximation, theSchwarzschild solution in the four-dimensional brane world. When p=2, thisdeformed horizon resembles a black diamond and more gener...

  18. Black diamonds at brane junctions

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron. (c) 2000 The American Physical Society

  19. A low noise dc-SQUID based on Nb/Al-AlOx/Nb Josephson junctions

    Low noise dc SQUIDs based on a Nb/Al-AlOx/Nb Josephson junction technology have been developed. The design has been optimized for improved control of the resonances. An eight-level process has been used for device fabrication. Flux noise levels of 2.8x10-7Φ0/√Hz at 1 kHz and 1.5x10-6Φ0/√Hz at 1 Hz have been measured for an integrated SQUID magnetometer having 3 μm2 junctions, a 12-turn input coil, and a dc SQUID inductance Ldc = 11 pH. (orig.)

  20. Effect of ionising radiation exposure on structure and permeability of epithelial junctions in rat ileum

    Exposure of the digestive tract to ionising radiation results in both morphological and functional alterations of the small intestine. However little is known about the effect of irradiation on the junctions playing a major role in the maintenance of epithelial barrier integrity. Thus the aim of this study was to investigate, in rat ileum, the effect of radiation exposure on the permeability of the epithelial barrier in parallel with the localization of certain inter- and intra-cellular proteins of tight and adherent junctions

  1. Nanostructured thin films for multiband-gap silicon triple junction solar cells

    R. E. I. Schropp; Li, H. B. T.; Franken, R.H.; Rath, J.K.; van der Werf, C.H.M.; Schuttauf, J.A.; Stolk, R.L.

    2008-01-01

    By implementing nanostructure in multiband-gap proto-Si/proto-SiGe/nc-Si:H triple junction n–i–p solar cells, a considerable improvement in performance has been achieved. The unalloyed active layers in the top and bottom cell of these triple junction cells are deposited by Hot-Wire CVD. A significant current enhancement is obtained by using textured Ag/ZnO back contacts instead of plain stainless steel. We studied the correlation between the integrated current density in the long-wavelength r...

  2. Bathymetry of the Hong and Luoc River Junction, Red River Delta, Vietnam, 2010

    Kinzel, Paul J.; Nelson, Jonathan M.; Toan, Duong Duc; Thanh, Mung Dinh; Shimizu, Yasuyuki

    2012-01-01

    The U.S. Geological Survey, in collaboration with the Water Resources University in Hanoi, Vietnam, conducted a bathymetric survey of the junction of the Hong and Luoc Rivers. The survey was done to characterize the channel morphology of this delta distributary network and provide input for hydrodynamic and sediment transport models. The survey was carried out in December 2010 using a boat-mounted multibeam echo sounder integrated with a global positioning system. A bathymetric map of the Hong and Luoc River junction was produced which was referenced to the datum of the Trieu Duong tide gage on the Luoc River.

  3. Gap junction- and hemichannel-independent actions of connexins

    Jiang, Jean X.; Gu, Sumin

    2004-01-01

    Connexins have been known to be the protein building blocks of gap junctions and mediate cell–cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, p...

  4. The junctional complex in the intestine of Sagitta setosa (Chaetognatha): the paired septate junction.

    Duvert, M; Gros, D; Salat, C

    1980-04-01

    The junctional complex of the intestine of Sagitta setosa has been studied in tissues stained with uranyl acetate or after lanthanum impregnation, and by freeze-cleavage. All types of junctions have been characterized in both perpendicular and tangential planes. From the apex to the base of the cell the following junctions occur in this order: a zonula adhaerens; a septate junction where the septa occur in pairs; a pleated sheet septate junction; and numerous gap junctions of the A-type. From the upper part of the cells inwards to the septate junction, the membranes follow a relatively straight path. In the lower part of the cells the membranes are deeply interdigitating. At the intersection between 3 cells a very different junction is to be observed where small units, periodically disposed, bind the membranes of the 3 adjoining cells. Each unit is composed of 3 short segments which bind the cell membranes to a central ring 16.6 +/- 2.3 nm in outer diameter. The paired septate junction constitutes a new type. Its main features are that the septa are paired and occur in 2 formations, one the 'loose formation', with elements between the septa of each pair, and the other, a 'tight formation'. After lanthanum impregnation, the thickness of each septum is seen to be about 3 nm and the undulation period 12.6 +/- 1.6 nm. On freeze-fractures 10-nm particles are found on crests on the PF face and in furrows on the EF face. The possible significance of this type of junction is discussed. The junctional complex described is analogous to those found in various invertebrate epithelia. PMID:6105159

  5. Preface: Charge transport in nanoscale junctions

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  6. A quantum optical valve in a nonlinear-linear resonators junction

    Mascarenhas, Eduardo; Gerace, Dario; Valente, Daniel; Montangero, Simone; Auffèves, Alexia; França Santos, M.

    2014-06-01

    Electronic diodes, which enable the rectification of an electrical energy flux, have played a crucial role in the development of current microelectronics after the invention of semiconductor p-n junctions. Analogously, signal rectification at specific target wavelengths has recently become a key goal in optical communication and signal processing. Here we propose a genuinely quantum device with the essential rectifying features being demonstrated in a general model of a nonlinear-linear junction of coupled resonators. It is shown that such a surprisingly simple structure is a versatile valve and may be alternatively tuned to behave as: a photonic diode, a single- or two-photon rectified source turning a classical input into a quantum output depending on the input frequency, or a quantum photonic splitter. Given the relevance of non-reciprocal operations in integrated circuits, the nonlinear-linear junction realizes a crucial building component in prospective quantum photonic applications.

  7. Microbeam Studies of Diffusion Time Resolved Ion Beam Induced Charge Collection from Stripe-Like Junctions

    To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 microm. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices

  8. Theory for collective macroscopic tunneling in high- Tc intrinsic Josephson junctions

    Machida, M.; Koyama, T.

    2007-10-01

    On the basis of the theory for the capacitive coupling in intrinsic Josephson junctions (IJJ's), we theoretically study the macroscopic quantum tunneling in the switching dynamics into the voltage states in IJJ. The effective action obtained by using the path integral formalism reveals that the capacitive coupling splits each of the lowest and higher quantum levels, which are given inside Josephson potential barrier of the single junction derived by dropping off the coupling, into levels composed of the number of junction (N). This level splitting can cause multiple low-frequency Rabi-oscillations and enhance the switching probability compared to the conventional Caldeira-Leggett theory. Furthermore, a possibility as a naturally built-in multi-qubit is discussed.

  9. Development of nano and micro SQUIDs based on Al tunnel junctions

    Superconducting quantum interference devices (SQUIDs) with nano (micro)-meter dimensions are called nano (micro)-SQUIDs. The high sensitivity for flux and position of nano (micro)-SQUIDs can be applied to detect local magnetic fields induced by vortices and the magnetization of mesoscopic superconductors. Nano-SQUIDs based on carbon-nanotube junctions and niobium weak junctions are well known. However, such nano-SQUIDs are not suitable for large-scale integrated circuits and mass production. Therefore, we employ a combination of lithography using the Niemeyer-Dolan technique and the inductively coupled plasma reactive-ion etching technique to fabricate nano-SQUIDs. Here, we report the fabrication of nano (micro)-SQUIDs based on superconducting aluminum tunnel junctions and their application for vortex formation into mesoscopic chiral superconducting Sr2RuO4[1-3

  10. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks.

    Osmanagic-Myers, Selma; Rus, Stefanie; Wolfram, Michael; Brunner, Daniela; Goldmann, Wolfgang H; Bonakdar, Navid; Fischer, Irmgard; Reipert, Siegfried; Zuzuarregui, Aurora; Walko, Gernot; Wiche, Gerhard

    2015-11-15

    Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility 'in-check' and maintains AJ homeostasis. PMID:26519478

  11. Josephson tunnel junctions with ferromagnetic interlayer

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al2O3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ0. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  12. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  13. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin;

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  14. Superlinear generation of exciton and related paramagnetism induced by forward current in a diamond p-i-n junction

    The concentration of excitons generated in a high-quality diamond p-i-n junction is investigated considering the forward current characteristics of the junction. As the forward current in the junction increases, the exciton concentration increases superlinearly, contrary to the linear increases of the electron and hole concentration. This tendency suggests a superlinear increase in emission intensity due to exciton recombination. The increase rate is more radical than quadratic, in accordance with the observed increase of the integrated intensity of free exciton emission. To estimate the concentration of triplet excitons generated in the p-i-n junction, observation of the paramagnetism due to the exciton spin moment is proposed. The magnetic susceptibility superlinearly increases with the increase in the forward current, unlike any other magnetic property of the device

  15. Clathrin and Cx43 gap junction plaque endoexocytosis

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin

  16. Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell's structure focusing on series resistance for high-efficiency concentrator photovoltaic systems

    Nishioka, K.; Takamoto, T; Agui, T; Kaneiwa, M; Uraoka, Y.; Fuyuki, T

    2006-01-01

    The series resistance of an InGaP/InGaAs/Ge triple-junction solar cell was evaluated in detail. Series resistance components such as electrode resistance, tunnel junction resistance and lateral resistance between electrodes were estimated separately. The characteristics of the triple-junction solar cell under concentrated light were evaluated by equivalent circuit calculation with a simulation program with integrated circuit emphasis (SPICE). By equivalent circuit calculation, the optimizatio...

  17. Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    An n++-GaAs/p++-AlGaAs tunnel junction with a peak current density of 10 100 A cm-2 is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500 A cm-2 and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations. (paper)

  18. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M.; Matarredona, Esperanza R.; Sáez, Juan C.

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain. PMID:26528139

  19. Josephson tunnel junctions with ferromagnetic barrier layer

    We have fabricated Nb/Al2O3/Ni0.6Cu0.4/Nb Josephson tunnel junctions. Depending on the thickness of the ferromagnetic Ni0.6Cu0.4 layer and on the ambient temperature, the junctions were in the 0 or π coupled ground state. The Al2O3 tunnel barrier allows to achieve rather low damping. The critical current density in the π state was up to 5 A/cm2 at T=2.1 K, resulting in a Josephson penetration depth λJ as low as 160 μm. Experimentally determined junction parameters are well described by theory taking into account spin-flip scattering in the Ni0.6Cu0.4 layer and different interface transparencies. Using a ferromagnetic layer with a step-like thickness we obtain a 0-π junction with equal lengths and critical currents of 0 and π parts. The Ic(H) pattern shows a clear minimum in the vicinity of zero field. The ground state of our 330 μm (1.3λJ) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-π phase boundary, carrying ∝ 6.7% of the magnetic flux quantum Φ0. (orig.)

  20. Auger voltage imaging for junction delineation

    A new method for the two-dimensional characterization of dopant profiles in semiconductors, called 'Auger Voltage Contrast' (AVC), is introduced, which investigates the effect of the dopant on the electronic properties of the device, e.g. the change of the Fermi level across a semiconductor surface. This change can be detected by extracting the shift of the Si-LVV Auger peak with respect to a reference spectrum. AVC linescans across pn-junctions have been modeled using the MINIMOS-NT device simulator, finding the energy shift across a pn-junction is not directly representative for the dopant distribution itself, but that the turning point of the AVC energy shift coincides with the position of the junction, making AVC an applicable tool for junction delineation. Furthermore, contamination experiments showed that small amounts of oxide on the semiconductor surface do not influence the contrast in an AVC image. For processing such an energy shift map, a software tool has been developed, which is able to obtain a map that assigns four regions to the semiconductor: regions that are p-type, regions that are n-type, regions that cannot be assigned to either type due to contamination and regions that act as the 'error bar' between p and n. Experimental data obtained from two-dimensional test structures have been processed with this tool. The resulting images clearly show the n- and p-type regions, and the width of the region corresponding to the junction are clearly below 50 nm. (author)

  1. Soliton excitations in Josephson tunnel junctions

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L/lambda/sub J/ ratios. The soliton picture is found to apply well on both relatively (L/lambda/sub J/ = 6) and intermediate (L/lambda/sub J/ = 2) junctions. We find good agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of solition oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency ∫1 on all ZFS's and (ii) a ''symmetric'' mode which on the Nth ZFS yields the frequency N∫1. Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L/lambda/sub J/ = 6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via the boundary conditions of our numerical model. This gives a junction response to variations in the applied bias current close to that observed experimentally

  2. Inhomogeneous parallel arrays of Josephson junctions

    Highlights: → New long wave model of an inhomogeneous parallel array of Josephson junctions. → Adapted spectral problem giving resonances in the current-voltage characteristic. → At resonances solution is described by two ordinary differential equations. → Good agreement with the characteristic curve of a real five junction array. - Abstract: We model new inhomogeneous parallel arrays of small Josephson junctions by taking into account the time and space variations of the field in the cavity and the capacity miss-match at the junctions. The model consists in a wave equation with Dirac delta function sine nonlinearities. We introduce an adapted spectral problem whose spectrum gives the resonances in the current-voltage characteristic curve of any array. It is shown that at the resonances the solution is described by two simple ordinary differential equations. The resonances obtained by this approach are in good agreement with the characteristic curve of a real five junction array. This flexible approach is a first step towards building a device tailored for given purposes.

  3. Regulation of gap junctions by protein phosphorylation

    Sáez J.C.

    1998-01-01

    Full Text Available Gap junctions are constituted by intercellular channels and provide a pathway for transfer of ions and small molecules between adjacent cells of most tissues. The degree of intercellular coupling mediated by gap junctions depends on the number of gap junction channels and their activity may be a function of the state of phosphorylation of connexins, the structural subunit of gap junction channels. Protein phosphorylation has been proposed to control intercellular gap junctional communication at several steps from gene expression to protein degradation, including translational and post-translational modification of connexins (i.e., phosphorylation of the assembled channel acting as a gating mechanism and assembly into and removal from the plasma membrane. Several connexins contain sites for phosphorylation for more than one protein kinase. These consensus sites vary between connexins and have been preferentially identified in the C-terminus. Changes in intercellular communication mediated by protein phosphorylation are believed to control various physiological tissue and cell functions as well as to be altered under pathological conditions.

  4. Particle detection with superconducting tunnel junctions

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.)

  5. An ultra-small capacitance Josephson junction

    We consider a voltage biased ultra-small capacitance Josephson junction, with the coupling to the external source containing both resistive and inductive elements. In addition we include a phenomenological coupling to an external heat bath. Our goal is to extend and generalize previous studies of current biased ultra-small junctions. Charging effects, due to the presence of discrete charge carriers in the junction, play a crucial role. In particular we find an infinite resistance branch in the I-V characteristic for a d.c. bias, and resistive steps in the I-V curve when the external bias contains an additional a.c. component. These effects are reminiscent of the 'Coulomb blockade' and the inverse Shapiro steps, respectively, predicted earlier in the context of current biased circuits. As a response to an a.c. voltage bias we also predict spikes of the voltage across the junction and a noisy background, when this voltage is plotted as a function of either the external d.c. biasing voltage or the external frequency. Our analysis shows that various circuitry components may qualitatively affect the response of the junction to an external bias. (authors)

  6. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    are pulled apart has given complementary information such as the stiffness and rupture force of the molecule-metal link bond. Overall, while the BJ technique does not produce a single molecule circuit for practical applications, it has proved remarkably versatile for fundamental studies. Measured data and analysis have been combined with atomic-scale theory and calculations, typically performed for representative junction structures, to provide fundamental physical understanding of structure-function relationships. This Account integrates across an extensive series of our specific nanoscale junction studies which were carried out with the STM- and AFM-BJ techniques and supported by theoretical analysis and density functional theory based calculations, with emphasis on the physical characteristics of the measurement process and the rich data sets that emerge. Several examples illustrate the impact of measured trends based on the most probable values for key characteristics (obtained from ensembles of order 1000-10 000 individual junctions) to build a solid picture of conductance phenomena as well as attributes of the link bond chemistry. The key forward-looking question posed here is the extent to which the full data sets represented by the individual trajectories can be analyzed to address structure-function questions at the level of individual junctions. Initial progress toward physical modeling of conductance of individual junctions indicates trends consistent with physical junction structures. Analysis of junction mechanics reveals a scaling procedure that collapses existing data onto a universal force-extension curve. This research directed to understanding the distribution of structures and physical characteristics addresses fundamental questions concerning the interplay between chemical control and stochastically driven diversity. PMID:26938931

  7. Characterization of magnetic tunnel junction test pads

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer;

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...... square tunnel junction pads with varying sizes and analyze the measured data using both the original and the modified CIPT model. Thus, we determine in which sample size range the modified CIPT model is needed to ensure validity of the extracted sample parameters, RA and TMR. In addition, measurements as...... a function of position on a square tunnel junction pad are used to investigate the sensitivity of the measurement results to probe misalignment....

  8. Holographic Josephson junction from massive gravity

    Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, Hai-Qing

    2016-05-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass parameter will make it more difficult for the normal metal-superconductor phase transition to take place. In the holographic model of the Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass parameter. Besides, the coherence length of the junction decreases as well with respect to the graviton mass parameter. If one interprets the graviton mass parameter as the effect of momentum dissipation in the boundary field theory, this indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  9. Josephson junctions with ferromagnetic alloy interlayer

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlOx vertical stroke Nb vertical stroke Ni60Cu40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of jc

  10. Holographic Josephson Junction from Massive Gravity

    Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing

    2015-01-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  11. Numerical Investigation of Josephson Junction Structures

    Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

  12. Electron and Phonon Transport in Molecular Junctions

    Li, Qian

    transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific......Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions...... DFT method. It is found that the thermal conductance of π-stacked systems can be reduced by 95%, compared with that in a single-molecule junction. Phonon transmission of π-stacked systems is reduced dramatically in the whole frequency range and the left transmission mainly remains below 5 THz....

  13. Phonon spectroscopy with superconducting tunnel junctions

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given

  14. Spin currents in TFT-Josephson junction

    The spin of the Cooper pair in a triplet superconductor provides a new degree of freedom in Josephson junction physics. This can be accessed by using a magnetically-active tunneling barrier, leading to a rich variety of unconventional Josephson effects. Because of the triplet state of the pairing wavefunction, triplet superconductor junctions in general also display a Josephson spin current, which can flow even when the equilibrium charge current is vanishing. Using the quasiclassical Green's function theory, we have examined the more general situation of a magnetically-active barrier which does not conserve the spin of a tunneling Cooper-pair. We demonstrate that the Josephson spin currents on either side of the barrier need not be identical, with the magnitude, sign and orientation all allowed to differ. Not only do our calculations enhance the physical understanding of transport through triplet superconductor junctions, but they also open the possibility of novel spintronic Josephson devices.

  15. Josephson junction microcalorimeter with a superconductor loop

    Yoshihara, F; Shinada, K

    2003-01-01

    We propose a new microcalorimeter in which the critical current of a Josephson junction can be varied by an electron temperature in the normal metal barrier of the superconductor-normal metal-superconductor (SNS) or superconductor-normal metal-insulator-superconductor (SNIS) junctions. In this detector, a Josephson junction with a radiation absorber is included in a superconductor loop and the change of its critical current is converted into a change of magnetic flux in the loop. We estimated the energy resolution of this detector by calculating a noise equivalent power (NEP) of the detector. The estimated energy resolution and dynamic range are 4.2 eV/5.8 eV and 3.1 keV/6.2 keV, respectively with an Ag absorber of 500 x 500 x 2 mu m sup 3 at 100 mK.

  16. Josephson junctions with ferromagnetic alloy interlayer

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  17. Electronic Veselago lensing in graphene PN junctions

    Dean, Cory

    Ballistic electrons in a uniform 2D electron gas (2DEG) behave in close analogy to light propagating through an optical medium. In the absence of impurity scattering, electrons follow straight-line trajectories, while the associated de Broglie wavelength can give rise to interference and diffraction. Here we present measurements of ballistic graphene devices in which a graphite gate is used to realize an atomically-smooth junction. We demonstrate unambiguous signatures of negative refraction across a PN junction, paving the way for electron optics inspired by Veselago lensing. Comparison with theoretical simulations reveals the importance of the junction profile towards this effort. Opportunities for future device designs that may take advantage of these effects will be discussed.

  18. Magnesium gating of cardiac gap junction channels.

    Matsuda, Hiroyuki; Kurata, Yasutaka; Oka, Chiaki; Matsuoka, Satoshi; Noma, Akinori

    2010-09-01

    We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (G(j)) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased G(j), followed by slow G(j) change with time constant of 3.5 s at 10 mM Mg(2+). Mg(2+) more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg(2+) (0.6 mM) increased G(j) with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of G(j) changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg(2+) concentration was almost linear. Based on the experimental data, a mathematical model of Mg(2+) gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg(2+) gate model suggested a pivotal role of the Mg(2+) gate of gap junction under pathological conditions. PMID:20553744

  19. A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems

    Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.

    2014-08-01

    Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.

  20. Pasiflora proteins are novel core components of the septate junction.

    Deligiannaki, Myrto; Casper, Abbie L; Jung, Christophe; Gaul, Ulrike

    2015-09-01

    Epithelial sheets play essential roles as selective barriers insulating the body from the environment and establishing distinct chemical compartments within it. In invertebrate epithelia, septate junctions (SJs) consist of large multi-protein complexes that localize at the apicolateral membrane and mediate barrier function. Here, we report the identification of two novel SJ components, Pasiflora1 and Pasiflora2, through a genome-wide glial RNAi screen in Drosophila. Pasiflora mutants show permeable blood-brain and tracheal barriers, overelongated tracheal tubes and mislocalization of SJ proteins. Consistent with the observed phenotypes, the genes are co-expressed in embryonic epithelia and glia and are required cell-autonomously to exert their function. Pasiflora1 and Pasiflora2 belong to a previously uncharacterized family of tetraspan membrane proteins conserved across the protostome-deuterostome divide. Both proteins localize at SJs and their apicolateral membrane accumulation depends on other complex components. In fluorescence recovery after photobleaching experiments we demonstrate that pasiflora proteins are core SJ components as they are required for complex formation and exhibit restricted mobility within the membrane of wild-type epithelial cells, but rapid diffusion in cells with disrupted SJs. Taken together, our results show that Pasiflora1 and Pasiflora2 are novel integral components of the SJ and implicate a new family of tetraspan proteins in the function of these ancient and crucial cell junctions. PMID:26329602

  1. Minimization of the energy costs for operating magnetic tunnel junctions

    Farhat, Ilyas A. H.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Increasing prospects of utilizing the STT-MRAM calls for the re-assessment of the overall energy (power) cost of operating magnetic tunnel junctions and related elements. This motivates our design, nanofabrication and characterization of simple tri-layer magnetic tunnel junctions which show measurable decrease in the operating energy cost. The MTJs we report about rely on nanoengineering interfaces between the insulating and magnetic layers in such a way that the area of the hysteresis loops can be controlled in one or both magnetic layers. Our TMR coefficient ranges from 45% to 130%, depending on the MTJ layer materials, and can be anticipated to be further increased. We also report the study of the TMR dependence on the RA product, as an important interface parameter. Lastly, we present an analysis of MTJ parameters affected by our approach and a perspective on further improvements, focusing on the device design parameters relevant for the integration of this type of MTJs. This work is supported by the SRC-ATIC Grant 2012-VJ-2335. A part of this work is being performed at Cornell University CNF, a member of NNIN. We thank CNF staff for the support.

  2. Transport theory of carbon nanotube Y junctions

    We describe a generalization of Landauer-Buettiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mixture of perturbative and non-perturbative methods. For N > 2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N = 3, corresponding to carbon nanotube Y junctions

  3. Tunnel magnetoresistance of an organic molecule junction

    Coherent spin-dependent electronic transport is investigated in a molecular junction based on oligophenylene attached to two the semi-infinite ferromagnetic (FM) electrodes with finite cross sections. The work is based on the tight-binding Hamiltonian model and within the framework of a non-equilibrium Green's function (NEGF) technique. It is shown that tunnel magnetoresistance (TMR) of molecular junction can be large (over 60 %) by adjusting the related parameters, and depends on: (i) the applied voltages and (ii) the length of oligophenylele molecule.

  4. Gap junctions-guards of excitability

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus;

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  5. Supercurrent in long ballistic graphene Josephson junctions

    Borzenets, I. V.; Amet, F.; Ke, C. T.; Watanabe, K.; Taniguchi, T; Yamamoto, M.; Tarucha, S.; Finkelstein, G

    2016-01-01

    We investigate the critical current $I_C$ in Josephson junctions made of encapsulated graphene/boron-nitride heterostructures. $I_C$ is found to scale with temperature $T$ as $\\propto exp(-k_bT/\\delta E)$, which is consistent with the conventional model for ballistic Josephson junctions that are long compared to the thermal length. The extracted energy $\\delta E$ is independent of the carrier density and consistent with the level spacing of the ballistic cavity, as determined from Fabry-Perot...

  6. Bursting behaviour in coupled Josephson junctions.

    Hongray, Thotreithem; Balakrishnan, J; Dana, Syamal K

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions. PMID:26723143

  7. Rectangular-to-circular groove waveguide junction

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)

    2003-01-01

    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  8. High quality Nb-based junctions for superconductive detectors

    Nb-based superconducting tunnel junctions have been proposed as detectors in nuclear physics. A discussion in terms of the achieved junction quality concerning the energy resolution and the limit performances will be presented. (orig.)

  9. Spin and valley transports in junctions of Dirac fermions

    Yokoyama, Takehito

    2014-01-01

    We study spin and valley transports in junctions composed of silicene and topological crystalline insulators. We consider normal/magnetic/normal Dirac metal junctions where a gate electrode is attached to the magnetic region. In normal/antiferromagnetic/normal silicene junction, we show that the current through this junction is valley and spin polarized due to the coupling between valley and spin degrees of freedom, and the valley and spin polarizations can be tuned by local application of a ...

  10. Low-Tc, ramp-type Josephson junctions for SQUIDS

    Podt, M.; Rolink, B.G.A.; Flokstra, J.; Rogalla, H.

    2002-01-01

    The Josephson tunnel junction is the basic element of a superconducting quantum interference device (SQUID). Amongst other parameters, the junction capacitance determines the characteristics of a (digital) SQUID. In a conventional dc SQUID, reducing the junction capacitance decreases the flux noise of the sensor, whereas in digital SQUIDs, the operating frequency can be increased when reducing the junction capacitance. For digital SQUIDs, this means that not only the flux noise decreases, but...

  11. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa.

    Higgins, Gerard; Fustero Torre, Coral; Tyrrell, Jean; McNally, Paul; Harvey, Brian J; Urbach, Valerie

    2016-06-01

    The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a delaying action against bacterial invasion in CF airway epithelial cells from patients with CF and immortalized cell lines. Bacterial invasion and tight junction integrity were measured by gentamicin exclusion assays and confocal fluorescence microscopy in non-CF (NuLi-1) and CF (CuFi-1) bronchial epithelial cell lines and in primary CF cultures, grown under an air/liquid interface, exposed to either a clinical or laboratory strains of P. aeruginosa LXA4 delayed P. aeruginosa invasion and transepithelial migration in CF and normal bronchial epithelial cell cultures. These protective effects of LXA4 were inhibited by the ALX/FPR2 lipoxin receptor antagonist BOC-2. LXA4 prevented the reduction in mRNA biosynthesis and protein abundance of the tight junction protein ZO-1 and reduced tight junction disruption induced by P. aeruginsosa inoculation. In conclusion, LXA4 plays a protective role in bronchial epithelium by stimulating tight junction repair and by delaying and reducing the invasion of CF bronchial epithelial cells by P. aeruginsosa. PMID:27084849

  12. Microscopic tunneling theory of long Josephson junctions

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the...

  13. Axial p–n-junctions in nanowires

    The charge distribution and potential profile of p–n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah–Noice–Shockley theory, the junction current–voltage characteristic was described by an alternative theory suitable for fast generation–recombination and slow diffusion–drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1<η<2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work. (paper)

  14. Fluxon density waves in long Josephson junctions

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  15. Graphene-based magnetic tunnel junctions

    Cobas, Enrique

    2013-03-01

    Graphene's in-plane transport has been widely researched and has yielded extraordinary carrier mobilities of 105 cm2/Vs and spin diffusion lengths of exceeding 100 μm. These properties bode well for graphene in future electronics and spintronics technologies. Its out-of-plane transport has been far less studied, although its parent material, graphite, shows a large conductance anisotropy. Recent calculations show graphene's interaction with close-packed ferromagnetic metal surfaces should produce highly spin-polarized transport out-of-plane, an enabling breakthrough for spintronics technology. In this work, we fabricate and measure FM/graphene/FM magnetic tunnel junctions using CVD-grown single-layer graphene. The resulting juctions show non-linear current-voltage characteristics and a very weak temperature dependence consistent with charge tunneling transport. Furthermore, we study spin transport across the junction as a function of bias voltage and temperature. The tunneling magnetoresistance (TMR) peaks at two percent for single-layer graphene junctions and exhibits the expected bias asymmetry and a temperature dependence that fits well with established spin-polarized tunneling models. Results of mutli-layer graphene tunnel junctions will also be discussed.

  16. Multisoliton excitations in long Josephson junctions

    Dueholm, B.; Levring, O. A.; Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.; Cirillo, M.

    1981-01-01

    The microwave emission from long Josephson tunnel junctions dc-current biased on zero-field and Fiske steps has been measured. The frequency and power variation on all steps of the narrow-linewidth radiation near the fundamental cavity-mode frequency and the observed transitions between different...

  17. Miniaturized symmetrization optics for junction laser

    Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)

    1982-01-01

    Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.

  18. Multiplication in Silicon p-n Junctions

    Moll, John L.

    1965-01-01

    any of the transistors. The implication is that the electron and hole ionization rates did not change as a result of the addition of extra scattering centers. This result is in direct contradiction to observations of Lee et al. The most likely explanation for the discrepancy is erroneous determination...... of junction field by Lee et al....

  19. TOPICAL REVIEW: Intrinsic Josephson junctions: recent developments

    Yurgens, A. A.

    2000-08-01

    Some recent developments in the fabrication of intrinsic Josephson junctions (IJJ) and their application for studying high-temperature superconductors are discussed. The major advantages of IJJ and unsolved problems are outlined. The feasibility of three-terminal devices based on the stacked IJJ is briefly evaluated.

  20. Electric Field Effect in Intrinsic Josephson Junctions

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  1. Radiation comb generation with extended Josephson junctions

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz

  2. Defect formation in long Josephson junctions

    Gordeeva, Anna; Pankratov, Andrey

    2010-01-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...

  3. Gallium nitride junction field-effect transistor

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  4. Intercellular junctions in nerve-free hydra

    McDowall, A W; Grimmelikhuijzen, C J

    1980-01-01

    particles in an "enplaque conformation appearing as a raised plateau on the E-face or as a depression on the P-face; (ii) structures morphologically similar to gap junctions in rat liver, containing particles on the P-face and corresponding pits on the E-face, both having hexagonal packing with a lattice...

  5. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  6. Incomplete Andreev reflection in a clean SFS junction

    We study the stationary Josephson effect in a ballistic superconductor/ferromagnet/superconductor junction for arbitrarily large spin polarizations. Due to the exchange interaction in the ferromagnet, the Andreev reflection is incomplete. We describe how this effect modifies the Josephson current in the crossover from a superconductor/normal metal/superconductor junction to a superconductor/half metal/superconductor junction

  7. Thermal Crossover between Ultrasmall Double and Single Junction

    M{ü}ller, Heinz-Olaf

    1997-01-01

    The crossover from double-junction behavior to single-junction behavior of ultrasmall tunnel junctions is studied theoretically in a scanning-tunneling microscope setup. The independently variable tip temperature of the microscope is used to monitor the transition between both regimes.

  8. Curvature Effects in 1-D and 2-D Josephson Junctions

    Dobrowolski, Tomasz

    2016-01-01

    The gauge invariant phase difference between superconducting electrodes is a dominating dynamical degree of freedom in the Josephson junction. This rapport concerns the influence of the curvature of the junction on the dynamic of this field variable. The effects of curvature are discussed in the long and large area junctions. In particular the dynamics of the fluxion and the kink front are studied.

  9. Contactless electronic transport in a bio-molecular junction

    Molecular electronics hold promise for next generation ultra-low power, nano-scale integrated electronics. The main challenge in molecular electronics is to make a reliable interface between molecules and metal electrodes. Interfacing metals and molecules detrimentally affects the characteristics of nano-scale molecular electronic devices. It is therefore essential to investigate alternative arrangements such as contact-less tunneling gaps wherever such configurations are feasible. We conduct ab initio density functional theory and non-equilibrium Green's functions calculations to investigate the transport properties of a biocompatible glycine molecular junction. By analyzing the localized molecular orbital energy distributions and transmission probabilities in the transport-gap, we find a glycine molecule confined between two gold electrodes, without making a contact, is energetically stable and possesses high tunneling current resembling an excellent ohmic-like interface.

  10. Contactless electronic transport in a bio-molecular junction

    Hossain, Faruque M., E-mail: fhossain@unimelb.edu.au; Al-Dirini, Feras; Skafidas, Efstratios [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Center for Neural Engineering (CfNE), The University of Melbourne, Parkville 3010 (Australia)

    2014-07-28

    Molecular electronics hold promise for next generation ultra-low power, nano-scale integrated electronics. The main challenge in molecular electronics is to make a reliable interface between molecules and metal electrodes. Interfacing metals and molecules detrimentally affects the characteristics of nano-scale molecular electronic devices. It is therefore essential to investigate alternative arrangements such as contact-less tunneling gaps wherever such configurations are feasible. We conduct ab initio density functional theory and non-equilibrium Green's functions calculations to investigate the transport properties of a biocompatible glycine molecular junction. By analyzing the localized molecular orbital energy distributions and transmission probabilities in the transport-gap, we find a glycine molecule confined between two gold electrodes, without making a contact, is energetically stable and possesses high tunneling current resembling an excellent ohmic-like interface.

  11. Fluxons in a superlattice of Josephson junctions: dynamics and radiation

    Gaididei, Y; Flytzanis, N

    2003-01-01

    We study the dynamics of a homopolar coherent array of fluxons in a planar superlattice of long Josephson junctions coupled through lateral idle regions. These regions introduce dispersion, which in effect destroys the Lorentz invariance of the usual sine-Gordon equation. Thus, the system is described by an effectively non-local equation. We use a collective coordinate approach to determine the fluxon width resulting uniform coherent fluxon motion, as well as the fluttering frequency as a function of the momentum, which is an integral of the motion. At relatively high fluxon velocities Cherenkov radiation appears as oscillations following the propagating fluxon. We obtained analytical formulae for the wavevector, frequency, amplitude and form of the emitted radiation. The analytical results are in fair agreement with numerical simulations. At very high fluxon velocities, the radiation strongly modifies the I-v characteristics leading to resonant structures, known as Cherenkov steps. The coherency of the emitt...

  12. IGBT Junction Temperature Measurement via Peak Gate Current

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco; Liserre, Marco

    2016-01-01

    An electrical method for junction temperature measurement of MOS-gated power semiconductor devices is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an insulated-gate bipolar transistor or MOSFET during turn-on. This voltage is directly...... proportional to the peak gate current, and fluctuates with temperature due to the temperature-dependent resistance of the internal gate resistance. Primary advantages of the method include an immunity to load current variation, and a good linear relationship with temperature. A measurement circuit can be...... integrated into a gate driver with no disruption to operation and allows autonomous measurements controlled directly via the gate signal. Advantages and disadvantages of the method are discussed....

  13. A SQUID gradiometer module with large junction shunt resistors

    A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on-washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm·Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated. (interdisciplinary physics and related areas of science and technology)

  14. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.

    Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M

    2016-01-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772

  15. Dependence of proximity-induced supercurrent on junction length in multilayer-graphene Josephson junctions

    Kanda, A.; Sato, T.; Goto, H.; Tomori, H.; Takana, S.; Ootuka, Y.; Tsukagoshi, K.

    2010-11-01

    We report experimental observation of the proximity-induced supercurrent in superconductor-multilayer graphene-superconductor junctions. We find that the supercurrent is a linearly decreasing function of the junction length (separation of the superconducting electrodes), which is quite different from the usual behavior of exponential dependence. We suggest that this behavior originates from the intrinsic large contact resistance between the multilayer and the superconducting electrodes.

  16. Dependence of proximity-induced supercurrent on junction length in multilayer-graphene Josephson junctions

    We report experimental observation of the proximity-induced supercurrent in superconductor-multilayer graphene-superconductor junctions. We find that the supercurrent is a linearly decreasing function of the junction length (separation of the superconducting electrodes), which is quite different from the usual behavior of exponential dependence. We suggest that this behavior originates from the intrinsic large contact resistance between the multilayer and the superconducting electrodes.

  17. Model building to facilitate understanding of holliday junction and heteroduplex formation, and holliday junction resolution.

    Selvarajah, Geeta; Selvarajah, Susila

    2016-07-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016. PMID:26899144

  18. Magnetic Tunnel Junctions and Superconductor/Ferromagnet Hybrids Investigated by Low-Temperature Scanning Laser Microscopy

    Werner, Robert

    2011-01-01

    Low-temperature scanning laser microscopy (LTSLM) allows the investigation of local properties in thin film structures in a broad temperature range. Depending on the sample under investigation, LTSLM can map various kinds of physical properties such as the current distribution or the magnetic microstructure. In this thesis, the correlation between local and integral magnetotransport properties in thin-film superconductor/ferromagnet (S/F) hybrids and magnetic tunnel junctions are investigated...

  19. Cleavage mechanism of human Mus81–Eme1 acting on Holliday-junction structures

    Taylor, Ewan R; McGowan, Clare H.

    2008-01-01

    Recombination-mediated repair plays a central role in maintaining genomic integrity during DNA replication. The human Mus81–Eme1 endonuclease is involved in recombination repair, but the exact structures it acts on in vivo are not known. Using kinetic and enzymatic analysis of highly purified recombinant enzyme, we find that Mus81–Eme1 catalyzes coordinate bilateral cleavage of model Holliday-junction structures. Using a self-limiting, cruciform-containing substrate, we demonstrate that bilat...

  20. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation

    Mark, Karen S.; Davis, Thomas P.

    2002-01-01

    Cerebral microvessel endothelial cells that form the bloodbrain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies ...

  1. Current distributions of thermal switching in extremely underdamped Josephson junctions

    The first measurements of the switching current distribution of an extremely underdamped Josephson junction are presented at various temperatures. Careful fitting of the data provides an experimental verification of the thermal activation theory in the very low damping limit. Moreover, the fitting allows us to obtain the ''effective'' resistance of a Josephson tunnel junction, thus providing an important indication as to the proper junction resistance to be used in the resistively shunted junction model. These values of junction resistance show the temperature dependence of a subgap resistance, i.e., exp(Δ/k/sub B/T), due to activation of quasiparticles over the superconductor energy gap Δ

  2. Planar Josephson tunnel junctions in a transverse magnetic field

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper;

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... magnetic field rather than an in-plane field. The conditions under which this occurs are discussed....

  3. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy's Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los

  4. Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions

    Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.; Vaks, V.L.; Mygind, Jesper; Baryshev, A.B.; Luinge, W.; Whyborn, N.

    2000-01-01

    -running tunnel junction. The results of residual FFO phase noise measurements are also presented. Finally, we propose a single-chip fully superconductive receiver with two superconductor–insulator–superconductor mixers and an integrated phase-locked loop. ©2000 American Institute of Physics....

  5. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    Marco Denk

    2015-01-01

    Full Text Available The accuracy of the lifetime calculation approach of IGBT power modules used in hybrid-electric powertrains suffers greatly from the inaccurate knowledge of application typical load-profiles. To verify the theoretical load-profiles with data from the field this paper presents a concept to record all junction temperature cycles of an IGBT power module during its operation in a test vehicle. For this purpose the IGBT junction temperature is measured with a modified gate driver that determines the temperature sensitive IGBT internal gate resistor by superimposing the negative gate voltage with a high-frequency identification signal. An integrated control unit manages the TJ measurement during the regular switching operation, the exchange of data with the system controller, and the automatic calibration of the sensor system. To calculate and store temperature cycles on a microcontroller an online Rainflow counting algorithm was developed. The special feature of this algorithm is a very accurate extraction of lifetime relevant information with a significantly reduced calculation and storage effort. Until now the recording concept could be realized and tested within a laboratory voltage source inverter. Currently the IGBT driver with integrated junction temperature measurement and the online cycle recording algorithm is integrated in the voltage source inverter of first test vehicles. Such research will provide representative load-profiles to verify and optimize the theoretical load-profiles used in today’s lifetime calculation.

  6. Submicron YBa2Cu3O7-x bicrystal grain boundary junctions by focused ion beam

    Submicron YBa2Cu3O7-x bicrystal grain boundary junctions have been fabricated, for the first time, by a focused ion beam process. Although such a process has always been considered detrimental to the YBa2Cu3O7-x because of gallium contamination, high quality 24 deg. [001] tilt junctions characterized by RSJ current-voltage characteristics, ICRN products of the order of 1-4 x 104 A cm-2 at 77 K and Fraunhofer-like modulation patterns have been obtained. No significant degradation has been observed over more than 3 months. The critical current density JC and the characteristic voltage ICRN show a clear maximum for widths of the order of the Josephson penetration depth. The asymptotic normal resistance shows a typical (width)-1 dependence, indicating that the FIB process does not increase the grain boundary resistivity of submicron junctions. Experimental results clearly show that FIB is a very powerful tool for the fabrication of high critical temperature superconducting circuits, requiring a small number of submicron Josephson junctions, and for fundamental physics analysis. It also allow the final tuning or repair of superconducting or more complex integrated superconducting-semiconducting devices

  7. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  8. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature.

  9. Vibrational Heat Transport in Molecular Junctions

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  10. Charge Transport Phenomena in Peptide Molecular Junctions

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  11. String networks with junctions in competition models

    Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F

    2016-01-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  12. Junction conditions in extended Teleparallel gravities

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results

  13. Gastroesophageal junction adenocarcinoma. A case report

    Marcos Félix Osorio Pagola

    2010-12-01

    Full Text Available The case of a 68 years old patient, smoking since adolescence, with urban origins, obesity history and gastroesophageal reflux symptoms is presented. The patient was diagnosed with gastroesophageal junction adenocarcinoma type III in the Gastroenterology Department of the Provincial University Hospital of Cienfuegos where he arrived with weight loss of about 20 pounds in four months along with dyspeptic manifestations such as stomach acidity, slow digestion, bloating and epigastric pain unrelated to food consumption. No dysphagia was observed as presentation form of the disease. The patient underwent surgery and chemotherapy and has had a favourable outcome up until today. It was decided to publish this article because of the few cases of gastroesophageal junction adenocarcinoma and especially type III that are commonly presented and also because the diagnosis is, unlike this case, usually made at an advanced stage of the disease

  14. Charge Transport Phenomena in Peptide Molecular Junctions

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  15. Junction conditions in extended Teleparallel gravities

    De la Cruz-Dombriz, Álvaro [Departamento de Física Teórica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dunsby, Peter K.S.; Sáez-Gómez, Diego, E-mail: dombriz@fis.ucm.es, E-mail: peter.dunsby@uct.ac.za, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  16. Non-Lagrangian theories from brane junctions

    In this article we use 5-brane junctions to study the 5D TN SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed WN Toda theories.

  17. Vibrational Heat Transport in Molecular Junctions.

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. PMID:27215814

  18. Non-Lagrangian theories from brane junctions

    Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)

    2013-10-15

    In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.

  19. Non-Lagrangian theories from brane junctions

    In this article we use 5-brane junctions to study the 5D TN SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed WN Toda theories

  20. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis

    Varma, Saaket; Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Vladimir V Kalinichenko; Guenther, Andreas; Ramirez., Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David

    2013-01-01

    Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and i...

  1. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock

    Mikelis, Constantinos M.; Simaan, May; Ando, Koji; Fukuhara, Shigetomo; Sakurai, Atsuko; Amornphimoltham, Panomwat; Masedunskas, Andrius; Weigert, Roberto; Chavakis, Triantafyllos; Adams, Ralf; Offermanns, Stefan; Mochizuki, Naoki; Zheng, Yi; Gutkind, J. Silvio

    2015-01-01

    Histamine-induced vascular leakage is an integral component of many highly prevalent human diseases, including allergies, asthma, and anaphylaxis. Yet, how histamine induces the disruption of the endothelial barrier is not well defined. By using genetically modified animal models, pharmacologic inhibitors, and a synthetic biology approach, here we show that the small GTPase RhoA mediates histamine-induced vascular leakage. Histamine causes the rapid formation of focal adherens junctions, disr...

  2. Properties of molecules in tunnel junctions

    Yeriskin, Irene

    2013-01-01

    Molecular tunnel junctions involve studying the behaviour of a single molecule sandwiched between metal leads. When a molecule makes contact with electrodes, it becomes open to the environment which can heavily influence its properties, such as electronegativity and electron transport. While the most common computational approaches remain to be single particle approximations, in this thesis it is shown that a more explicit treatment of electron interactions can be required. By studying an ope...

  3. Gastroesophageal junction adenocarcinoma. A case report

    Marcos Félix Osorio Pagola; Jesús Iván Gonzalez Batista; Nelia Maria Quintana Garcia

    2010-01-01

    The case of a 68 years old patient, smoking since adolescence, with urban origins, obesity history and gastroesophageal reflux symptoms is presented. The patient was diagnosed with gastroesophageal junction adenocarcinoma type III in the Gastroenterology Department of the Provincial University Hospital of Cienfuegos where he arrived with weight loss of about 20 pounds in four months along with dyspeptic manifestations such as stomach acidity, slow digestion, bloating and epigastric pain unrel...

  4. Quiet SDS Josephson Junctions for Quantum Computing

    Ioffe, L. B.; Geshkenbein, V. B.; Feigelman, M. V.; Fauchere, A. L.; Blatter, G.

    1998-01-01

    Unconventional superconductors exhibit an order parameter symmetry lower than the symmetry of the underlying crystal lattice. Recent phase sensitive experiments on YBCO single crystals have established the d-wave nature of the cuprate materials, thus identifying unambiguously the first unconventional superconductor. The sign change in the order parameter can be exploited to construct a new type of s-wave - d-wave - s-wave Josephson junction exhibiting a degenerate ground state and a double-pe...

  5. The emerging diversity of neuromuscular junction disorders

    Newsom-Davis, J

    2007-01-01

    Research advances over the last 30 years have shown that key transmembrane proteins at the neuromuscular junction are vulnerable to antibody-mediated autoimmune attack These targets are acetylcholine receptors (AChRs) and muscle specific kinase (MuSK) in myasthenia gravis, voltage-gated calcium channels (VGCCs) in the Lambert-Eaton myasthenic syndrome (LEMS), and voltage-gated potassium channels (VGKCs) in neuromyotonia. In parallel with these immunological advances, mutations identified in g...

  6. Generalized junction conditions for collapsing models

    We have constructed the general junction conditions on the surface of a dissipating relativistic star. The stellar exterior is a spacetime described by the generalised Vaidya metric and a two-fluid energy-momentum tensor, and therefore, defines the local atmosphere, which must be a super-position of standard null radiation and a general null fluid. We have highlighted briefly that our result will effect the physics of the dissipation at the stellar boundary

  7. Nonlinearity in superconductivity and Josephson junctions

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U1-xThxBe13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  8. Splice Junction Map of Simian Parvovirus Transcripts

    Vashisht, Kapil; Faaberg, Kay S.; Aber, Amanda L.; Brown, Kevin E.; O’Sullivan, M. Gerard

    2004-01-01

    The transcription map of simian parvovirus (SPV), an Erythrovirus similar to Parvovirus B19, was investigated. RNA was extracted from tissues of experimentally infected cynomolgus macaques and subjected to reverse transcription-PCR with SPV-specific primers. The PCR products were cloned and sequenced to identify splice junctions. A total of 14 distinct sequences were identified as putative partial transcripts. Of these, 13 were spliced; a single unspliced transcript putatively encoded NS1. Se...

  9. Canted magnetization texture in ferromagnetic tunnel junctions

    Kuzmenko, Igor; Falko, Vladimir

    2008-01-01

    We study the formation of inhomogeneous magnetization texture in the vicinity of a tunnel junction between two ferromagnetic wires nominally in the antiparallel configuration and its influence on the magnetoresistance of such a device. The texture, dependent on magnetization rigidity and crystalline anisotropy energy in the ferromagnet, appears upon an increase of ferromagnetic inter-wire coupling above a critical value and it varies with an external magnetic field.

  10. Strongly Correlated Fractional Quantum Hall Line Junctions

    Zuelicke, U.; Shimshoni, E.

    2002-01-01

    We have studied a clean finite-length line junction between interacting counterpropagating single-branch fractional-quantum-Hall edge channels. Exact solutions for low-lying excitations and transport properties are obtained when the two edges belong to quantum Hall systems with different filling factors and interact via the long-range Coulomb interaction. Charging effects due to the coupling to external edge-channel leads are fully taken into account. Conductances and power laws in the curren...

  11. Resonant inelastic tunneling in molecular junctions

    Galperin, Michael; Nitzan, Abraham; Ratner, Mark A.

    2005-01-01

    Within a phonon-assisted resonance level model we develop a self-consistent procedure for calculating electron transport currents in molecular junctions with intermediate to strong electron-phonon interaction. The scheme takes into account the mutual influence of the electron and phonon subsystems. It is based on the 2nd order cumulant expansion, used to express the correlation function of the phonon shift generator in terms of the phonon momentum Green function. Equation of motion (EOM) meth...

  12. Current noise in disordered Josephson junctions

    Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank [Universitaet des Saarlandes, Saarbruecken (Germany); Ansari, Mohammad [Institute for Quantum Computing, Waterloo (Canada)

    2013-07-01

    Josephson junctions are one of the fundamental building blocks of mesoscopic superconducting circuits. Despite being dissipationless, spurious low-energy Andreev bound states inside those junctions could provide an intrinsic microscopic mechanism for fluctuations of the current, therefore limiting the coherent operation time of superconducting quantum circuits. Models of bound states arising from pinholes in different models of disorder were investigated and their current noise signatures were characterized with respect to temperature, phase difference and sample-to-sample fluctuations of the conductance. In this theoretical work, it is shown that the low-frequency noise signature of Josephson junctions is a property specific to each individual sample independent of the fabrication process. Furthermore, the comparison of sample-specific noise spectra and characteristic current-voltage relations reveals under which conditions the presence of those disorder-induced bound states may elude detection in a 4-probe measurement but still reveal themselves as dephasing of coherent observables in circuits dominated by inductive energy.

  13. Gap Junctions: The Claymore for Cancerous Cells

    Ailar Nakhlband

    2011-07-01

    Full Text Available Introduction: Gap junctions play an important role in the cell proliferation in mammalian cells as well as carcinogenesis. However, there are controversial issues about their role in cancer pathogenesis. This study was designed to evaluate genotoxicity and cytotoxicity of Carbenoxolone (CBX as a prototype of inter-cellular gap junction blocker in MCF7 and BT20 human breast cancer cells. Methods: The MCF7and BT20 human breast cancer cell lines were cultivated, and treated at designated confluency with different doses of CBX. Cellular cytotoxicity was examined using standard colorimetric assay associated with cell viability tests. Gene expression evaluation was carried out using real time polymerase chain reaction (PCR. Results: MCF7 and BT20 cells were significantly affected by CBX in a dose dependent manner in cell viability assays. Despite varying expression of genes, down regulation of pro- and anti-apoptotic genes was observed in these cells. Conclusion: Based upon this investigation, it can be concluded that CBX could affect both low and high proliferative types of breast cancer cell lines and disproportionate down regulation of both pre- and anti-apoptotic genes may be related to interacting biomolecules, perhaps via gap junctions.

  14. Time-resolved photocurrent and photoluminescence spectra of GaInP/GaAs single-junction photovoltaic devices

    Liu, Fang; 刘方

    2015-01-01

    A pulse-laser based time-resolved photocurrent (TRPC) and photoluminescence (TRPL) system with a programmable Boxcar integrator/averager system incorporated was implemented to investigate the optical properties and charge carrier dynamics in a GaInP/GaAs single-junction photovoltaic device for the purposes of understanding fundamental optoelectronic processes in the solar cell. The implementation of whole system was realized by integrating the instrument of a Boxcar averager system with a...

  15. LRP4 is critical for neuromuscular junction maintenance.

    Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei; Xiong, Wen-cheng; Mei, Lin

    2014-10-15

    The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms. PMID:25319686

  16. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

    Hao, Lanzhong, E-mail: haolanzhong@upc.edu.cn; Liu, Yunjie, E-mail: liuyunjie@upc.edu.cn; Gao, Wei; Han, Zhide; Xue, Qingzhong [College of Science, China University of Petroleum, Qingdao, Shandong 266580 (China); Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-21

    Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2 V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15 mW cm{sup −2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2 mA cm{sup −2} and open-circuit voltage of 0.14 V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (∼4.65 eV) and energy-band gap (∼1.45 eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

  17. Phase diagrams of MgO magnetic tunnel junctions including the perpendicular spin-transfer torque in different geometries

    Bernert, K.; Sluka, V.; Fowley, C.; Lindner, J.; Fassbender, J.; Deac, A. M.

    2014-04-01

    We calculate the switching voltages for MgO-based magnetic tunnel junctions taking into account both the in-plane and the fieldlike spin-torque terms. To this end, we analytically solve the Landau-Lifshitz-Gilbert equation for a generalized geometry. We assume that the in-plane spin-torque varies linearly with the applied voltage, while the fieldlike torque exhibits a quadratic voltage dependence. Specifically, we consider that the free layer has two generic, orthogonal anisotropy components, one of which is along the direction defined by the magnetization of the reference layer, which also serves as a polarizer. The resulting formalism is applied to three different, experimentally relevant geometries: tunnel junctions with both the free and the reference layers magnetized in the plane of the layers, junctions with fully perpendicular anisotropy, and perpendicular junctions with an additional in-plane easy axis, respectively. We find that for in-plane devices, the quadratic dependence of the fieldlike torque on the applied voltage can lead to back hopping, which remains possible if we insert an additional linear term for the bias dependence of the fieldlike spin-torque comparable to current experimental results. For perpendicular anisotropy junctions neither back hopping nor spin-transfer-driven steady-state precession are expected. An additional in-plane shape anisotropy component stabilizes canted states in tunnel junctions with perpendicular anisotropy for specific values of voltage and field. The results are consistent with numerical integration of the Landau-Lifshitz-Gilbert equation and in good agreement with recent experiments involving perpendicular magnetic anisotropy magnetic tunnel junctions.

  18. β-Conglycinin Reduces the Tight Junction Occludin and ZO-1 Expression in IPEC-J2

    Yuan Zhao

    2014-01-01

    Full Text Available Soybean allergy presents a health threat to humans and animals. The mechanism by which food/feed allergen β-conglycinin injures the intestinal barrier has not been well understood. In this study, the changes of epithelial permeability, integrity, metabolic activity, the tight junction (TJ distribution and expression induced by β-conglycinin were evaluated using IPEC-J2 model. The results showed a significant decrease of trans-epithelial electrical resistance (TEER (p < 0.001 and metabolic activity (p < 0.001 and a remarkable increase of alkaline phosphatase (AP activity (p < 0.001 in a dose-dependent manner. The expression levels of tight junction occludin and ZO-1 were decreased (p < 0.05. The reduced fluorescence of targets and change of cellular morphology were recorded. The tight junction occludin and ZO-1 mRNA expression linearly declined with increasing β-conglycinin (p < 0.001.

  19. Gap distance and interactions in a molecular tunnel junction.

    Chang, Shuai; He, Jin; Zhang, Peiming; Gyarfas, Brett; Lindsay, Stuart

    2011-09-14

    The distance between electrodes in a tunnel junction cannot be determined from the external movement applied to the electrodes because of interfacial forces that distort the electrode geometry at the nanoscale. These distortions become particularly complex when molecules are present in the junction, as demonstrated here by measurements of the AC response of a molecular junction over a range of conductivities from microsiemens to picosiemens. Specific chemical interactions within the junction lead to distinct features in break-junction data, and these have been used to determine the electrode separation in a junction functionalized with 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, a reagent developed for reading DNA sequences. PMID:21838292

  20. Scanning SQUID microscopy of SFS π-Josephson junction arrays

    Stoutimore, M. J. A.; Oboznov, V. A.

    2005-03-01

    We use a Scanning SQUID Microscope to image the magnetic flux distribution in arrays of SFS (superconductor-ferromagnet-superconductor) Josephson junctions. The junctions are fabricated with barrier thickness such that they undergo a transition to a π-junction state at a temperature Tπ 2-4 K. In arrays with cells that have an odd number of π-junctions, we observe spontaneously generated magnetic flux in zero applied magnetic field. We image both fully-frustrated arrays and arrays with non-uniform frustration created by varying the number of π-junctions in the cells. By monitoring the onset of spontaneous flux as a function of temperature near Tπ,^ we estimate the uniformity of the junction critical currents.

  1. The critical power to maintain thermally stable molecular junctions

    Wang, Yanlei; Xu, Zhiping

    2014-07-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  2. Design and Implementation of a Josephson Junction Spectrometer

    Girit, Caglar; Goffman, Marcelo; Pothier, Hugues; Urbina, Cristián; Esteve, Daniel

    2015-03-01

    A Josephson tunnel junction can be used as an on-chip absorption spectrometer at frequencies up to several hundred gigahertz. As a result of the AC Josephson effect, a voltage biased junction acts as a microwave source. When emitted photons are absorbed in the junction's electromagnetic environment, a dc Cooper pair current flows (inelastic Cooper pair tunneling). By measuring this dc current as a function of applied voltage--the junction's current-voltage characteristic--one obtains a spectrum of the electromagnetic environment. We describe the design of a Josephson junction spectrometer which seeks to optimize bandwidth, sensitivity, coupling and linewidth. We present measurements of the spectra of miniature on-chip LC circuits with resonant frequencies in the 25-100 GHz range. Our Josephson junction spectrometer will be used to study level transitions in mesoscopic systems. Supported by Grant ANR-10-IDEX-0001-02 PSL.

  3. Josephson junctions as detectors for non-Gaussian noise

    Non-Gaussian fluctuations of the electrical current can be detected with a Josephson junction placed on-chip with the noise source. We present preliminary measurements with an NIS junction as a noise source, and a Josephson junction in the thermal escape regime as a noise detector. It is shown that the Josephson junction detects not only the average noise, which manifests itself as an increased effective temperature, but also the noise asymmetry. A theoretical description of the thermal escape of a Josephson junction in presence of noise with a non-zero third cumulant is presented, together with numerical simulations when the noise source is a tunnel junction with Poisson noise. Comparison between experiment and theory is discussed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Coulomb blockade in turnstile with multiple tunnel junctions

    Lee, S C; Kang, D S; Kim, D C; Choi, C K; Ryu, J Y

    1999-01-01

    On the basis of the analytic solutions to the electrostatic problem of the multi-grated-small-junction systems, the stable domain for the Coulomb blockade of turnstile with multiple tunnel junctions at zero temperature has been analyzed as a function of the number of tunnel junction, the ratio of the gate capacitance to the junction capacitance, and the asymmetric factor. Our results show that domains form various shaped regions according to the asymmetric factor and their size depends on the number of junction and the ratio of the gate capacitance to the junction capacitance. In particular, it is shown that electrons can be transferred in positive and/or negative bias voltage depending on the asymmetric factor when an appropriate gate cycle is applied. Thus, the asymmetric factor plays an important role in determining the turnstile operation.

  5. Gap distance and Interactions in a Molecular Tunnel Junction

    Chang, Shuai; He, Jin; Zhang, Peiming; Gyarfas, Brett; Lindsay, Stuart

    2011-01-01

    The distance between electrodes in a tunnel junction cannot be determined from the external movement applied to the electrodes because of interfacial forces that distort the electrode geometry at the nanoscale. These distortions become particularly complex when molecules are present in the junction, as demonstrated here by measurements of the AC response of a molecular junction over a range of conductivities from micro Siemens to pico Siemens. Specific chemical interactions within the junctio...

  6. Inelastic electron tunneling spectroscopy of molecular transport junctions

    Inelastic electron tunneling spectroscopy (IETS) has become a premier analytical tool in the investigation of nano scale and molecular junctions. The IETS spectrum provides invaluable information about the structure, bonding, and orientation of component molecules in the junctions. One of the major advantages of IETS is its sensitivity and resolution at the level of single molecules. This review discusses how IETS is used to study molecular transport junctions and presents an overview of recent experimental studies.

  7. Shunted-Josephson-junction model. I. The autonomous case

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding of...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  8. Josephson tunnel junctions as fast nuclear particle position detectors

    We present here some problems and solutions in using Josephson junctions as fast nuclear particle position detectors. The process of induced switching is modelled in terms of a reduction of the critical current due to a disturbed volume: the hot spot. The spurious thermal induced switching process is also taken into account. Calculations in order to choose the junction parameters are presented. The all refractory junction fabrication technology developed is capable of satisfying design prescriptions. (orig.)

  9. The SNS Josephson junction with a third terminal

    Prans, G. P.; Meissner, H.

    1974-01-01

    Discussion of the operating characteristics of a three-terminal thin-film SNS Josephson junction whose diameter is much greater than the electron pair coherence length in the N metal. It is shown that a junction of this type is essentially a two-terminal device even though the third terminal of the junction supplies the control current. The mechanism underlying this finding is discussed.

  10. Mixing of connexins in gap junction membrane channels.

    Sosinsky, G

    1995-01-01

    Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron micro...

  11. Gap junction modulation and its implications for heart function

    StefanKurtenbach

    2014-01-01

    Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining app...

  12. Macroscopic quantum effects in intrinsic Josephson junction stacks

    Koyama, T.; Machida, M.

    2008-09-01

    A macroscopic quantum theory for the capacitively-coupled intrinsic Josephson junctions (IJJ’s) is constructed. We clarify the multi-junction effect for the macroscopic quantum tunneling (MQT) to the first resistive branch. It is shown that the escape rate is greatly enhanced by the capacitive coupling between junctions. We also discuss the origin of the N2-enhancement in the escape rate observed in the uniformly switching in Bi-2212 IJJ’s.

  13. Mesoscopic superconducting tunnel junction devices : experimental studies of performance limitations

    Kivioja, Jani

    2005-01-01

    In this work four different mesoscopic superconducting devices have been experimentally studied: an ammeter based on a hysteretic Josephson junction switching from the superconducting state to the normal state, a conventional Cooper pair pump (CPP) based on two superconducting islands separated by tunnel junctions, a novel flux assisted Cooper pair pump and a thermometer based on a tunnel junction between a superconductor and a normal metal. These devices make use of phenomena related to supe...

  14. Time domain analysis of dynamical switching in a Josephson junction

    Sjostrand, Joachim; Walter, Jochen; Haviland, David; Hansson, Hans; Karlhede, Anders

    2004-01-01

    We have studied the switching behaviour of a small capacitance Josephson junction both in experiment, and by numerical simulation of a model circuit. The switching is a comples process involving the transition between two dynamical states of the non-linear circuit, arising from a frequency dependent damping of the Josephson junction. We show how a specific type of bias pulse-and-hold, can result in a fast detection of switching, even when the measurement bandwidth of the junction voltage is s...

  15. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions

    Du, Wei; Wang, Tao; Chu, Hong-Son; Wu, Lin; Liu, Rongrong; Sun, Song; Phua, Wee Kee; Wang, Lejia; Tomczak, Nikodem; Nijhuis, Christian A.

    2016-04-01

    Molecular electronic control over plasmons offers a promising route for on-chip integrated molecular plasmonic devices for information processing and computing. To move beyond the currently available technologies and to miniaturize plasmonic devices, molecular electronic plasmon sources are required. Here, we report on-chip molecular electronic plasmon sources consisting of tunnel junctions based on self-assembled monolayers sandwiched between two metallic electrodes that excite localized plasmons, and surface plasmon polaritons, with tunnelling electrons. The plasmons originate from single, diffraction-limited spots within the junctions, follow power-law distributed photon statistics, and have well-defined polarization orientations. The structure of the self-assembled monolayer and the applied bias influence the observed polarization. We also show molecular electronic control of the plasmon intensity by changing the chemical structure of the molecules and by bias-selective excitation of plasmons using molecular diodes.

  16. Electronic and transport properties of a molecular junction with asymmetric contacts

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  17. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-05-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  18. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...... such that the implementation of the algorithm only involves function assignments and arithmetic operations and thus avoids complex operations such as integral and differential. Simulation results show that the algorithm has less remain vehicles than Webster method, higher convergence rate and...

  19. Soft point contact spectroscopy to probe superconductor-normal metal junctions

    Parab, Pradnya; Chauhan, Prashant; Bose, Sangita

    2016-05-01

    Point contact Andreev Reflection (PCAR) spectroscopy is a powerful tool to study superconductors, in particular the superconducting energy gap and its symmetry. We report on the use of the "soft point contact technique" which has been integrated with a cryogen free platform where its vibrations does not disturb the stability of the contact giving noise free PCAR spectra. We further show for large area, high transparency junctions between normal metals and superconductors, an additional peak is observed in the PCAR spectra at the zero bias referred to as the zero bias conductance (ZBC) anomaly. Through our studies on various superconducting films and various contacts, we associate the ZBC anomaly with the increased influence of the superconducting proximity effect which suppresses the transition temperature (Tc) of the junction.

  20. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    Manipatruni, Sasikanth, E-mail: sasikanth.manipatruni@intel.com; Nikonov, Dmitri E.; Young, Ian A. [Exploratory Integrated Circuits, Components Research, Intel Corp., Hillsboro, Oregon 97124 (United States)

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  1. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  2. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    Jiang, Liming [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); National ICT Australia, The University of Melbourne, Parkville 3010 (Australia); Qiu, Wanzhi; Sharafat Hossain, Md; Al-Dirini, Feras; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Evans, Robin [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia)

    2016-02-07

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.

  3. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport

  4. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    Jiang, Liming; Qiu, Wanzhi; Sharafat Hossain, Md; Al-Dirini, Feras; Evans, Robin; Skafidas, Efstratios

    2016-02-01

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.

  5. Superconducting Tunnel Junction Arrays for UV Photon Detection Project

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  6. F-Theory Description of 3-String Junction

    YANG Fu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in IIB into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  7. F-Theory Description of 3-String Junction

    YANGFu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in lib into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  8. Assemble four-arm DNA junctions into nanoweb

    2001-01-01

    DNA is of structural polymorphism, which is useful in nanoarchitecture; especially, four-arm DNA junc tions can be used to assemble nanowebs. The static four-arm DNA junctions were designed and synthesized. One-arm DNA and two-arm DNA came out simultaneously with the four-arm DNA junction's formation. A new method, termed the two-step method, was proposed and the productivity of four-arm DNA junctions was increased. A nanoweb was assembled successfully, but it showed irregularity itself. It was not the same as we expected. We consider that it is aresult from the flexibility of four-arm DNA junction.

  9. F-theory Description of 3-String Junction

    Yang, Fu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in IIB into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides an unifying description of both string and string junction, and is advantageous over the M-theory picture of them.

  10. Systematic optimization of quantum junction colloidal quantum dot solar cells

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-10-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1% under AM1.5 simulated solar illumination.

  11. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  12. Effects of formaldehyde inhalation on the junctional proteins of nasal respiratory mucosa of rats.

    Arican, R Yavuz; Sahin, Zeliha; Ustunel, Ismail; Sarikcioglu, Levent; Ozdem, Sadi; Oguz, Nurettin

    2009-07-01

    Exposure to formaldehyde, which is an organic compound, disturbs the integrity of nasal mucosa. In this study, we aimed to clarify the protein changes in the junctional complex of nasal mucosa of Wistar rats exposed to formaldehyde inhalation. The study was performed in 20 female Wistar rats. Rats were divided into two groups randomly. Control rats were allowed free access to standard rat chaw and tap water (n:10). Experimental group was exposed to formaldehyde vapor at 15ppm, 6h/day, 5 days/week for 12 weeks (n:10). Histological evaluation of the experimental model was determined by hematoxylin-eosin (HE) and periodic acid Schiff (PAS) stainings of paraffin-embedded nasal mucosa tissues and by electron microscopy. The effects of formaldehyde inhalation on the distribution of occludin, E-cadherin, and gamma-catenin were assessed by immunohistochemistry. The nasal mucosa of the experimental group was correlated with hypertrophy in goblet cell, degeneration in basal lamina, stratification of epithelium, and proliferation. Thickness of basal lamina and also local degenerative regions, vacuole increase in cytoplasmic areas, irregular forms of kinocilium and loss of sharpness in the kinocilium membrane were the findings at the ultrastructural level. The expressions of E-cadherin, occludin, gamma-catenin proteins in intercellular junctional complexes of rat nasal mucosa were also decreased in experimental group compared to control group. The findings of the present study indicated that formaldehyde vapor inhalation in the concentrations and duration of exposure used in the present experiment significantly decreased the density of structural proteins of the junctional complex in the nasoepithelium. It was suggested that, the formaldehyde inhalation could cause complete impairment of intercellular junctional complexes and disturb the tissue integrity in nasal mucosa at higher concentrations. PMID:18996001

  13. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  14. Creating Spin Switches and Junctions on Surfaces

    Mills, Eric; Stamp, Philip

    2010-03-01

    Inspired by the work of Hirjibehedin et al, (Science 317 1199) creating Heisenberg spin chains on an insulating surface, we examine geometries in which excitations down a spin chain are either blocked or transmitted depending on the state of a central junction, made from a spin dimer. The dimer state can be controlled by excitations down an additional chain, creating a spin switch. In addition to the technological applications of such a switch, the theoretical language developed has application to certain quantum computation schemes.

  15. Atrioventricular Junction Ablation for Atrial Fibrillation.

    Patel, Dilesh; Daoud, Emile G

    2016-04-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:26968669

  16. Photoresponse in arrays of thermoelectric nanowire junctions

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  17. Powered supports for T-junctions

    von Klinggraeff, G.; Bohnes, K.

    1981-04-23

    The hydraulic self advancing support system first introduced at Niederberg colliery for a T-junction between a thin seam and a roadway with porch set supports included nearly all components for underpinning the roadway support closest to the face and for supporting the face end close to the roadway, including the rib-side. It ensures a fixed cycle of operations without the need for improvisation while providing continuous strata control during displacement of units. This support combination has proved itself in underground use. As a result, accident incidence was reduced, the number of breakdowns reduced, made the work easier and reduced the number of shifts needed.

  18. Phonon interference effects in molecular junctions

    We study coherent phonon transport through organic, π-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions

  19. Phonon interference effects in molecular junctions

    Markussen, Troels, E-mail: troels.markussen@gmail.com [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2013-12-28

    We study coherent phonon transport through organic, π-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  20. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  1. A βPIX-PAK2 complex confers protection against Scrib-dependent and cadherin-mediated apoptosis

    Frank, Scott R; Bell, Jennifer H; Frödin, Morten;

    2012-01-01

    . Scrib is also targeted to adherens junctions by E-cadherin, where Scrib strengthens cadherin-mediated cell-cell adhesion. Although a role for the Scrib-βPIX-PAK signaling complex in promoting membrane protrusion at wound edges has been elucidated, a function for this complex at adherens junctions...

  2. Fractional Solitons in Excitonic Josephson Junctions.

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR. PMID:26511770

  3. Josephson current in parallel SFS junctions

    Ioselevich, Pavel; Ostrovsky, Pavel; Fominov, Yakov; Feigelman, Mikhail

    We study a Josephson junction between superconductors connected by two parallel ferromagnetic arms. If the ferromagnets are fully polarised, supercurrent can only flow via Cooper pair splitting between the differently polarised arms. The disorder-average current is suppressed, but mesoscopic fluctuations lead to a significant typical current. We extract the typical current from a current-current correlator. The current is proportional to sin2 α / 2 , where α is the angle between the polarisations of the two arms, revealing the spin dependence of crossed Andreev reflection. Compared to an SNS device of the same geometry, the typical SFS current is small by a factor determined by the properties of the superconducting leads alone. The current is insensitive to the flux threading the area between the ferromagnetic arms of the junction. However, if the ferromagnetic arms are replaced by metal with magnetic impurities, or partially polarised ferromagnets, the Josephson current starts depending on the flux with a period of h / e , i.e. twice the superconducting flux quantum.

  4. Fractional Solitons in Excitonic Josephson Junctions

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-10-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.

  5. Fabrication of Niobium Nanobridge Josephson Junctions

    Tachiki, T.; Horiguchi, K.; Uchida, T.

    2014-05-01

    To realize antenna-coupled Josephson detectors for microwave and millimeter-wave radiation, planar-type Nb nanobridge Josephson junctions were fabricated. Nb thin films whose thickness, the root mean square roughness and the critical temperature were 20.0 nm, 0.109 nm and 8.4 K, respectively were deposited using a DC magnetron sputtering at a substrate temperature of 700°C. Nanobridges were obtained from the film using 80-kV electron beam lithography and reactive ion-beam etching in CF4 (90%) + O2 (10%) gases. The minimum bridge area was 65 nm wide and 60 nm long. For the nanobridge whose width and length were less than 110 nm, an I-V characteristic showed resistively-shunted-junction behaviour near the critical temperature. Moreover, Shapiro steps were observed in the nanobridge with microwave irradiation at a frequency of 6 - 30 GHz. The Nb nanobridges can be used as detectors in the antenna-coupled devices.

  6. Conductance spectroscopy of topological superconductor wire junctions

    Setiawan, F.; Brydon, Philip; Sau, Jay

    We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS) junctions with topological superconductors across their topological transitions. Working within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. The zero-bias conductance takes nonuniversal values in the nontopological phase while it is robustly quantized at 2e2 / h in the topological regime. Despite this quantization at zero voltage, the zero-bias conductance only develops a peak (or a local maximum) as a function of voltage for sufficiently large interfacial barrier strength, or certain parameter regimes of spin-orbit coupling strength. Our calculated BTK conductance also shows that the conductance is finite inside the superconducting gap region because of the finite barrier transparency, providing a possible mechanism for the observed ``soft gap'' feature in the experimental studies. Work is done in collaboration with Sankar Das Sarma and supported by Microsoft Q, LPS-CMTC, and JQI-NSF-PFC.

  7. Electrophysiological study in neuromuscular junction disorders.

    Cherian, Ajith; Baheti, Neeraj N; Iype, Thomas

    2013-01-01

    This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS), congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG) helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS). SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation. PMID:23661960

  8. Intrinsic Josephson Junctions with Intermediate Damping

    Warburton, Paul A.; Saleem, Sajid; Fenton, Jon C.; Speller, Susie; Grovenor, Chris R. M.

    2011-03-01

    In cuprate superconductors, adjacent cuprate double-planes are intrinsically Josephson-coupled. For bias currents perpendicular to the planes, the current-voltage characteristics correspond to those of an array of underdamped Josephson junctions. We will discuss our experiments on sub-micron Tl-2212 intrinsic Josephson junctions (IJJs). The dynamics of the IJJs at the plasma frequency are moderately damped (Q ~ 8). This results in a number of counter-intuitive observations, including both a suppression of the effect of thermal fluctuations and a shift of the skewness of the switching current distributions from negative to positive as the temperature is increased. Simulations confirm that these phenomena result from repeated phase slips as the IJJ switches from the zero-voltage to the running state. We further show that increased dissipation counter-intuitively increases the maximum supercurrent in the intermediate damping regime (PRL vol. 103, art. no. 217002). We discuss the role of environmental dissipation on the dynamics and describe experiments with on-chip lumped-element passive components in order control the environment seen by the IJJs. Work supported by EPSRC.

  9. Electrophysiological study in neuromuscular junction disorders

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  10. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  11. Retroviral DNA Integration Directed by HIV Integration Protein in Vitro

    Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert

    1990-09-01

    Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.

  12. Josephson junctions in thin and narrow rectangular superconducting strips

    Clem, John R.

    2010-01-01

    I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the gauge-invariant phase difference across the junction and the resulting B dependence of the critical current Ic(B).

  13. Molecular Transport Junctions Created By Self-Contacting Gapped Nanowires.

    Lim, Jong Kuk; Lee, One-Sun; Jang, Jae-Won; Petrosko, Sarah Hurst; Schatz, George C; Mirkin, Chad A

    2016-08-01

    Molecular transport junctions (MTJs) are important components in molecular electronic devices. However, the synthesis of MTJs remains a significant challenge, as the dimensions of the junction must be tailored for each experiment, based on the molecular lengths. A novel methodology is reported for forming MTJs, taking advantage of capillary and van der Waals forces. PMID:27364594

  14. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;

    1980-01-01

    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 dB) w...

  15. Mapping the Transmission Functions of Single-Molecule Junctions.

    Capozzi, Brian; Low, Jonathan Z; Xia, Jianlong; Liu, Zhen-Fei; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2016-06-01

    Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale. PMID:27186894

  16. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;

    1975-01-01

    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  17. Internal resonances in periodically modulated long Josephson junctions

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  18. Fiske steps in Josephson junctions with alternating critical current density

    We have developed a simple model, in the framework of the Kulik theory of Fiske steps in Josephson junctions, for the electromagnetic resonances observed in the current voltage characteristics of certain high temperature superconductor grain boundary junctions. Some preliminary results are illustrated

  19. Analysis of junction-barrier-controlled Schottky (JBS) rectifier characteristics

    Baliga, B. Jayant

    1985-11-01

    This paper provides analytical solutions for the forward conduction and reverse leakage characteristics of junction-barrier-controlled Schottky (JBS) rectifiers. Good agreement between the calculated output characteristics using these solutions and experimental measurements on devices fabricated with different junction depths and Schottky barrier heights is observed. These equations are valuable for the analysis and design of JBS power rectifiers.

  20. Junction leakage measurements with micro four-point probes

    Lin, Rong; Petersen, Dirch Hjorth; Wang, Fei;

    2012-01-01

    We present a new, preparation-free method for measuring the leakage current density on ultra-shallow junctions. The junction leakage is found by making a series of four-point sheet resistance measurements on blanket wafers with variable electrode spacings. The leakage current density is calculated...

  1. Spin and valley transports in junctions of Dirac fermions

    We study spin and valley transports in junctions composed of silicene and topological crystalline insulators. We consider normal/magnetic/normal Dirac metal junctions where a gate electrode is attached to the magnetic region. In a normal/antiferromagnetic/normal silicene junction, we show that the current through this junction is valley and spin polarized due to the coupling between valley and spin degrees of freedom, and the valley and spin polarizations can be tuned by local application of a gate voltage. In particular, we find a fully valley and spin polarized current by applying the electric field. In a normal/ferromagnetic/normal topological crystalline insulator junction with a strain induced in the ferromagnetic segment, we investigate valley-resolved conductances and clarify how the valley polarization stemming from the strain and exchange field appears in this junction. It is found that by changing the direction of the magnetization and the potential in the ferromagnetic region, one can control the dominant valley contribution out of four valley degrees of freedom. We also review spin transport in normal/ferromagnetic/normal graphene junctions, and spin and valley transports in normal/ferromagnetic/normal silicene junctions for comparison. (paper)

  2. Josephson junctions in thin and narrow rectangular superconducting strips

    I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the gauge-invariant phase difference across the junction and the resulting B dependence of the critical current Ic(B).

  3. Activated Microglia do not form Functional Gap Junctions in vivo

    Wasseff, Sameh K.; Scherer, Steven S.

    2014-01-01

    We investigated whether microglia form gap junctions with themselves, or with astrocytes, oligodendrocytes, or neurons in vivo in normal mouse brains, and in pathological conditions that induce microglial activation - brain injury, a model of Alzheimer’s disease. Although microglia are in close physical proximity to glia and neurons, they do not form functional gap junctions under these pathological conditions.

  4. Shapiro and parametric resonances in coupled Josephson junctions

    Gaafar, Ma. A.; Shukrinov, Yu. M.; Foda, A.

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  5. Shapiro and parametric resonances in coupled Josephson junctions

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  6. Duodeno-jejunal junction dyssynergia: Description of a novel syndrome

    Ahmed Shafik; Ismail A Shafik; Olfat El Sibai; Ali A Shafik

    2007-01-01

    AIM: To investigate the hypothesis that duodeno-jejunal dyssynergia existed at the duodeno-jejunal junction.METHODS: Of 112 patients who complained of epigastric distension and discomfort after meals, we encountered nine patients in whom the duodeno-jejunal junction did not open on duodenal contraction. Seven healthy volunteers were included in the study. A condom which was inserted into the 1st duodenum was filled up to 10 mL with saline in increments of 2 mL and pressure response to duodenal distension was recorded from the duodenum, duodeno-jejunal junction and the jejunum.RESULTS: In healthy volunteers, duodenal distension with 2 and 4 mL did not produce pressure changes,while 6 and up to 10 mL distension effected significant duodenal pressure increase, duodeno-jejunal junction pressure decrease but no jejunal pressure change. In patients, resting pressure and duodeno-jejunal junction and jejunal pressure response to 2 and 4 mL duodenal distension were similar to those of healthy volunteers.Six and up to 10 mL 1st duodenal distension produced significant duodenal and duodeno-jejunal junction pressure increase and no jejunal pressure change.CONCLUSION: Duodeno-jejunal junction failed to open on duodenal contraction, a condition we call 'duodeno-jejunal junction dyssynergia syndrome' which probably leads to stagnation of chyme in the duodenum and explains patients' manifestations.

  7. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    2010-12-08

    ... Junction, in overcoming objections raised by the FAA to the activation of this allotment. See 75 FR 30756... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal...

  8. Short chain molecular junctions: Charge transport versus dipole moment

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  9. Characterization of gap junctions by electrophysiological and electronmicroscopical methods

    Hülser, Dieter F.; Paschke, Dietmar; Franz BRÜMMER; Eckert, Reiner

    1990-01-01

    Gap junctions are ubiquitous in the animal kingdom from mesozoa to vertebrates. They must be discriminated from desmosomes which anchor cells together to form structural or functional units as well as from tight junctions which seal membranes of epithelial cells to each other so that the paracellular path becomes impermeable to molecules and a polarity of apical and basolateral surface is maintained.

  10. Conditions for synchronization in Josephson-junction arrays

    Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)

    1995-12-31

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  11. Josephson SFS π-junctions. Potential Applications in Computing

    Ryazanov, Valeriy; Oboznov, Vladimir; Bolginov, Vitalii; Feofanov, Alexey

    2006-09-01

    Novel superconducting weak links, `π-junctions', were realized recently. An origin of the π-state in a Superconductor - Ferromagnet - Superconductor (SFS) junction is an oscillating and sign-reversing superconducting order parameter induced in the ferromagnet close to the SF-interface. The π-behavior in SFS sandwiches was first observed by our group in 2000. Our recent result was a detection of transitions into π-state and back into 0-state, i.e. a nonmonotonic (with two nodes) behavior of the junction critical current vs. F-layer thickness, π-junctions with critical current density up to 2000 A/cm2 were achieved that are suitable for applications in future superconducting digital and quantum electronics. Our junctions are based on a niobium thin film technology so they can be incorporated directly into existing architectures of the superconducting electronics.

  12. Evolution of perpendicular magnetized tunnel junctions upon annealing

    Devolder, Thibaut; Couet, S.; Swerts, J.; Furnemont, A.

    2016-04-01

    We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 °C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375 °C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.

  13. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  14. Temperature dependence of charge transport in conjugated single molecule junctions

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  15. Fiske resonances in mesoscopic '0-π' grain boundary junctions

    A theory describing Fiske resonance steps in high-temperature 'd-wave' superconductive Josephson junctions has been developed. The model is an extension of the theory proposed by Kulik in 1965, which applies in the case of conventional low-temperature junctions ('s-wave' superconductors). The theory allows to derive the magnetic field dependences of the n-th order Fiske step, also in the presence of '0-π' singularities in the junction phase difference. An analysis of Fiske steps in asymmetric 0-45o [0 0 1] 'd-wave' Josephson junctions has been presented. Finally, in order to describe the phenomenology encountered in real grain boundary junctions, the presence of facets of different orientations and lengths has also been considered

  16. Dynamic compact model of thermally assisted switching magnetic tunnel junctions

    El Baraji, M.; Javerliac, V.; Guo, W.; Prenat, G.; Dieny, B.

    2009-12-01

    The general purpose of spin electronics is to take advantage of the electron's spin in addition to its electrical charge to build innovative electronic devices. These devices combine magnetic materials which are used as spin polarizer or analyzer together with semiconductors or insulators, resulting in innovative hybrid CMOS/magnetic (Complementary MOS) architectures. In particular, magnetic tunnel junctions (MTJs) can be used for the design of magnetic random access memories [S. Tehrani, Proc. IEEE 91, 703 (2003)], magnetic field programmable gate arrays [Y. Guillement, International Journal of Reconfigurable Computing, 2008], low-power application specific integrated circuits [S. Matsunaga, Appl. Phys. Express 1, 091301 (2008)], and rf oscillators. The thermally assisted switching (TAS) technology requires heating the MTJ before writing it by means of an external field. It reduces the overall power consumption, solves the data writing selectivity issues, and improves the thermal stability of the written information for high density applications. The design of hybrid architectures requires a MTJ compact model, which can be used in standard electrical simulators of the industry. As a result, complete simulations of CMOS/MTJ hybrid circuits can be performed before experimental realization and testing. This article presents a highly accurate model of the MTJ based on the TAS technology. It is compatible with the Spectre electrical simulator of Cadence design suite.

  17. Ferroelectric Tunnel Junction for Dense Cross-Point Arrays.

    Lee, Hong-Sub; Han, Wooje; Chung, Hee-Yoon; Rozenberg, Marcelo; Kim, Kangsik; Lee, Zonghoon; Yeom, Geun Young; Park, Hyung-Ho

    2015-10-14

    Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity. PMID:26378472

  18. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  19. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells.

    Patrick J Hensley

    Full Text Available Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin, tight junction formation (claudin-11 as well as insulin growth factor binding protein 3 (IGFBP-3 and the angiogenesis modulator thrombospondin 1 (TSP-1. Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.

  20. Effects of adenine nucleotide and sterol depletion on tight junction structure and function in MDCK cells

    The antitumor agent Hadacidin (H), N-formyl-hydroxyamino-acetic acid, reversibly inhibited the multiplication of clone 4 Madin-Darby canine kidney (MDCK) cells at a 4 mM concentration within 24-48 hours. Treated cells were arrested in the S phase of the cell cycle. Accompanying this action was a 16-fold increase in the area occupied b the cells and a refractoriness to trypsin treatment. To test whether this effect was due to an increase in tight junction integrity, electrical resistance (TER) was measured across H-treated monolayers. Addition of H at the onset of junction formation reversibly prevented the development of TER. ATP and cAMP levels were decreased by H, as well as the rate of [3H]-leucine incorporation into protein. When 1 mM dibutyryl-cAMP (d.cAMP) and theophylline were added, H had no effect on cell division or protein synthesis, and TER was partially restored. The addition of 1 mM d.cAMP and 1 mM theophylline to control cultures decreased TER, indicating a biphasic effect on TER development/maintenance. In a separate study, the effect of sterol depletion on tight junctions formation/maintenance in wild-type MDCK cells was investigated

  1. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus_minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  2. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  3. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs

  4. Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions.

    Sergani, S; Furmansky, Y; Visoly-Fisher, I

    2013-11-15

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions. PMID:24129428

  5. Metal-free molecular junctions on ITO via amino-silane binding—towards optoelectronic molecular junctions

    Sergani, S.; Furmansky, Y.; Visoly-Fisher, I.

    2013-11-01

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

  6. Metal-free molecular junctions on ITO via amino-silane binding—towards optoelectronic molecular junctions

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions. (paper)

  7. Quantum Tunneling Current in Nanoscale Plasmonic Junctions

    Zhang, Peng; Lau, Y. Y.; Gilgenbach, R. M.

    2014-10-01

    Recently, electron tunneling between plasmonic resonators is found to support quantum plasmon resonances, which may introduce new regimes in nano-optoelectronics and nonlinear optics. This revelation is of substantial interest to the fundamental problem of electron transport in nano-scale, for example, in a metal-insulator-metal junction (MIM), which has been continuously studied for decades. Here, we present a self-consistent model of electron transport in a nano-scale MIM, by solving the coupled Schrödinger and Poisson equations. The effects of space charge, exchange-correlation, anode emission, and material properties of the electrodes and insulator are examined in detail. The self-consistent calculations are compared with the widely used Simmons formula. Transition from the direct tunneling regime to the space-charge-limited regime is demonstrated. This work was supported by AFOSR.

  8. Work fluctuations in bosonic Josephson junctions

    Lena, R. G.; Palma, G. M.; De Chiara, G.

    2016-05-01

    We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.

  9. Tantalum oxide barrier in magnetic tunnel junctions

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  10. Controlling local currents in molecular junctions

    Yadalam, Hari Kumar

    2016-01-01

    The effect of non-equilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  11. Exotic Brane Junctions from F-theory

    Kimura, Tetsuji

    2016-01-01

    Applying string dualities to F-theory, we obtain various $[p,q]$-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single $5^2_2$-brane. We also find the objects which are sensitive to the branch cut of the $5^2_2$-brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for $SU(2)$ gauge theories with $n$ flavors and their superconformal limit with enhanced $E_{n+1}$ symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  12. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  13. Vortex motion in high temperature superconducting junctions

    Coherent vortex motion in bridge structures (BS) of high temperature superconducting junctions under transport current transfer and external microwave radiation is detected. The investigated samples were 6x2.5x0.5mm rectangular bars of Y-Ba-Cu-O ceramics with BS cut in the centre, which dimensions were: length L=150-200μm, width W=150-200μm, thickness d < or approx. 100μm. Ceramics grain size was a ∼ 1μm. The voltampere characteristics of the samples were measured using a four-contact method both under off-line conditions and under different frequency microwave external radiations in the wide temperature range from 300 to 4.2 K

  14. Josephson junction array protected from local noises.

    Gladchenko, Sergey; Olaya, David; Dupont-Ferrier, Eva; Doucot, Benoit; Ioffe, Lev; Gershenson, Michael

    2009-03-01

    We have developed small arrays of Josephson junctions (JJs) that can be viewed as prototypes of superconducting qubits protected from local noises [1]. The array consists of twelve superconducting loops interrupted by four sub-micron JJs. The protected state is realized when each loop is threaded by half of the magnetic flux quantum. It has been observed that the array with the optimized amplitude of quantum fluctuations is protected against magnetic flux variations well beyond linear order, in agreement with theoretical predictions [2]. 1. S. Gladchenko et al., ``Superconducting Nanocircuits for Topologically Protected Qubits'', arXiv:cond-mat/0802.2295, to be published in Nature Physics. 2. L.B. Ioffe and M.V. Feigelman, Phys. Rev. B 66, 224503 (2002); B. Doucot et al., Phys. Rev. B 71, 024505 (2005); B. Doucot and L.B. Ioffe, Phys. Rev. B 76, 214507 (2007).

  15. Exotic brane junctions from F-theory

    Kimura, Tetsuji

    2016-05-01

    Applying string dualities to F-theory, we obtain various [ p, q]-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single 5 2 2 -brane. We also find the objects which are sensitive to the branch cut of the 5 2 2 -brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for SU(2) gauge theories with n flavors and their superconformal limit with enhanced E n+1 symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  16. The Hall effect in ballistic junctions

    Ford, C. J. B.; Washburn, S.; Büttiker, M.; Knoedler, C. M.; Hong, J. M.

    1990-04-01

    In narrow high-mobility conductors the predominant source of scattering is reflection of carriers off the confining potential. We demonstrate that by changing the geometry of the intersection of the Hall probes with the conductor, the Hall resistance can be quenched, negative or enhanced. More complex junction geometries can lead to one of these phenomena for one field polarity and to another for the other field polarity. At liquid helium temperatures these results can be explained by following trajectories. In the milli-Kelvin range fluctuations are superimposed. At high fields strong resonant depressions of the Hall resistance are found which may be associated with bound states in the region of the cross.

  17. Sandwich-type gated mechanical break junctions

    We introduce a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport. In contrast to previous gated mechanical break junctions with suspended source-drain electrodes, the devices presented here prevent an electromechanical tuning of the electrode gap by the gate. This significant improvement originates from a direct deposition of the source and the drain electrodes on the gate dielectric. The plasma-enhanced native oxide on the aluminum gate electrode enables measurements at gate voltages up to 1.8 V at cryogenic temperatures. Throughout the bending-controlled tuning of the source-drain distance, the electrical continuity of the gate electrode is maintained. A nanoscale island in the Coulomb blockade regime serves as a first experimental test system for the devices, in which the mechanical and electrical control of charge transport is demonstrated.

  18. Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.

    Fischbarg, Jorge

    2010-10-01

    The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the

  19. High Tc Josephson Junctions, SQUIDs and magnetometers

    There has recently been considerable progress in the state-of-the-art of high-Tc magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-Tc SQUIDs are still considerably less sensitive than their low-Tc counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-Tc devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  20. Studying two-level systems in Josephson junctions with a Josephson junction defect spectrometer

    Stoutimore, M. J. A.; Khalil, M. S.; Gladchenko, Sergiy; Simmonds, R. W.; Lobb, C. J.; Osborn, K. D.

    2012-02-01

    We have fabricated and measured Josephson junction defect spectrometers (JJDSs), which are frequency-tunable, nearly-harmonic oscillators that probe two-level systems (TLSs) in the barrier of a Josephson junction (JJ). A JJDS consists of the JJ under study fabricated with a parallel capacitor and inductor such that it can accommodate a wide range of junction inductances, LJ0, while maintaining an operating frequency, f01, in the range of 4-8 GHz. In this device, the parallel inductance helps the JJ maintain linearity over a wide range of frequencies. This architecture allows for the testing of JJs with a wide range of areas and barrier materials, and in the first devices we have tested Al/AlOx/Al JJs. By applying a magnetic flux bias to tune f01, we detect TLSs in the JJ barrier as splittings in the device spectrum. We will present our results toward identifying and quantifying these TLSs, which are known to cause decoherence in quantum devices that rely on JJs.

  1. CFD validation in OECD/NEA t-junction benchmark.

    Obabko, A. V.; Fischer, P. F.; Tautges, T. J.; Karabasov, S.; Goloviznin, V. M.; Zaytsev, M. A.; Chudanov, V. V.; Pervichko, V. A.; Aksenova, A. E. (Mathematics and Computer Science); (Cambridge Univ.); (Moscow Institute of Nuclar Energy Safety)

    2011-08-23

    and benchmark data. The numerical scheme has a very small scheme diffusion and is the second and the first order accurate in space and time, correspondingly. We compare and contrast simulation results for three computational fluid dynamics codes CABARET, Conv3D, and Nek5000 for the T-junction thermal striping problem that was the focus of a recent OECD/NEA blind benchmark. The corresponding codes utilize finite-difference implicit large eddy simulation (ILES), finite-volume LES on fully staggered grids, and an LES spectral element method (SEM), respectively. The simulations results are in a good agreement with experimenatl data. We present results from a study of sensitivity to computational mesh and time integration interval, and discuss the next steps in the simulation of this problem.

  2. Effect of Toxoplasma gondii infection on the junctional complex of retinal pigment epithelial cells.

    Nogueira, Alanderson R; Leve, Fernanda; Morgado-Diaz, José; Tedesco, Roberto Carlos; Pereira, Mirian Claudia S

    2016-04-01

    Ocular toxoplasmosis is the most frequent cause of uveitis, leading to partial or total loss of vision, with the retina the main affected structure. The cells of the retinal pigment epithelium (RPE) play an important role in the physiology of the retina and formation of the blood-retinal barrier. Several pathogens induce barrier dysfunction by altering tight junction (TJ) integrity. Here, we analysed the effect of infection by Toxoplasma gondii on TJ integrity in ARPE-19 cells. Loss of TJ integrity was demonstrated in T. gondii-infected ARPE-19 cells, causing increase in paracellular permeability and disturbance of the barrier function of the RPE. Confocal microscopy also revealed alteration in the TJ protein occludin induced by T. gondii infection. Disruption of junctional complex was also evidenced by scanning and transmission electron microscopy. Cell-cell contact loss was noticed in the early stages of infection by T. gondii with the visualization of small to moderate intercellular spaces. Large gaps were mostly observed with the progression of the infection. Thus, our data suggest that the alterations induced by T. gondii in the structural organization of the RPE may contribute to retinal injury evidenced by ocular toxoplasmosis. PMID:26928468

  3. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3

    Cejka, Petr; Plank, Jody L; Bachrati, Csanad Z;

    2010-01-01

    A double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top......3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday...

  4. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  5. Time-dependent Landauer—Büttiker formalism for superconducting junctions at arbitrary temperatures

    Tuovinen, Riku; van Leeuwen, Robert; Perfetto, Enrico; Stefanucci, Gianluca

    2016-03-01

    We discuss an extension of our earlier work on the time-dependent Landauer- Buttiker formalism for noninteracting electronic transport. The formalism can without complication be extended to superconducting central regions since the Green's functions in the Nambu representation satisfy the same equations of motion which, in turn, leads to the same closed expression for the equal-time lesser Green's function, i.e., for the time-dependent reduced one-particle density matrix. We further write the finite-temperature frequency integrals in terms of known special functions thereby considerably speeding up the computation. Simulations in simple normal metal - superconductor - normal metal junctions are also presented.

  6. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  7. Production of high-TC superconducting electric motor rotor elements by means of forming of superconducting junctions between blocks of melted textured ceramics on the base of YBa2Cu3O7-δ

    On basis of investigation of junctions forming between blocks of melted textured ceramics (MT-YBaCuO) and integrated study of structure, superconducting and mechanical properties of basic materials and patterns with junctions, a method of production of superconducting junctions with standard property level (critical current density in juncture area more than 10 kA/cm2 under 77 K in magnetic fields with strength up to 1,8 T, microhardness Hv=4,6 GPa under load of 1,96 N and flexural strength 28-32 MPa, thermal resistance coming to 150-200 cycles) was worked out

  8. Gold plasmonic effects on charge transport through single molecule junctions

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  9. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  10. Josephson radiation from InSb-nanowire junction

    van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila

    Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.

  11. High electronic couplings of single mesitylene molecular junctions

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  12. Solar cell junction temperature measurement of PV module

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  13. Thin-film Josephson junctions with alternating critical current density

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  14. Flicker (1/f) noise in tunnel junction DC SQUIDS

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 104 μm2, but significantly overestimates the noise for junctions with areas of about 6 μm2. DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10-10/f)phi20Hz-1. It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies

  15. The temporo-parietal junction contributes to global gestalt perception—evidence from studies in chess experts

    Johannes eRennig; Merim eBilalic; Elisabeth eHuberle; Hans-Otto eKarnath; Marc eHimmelbach

    2013-01-01

    In a recent neuroimaging study the comparison of intact versus disturbed perception of global gestalt indicated a significant role of the temporo-parietal junction (TPJ) in the intact perception of global gestalt (Huberle and Karnath, 2012). This location corresponded well with the areas known to be damaged or impaired in patients with simultanagnosia after stroke or due to neurodegenerative diseases. It was concluded that the TPJ plays an important role in the integration of individual item...

  16. A comprehensive solution for simulating ultra-shallow junctions: From high dose/low energy implant to diffusion annealing

    This paper presents a global approach permitting accurate simulation of the process of ultra-shallow junctions. Physically based models of dopant implantation (BCA) and diffusion (including point and extended defects coupling) are integrated within a unique simulation tool. A useful set of the relevant parameters has been obtained through an original calibration methodology. It is shown that this approach provides an efficient tool for process modelling

  17. High-Resolution Silicon-based Particle Sensor with Integrated Amplification Project

    National Aeronautics and Space Administration — This SBIR Phase I project will deliver a breakthrough in particle-detection sensors, by integrating an amplifying junction as part of the detector topology....

  18. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion. PMID:16247851

  19. Vortex dynamics in Josephson ladders with II-junctions

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.; Feofanov, A.K.; Bol’ginov, V.V.; Ryazanov, V.V.; Pedersen, Niels Falsig

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critical...... current versus applied magnetic field. At temperatures close to the 0-pi transition this dependence shows a doubling of its periodicity frequency that can be explained by 0-pi bistability of the SFS junctions. The change in the array behaviour with number of unit cells has been studied by means of...

  20. Vortex dynamics in Josephson ladders with π-junctions

    Both experimental and numerical studies of a self-frustrated triangular array of π-junctions are reported. The array of SFS Josephson junctions shows a transition to the π-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critical current versus applied magnetic field. At temperatures close to the 0-π transition this dependence shows a doubling of its periodicity frequency that can be explained by 0-π bistability of the SFS junctions. The change in the array behaviour with number of unit cells has been studied by means of numerical simulation

  1. Shunted-Josephson-junction model. II. The nonautonomous case

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    . The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be...... expected are pointed out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  2. Proximity effects in all refractory Josephson tunnel junctions

    The theoretical approach to proximity effect based on the thermodynamic Green's functions is considered to investigate the behaviour of all refractory Josephson tunnel junctions. The experimental dependence of the maximum dc Josephson current on temperature is analysed. Two junction configurations are studied: Nb-Al/AlOx/Nb structures with a rather thick Al film and high quality Nb/Nb junctions with either a semimetallic or a metallic back-layer (Nb/AlOx/Nb-Bi, Nb/AlOx/Nb-Al). A satisfying agreement between theoretical calculations and experimental data is found. (orig.)

  3. Bloch Inductance in Small-Capacitance Josephson Junctions

    We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/ωCB, an inductive term iωLB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(φ) at fixed φ=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described

  4. Gap junction modulation and its implications for heart function

    StefanKurtenbach

    2014-02-01

    Full Text Available Gap junction communication mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases and signaling cascades. This gap junction network can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

  5. Bilayer graphene Hall bar with a pn-junction

    Milovanovic, S. P.; Masir, M. Ramezani; Peeters, F. M.

    2013-01-01

    We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: $i$) both sides of the junction have the same carrier type, and $ii$) one side of the junction is n-type while the other one is p-ty...

  6. Photovoltaic structures based on polymer/semiconductor junctions

    Gamboa, S.A.; Sebastian, P.J.; Calixto, M.E.; Rivera, M.A. [Centro de Investigaciones en Energia Coordinacion de Solar-H2-Celdas de Combustible, CIE-UNAM 62580 Temixco, Morelos (Mexico); Nguyen-Cong, H.; Chartier, P. [Laboratoire d` Electrochimie et de Chimie Physique du Corps Solide, Faculte de Chimie, Universite Louis Pasteur, Strasbourg (France)

    1998-07-23

    CdTe and CuInSe{sub 2} (CIS) thin films were electrodeposited and characterized for photovoltaic applications. Schottky barrier-type photovoltaic junctions were obtained using a heavily doped PMeT (poly-3-methylthiophene), prepared by electropolymerization, displaying nearly metallic behavior, and semiconductors such as CdTe and CIS obtained by electrodeposition. The photovoltaic structures formed and studied are Mo/CIS/PMeT/grid and Mo/CdTe/PMeT/grid Schottky barrier junctions. Solar to electrical conversion efficiency of the order of 1% was obtained in the case of PMeT/CIS and PMeT/CdTe junctions

  7. Destruction of the hepatocyte junction by intercellular invasion of Leptospira causes jaundice in a hamster model of Weil's disease.

    Miyahara, Satoshi; Saito, Mitsumasa; Kanemaru, Takaaki; Villanueva, Sharon Y A M; Gloriani, Nina G; Yoshida, Shin-ichi

    2014-08-01

    Weil's disease, the most severe form of leptospirosis, is characterized by jaundice, haemorrhage and renal failure. The mechanisms of jaundice caused by pathogenic Leptospira remain unclear. We therefore aimed to elucidate the mechanisms by integrating histopathological changes with serum biochemical abnormalities during the development of jaundice in a hamster model of Weil's disease. In this work, we obtained three-dimensional images of infected hamster livers using scanning electron microscope together with freeze-cracking and cross-cutting methods for sample preparation. The images displayed the corkscrew-shaped bacteria, which infiltrated the Disse's space, migrated between hepatocytes, detached the intercellular junctions and disrupted the bile canaliculi. Destruction of bile canaliculi coincided with the elevation of conjugated bilirubin, aspartate transaminase and alkaline phosphatase levels in serum, whereas serum alanine transaminase and γ-glutamyl transpeptidase levels increased slightly, but not significantly. We also found in ex vivo experiments that pathogenic, but not non-pathogenic leptospires, tend to adhere to the perijunctional region of hepatocyte couplets isolated from hamsters and initiate invasion of the intercellular junction within 1 h after co-incubation. Our results suggest that pathogenic leptospires invade the intercellular junctions of host hepatocytes, and this invasion contributes in the disruption of the junction. Subsequently, bile leaks from bile canaliculi and jaundice occurs immediately. Our findings revealed not only a novel pathogenicity of leptospires, but also a novel mechanism of jaundice induced by bacterial infection. PMID:24945433

  8. Recombination events during integration of transfected DNA into normal human cells.

    Murnane, J P; Yezzi, M J; Young, B. R.

    1990-01-01

    The mechanisms of recombination responsible for random integration of transfected DNA into the genome of normal human cells have been investigated by analysis of plasmid-cell DNA junctions. Cell clones containing integrated plasmid sequences were selected by morphological transformation of primary human fibroblasts after transfection with a plasmid containing simian virus 40 sequences. Nucleotide sequence analysis of the plasmid-cell DNA junctions was performed on cloned DNA fragments contain...

  9. RWGSCAT - RECTANGULAR WAVEGUIDE JUNCTION SCATTERING PROGRAM

    Hoppe, D. J.

    1994-01-01

    In order to optimize frequency response and determine the tolerances required to meet RF specifications, accurate computer modeling of passive rectangular waveguide components is often required. Many rectangular waveguide components may be represented either exactly or approximately as a number of different size rectangular waveguides which are connected in series. RWGSCAT, Rectangular WaveGuide junction SCATtering program, solves for the scattering properties of a waveguide device. This device must consist of a number of rectangular waveguide sections of different cross sectional area which are connected in series. Devices which fall into this category include step transformers, filters, and smooth or corrugated rectangular horns. RWGSCAT will model such devices and accurately predict the reflection and transmission characteristics, taking into account higher order (other than dominant TE 10) mode excitation if it occurs, as well as multiple reflections and stored energy at each discontinuity. For devices which are large with respect to the wavelength of operation, the characteristics of the device may be required for computing a higher order mode or a number of higher order modes exciting the device. Such interactions can be represented by defining a scattering matrix for each discontinuity in the device, and then cascading the individual scattering matrices in order to determine the scattering matrix for the overall device. The individual matrices are obtained using the mode matching method. RWGSCAT is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. It has been successfully compiled and implemented using Lahey FORTRAN 77 under MS-DOS. A sample MS-DOS executable is provided on the distribution medium. It requires 377K of RAM for execution. Sample input data is also provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are

  10. Efficiency limits for single-junction and tandem solar cells

    Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. [Institute of Microtechnology (IMT), University of Neuchatel, A.-L Breguet 2, 2000 Neuchatel (Switzerland)

    2006-11-23

    Basic limitations of single-junction and tandem p-n and p-i-n diodes are established from thermodynamical considerations on radiative recombination and semi-empirical considerations on the classical diode equations. These limits are compared to actual values of short-circuit current, open-circuit voltage, fill factor and efficiency for amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) silicon solar cells. For single-junction cells, major efficiency gains should be achievable by increasing the short-circuit current density by better light trapping. The limitations of p-i-n junctions are estimated from recombination effects in the intrinsic layer. The efficiency of double-junction cells is presented as a function of the energy gap of top and bottom cells, confirming the 'micromorph' tandem (a-Si:H/{mu}c-Si:H) as an optimum combination of tandem solar cells. (author)

  11. Synchronisation of Josephson vortices in multi-junction systems

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2006-01-01

    A largely adopted model for the description of high-temperature superconductors such as BSCCO results in several long Josephson junctions one on the top of the other ("stacked"). The dynamics of the basic nonlinear excitation of the isolated long Josephson junction, the Josephson vortex, is......, that is mainly to retrieve the above described synchronous motion. We discuss the physics behind synchronization of nonlinear elements and we review applications to Josephson arrays. We discuss in the framework of a general model for synchronization, the Kuramoto model, a mechanism that can possibly...... modified by the coupling among the junctions, so the motion of the flux quanta in the various layers is affected by the flux dynamics in all other layers. Two basic states are possible: a synchronous motion, where all junctions are reflected at the edge at the same instant, and an out-of-phase motion...

  12. Coherent Magnetic Switching in a Permalloy Submicron Junction

    Wang, Junlin; Lu, Xianyang; Zhang, Jason; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2016-01-01

    This work provides a numerical micromagnetic study of the magnetic switching of a submicron magnetic junction in a Permalloy (Ni80Fe20) cross structure. The simulation results demonstrate that the magnetic domain at the junction can be controlled to switch coherently by the applied magnetic field. This coherent magnetic switching in the cross structure has been found to be reversible and the 2-bit information can be written in the magnetic junction. For information storage, this kind of device can also realize the function of a quaternary arithmetic unit. By varying the direction of the applied magnetic field, we have demonstrated that this magnetic junction could be the building block for a magnetoresistive random access memory (MRAM) or a quaternary magnetic arithmetic unit.

  13. Splenic torsion and ureteropelvic junction obstruction - a case report

    We report a case of a 13-year-old boy with a pedicle splenic torsion associated with ureteropelvic junction obstruction. The symptoms, clinical outcome and the imaging findings are presented. (author)

  14. Quantitatively accurate calculations of conductance and thermopower of molecular junctions

    Markussen, Troels; Jin, Chengjun; Thygesen, Kristian Sommer

    2013-01-01

    Thermopower measurements of molecular junctions have recently gained interest as a characterization technique that supplements the more traditional conductance measurements. Here we investigate the electronic conductance and thermopower of benzenediamine (BDA) and benzenedicarbonitrile (BDCN) con...

  15. Polymer light-emitting electrochemical cells with frozen junctions

    Gao, Jun; Li, Yongfang; Yu, Gang; Heeger, Alan J.

    1999-10-01

    We report on polymer light-emitting electrochemical cells (LECs) with frozen p-i-n junctions. The dynamic p-i-n junction in polymer LECs is stabilized by lowering the temperature below the glass transition temperature of the ion-transport polymer. Detailed studies have shown that the frozen p-i-n junction in LECs based on the luminescent polymer poly[5-(2'ethylhexyloxy)-2-methoxy-1,4-phenylene vinylene] and polyethylene oxide containing lithium triflate (PEO:LiCF3SO3) is stable at temperatures up to 200 K. Frozen-junction LECs offer a number of advantages; they exhibit unipolar light emission, balanced injection, fast response, high brightness, low operating voltage, and insensitivity to electrode materials and film thickness.

  16. Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions.

    Högl, Petra; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav

    2015-09-11

    Andreev reflection spectroscopy of ferromagnet-superconductor (FS) junctions [corrected] is an important probe of spin polarization. We theoretically investigate spin-polarized transport in FS junctions in the presence of Rashba and Dresselhaus interfacial spin-orbit fields and show that Andreev reflection can be controlled by changing the magnetization orientation. We predict a giant in- and out-of-plane magnetoanisotropy of the junction conductance. If the ferromagnet is highly spin polarized-in the half-metal limit-the magnetoanisotropic Andreev reflection depends universally on the spin-orbit fields only. Our results show that Andreev reflection spectroscopy can be used for sensitive probing of interfacial spin-orbit fields in a FS junction. PMID:26406844

  17. Tight-binding study of bilayer graphene Josephson junctions

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2012-11-01

    Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length.

  18. Superconducting switch made of graphene-nanoribbon junctions.

    Liang, Qifeng; Dong, Jinming

    2008-09-01

    The transmission of superconductor-graphene nanoribbon-superconductor junctions (SGS) has been studied by the non-equilibrium Green's function method. It is found that the on-site potential U in the center zigzag graphene nanoribbon (ZGNR) of the SGS junction plays an important role in the magnitude of the supercurrent I(c). As the effective Fermi energy μ(eff) (μ(eff) = μ(F)-U) goes from negative to positive, the SGS junction would suddenly transform from an 'OFF' state to an 'ON' state. And, as μ(eff) increases further, the I(c) will continue to increase. This switching behavior of the SGS junction shares the same origin with the zigzag GNR valley-isospin valve (Rycerz et al 2007 Nat. Phys. 3 172). Besides the valley-isospin, the density of states will also have an effect on the suppression of I(c). PMID:21828860

  19. Superconducting switch made of graphene-nanoribbon junctions

    The transmission of superconductor-graphene nanoribbon-superconductor junctions (SGS) has been studied by the non-equilibrium Green's function method. It is found that the on-site potential U in the center zigzag graphene nanoribbon (ZGNR) of the SGS junction plays an important role in the magnitude of the supercurrent Ic. As the effective Fermi energy μeff (μeff = μF-U) goes from negative to positive, the SGS junction would suddenly transform from an 'OFF' state to an 'ON' state. And, as μeff increases further, the Ic will continue to increase. This switching behavior of the SGS junction shares the same origin with the zigzag GNR valley-isospin valve (Rycerz et al 2007 Nat. Phys. 3 172). Besides the valley-isospin, the density of states will also have an effect on the suppression of Ic

  20. No junctional communication between epithelial cells in hydra

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    Diffusion gradients of morphogens have been inferred as a basis for the control of morphogenesis in hydra, and morphogenetic substances have been found which, on the basis of their molecular weight (MW), should be able to pass gap junctions. There have been several reports of the presence of gap...... junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  1. Evidence for Nonlocal Electrodynamics in Planar Josephson Junctions

    Boris, A. A.; Rydh, A.; Golod, T.; Motzkau, H.; Klushin, A. M.; Krasnov, V. M.

    2013-09-01

    We study the temperature dependence of the critical current modulation Ic(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O7-δ bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the Ic(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  2. Current–voltage characteristics of triple-barrier Josephson junctions

    De Luca, R., E-mail: rdeluca@unisa.it; Giordano, A.

    2015-06-15

    Highlights: • I–V characteristics of triple-barrier Josephson junctions (TBJJs) are studied. • The I–V characteristics are identical to those of an ordinary single-barrier Josephson junction. • In the presence of r. f. radiation integer and fractional Shapiro steps appear. - Abstract: Current–voltage characteristics of triple-barrier Josephson junctions are analytically and numerically studied. In the presence of a constant current bias and for homogeneous Josephson coupling of all layers, these systems behave exactly as ordinary Josephson junctions, despite their non-canonical current-phase relation. Deviation from this behaviour is found for inhomogeneous Josephson coupling between different layers in the device. Appearance of integer and fractional Shapiro steps are predicted in the presence of r. f. frequency radiation. In particular, the amplitudes of these steps are calculated in the homogeneous case as clear footprints of the non-canonical current-phase relation in these systems.

  3. Low-Cost Multi-Junction Photovoltaic Cells Project

    National Aeronautics and Space Administration — The proposed SBIR project will provide a pathway to dramatically reduce the cost of multi-junction solar cells. The project leverages a TRL6 micropackaging process...

  4. Systematic optimization of quantum junction colloidal quantum dot solar cells

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  5. Phase diffusion and charging effects in Josephson junctions

    Grabert, Hermann; Ingold, Gert-Ludwig; Paul, Benjamin

    1998-01-01

    The supercurrent of a Josephson junction is reduced by phase diffusion. For ultrasmall capacitance junctions the current may be further decreased by Coulomb blockade effects. We calculate the Cooper pair current by means of time-dependent perturbation theory to all orders in the Josephson coupling energy and obtain the current-voltage characteristic in closed form in a range of parameters of experimental interest. The results comprehend phase diffusion of the coherent Josephson current in the...

  6. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  7. Shot noise in magnetic double-barrier tunnel junctions

    Szczepański, T; Dugaev, V. K.; Barnaå, J.; Cascales, J. P.; Aliev, F. G.

    2013-01-01

    We calculate shot noise and the corresponding Fano factors in magnetic double-barrier tunnel junctions. Two situations are analyzed: (i) the central metallic layer is nonmagnetic while the external ones are ferromagnetic, and (ii) all of the metallic layers are ferromagnetic. In the latter case, the number of various magnetic configurations of the junctions is larger, which improves the functionality of such devices. The corresponding shot noise and Fano factor are shown to depend on the magn...

  8. Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling

    Guerrero, R.; Aliev, F. G.; Tserkovnyak, Y.; Santos, T. S.; Moodera, J.S.

    2006-01-01

    We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels...

  9. Spin nutation effects in molecular nanomagnet$-$superconductor tunnel junctions

    Abouie, J.; Abdollahipour, B.; A. A. Rostami

    2013-01-01

    We study the spin nutation effects of the molecular nanomagnet on the Josephson current through a superconductor$|$molecular nanomagnet$|$superconductor tunnel junction. We explicitly demonstrate that due to the spin nutation of the molecular nanomagnet two oscillatory terms emerge in the $ac$ Josephson current in addition to the conventional $ac$ Josephson current. Some resonances occur in the junction due to the interactions of the transported quasiparticles with the bias voltage and molecu...

  10. Prism-coupled light emission from tunnel junctions

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  11. Superpoissonian shot noise in organic magnetic tunnel junctions

    Cascales, Juan Pedro; Hong, Jhen-Yong; Martinez, Isidoro; Lin, Minn-Tsong; Szczepanski, Tomasz; Dugaev, Vitalii K.; Barnas, Jozef; Aliev, Farkad G.

    2015-01-01

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here we investigate conductance and shot noise in magnetic tunnel junctions with PTCDA barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10 and 40\\%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5-2 times the maximum value...

  12. Nonsinusoidal Current-Phase Relation in SFS Josephson Junctions

    Golubov, A. A.; Kupriyanov, M. Yu.; Fominov, Ya. V.

    2002-06-01

    Various types of the current-phase relation I(phi) in superconductor-ferromagnet-superconductor (SFS) point contacts and planar double-barrier junctions are studied within the quasiclassical theory in the limit of thin diffusive ferromagnetic interlayers. The physical mechanisms leading to highly nontrivial I(phi) dependence are identified by studying the spectral supercurrent density. These mechanisms are also responsible for the 0-pi transition in SFS Josephson junctions.

  13. Nonsinusoidal current-phase relation in SFS Josephson junctions

    Various types of the current-phase relation I(ψ) in superconductor-ferromagnet-superconductor (SFS) point contacts and planar double-barrier junctions are studied within the quasiclassical theory in the limit of thin diffusive ferromagnetic interlayers. The physical mechanisms, leading to highly nontrivial I(ψ) dependence, are identified by studying the spectral supercurrent density. These mechanisms are also responsible for the 0-π transition in SFS Josephson junctions

  14. Using ion irradiation to make high-Tc Josephson junctions

    In this article we describe the effect of ion irradiation on high-Tc superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-Tc film and a mesa one defined in a trilayer structure

  15. Development of Junction Elements from Study of the Bionics

    Wilson Kindlein Junior; Luis Henrique Alves C(a)ndido; André Canal Marques; Sandra Souza dos Santos; Maurício da Silva Viegas

    2007-01-01

    The applications of bionic methodology developed by the Laboratory of Design and Material Selection as basis in the creation of junction elements were demonstrated.These elements favor the application of Ecodesign in reference to the effectiveness of product dismount aiming the reduction of ambient impact in all its phases of use.The creation,the development and the confection of new junction elements were described,and case studies of new products developed specificallv with this purpose were presented.

  16. Magnetothermopower and magnon-assisted transport in ferromagnetic tunnel junctions

    McCann, Edward; Fal'ko, Vladimir I.

    2002-01-01

    We present a model of the thermopower in a mesoscopic tunnel junction between two ferromagnetic metals based upon magnon-assisted tunneling processes. In our model, the thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. We predict a particularly large thermopower effect in the case of a junction between two half-metallic ferromagnets with antiparallel polarizations, $S_{AP} \\sim - (k_B/e)$, in contrast to $S_{P} \\approx 0$ for ...

  17. Transports Regulators of Networks with Junctions Detected by Durations Functions

    Aubin, Jean-Pierre

    2013-01-01

    This study advocates a mathematical framework of ''transport relations'' on a network. They single out a subset of ''traffic states'' described by time, duration, position and other traffic attributes (called ''monads'' for short). Duration evolutions are non-negative, decreasing toward zero for incoming durations, increasing from zero for outgoing durations, allowing the detection of ''junction states'' defined as traffic states with ''zero duration''. A ''junction relation'' (crossroads, sy...

  18. Low Noise Current Amplifier Based on Mesoscopic Josephson Junction

    Delahaye, Julien; Hassel, J.; Lindell, Rene; Sillanpää, Mika; Paalanen, Mikko; Seppä, Heikki; Hakonen, Pertti J.

    2003-01-01

    We utilize the band structure of a mesoscopic Josephson junction to construct low noise amplifiers. By taking advantage of the quantum dynamics of a Josephson junction, i.e. the interplay of interlevel transitions and the Coulomb blockade of Cooper pairs, we create transistor-like devices, Bloch oscillating transistors, with considerable current gain and high input impedance. In these transistors, correlated supercurrent of Cooper pairs is controlled by a small base current made of single ele...

  19. Variability study of Si nanowire FETs with different junction gradients

    Jun-Sik Yoon; Kihyun Kim; Taiuk Rim; Chang-Ki Baek

    2016-01-01

    Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs) are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations...

  20. Josephson φ_0-junction in nanowire quantum dots

    Szombati, D. B.; Nadj-Perge, S.; Car, D.; Plissard, S.R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.

    2015-01-01

    The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads. Due to the chiral and time reversal symmetry of the Cooper pair tunneling process the current is strictly zero when ϕ vanishes. Only if these underlying symmetries are broken the supercurrent for ϕ = 0 may be finite. This corresponds to a ground state of the junction being offset by a ph...