WorldWideScience

Sample records for adenylate energy charge

  1. ADENYLATE ENERGY CHARGE AND ADENINE NUCLEOTIDE MEASUREMENTS AS INDICATORS OF STRESS IN THE MUSSEL, MYTILUS EDULIS, TREATED WITH DREDGED MATERIAL UNDER LABORATORY CONDITIONS

    Adenylate energy charge is an indication of the amount of energy available to an organism from the adenylate pool. t is calculated from measured concentrations of three adenine nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP...

  2. The adenylate energy charge as a new and useful indicator of capture stress in chondrichthyans.

    Guida, Leonardo; Walker, Terence I; Reina, Richard D

    2016-02-01

    Quantifying the physiological stress response of chondrichthyans to capture has assisted the development of fishing practices conducive to their survival. However, currently used indicators of stress show significant interspecific and intraspecific variation in species' physiological responses and tolerances to capture. To improve our understanding of chondrichthyan stress physiology and potentially reduce variation when quantifying the stress response, we investigated the use of the adenylate energy charge (AEC); a measure of available metabolic energy. To determine tissues sensitive to metabolic stress, we extracted samples of the brain, heart, liver, white muscle and blood from gummy sharks (Mustelus antarcticus) immediately following gillnet capture and after 3 h recovery under laboratory conditions. Capture caused significant declines in liver, white muscle and blood AEC, whereas no decline was detected in the heart and brain AEC. Following 3 h of recovery from capture, the AEC of the liver and blood returned to "unstressed" levels (control values) whereas white muscle AEC was not significantly different to that immediately after capture. Our results show that the liver is most sensitive to metabolic stress and white muscle offers a practical method to sample animals non-lethally for determination of the AEC. The AEC is a highly informative indicator of stress and unlike current indicators, it can directly measure the change in available energy and thus the metabolic stress experienced by a given tissue. Cellular metabolism is highly conserved across organisms and, therefore, we think the AEC can also provide a standardised form of measuring capture stress in many chondrichthyan species. PMID:26660290

  3. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties. PMID:21774788

  4. Charges of Nicotinamide Adenine nucleotides and Adenylate Energy Charge as regulatory parameters of the metabolism in Eschericia coli

    Andersen, Klaus Bahl; von Meyenburg, Kaspar

    1977-01-01

    NADH/(NADH+NAD), NADPH/(NADPH+NADP) and (ATP+½ADP)/(ATP+ADP+AMP) respectively has the values 0.05, 0.45 and 0.9 during steady state growth. The changes of the charges during changes of growth are examined.......NADH/(NADH+NAD), NADPH/(NADPH+NADP) and (ATP+½ADP)/(ATP+ADP+AMP) respectively has the values 0.05, 0.45 and 0.9 during steady state growth. The changes of the charges during changes of growth are examined....

  5. Measurement of the adenylate energy charge in Nereis diversicolor and Nephtys sp. (Polychaeta: Annelida): evaluation of the usefulness of AEC in pollution monitoring

    Verschraegen, K.; Herman, P.M.J.; Van Gansbeke, D.; Braeckman, A.

    1985-01-01

    ATP-content and adenylate energy charge (AEC) ratios were determined in two polychaete species (Nereis diversicolor and Nephtys sp.), sampled in ten stations along the heavily polluted Western Scheldt estuary (N. Belgium, S. Holland). The samples were taken between 27 December 1982 and 6 January 1983. Nereis diversicolor was also sampled in an unpolluted brackish water pond, and subjected to artificial stress by drying the organisms on filter paper. Adenine nucleotide levels were determined u...

  6. Alternative Respiration Induced by Glucose Stimulation and Variation of Adenylate Energy Charge in Glucose-Starved Cells of Green Alga Chlorella Protothecoides

    2001-01-01

    Effects of inhibitors and glucose on cytochrome and alternative respiration and on adenylate energy charge (AEC) in glucose-starved Chlorella protothecoides were investigated. 1 mmol/L azide (NaN3), which immediately caused an increase of O2 uptake by inhibiting the cytochrome pathway and stimulating alternative respiration, resulted in a decrease of AEC value from 0. 83 to 0. 34 within 3 minutes. When 1 mmol/L salicylhydroxamic acid (SHAM) was added into the cell suspension, there was no apparent variation in AEC. Adding NaN3 and SHAM together into cell suspension to inhibit both cytochrome and alternative pathways showed a same change of AEC as that of adding NaN3 alone. When 2.0 mmol/L of glucose was added to a suspension of glucose-starved cells, the O2 uptake rate was immediately stimulated from 0.81 up to 1.34 [μrnol/L O2 · min-] · (mL PCV)-1]. The respiration stimulated by glucose could be inhibited about 20% by adding 1 mmol/L SHAM. It was found by titration with SHAM in the absence and presence of NaN3 that 53% of O2 uptake went through the cytochrome pathway and 45% of the alternate pathway was operational in enhanced respiration. It implied that induced operation of the alternative respiratory pathway probably resulted from the burst of the electron flux into the electron transport chain by glucose stimulation.

  7. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  8. Cytosolic adenylate changes during exercise in prawn muscle

    31P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs

  9. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  10. Mechanism of adenylate kinase. Is there a relationship between local substrate dynamics, local binding energy, and the catalytic mechanism?

    Adenylyl (β,γ-methylene)diphosphonic acid (AMPPCP) labeled with deuterium at the adenine ring ([8-2H]AMPPCP) and at the β,γ-methylene group (AMPPCD2P), as well as adenosine 5'-monophosphate labeled at the adenine ring ([8-2H]AMP), was synthesized and used for deuterium nuclear magnetic resonance (NMR) determination of effective correlation times (τc) of the free nucleotide and the complexes with adenylate kinase (AK). Extensive and rigorous control experiments and theoretical analysis were performed to justify the validity of the experimental approaches, particularly the fast exchange condition, and the reliability of the τc values obtained. For the free nucleotide, the results suggest that the phosphonate group of free AMPPCP possesses appreciable local mobility relative to the adenine ring and that complexation with Mg2+ greatly reduced such a local mobility. These results suggest that the adenine ring of substrates is rigidly bound in all cases, that the phosphonate chain of AMPPCP possesses considerable local mobility, and that Mg2+ reduces such local mobility but does not totally immobilize it. The results suggest that no general correlation exists between the local rigidity of portions of a bound substrate and the corresponding (ground state) local binding energy contributed by these portions. The authors have found that the Ki values for the mixture, the Δ isomer, and the Λ isomer of CrATP are 16, 11, and 20 μM, respectively, which suggest that ground-state binding by AK is stereochemically permissive. The results of both problems fully support the conclusion that the phosphonate chain of AK-MgAMPPCP possesses considerable local mobility and illuminate the relationship between the dynamics of bound substrates and the catalytic mechanism

  11. Signal transduction protein PII from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-01-01

    Abstract PII proteins belong to a family of highly conserved signal transduction proteins widely spread in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-oxoglutarate (2-OG) and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. Here we studied the effect of ADP on in vitro PII signalling properties from the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different...

  12. Medium energy charged particle spectrometer

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)

  13. Energy status parameters, hypoxia fraction and radiocurability across tumor types

    Under full nutrient in vitro conditions, the cellular adenylate energy charge of six different rodent and human tumor cell types was identical, i.e., 0.94 ± 0.01, suggesting the potential utility of this parameter as a cell (and tissue) independent marker of nutrient deprivation and hypoxia, across tumor types. The adenylate energy charge values of tumors, arising from these cells, was reduced and variable ranging from 0.72 to 0.91 for the various tumor types. However, neither the tumor adenylate energy charge, NTP/Pi, nor PCr/Pi ratios correlated with the radiobiologic hypoxic cell fractions across tumor types. The reduced adenylate energy charge in vivo suggests varying degrees of nutrient deprivation in the different tumor types, however, factors other than or in addition to hypoxia likely contribute to tumor energy status. (orig.)

  14. Examination of the relationship of substrate dynamics to enzymic structure, binding energy, and catalysis: NMR studies of adenosine 5'-triphosphate and adenylate kinase

    By measuring the deuterium NMR-relaxation rates of adenylyl (β, λ-methylene)diphosphonic acid (AMPPCP) labeled with deuterium at the adenine ring [8-2H]AMPPCP and upon the phosphonate chain (AMPPCD2P) free in solution and bound to the MgATP site of adenylate kinases (AK) the local motional dynamics of AMPPCP and MgAMPPCP in the two environments were established. The analysis of the experimental data involved the rigorous experimental verification that the systems studied were in the fast exchange limit on an NMR timescale. In addition analysis required careful examination of the equations describing quadrupolar relaxation, particularly the spectral density equations which contain information on molecular motion. Having determined the local dynamics of the nucleotides and their complexes with Mg + 2 free in solution and bound to AK and observing that MgAMPPCP is an excellent model for the natural substrate of AK, MgATP, we examined the relationship of local substrate dynamics to enzyme structure, binding energy, and catalysis

  15. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor.

    Sorrentino, Luca; Calogero, Alessandra Maria; Pandini, Vittorio; Vanoni, Maria Antonietta; Sevrioukova, Irina F; Aliverti, Alessandro

    2015-12-01

    Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide. PMID:26535916

  16. Gravitational Binding Energy in Charged Cylindrical Symmetry

    Sharif, M

    2014-01-01

    We consider static cylindrically symmetric charged gravitating object with perfect fluid and investigate the gravitational binding energy. It is found that only the localized part of the mass function provides the gravitational binding energy, whereas the non-localized part generated by the electric coupling does not contribute for such energy.

  17. Energy storage device with large charge separation

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  18. Energy extremum principle for charged black holes

    Fraser, Scott; Funkhouser, Shaker Von Price

    2015-11-01

    For a set of N asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well separated, we prove the following extremum principle: the extremal charge configuration (|qi|=mi for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. We prove this result through second order in an expansion in the inverse separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for other static black holes, and is consistent with the independently known Bogomol'nyi-Prasad-Sommerfield (BPS) energy minimum.

  19. A Continuous Kinetic Assay for Adenylation Enzyme Activity and Inhibition

    Daniel J. Wilson; Aldrich, Courtney C.

    2010-01-01

    Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hy...

  20. Pacemakers charging using body energy

    Dinesh Bhatia

    2010-01-01

    Full Text Available Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient′s heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat. Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists - typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery.

  1. Charged Vaidya Solution Satisfies Weak Energy Condition

    Chatterjee, Soumyabrata; Virmani, Amitabh

    2015-01-01

    The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori [1] in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f(R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m(v) is proportional to the charge function q(v). When the proportionality constant \

  2. Regulation of brain adenylate cyclase by calmodulin

    This thesis examined the interaction between the Ca2+-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[125I]-CaM-diazopyruvamide (125I-CAM-DAP) behaved like native CaM with respect to Ca2+-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca2+-dependent stimulation of adenylate cyclase. 125I-CaM-DAP cross-linked to CaM-binding proteins in a Ca2+-dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  3. Low energy charge capture cross sections

    This report surveys the available data on charge capture from atomic H by partially and completely stripped light ions, and partially stripped heavy ions. The energy range is nominally between 3 and 200 eV, although the scarcity of data for many species has meant that these limits are not always observed. Analytical fits to the available data are given. General theoretical considerations are discussed, and some results on the molecular potential energy diagrams and low energy capture for the C4+ + H and Ni3+ + H systems are given. (author)

  4. Uridylation and adenylation of RNAs.

    Song, JianBo; Song, Jun; Mo, BeiXin; Chen, XueMei

    2015-11-01

    The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area. PMID:26563174

  5. Electrostatic vibration energy harvester with increased charging current

    The analysis of the operation of the electrostatic vibration energy harvester to charge self-contained power supply is carried out. An analytical expression to estimate the average charging current taking into account diode's reverse current is obtained. The ways to increase the charging current were found. The harvester with increased charging current containing no switches and inductive elements is suggested

  6. Electrostatic energy analyzers for high energy charged particle beams

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics

  7. Molecular cloning and amplification of the adenylate cyclase gene.

    Wang, J Y; Clegg, D O; Koshland, D E

    1981-01-01

    A segment of DNA containing cya, the gene for adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1], has been isolated from Salmonella typhimurium. The phage lambda gt4 was used as a cloning vector and adenylate cyclase-positive hybrid phages were isolated that complemented adenylate cyclase-negative bacteria. The cloned DNA fragment encodes a polypeptide of molecular weight 81,000 that gives rise to adenylate cyclase activity. This protein represents a functional mutant of the ...

  8. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  9. Charge independence and charge symmetry breaking interactions and the Coulomb energy anomaly in isobaric analog states

    Effects of CIB (charge independence breaking) and CSB (charge symmetry breaking) interactions on the Coulomb displacement energies of isobaric analog states are investigated for 48Ca, 90Zr and 208Pb. Mass number dependence of the Coulomb energy anomalies is well explained when CIB and CSB interactions are used which reproduce the differences of the scattering lengths as well as those of the effective ranges of low energy nucleon-nucleon scattering. (author) 17 refs., 3 figs., 3 tabs

  10. Ion momentum and energy transfer rates for charge exchange collisions

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  11. Tariff charges for electric power and energy

    Tariff types and rules of their construction are presented. Present Polish tariffs are described in detail. The components of tariff charges are given together with some proposals of their optimization. 15 refs, 3 figs, 1 tab

  12. Dynamical charge fluctuation at FAIR energy

    The Compressed Baryonic Matter (CBM) experiment to be held at the Facility for antiproton and ion research (FAIR) is being designed to investigate the baryonic matter under extreme thermodynamic conditions. The hot and dense matter produced in this experiment will be rich in baryon number. It would be worthwhile to examine how the signatures proposed for identifying and characterizing a baryon free QGP like state behave in a baryon rich environment. Event-by-event fluctuation of net electrical charge and/or baryon number is one such indicator of the formation of the QGP, used and tested in RHIC and LHC heavy-ion experiments. One starts by defining the net charge Q = (N+ - N-) and the total charge Nch = (N+ + N-) where the quantities N+ and N- are respectively, the multiplicities of positively and negatively charged particles

  13. Electric Charge as a Form of Imaginary Energy

    Tianxi Zhang

    2008-04-01

    Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.

  14. Research on Battery Charging-Discharging in New Energy Systems

    Che Yanbo; Zhou Yan; Sun Yue; Hu Bo

    2013-01-01

    As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of t...

  15. Phantom Energy Accretion by a Stringy Charged Black Hole

    M.Sharif; G.Abbas

    2012-01-01

    We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric Row of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto a black hole decreases its mass. Further, the location of the critical points of accretion is explored, which yields a mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.%We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole.For this purpose,we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole.It is found that phantom energy accreting onto a black hole decreases its mass.Further,the location of the critical points of accretion is explored,which yields a mass to charge ratio.This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity,hence cosmic censorship hypothesis remains valid here.

  16. Energy Charge, Redox State, and Metabolite Turnover in Single Human Hepatocytes Revealed by Capillary Microsampling Mass Spectrometry.

    Zhang, Linwen; Vertes, Akos

    2015-10-20

    Metabolic analysis of single cells to uncover cellular heterogeneity and metabolic noise is limited by the available tools. In this study, we demonstrate the utility of capillary microsampling electrospray ionization mass spectrometry with ion mobility separation for nontargeted analysis of single cells. On the basis of accurate mass measurements and collision cross-section determination, a large number of chemical species, 22 metabolites and 54 lipids, were identified. To assess the cellular response to metabolic modulators, the adenylate energy charge (AEC) levels for control and rotenone treated cells were evaluated. A significant reduction in the AEC values was observed for rotenone treated cells. For the cells under oxidative stress, the mean value for the [reduced glutathione (GSH)]/[oxidized glutathione (GSSG)] ratio was significantly decreased, whereas the distribution of the [uridine diphosphate N-acetylhexosamine (UDP-HexNAc)]/[uridine diphosphate hexose (UDP-hexose)] ratio exhibited dramatic tailing to higher values. Lipid turnover rates were studied by pulse-chase experiments at the single cell level. PMID:26398405

  17. Charge transfer energies of tetraphenyl-porphyrin-fullerene dyads

    Zope, Rajendra; Olguin, Marco; Baruah, Tunna

    2011-03-01

    Porphyrin-fullerene dyads are extensively studied for their photoinduced charge transfer properties. They form a donor-acceptor pair where the fullerene is the acceptor. Accurate theoretical estimate of the charge transfer energies in such systems has proven to be a challenge. In this study we examine the charge transfer energetics for such dyads using our recently developed density functional based excited state method which can yield reliable estimates of charge transfer energetics. In this study the effect of varying both the donor and acceptor components are studied by changing the tetra-phenyl-porphyrin (TPP) to Zn-TPP. Similarly the acceptor component is changed from C60 to C70. The structures were optimized using DFT-D3 theory at the all-electron level. Among the donor-acceptor pairs studied, we find that the ZnTPP-C60 has the lowest charge transfer energy (1.69 eV) and the TPP-C70 (2.13 eV) has the highest charge transfer energy. Supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE-SC0002168.

  18. Pituitary adenylate cyclase activating polypeptide and migraine

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients with...... moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine...

  19. Research on Battery Charging-Discharging in New Energy Systems

    Che Yanbo

    2013-07-01

    Full Text Available As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of the energy converter, which make the power storage and supply as a whole and the design of the charge and discharge method, will play an important role in efficient utilization of the battery system. As a part of the new energy system, the study makes battery and the charging and discharging system as a whole to store energy, which can store and release electric energy high efficiently according to the system state and control the bidirectional flow of energy precisely. Using TMS320F2812 as the control core, the system which integrates charging and discharging with battery monitoring can achieve the bidirectional Buck/Boost power control. It can achieve three-stage charging and selective discharging of the battery. Due to the influence of the diode reverse recovery time, current oscillation will appear. In order to eliminate the oscillation, we can set the circuit to work in critical conduction mode. The experimental result shows that the system can achieve the charging and discharging control of lead-acid battery and increase the battery life time further.

  20. Energy mechanism of charges analyzed in real current environment

    Ianconescu, R; Ianconescu, Reuven

    2003-01-01

    We analyze in this work the energy transfer process of accelerated charges, the mass fluctuations accompanying this process, and their inertial properties. Based on a previous work, we use here the dipole antenna, which is a very convenient framework for such analysis, for analyzing those characteristics. We show that the radiation process can be viewed by two energy transfer processes: one from the energy source to the charges and the second from the charges into the surrounding space. Those processes, not being in phase, result in mass fluctuations. The same principle is true during absorption. We show that in a transient period between absorption and radiation the dipole antenna gains mass according to the amount of absorbed energy and loses this mass as radiated energy. We rigorously prove that the gain of mass, resulting from electrical interaction has inertial properties in the sense of Newton's third low. We arrive to this result by modeling the reacting spacetime region by an electric dipole.

  1. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles

    FU Hong-Bin; WANG Bao-Hong; DING Bao-Wei; LIU Zhao-Yuan

    2009-01-01

    The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions Aq+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A8,9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.

  2. 10 CFR 904.6 - Charge for capacity and firm energy.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  3. Quasilocal Energy for Static Charged Black Holes in String Theory

    WANG Shi-Liang; JING Ji-Liang; WANG Yong-Jiu

    2001-01-01

    The Brown-York quasilocal energies of some static charged dilaton black holes are calculated, and then the validity of Martinez's conjecture is explored in string theory. It is shown that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the conjecture that the Brown-York quasilocal energy at the outer horizon of black hole reduces to twice of its irreducible mass is still applicable for the static charged black holes in string theory. The result is different from Bose-Naing's one.``

  4. Thermal energy and charge currents in multi-terminal nanorings

    Kramer, Tobias; Kreisbeck, Christoph; Riha, Christian; Chiatti, Olivio; Buchholz, Sven S.; Wieck, Andreas D.; Reuter, Dirk; Fischer, Saskia F.

    2016-06-01

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  5. Charging electric cars from solar energy

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  6. Inorganic electret with enhanced charge stability for energy harvesting

    Wang, Fei; Hansen, Ole

    We report a new surface treatment of inorganic electret materials which enhances the charge stability. Coating the surfaces with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane (FDTS) makes the electret surface more hydrophobic which improves the surface charge stability under high humidity condit...... conditions. Thermal tests show that the thermal stability of charge in the inorganic electrets is also much better than that of polymer materials such as CYTOP. A demonstrator device with SiO2 electrets shows promising results for energy harvesting applications....

  7. Charge-pickup of 238U at relativistic energies

    Cross sections for the charge-pickup of 238U projectiles were measured at E/A=600 and 1000 MeV for seven different targets (Be, C, Al, Cu, In, Au and U). Events with two fission fragments with a sum charge of 93 in the exit channel were selected. Due to the significant excitation energy, the dominant part of produced Np nuclei fission instead of decaying to the ground state by evaporation. The observed cross sections can be well reproduced by intranuclear-cascade-plus-evaporation calculations and, therefore, confirm recent results that no exotic processes are needed to explain charge-pickup processes. (orig.)

  8. Equilibrium charge state distributions of high energy heavy ions

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  9. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    Zhongyong Wang; Peng Tao; Yang Liu; Hao Xu; Qinxian Ye; Hang Hu; Chengyi Song; Zhaoping Chen; Wen Shang; Tao Deng

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with ...

  10. Energy dissipation of highly charged ions interacting with solid surfaces

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO2. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 ± 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO2 targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar7+ was also observed. The ratio of the re-emitted energy is about (10 ± 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO2 and for charge states below q=7. For Ar8+ and Ar9+, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO2. These results are in good agreement with the calorimetric values. In addition, the experimental results

  11. Mass and Charge Distribution in Low-Energy Fission

    The mass and charge distributions for thermal-neutron fission of U235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U235 that are discussed include thermal-neutron fission of U233 and Pu239, spontaneous fission of Pu240 and Cf252, 14-MeV neutron fission of U235 and U238, 11-MeV proton fission of Ra226 and 22-MeV deuteron fission of Bi209. (author)

  12. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    Forero Camacho Oscar Mauricio

    2016-01-01

    Full Text Available Electric Vehicles (EV technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages of both tests in terms of regulation of the aggregated local power, power capacity and the power exchange with the grid. The smart charging tests performed have demonstrated that even with a simple control algorithm, without any forecasting, it is possible to provide the required charging and at the same time the power system services, reducing the peak power and the energy losses in the power connection line of the power exchange with the national grid.

  13. Structural studies of Schistosoma mansoni adenylate kinases

    Marques, I.A. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Pereira, H.M.; Garrat, R.C. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil)

    2012-07-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  14. Medical radiation dosimetry theory of charged particle collision energy loss

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  15. Metabolic energy is required in human platelets at any stage during optical aggregation and secretion

    Akkerman, Jan Willem N.; Verhoeven, A J M; Mommersteeg, M.E.

    1984-01-01

    The relationship between metabolic energy and platelet aggregation and secretion was investigated by sudden exhaustion of the cell energy content after these platelet responses had been initiated. In normal platelets, optical aggregation was at any stage susceptible to energy exhaustion, whereas single platelet disappearance and secretion were hardly affected. Prelowering the platelet energy content, while preserving the adenylate energy charge, made both optical aggregation and the secretion...

  16. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  17. Renewable Energy for Electric Vehicles: Price Based Charging Coordination

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power s

  18. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  19. Acceleration of low energy charged particles by gravitational waves

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2005-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  20. Laser focusing of high-energy charged-particle beams

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  1. Charge, mass and energy measured in the Plastic Ball

    In relativistic nuclear collisions the multiplicity of charged particles reflects the violence of the reaction and, presumably, the impact parameter. Furthermore, the total transverse energy in a collision might be a signature of compression. Both quantities are global features that can be measured in the Plastic Ball. The total mass in an event in light charge fragments can be detected (with assumptions made in certain kinematic regions) through particle identification. In addition, the neutron detection efficiency is quite high because of the large thickness of the plastic scintillator in the Plastic Ball. Here the authors present several global quantities for the reaction of 400 MeV/nucleon Nb + Nb

  2. Interaction of low-energy highly charged ions with matter

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  3. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  4. Restrictions on charged Higgs bosons from low-energy data

    Charged Higgs bosons, which are present if the minimal one-doublet Higgs sector of the Standard Model is extended to include two (or more) Higgs doublets, may contribute to a variety of low-energy processes via H± exchange in internal loops. Consistency with data places overall restrictions on the mass and coupling parameter. Results are presented from a combined analysis of these contributions which take the large freedom in the allowed ranges of all the parameters into account

  5. Models for Energy and Charge Transport and Storage in Biomolecules

    Mingaleev, S. F.; Christiansen, P. L.; Gaididei, Yu. B.; M. Johansson; Rasmussen, K.Ø.

    1999-01-01

    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the tot...

  6. Energy loss of charged particles colliding with an oscillator

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  7. Instrument to measure energy and charge of low energy interplanetary particles

    Tums, E.; Gloeckler, G.; Cain, J.; Sciambi, R.; Fan, C. Y.

    1974-01-01

    An experiment to measure the charge composition and energy spectra of ultra low energy charged particles in interplanetary space has been developed and launched on the IMP 8 (Explorer 50) satellite on Oct. 26, 1973. The instrument consists of two separate sensors sharing common electronics. One of these sensors uses a thin window gas proportional counter to measure the rate of energy loss and a totally depleted silicon surface barrier detector to measure total energy of incoming particles. The energy range for two dimensional analysis extends from 300 KeV to 2.5 MeV for protons and 60 KeV/nucleon to 25 MeV/nucleon for iron with excellent resolution of individual chemical elements. The other sensor combines electrostatic deflection with total energy measurements in silicon surface barrier detectors to give the ionic charge and kinetic energy of the particle.

  8. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  9. Functional Arrays for Light Energy Capture and Charge Separation.

    Flamigni, Lucia

    2016-06-01

    This article draws, with a simplified but rigorous approach, the typical procedure for the design and optimization of functional multicomponent structures for light to chemical energy conversion for two series of multipartite structures based on prototypical chromophores: polypyridyl metal complexes and porphyrinoids. Starting from a photophysical study performed by steady-state and time-resolved spectroscopic methods, the full deactivation dynamics of the light-absorbing chromophore(s) are disclosed. The preferred deactivation step (electron transfer in this case) is then optimized. This can be done by simply operating on the solvent, but also by changing structure/components that can alter electronic and nuclear factors, via continuous feedback with the research groups in charge of the synthesis. With a presentation suitable for a wide audience, it is here discussed how the effective design of functional multicomponent structures for charge separation can be achieved. PMID:27027981

  10. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    Senthilkumar, K.; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of

  11. Photoinduced charge and energy transfer in molecular wires.

    Gilbert, Mélina; Albinsson, Bo

    2015-02-21

    Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor-bridge-acceptor (D-B-A) systems. Of utmost importance in such systems is to understand how to control signal transmission, i.e. how fast electrons or excitation energy could be transferred between the donor and acceptor and the role played by the bridge (the "molecular wire"). After a brief description of the electron and energy transfer theory, we aim to give a simple yet accurate picture of the complex role played by the bridge to sustain donor-acceptor electronic communication. Special emphasis is put on understanding bridge energetics and conformational dynamics effects on the distance dependence of the donor-acceptor electronic coupling and transfer rates. Several examples of donor-bridge-acceptor systems from the literature are described as a support to the discussion. Finally, porphyrin-based molecular wires are introduced, and the relationship between their electronic structure and photophysical properties is outlined. In strongly conjugated porphyrin systems, limitations of the existing electron transfer theory to interpret the distance dependence of the transfer rates are also discussed. PMID:25212903

  12. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    Bosman, M; Nessi, Marzio

    2000-01-01

    The intrinsic performance of the ATLAS barrel and extended barrelcalorimeters for the measurement of charged pions is presented. Pion energyscans (E = 20, 50, 200, 400 and 1000 GeV) at two pseudo-rapidity points ($\\eta$= 0.3 and 1.3) and pseudorapidity scans ($-0.2 < \\eta < 1.8$) with pions ofconstant transverse energy ($E_T = 20$ and 50 GeV) are analysed. A simpleapproach, that accounts in first order for non-compensation and dead materialeffects, is used for the pion energy reconstruction. The intrinsic performancesof the calorimeter are studied: resolution, linearity, effect of dead material,tails in the energy distribution. The effect of electronic noise, cell energycuts and restricted cone size are investigated.

  13. A large solid angle detector for medium energy charged particles

    A charged particle detector with 0.7 sr solid angular acceptance has been built, principally to detect protons in the energy range 25-150 MeV in experiments with tagged photon beams. The detector consists of a three element ΔE1-ΔE2-E plastic scintillator telescope. Position information is obtained from the time difference between signals from the two ends of each scintillator. The design of the detector and tests of its performance are described. An energy resolution of 2.8 MeV fwhm at 60 MeV proton energy, and a two-dimensional position resolution of 24 mm x 41 mm fwhm has been obtained. Successful operation in the tagged photon environment is demonstrated. (orig.)

  14. Models for Energy and Charge Transport, and Storage in Biomolecules

    Mingaleev, S F; Gaididei, Yu B; Johansson, M; Rasmussen, K O; Mingaleev, Serge F.; Christiansen, Peter L.; Gaididei, Yuri B.; Johansson, Magnus; Rasmussen, Kim O.

    1999-01-01

    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.

  15. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  16. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  17. On the energy losses of fast charged particles

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  18. Suppression of Platelet Aggregation by Bordetella pertussis Adenylate Cyclase Toxin

    Iwaki, Masaaki; Kamachi, Kazunari; Heveker, Nikolaus; Konda, Toshifumi

    1999-01-01

    The effect of Bordetella pertussis adenylate cyclase toxin (ACT) on platelet aggregation was investigated. This cell-invasive adenylate cyclase completely suppressed ADP (10 μM)-induced aggregation of rabbit platelets at 3 μg/ml and strongly suppressed thrombin (0.2 U/ml)-induced aggregation at 10 μg/ml. The suppression was accompanied by marked increase in platelet intracellular cyclic AMP (cAMP) content and was diminished by the anti-ACT monoclonal antibody B7E11. A catalytically inactive p...

  19. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  20. Modeling energy and charge transports in pi-conjugated systems

    Shin, Yongwoo

    Carbon based pi-conjugated materials, such as conducting polymers, fullerene, carbon nanotubes, graphene, and conjugated dendrimers have attracted wide scientific attentions in the past three decades. This work presents the first unified model Hamiltonian that can accurately capture the low-energy excitations among all these pi-conjugated systems, even with the presence of defects and heterogeneous sites. Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter gamma scales the electronphonon coupling strength in aromatic rings and the other parameter epsilon specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), polyacenes, fullerene, carbon nanotubes, graphene, and graphene nanoribbons with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches. The charge and energy transports along -conjugated backbones can be modeled on the adiabatic potential energy surface. The adiabatic minimum-energy path of a self-trapped topological soliton is computed for trans-polyacetylene. The frequently cited activation barrier via a ridge shift of the hyper-tangent order parameter overestimates its true value by 14 orders of magnitude. Self-trapped solitons migrate along the Goldstone mode direction with continuously adjusted amplitudes so that a small-width soliton expands and a large-width soliton shrinks when they move uphill. A soliton with the critical width may migrate without any amplitude modifications. In an open chain as solitons move from the chain center toward a chain edge, the minimum-energy path first follows a tilted washboard. Such a generic constrained Goldstone mode relaxation

  1. Coulomb charging energy of vacancy-induced states in graphene

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  2. Charge Calibration of the ANTARES high energy neutrino telescope

    Baret, Bruny

    2009-01-01

    ANTARES is a deep-sea, large volume Mediterranean neutrino telescope installed off the Coast of Toulon, France. It is taking data in its complete configuration since May 2008 with nearly 900 photomultipliers installed on 12 lines. It is today the largest high energy neutrino telescope of the northern hemisphere. The charge calibration and threshold tuning of the photomultipliers and their associated front-end electronics is of primary importance. It indeed enables to translate signal amplitudes into number of photo-electrons which is the relevant information for track and energy reconstruction. It has therefore a strong impact on physics analysis. We will present the performances of the front-end chip, so-called ARS, including the waveform mode of acquisition. The in-laboratory as well as regularly performed in situ calibrations will be presented together with related studies like the time evolution of the gain of photomultipliers

  3. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  4. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement

  5. Nucleon charge-exchange reactions at intermediate energy

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  6. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    K. Senthilkumar; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular o...

  7. A theoretical description of charge reorganization energies in molecular organic P-type semiconductors.

    Brückner, Charlotte; Engels, Bernd

    2016-06-01

    Charge transport properties of materials composed of small organic molecules are important for numerous optoelectronic applications. A material's ability to transport charges is considerably influenced by the charge reorganization energies of the composing molecules. Hence, predictions about charge-transport properties of organic materials deserve reliable statements about these charge reorganization energies. However, using density functional theory which is mostly used for the predictions, the computed reorganization energies depend strongly on the chosen functional. To gain insight, a benchmark of various density functionals for the accurate calculation of charge reorganization energies is presented. A correlation between the charge reorganization energies and the ionization potentials is found which suggests applying IP-tuning to obtain reliable values for charge reorganization energies. According to benchmark investigations with IP-EOM-CCSD single-point calculations, the tuned functionals provide indeed more reliable charge reorganization energies. Among the standard functionals, ωB97X-D and SOGGA11X yield accurate charge reorganization energies in comparison with IP-EOM-CCSD values. © 2016 Wiley Periodicals, Inc. PMID:27059122

  8. Scaling of the Coulomb Energy Due to Quantum Fluctuations in the Charge on a Quantum Dot

    Molenkamp, L. W; Flensberg, Karsten; Kemerink, M.

    1995-01-01

    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy...... scales quadratically with the reflection probability of the barriers. The observed power law agrees with a recent theory....

  9. Assessment of renewable energy technologies for charging electric vehicles in Canada

    Electric vehicle charging by renewable energy can help reduce greenhouse gas emissions. This paper presents a data-intensive techno-economic model to estimate the cost of charging an electric vehicle with a battery capacity of 16 kW h for an average travel distance of 65 km from small-scale renewable electricity in various jurisdictions in Canada. Six scenarios were developed that encompass scale of operation, charging time, and type of renewable energy system. The costs of charging an electric vehicle from an off-grid wind energy system at a charging time of 8 h is 56.8–58.5 cents/km in Montreal, Quebec, and 58.5–60.0 cents/km in Ottawa, Ontario. However, on integration with a small-scale hydro, the charging costs are 9.4–11.2 cents/km in Montreal, 9.5–11.1 cents/km in Ottawa and 10.2–12.2 cents/km in Vancouver, British Columbia. The results show that electric vehicle charging from small-scale hydro energy integration is cost competitive compared charging from conventional grid electricity in all the chosen jurisdictions. Furthermore, when the electric vehicle charging time decreases from 8 to 4 h, the cost of charging increases by 83% and 11% from wind and hydro energy systems, respectively. - Highlights: • Techno-economic analysis conducted for EV charging from wind and hydro. • EV charging from hydro energy is cost competitive than from wind energy. • GHG mitigation estimated from operation of EV charged from renewable energy. • Sensitivity of key parameters on cost of charging considered

  10. Strong subadditivity, null energy condition and charged black holes

    Using the Hubeny-Rangamani-Takayanagi (HRT) conjectured formula for entanglement entropy in the context of the AdS/CFT correspondence with time-dependent backgrounds, we investigate the relation between the bulk null energy condition (NEC) of the stress-energy tensor with the strong sub-additivity (SSA) property of entanglement entropy in the boundary theory. In a background that interpolates between an AdS to an AdS-Reissner-Nordstrom-type geometry, we find that generically there always exists a critical surface beyond which the violation of NEC would naively occur. However, the extremal area surfaces that determine the entanglement entropy for the boundary theory, can penetrate into this forbidden region only for certain choices for the mass and the charge functions in the background. This penetration is then perceived as the violation of SSA in the boundary theory. We also find that this happens only when the critical surface lies above the apparent horizon, but not otherwise. We conjecture that SSA, which is thus non-trivially related to NEC, also characterizes the entire time-evolution process along which the dual field theory may thermalize

  11. Strong Subadditivity, Null Energy Condition and Charged Black Holes

    Caceres, Elena; Pedraza, Juan F; Tangarife, Walter

    2014-01-01

    Using the Hubeny-Rangamani-Takayanagi (HRT) conjectured formula for entanglement entropy in the context of the AdS/CFT correspondence with time-dependent backgrounds, we investigate the relation between the bulk null energy condition (NEC) of the stress-energy tensor with the strong sub-additivity (SSA) property of entanglement entropy in the boundary theory. In a background that interpolates between an AdS to an AdS-Reissner-Nordstrom-type geometry, we find that generically there always exists a critical surface beyond which the violation of NEC would naively occur. However, the extremal area surfaces that determine the entanglement entropy for the boundary theory, can penetrate into this forbidden region only for certain choices for the mass and the charge functions in the background. This penetration is then perceived as the violation of SSA in the boundary theory. We also find that this happens only when the critical surface lies above the apparent horizon, but not otherwise. We conjecture that SSA, which...

  12. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  13. Isospin Effect of Charged Particle Multiplicity in Intermediate Energy Heavy Ion Collisions

    HuRongjiang; WuHeyu; JinGenming; ZhuYongtai; DuanLimin; XiaoZhigang; WangHongwei

    2003-01-01

    The dependences of He and intermediate mass fragments (IMF) production rates in the reactions 55 MeV/u 40Ar+58,64 Ni on the isospin, impact parameter and primary excitation energy of the reaction nuclear system were studied by using the 4π charged particle multi-detector array system (MUDAL). For the mentioned two reaction systems, the measured He particle contribution in the total charged particle multiplicity increases with increasing the total charged particle multiplicity but for the contribution of IMFs in the total charged particle multiplicity increases with increasing the total charged particle multiplicity at lower total charged particle multiplicities, and latter on it drops down with further increasing of the total charged particle multiplicities (see Fig.l). The experimental results of these two reaction systems with the same nuclear charge indicate that the contribution of He and IMFs in the total charged particle multiplicities are obviously isospin dependent.

  14. High Energy Ionic Charge State Composition In Recent Large Solar Energetic Particle Events

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2003-01-01

    The ionic charge states of solar energetic particles (SEPs) provide information on the temperature of source materials and on conditions during acceleration and transport. SAMPEX/MAST measures mean ionic charge states at > 15 MeV/nuc using the geomagnetic rigidity filter technique. Charge state measurements by MAST for gradual SEP events suggest a continuum of charge states correlated with abundance ratios for a variety of elements, similar to what is observed at lower energies. In case...

  15. Correlated inter-domain motions in adenylate kinase.

    Santiago Esteban-Martín

    2014-07-01

    Full Text Available Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK, using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs measured under steric alignment by nuclear magnetic resonance (NMR. We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.

  16. Charged Polymer Membranes for Environmental/Energy Applications.

    Kamcev, Jovan; Freeman, Benny D

    2016-06-01

    Ion exchange membranes are used in various membrane-based processes (e.g., electrodialysis, fuel cells). Charged solute transport is largely governed by the charged groups on the polymer backbone. In this review, fundamental relationships describing salt permeability and ionic conductivity, as well as water permeability, in charged polymers are developed within the framework of the Nernst-Planck and solution-diffusion models. The influence of fixed charge groups and polymer structure on water sorption and diffusion is discussed. Current understanding of ion partitioning in charged polymers, focusing on the use of thermodynamic models (i.e., Donnan theory) to describe such phenomena, is summarized. Ion diffusivity data from the literature are interpreted using a model developed by Mackie and Meares to assess relative and absolute effects of the polymer and fixed charge groups on ion diffusivity. Furthermore, membrane requirements for several important technologies are listed. Knowledge gaps and opportunities for fundamental research are also discussed. PMID:26979410

  17. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. (Univ. of Miami School of Medicine, FL (USA))

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  18. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking [125I]PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by [125I]PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that [a] no other AC-regulatory proteins are known to be of this size, [b] the catalytic unit of bovine brain enzyme is in the same range and [c] this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase

  19. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227. ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  20. Charge Retention in Quantized Energy Levels of Nanocrystals

    Dana, Aykutlu; Akca, Imran; Ergun, Orcun; Aydinli, Atilla; Turan, Rasit; Finstad, Terje

    2006-01-01

    Understanding charging mechanisms and charge retention dynamics of nanocrystal memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium nanocrystals embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of nanocrystals and that the decay is dominated by direct tunnelling. Discharge rates are calculated usin...

  1. Effects of cadmium on canine renal cortical adenylate cyclase

    The present studies examine the effects of cadmium (Cd2+) on adenylate cyclase activity in basolateral renal cortical membranes from normal dogs. Cd2+, in the dose range of 1 to 200 μM caused a dose-dependent inhibition of adenylate cyclase activity due to competitive inhibition with respect to the allosteric activator Mg2+. In addition, increasing Cd2+ concentrations from 0 to 25 μM resulted in a purely competitive inhibition with respect to ATP. In the absence of other divalent cations Cd2+ was a potent stimulator of basal adenylate cyclase activity, far more potent than the physiological activator of the system Mg2+. It is concluded that Cd2+ behaves as a partial agonist in this system, due to its ability to form a new enzymatic substrate complex: Cd-ATP, which competes with the physiological substrate Mg-ATP at the catalytic site of the enzyme. In addition, Cd2+ in the absence of other divalent cation stimulates basal enzyme activity, presumably through interaction at an additional site, closely related to the allosteric metal regulatory site of this enzyme system

  2. Dissociation of OCS by high energy highly charged ion impact

    OCS is an important molecule with immense biological, chemical and astrophysical significance. Various dissociation channels of OCSq+ (where q = 2 to 4), formed in the interaction of 5 MeV u-1 Si12+ ion beam with neutral OCS, have been studied using recoil-ion momentum spectroscopy. The concerted and/or sequential nature of dissociation is inferred from the shape and slope of the coincidence islands in the 2D coincidence map. It is observed that the C+ + S+ + O channel results from concerted as well as sequential decay of OCS2+. However the other channels originate purely from the concerted process in which the two terminal fragments (oxygen and sulphur) fly back to back and the central carbon fragment is left with negligible momentum. The kinetic energy release (KER) distributions for all the fragmentation channels arising from the dissociation of OCSq+ (where q = 2 to 4) have been measured and compared with the available data in the literature. It is observed that the KER values for complete Coulomb fragmentation channels are much smaller than those of incomplete Coulomb fragmentation cases and the KER increases with the increasing charge states of the parent molecular ions. From the momentum correlation map, we estimated the geometry of the precursor molecular ion undergoing three-body dissociation and inferred that bent dissociative states are involved in most of the fragmentation channels of OCSq+. (authors)

  3. The self-energy of a charged particle in the presence of a topological defect distribution

    De Carvalho, A M M; Furtado, C; Moraes, Fernando; Furtado, Claudio

    2004-01-01

    In this work we study a charged particle in the presence of both a continuous distribution of disclinations and a continuous distribution of edge dislocations in the framework of the geometrical theory of defects. We obtain the self-energy for a single charge both in the internal and external regions of either distribution. For both distributions the result outside the defect distribution is the self-energy that a single charge experiments in the presence of a single defect.

  4. N(+)-N long-range interaction energies and resonance charge exchange

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  5. Action of ''Bipenst'' preparation and dimethylsulfoxide on the adenyl nucleotide content in liver of irradiated animals

    Action of parenteral administration of a biostimulator ''Bipenst'' and a 10; dimethylsulfoxide solution on the level of adenyl nucleotides in the liver of rats subjected to a single whole-body irradiation (243 R) has been studied. It has been found that the level of adenyl nucleotides in the liver of irradiated animals decreases, and adenyl nucleotide content normalizes under the action of the preparations under study

  6. Dependence of plasmon excitation energy on filler material in interaction of charged particle with filled nanotubes

    Bahari, A., E-mail: bahari.a@lu.ac.i [Department of Physics, Lorestan University, Lorestan (Iran, Islamic Republic of); Mohamadi, A. [Department of Physics, Shiraz Payaem Noor University, Fars (Iran, Islamic Republic of)

    2010-10-15

    The interaction of charged particles with filled single-walled metallic nanotubes (SWMNT) has been investigated. Numerical results for the plasmon energy as a function of the wave vector are presented when the charged particle is outside the nanotube. Dependence of the plasmon energy on ratio of plasma frequency of the filler and SWMNT has been shown.

  7. Inorganic electret with enhanced charge stability for energy harvesting

    Wang, Fei; Hansen, Ole

    2013-01-01

    We report a new surface treatment of inorganic electret materials which enhances the charge stability. Coating the surfaces with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane (FDTS) makes the electret surface more hydrophobic which improves the surface charge stability under high humidity condit...

  8. Energy and charge transfer in ionized argon coated water clusters

    Kočišek, Jaroslav; Lengyel, Jozef; Fárník, Michal; Slavíček, P.

    2013-01-01

    Roč. 139, č. 21 (2013), s. 214308. ISSN 0021-9606 R&D Projects: GA ČR GAP208/11/0161 EU Projects: European Commission(XE) 238671 - ICONIC Institutional support: RVO:61388955 Keywords : Charged clusters * Charged fragments * Complex reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.122, year: 2013

  9. Charged species in dielectric liquids generated by high energy radiation

    The main subject of Part I of this thesis is the investigation of the kinetics of the geminate recombination of the charged species, in relation to the yield of scavenging of the charged species and the initial spatial distribution. The geminate charge recombination kinetics in cyclohexane is investigated and the relation with the charge scavenging is considered. The geminate ion kinetics in liquid CCl4 is considered and the scavenging of excess electrons by CH3Br in cyclohexane, n-hexane and isooctane is treated in some detail. From the measurements of the microwave absorption the product of the yield and mobilities of the charged species is obtained. Provided the geminate kinetics is known it is possible to determine the mobility and the reactivity towards solutes of the charged species from measurements on a time scale on which the geminate recombination takes place. This is of importance when the charged species under investigation is short lived (e.g. because of reaction with impurities). In this way the mobility and reactivity of the negative species in liquid hexafluorobenzene could be studied. While C6F6 efficiently captures electrons in the gas phase as well as in hydrocarbon liquids, in pure liquid C6F6 efficient migration of the negative charge takes place. The study of the nature of this phenomenon is the subject of Part II. (Auth.)

  10. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents...... the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power...... of both tests in terms of regulation of the aggregated local power, power capacity and the power exchange with the grid. The smart charging tests performed have demonstrated that even with a simple control algorithm, without any forecasting, it is possible to provide the required charging and at the same...

  11. A parametrisation of the energy loss distributions of charged particles and its applications for silicon detectors

    Sikler, Ferenc

    2012-01-01

    The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.

  12. Beamline for low-energy transport of highly charged ions at HITRAP

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  13. Beamline for low-energy transport of highly charged ions at HITRAP

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  14. Long-Term Exposure to High Corticosterone Levels Inducing a Decrease of Adenylate Kinase 1 Activity

    ZHAO Yu'nan; SHEN Jia; SU Hui; HUANG Yufang; XING Dongming; DU Lijun

    2009-01-01

    Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula-tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system was involved in the neuronal damage induced by long-term exposure to high corticosterone levels. We investigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re-duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.

  15. Measuring charge fluctuations in high-energy nuclear collisions

    Mrowczynski, Stanislaw

    2001-01-01

    Various measures of charge fluctuations in heavy-ion collisions are discussed. Advantages of the Phi-measure are demonstrated and its relation to other fluctuation measures is established. To get the relation, Phi is expressed through the moments of multiplicity distribution. We study how the measures act in the case of a `background' model which represents the classical hadron gas in equilibrium. The model assumes statistical particle production constrained by charge conservation. It also ta...

  16. A schematic model for energy and charge transfer in the chlorophyll complex

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the...... ground state by fluorescence with no electron being transferred. In the process proposed herein, charge and energy both are transferred from donor to acceptor which can further de-excite by fluorescence. The charge transfer time scale involving an actual transfer of electron is in the pico-second range....

  17. Impact and energy deposition of slow, highly charged ions on a solid surface

    A plasma region in nanometer scale may be created by a highly charged ion impact on solid surface. The charge imbalance leads to enormous electric fields and may further induce Coulomb explosion due to electrostatic repulsion in the region. Thus, the highly charged ion is thus expected to be a powerful tool to induce surface modification in the nanometer scale. The Coulomb explosion model is applied in order to interpret the interaction mechanism and to understand the impact and energy deposition of highly charged ions on a solid surface, and to obtain the energy deposited by the ion. The energy deposition ratio is dependent on the material and charge. A high temperature and high pressure environment will be formed by the deposited energy, causing the atoms to swell up and a hillock nano-defect to be formed on surface. The height of hillock is estimated from the Coulomb explosion.

  18. Impact and energy deposition of slow, highly charged ions on a solid surface

    Wang, T.S. [School of Nuclear Science and Technology, Lanzhou University, Tianshuinan Road, Lanzhou 730000 (China); Yang, G.X. [School of Nuclear Science and Technology, Lanzhou University, Tianshuinan Road, Lanzhou 730000 (China)], E-mail: yanggx06@lzu.cn; Liu, S.J.; Xu, H.; Han, Y.C.; Xiang, Y.; Chen, L.; Yang, X.Y. [School of Nuclear Science and Technology, Lanzhou University, Tianshuinan Road, Lanzhou 730000 (China)

    2009-08-15

    A plasma region in nanometer scale may be created by a highly charged ion impact on solid surface. The charge imbalance leads to enormous electric fields and may further induce Coulomb explosion due to electrostatic repulsion in the region. Thus, the highly charged ion is thus expected to be a powerful tool to induce surface modification in the nanometer scale. The Coulomb explosion model is applied in order to interpret the interaction mechanism and to understand the impact and energy deposition of highly charged ions on a solid surface, and to obtain the energy deposited by the ion. The energy deposition ratio is dependent on the material and charge. A high temperature and high pressure environment will be formed by the deposited energy, causing the atoms to swell up and a hillock nano-defect to be formed on surface. The height of hillock is estimated from the Coulomb explosion.

  19. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  20. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  1. High Energy Ionic Charge State Composition in Large Solar Energetic Particle Events

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    Measurements of ionic charge states in solar energetic particle (SEP) events have been made at relatively high energies (> 15 MeV/nucleon) with the Mass Spectrometer Telescope (MAST) on board the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite using the Earth's magnetic field as a particle rigidity filter. We have examined the largest SEP events of solar cycle 23 and determined ionic charge states of Fe and other elements in several of these events. The mean charge s...

  2. Direct observation of space charge dynamics by picosecond low-energy electron scattering

    Cirelli, C.; Hengsberger, M.; Dolocan, A.; Over, H.; Osterwalder, J.; Greber, T.

    2009-01-01

    The transient electric field governing the dynamics of space charge is investigated by time- and energy-resolved low-energy electron scattering. The space charge above a copper target is produced by high-intensity femtosecond laser pulses. The pump-probe experiment has a measured temporal resolution of better than 35 ps at 55 eV probe electron energy. The probe electron acceleration due to space charge is reproduced within a 3-dimensional non-relativistic model, which determines an effective ...

  3. Scaling Of The Coulomb Energy Due To Quantum Fluctuations In The Charge Of A Quantum Dot

    Molenkamp, L.W.; Flensberg, Karsten; Kemerink, M.

    1995-01-01

    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy...... scales quadratically with the reflection probability of the barriers. In a second experiment we study the transition from a single to a double-dot which exhibits a scaling behavior linear in the reflection probability. The observed power-laws agree with a recent theory....

  4. Energy and Charge Transfer from Guest to Host in Doped Organic Electroluminescent Devices

    李宏建; 彭景翠; 许雪梅; 瞿述; 罗小华; 赵楚军

    2002-01-01

    The luminescence properties of doped organic electroluminescent devices are explained by means off Hamiltonian model. The results show that there is a corresponding relation between the amount of transferred charge and the change of the energy originating from charge transfer, and the relation can be influenced by dopant concentration.As the amount of transferred charge increases, the total energy decreases and the luminescence intensity increases.Therefore, we deduce that the energy transfer from guest to host may be derived from the charge transfer. For a given organic electroluminescent device, the maximum value of the conductivity can be observed in a specific dopant concentration. The calculated results show that the greater the transferred charges, the higher the conductivities in doped organic electroluminescent devices. The results agree basically with experimental results.

  5. X-UV SPECTROSCOPY OF LOW ENERGY CHARGE EXCHANGE COLLISIONS

    Bliman, S.; Bonnet, J.; Bonnefoy, M.; Dousson, S.; Fleury, A.; Hitz, D.; Lu Dac, T.; Mayo, M.

    1986-01-01

    In the field of hot plasmas, it is well known that a knowledge of the relation between collisions and radiation is needed. We show that considering the charge exchange process in which a highly charged, low velocity ion impinges on an atom, we have an X-UV light source allowing new developments. Basically, at velocities less than the atomic unit (vo = 2.2 108 cm/s), the capture of one electron will leave the projectile ion in an excited state. The most probably populated level np is dependant...

  6. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel;

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  7. Control of charging energy in chemically assembled nanoparticle single-electron transistors

    We show the control of a charging energy in chemically assembled nanoparticle single-electron transistors (SETs) by altering the core diameter of Au nanoparticles. The charging energy is a fundamental parameter that decides the operating temperature of SETs. Practical application of SETs requires us to regulate the value of the charging energy by tuning the diameter of quantum dots. In this study, we used 3.0, 5.0 and 6.2 nm diameter synthesized Au nanoparticles as a quantum dot in the SETs. The total capacitances and charging energy of the SETs were evaluated from the rhombic Coulomb diamonds attributed to a single Coulomb island. The capacitance and charging energy matched with a concentric sphere model much better than with a simple sphere model. The operating temperatures of the SETs suggested that a charging energy 2.2 times greater than the thermal energy was required for stable operation, in theory. These results will help us to select an appropriate core diameter for the Au nanoparticles in practical SETs. (paper)

  8. Design & Implementation of a Mobile Phone Charging System Based on Solar Energy Harvesting

    Qutaiba I. Ali

    2011-06-01

    Full Text Available The ability to harvest energy from the environment represents an important technology area that promises to eliminate wires and battery maintenance for many important applications and permits deploying self powered devices. This paper suggests the use of a solar energy harvester to charge mobile phone devices. In the beginning, a comprehensive overview to the energy harvesting concept and technologies is presented. Then the design procedure of our energy harvester was detailed. Our prototype solar energy harvester proves its efficiency to charge the aimed batteries under sunlight or an indoor artificial light.

  9. Direct observation of space charge dynamics by picosecond low-energy electron scattering

    Cirelli, C.; Hengsberger, M.; Dolocan, A.; Over, H.; Osterwalder, J.; Greber, T.

    2009-01-01

    The transient electric field governing the dynamics of space charge is investigated by time- and energy-resolved low-energy electron scattering. The space charge above a copper target is produced by high-intensity femtosecond laser pulses. The pump-probe experiment has a measured temporal resolution of better than 35 ps at 55 eV probe electron energy. The probe electron acceleration due to space charge is reproduced within a 3-dimensional non-relativistic model, which determines an effective number of electrons in the space charge cloud and its initial diameter. Comparison of the simulations with the experiments indicates a Coulomb explosion, which is consistent with transients in the order of 1 ns, the terminal kinetic energy of the cloud and the thermoemission currents predicted by the Richardson-Dushman formula.

  10. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  11. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  12. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    STAR Coll

    2008-07-21

    We present measurements of net charge fluctuations in Au + Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu + Cu collisions at {radical}s{sub NN} = 62.4, 200 GeV, and p + p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub {+-},dyn}. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling, but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  13. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moira, M. M.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dictel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-02-01

    We present measurements of net charge fluctuations in Au+Au collisions at sNN=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at sNN=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure ν+-,dyn. We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/Nch scaling but display approximate 1/Npart scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  14. Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

    Melo, Manuel

    2013-01-01

    A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

  15. The role of electron capture and energy exchange of positively charged particles passing through matter

    Ulmer, W.

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a med...

  16. Activation energies for gas-phase dissociations of multiply charged ions from electrospay ionization mass spectrometry

    Busman, M.; Rockwood, A.L.; Smith, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1992-03-19

    The reactions of multiply protonated melittin molecular ions of various charge states produced from an electrospray ionization source have been studied. The flow of ions entrained in gas through a heated metal capillary inlet serves as a reaction vessel for gas-phase measurements of molecular ion reaction rates using mass spectrometry. Activation energies for the unimolecular dissociation reactions are calculated from the temperature dependence of the reaction kinetics. The differences in activation energies for the reactions of the different charge states are attributed to the destabilizing effect of Coulombic repulsion for high charged ions. 18 refs., 3 figs., 1 tab.

  17. Scintillation light produced by low-energy beams of highly-charged ions

    M. Vogel; Winters, D.F.A.; Ernst, H.; H. Zimmermann; Kester, O.

    2007-01-01

    Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and ...

  18. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  19. Investigation of space-charge compensation with residual-gas-ion energy analyser

    Low energy beam transport of high perveance beams with magnetic quadrupole focusing requires a high degree of space-charge compensation. Furthermore the build-up time of space-charge compensation has to be short compared to the beam-pulse duration. In order to study the space-charge compensation in the drift sections between the focusing elements of the existing GSI UNTLAC injector, the energy spectrum of the residual gas ions produced by the beam and accelerated radially by the space-charge potential can be measured. Hereto a compact electrostatic energy analyser of the Hughes-Rojansky type has been built allowing for time integrated as well as time resolved measurements. First measurements in time integrating mode have been performed. (author)

  20. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  1. Heavy ion charge-state distribution effects on energy loss in plasmas

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  2. Charged particle induced energy dispersive X-ray analysis

    This review article deals with the X-ray emission induced by heavy, charged particles and the use of this process as an analytical method (PIXE). The physical processes involved, X-ray emission and the various reactions contributing to the background, are described in some detail. The sensitivity is calculated theoretically and the results compared with practical experience. A discussion is given on how the sensitivity can be optimized. The experimental arrangements are described and the various technical problems discussed. The analytical procedure, especially the sample preparation, is described in considerable detail. A number of typical practical applications are discussed. (author)

  3. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  4. A purely classical description of crossings of energy levels and spectroscopic signatures of charge exchange

    Charge exchange and crossings of corresponding energy levels that enhance charge exchange are strongly connected with problems of energy loss and diagnostics in high-temperature plasmas. Charge exchange has also been proposed as one of the most effective mechanisms for population inversion in the soft x-ray and VUV ranges. One area of the most fundamental theoretical importance in the study of charge exchange is the problem of electron terms in the field of two stationary Coulomb centres (TCC) of charges Z and Z' separated by a distance R. This involves fascinating atomic physics: the terms can have crossings and quasicrossings. These rich features of the TCC problem are also manifest in other areas of physics such as plasma spectroscopy: a quasicrossing of the TCC terms, by enhancing charge exchange, can result in an unusual structure (a dip) in the spectral line profile emitted by a Z-ion from a plasma consisting of both Z- and Z'-ions, as has been shown theoretically and experimentally. The paradigm is that these sophisticated features of the TCC problem and their flourishing applications are inherently quantum phenomena. In this paper we disprove this paradigm. We present a purely classical description of both the crossings of energy levels in the TCC problem and the dips in the corresponding spectral line profiles caused by the crossing (via enhanced charge exchange). Our classical description is based on first principles and does not use any model assumptions. (author)

  5. The charge ratio of the atmospheric muons at low energy

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21±0.01 with a mean zenith angle of 32 deg. ±5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I(θ)=I(0)cosnθ with n=1.95±0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator

  6. New analytical potential energy function for doubly charged diatomic molecules

    Wang Fan-Hou; Yang Chuan-Lu; Zhu Zheng-He; Jing Fu-Qian

    2005-01-01

    A new analytical potential function for doubly charged diatomic ions is proposed as V(R)=(∑k n=0anRn-1)exp(-ak+1R)+C/R,where an, ak+1 and C are parameters, and R is the nuclear distance. This function can be used to describe the potential curves for doubly charged diatomic ions with both potential minimum and maximum, or without any stationary point. As examples, potential functions of this form for ground states of BH2+, He22+ and HF2+ have been derived.The calculations using the theoretical method QCISD with basis set 6-311++G* have shown that the potential minimum of BH2+is at Rmin=0.147nm, the maximum at Rmax=0.185nm, and ΔE = Emax - Emin=0.062 eV; for He22+Rmin=0.0736nm, Rmax=0.105nm, and ΔE = Emax - Emin=0.71 eV. It is found that the potential curve for HF2+ is one with a singly repulsive branch. The force constants and spectroscopic data for BH2+ and He22+ have also been worked out.

  7. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  8. Design & Implementation of a Mobile Phone Charging System Based on Solar Energy Harvesting

    Qutaiba I. Ali

    2011-01-01

    The ability to harvest energy from the environment represents an important technology area that promises to eliminate wires and battery maintenance for many important applications and permits deploying self powered devices. This paper suggests the use of a solar energy harvester to charge mobile phone devices. In the beginning, a comprehensive overview to the energy harvesting concept and technologies is presented. Then the design procedure of our energy harvester was ...

  9. Determining the charged particle energy losses with usage of transmutation isotopes

    Didik, V A; Skoryatina, E A; Kozlovskij, V V

    2002-01-01

    The method for determining the charged particles energy losses in a solid body, based on the comparison of the transmutation isotopes profiles, formed by irradiation with the particles of various energies, is proposed. The protons energy losses in copper were determined by the described method. The irradiation was performed on a cyclotron by the energies of 8, 10, 12.5, 15.5 and 18 MeV. The obtained results agree well with the published data

  10. Duality of Quasilocal Gravitational Energy and Charges with Non-orthogonal Boundaries

    Kim, S W; Oh, J J; Yee, K H; Kim, Sung-Won; Kim, Won Tae; Oh, John J.; Yee, Ki-Hyuk

    2003-01-01

    We study the duality of quasilocal energy and charges with non-orthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in the previous work and some new variables arisen from considering the non-orthogonal boundaries as well are presented, and the boost relations between those quantities are discussed. Moreover, we show that the dual properties of quasilocal variables such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neuve-Schwarz(NS) charge density, are still valid in the moving observer's frame.

  11. An APL program for the distribution of energy deposition by charged particles passing through thin absorbers

    Howell, L. W.

    1985-01-01

    An APL program which numerically evaluates the probability density function (PDF) for the energy deposited in a thin absorber by a charged particle is proposed, with application to the construction, pointing, and control of spacecraft. With this program, the PDF of the restricted energy loss distribution of Watts (1973) is derived, and Vavilov's (1957) distribution is obtained by proper parameter selection. The method is demonstrated with the example of the effect of charged particle induced radiation on the Hubble Space Telescope (HST) pointing accuracy. A Monte Carlo study simulates the photon noise caused by charged particles passing through the photomultiplier tube window, and the stochastic variation of energy loss is introduced into the simulation by generating random energy losses from a power law distribution. The program eliminates annoying loop procedures, and model parameter sensitivity can be studied using the graphical output.

  12. Full charge-density calculation of the surface energy of metals

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the...... accuracy of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  13. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  14. Tuning Charge Transfer in Ion-Surface Collisions at Hyperthermal Energies.

    Yao, Yunxi; Giapis, Konstantinos P

    2016-05-18

    Charge exchange in ion-surface collisions may be influenced by surface adsorbates to alter the charge state of the scattered projectiles. We show here that the positive-ion yield, observed during ion scattering on metal surfaces at low incident energies, is greatly enhanced by adsorbing electronegative species onto the surface. Specifically, when beams of N(+) and O(+) ions are scattered off of clean Au surfaces at hyperthermal energies, no positive ions are observed exiting. Partial adsorption of F atoms on the Au surface, however, leads to the appearance of positively charged primary ions scattering off of Au, a direct result of the increase in the Au work function. The inelastic energy losses for positive-ion exits are slightly larger than the corresponding ionization energies of the respective N and O atoms, which suggest that the detected positive ions are formed by surface reionization during the hard collision event. PMID:26879471

  15. Statistical similarity between high energy charged particle fluxes in near-earth space and earthquakes

    Wang, P.; Chang, Z.; Wang, H.; Lu, H.

    2014-05-01

    It has long been noticed that rapid short-term variations of high energy charged particle fluxes in near-Earth space occur more frequently several hours before the main shock of earthquakes. Physicists wish that this observation supply a possible precursor of strong earthquakes. Based on DEMETER data, we investigate statistical behaviors of flux fluctuations for high energy charged particles in near-Earth space. Long-term clustering, scaling, and universality in the temporal occurrence are found. There is high degree statistical similarity between high energy charged particle fluxes in near-Earth space and earthquakes. Thus, the observations of the high energy particle fluxes in near-Earth space may supply a useful tool in the study of earthquakes.

  16. Parameter-free calculation of charge-changing cross sections at high energy

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  17. Charged particle density distributions in Au + Au collisions at relativistic heavy-ion collider energies

    Fauad Rami

    2003-05-01

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed.

  18. Re-Scaling of Energy in the Stringy Charged Black Hole Solutions using Approximate Symmetries

    Sharif, M.; Waheed, Saira

    2010-01-01

    This paper is devoted to study the energy problem in general relativity using approximate Lie symmetry methods for differential equations. We evaluate second-order approximate symmetries of the geodesic equations for the stringy charged black hole solutions. It is concluded that energy must be re-scaled by some factor in the second-order approximation.

  19. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  20. Potential energy curves for neutral and multiply charged carbon monoxide

    Pradeep Kumar; N Sathyamurthy

    2010-01-01

    Potential energy curves of various electronic states of CO+ (0 ≤ ≤ 6) are generated at MRCI/CASSCF level using cc-pvQZ basis set and the results are compared with available experimental and theoretical data.

  1. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi;

    2015-01-01

    influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate the...... operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...... strategy....

  2. Observation of high iron charge states at low energies in solar energetic particle events

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Kartavykh, Y. Y. [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation); Mason, G. M., E-mail: zwm2@unh.edu [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  3. High Energy Ionic Charge State Composition in the October/November 2003 and January 20, 2005 SEP Events

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2005-01-01

    The ionic charge states of solar energetic particles (SEPs) probe source-material temperatures and acceleration and transport conditions. The MAST instrument on SAMPEX measures SEP ionic charge states at energies greater than ~15 MeV/nuc and at iron energies up to ~90 MeV/nuc using the geomagnetic filter technique. Charge state measurements for large gradual SEP events by MAST and by other experiments suggest that event-to-event variations in the mean charge states of abundant ele...

  4. Modulation of folding energy landscape by charge–charge interactions: Linking experiments with computational modeling

    Tzul, Franco O.; Schweiker, Katrina L.; Makhatadze, George I.

    2015-01-01

    Quantitative understanding of how individual interactions contribute to the kinetics and thermodynamics of protein folding is critical for deciphering the underlying molecular mechanisms that define the energy folding landscape. We applied a structure-based model that explicitly accounts for the interactions between charges, to folding–unfolding of four different protein pairs: rationally stabilized, via optimization of surface charge–charge interactions, variants, and respective wild types. ...

  5. New heavy charged leptons at future high energy electron-positron colliders

    Almeida Jr., F. M. L.; Coutinho, Y. A.; Simoes, J. A. Martins; Wulck, S.; Vale, M. A. B. do

    2003-01-01

    New heavy charged lepton production and decay signatures at future electron-positron colliders are investigated at $\\sqrt {s}=500$ GeV. The consequences of model dependence for vector singlets and vector doublets are studied. Distributions are calculated including hadronization effects and experimental cuts that suppress the standard model background. The final state leptonic energy distributions are shown to give a very clear signature for heavy charged leptons.

  6. Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Bungau, C; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M S; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Velissaris, C; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitativ...

  7. Charge state distributions and charge-changing cross sections of heavy ions in the energy range up to 10 MeV/u

    Charge state distributions and charge-changing cross sections have been measured for heavy ions with atomic numbers between 18 and 92, in charge states from +9 to +68, and at energies in the range from 0.2 to 10 MeV/u using various gaseous and solid target materials. The experimental cross sections are compared with the theory of Bohr and Lindhard. The accuracy of predictions by means of known empirical formulae for average equilibrium charge states is briefly discussed. (author)

  8. Excitation energy transfer and charge separation in photosystem II membranes revisited.

    Broess, Koen; Trinkunas, Gediminas; van der Weij-de Wit, Chantal D; Dekker, Jan P; van Hoek, Arie; van Amerongen, Herbert

    2006-11-15

    We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation. PMID:16861268

  9. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  10. Energy straggling determination for charged particles in thick targets

    Energy straggling is reported for deuterons in carbon and protons in silicon, and the data obtained is compared with predictions of Bohr and Bethe. The experimental method used is based on a reaction resonance widening, observed at backward angles in the thick targets. The incident energy determines the depth at which the resonant scattering occurs and the energy straggling can be measured from the backscattering spectra. The data obtained for the energy straggling of deuterons are approximately two times bigger than those predicted by Bohr's theory; nevertheless, the values found for the energy straggling of protons in silicon are in agreement with the values predicted by the aforesaid theory. This disagreement was explained by the fact that carbon targets used were amorphous and porous, in contrast with those of cristal silicon, (it is an experimental fact that porous materials are expected to give higher stragglings than non-porous ones). Thus, the method reviewed in this work is valid, but the porosity effects should be taken into account in comparing results among materials with different densities. (author)

  11. Ab initio calculation of the formation energy of charged vacancies in germanium

    Density functional theory (DFT) with local density approximation (LDA) has been used to calculate the formation energy (Ef) of the neutral and charged vacancies in germanium single crystal. The standard (four valence electrons) and harder (which treat the semicore 3d states of Ge as valence) projector augmented wave (PAW) potentials were used. Additionally, the effect of including on-site Coulomb interaction, U, for Ge semicore d states within the LDA+U approach was investigated. The LDA+U method improves the LDA band gap which allows investigating the dependence of formation energy of charged vacancies on Fermi level position in the band gap. It was shown that the calculated formation energies of the neutral and charged vacancies are in good agreement with published experimental data

  12. Charging-free electrochemical system for harvesting low-grade thermal energy

    Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang

    2014-01-01

    Tremendous low-grade heat is stored in industrial processes and the environment. Efficient and low-cost utilization of the low-grade heat is critical to imminent energy and environmental challenges. Here, a rechargeable electrochemical cell (battery) is used to harvest such thermal energy because its voltage changes significantly with temperature. Moreover, by carefully tuning the composition of electrodes, the charging process is purely powered by thermal energy and no electricity is require...

  13. Charge transfer activation energy for alkali atoms on Re and Ta

    Gładyszewski, Longin

    1993-09-01

    Ion and atom desorption energies for five alkali metals on Re and Ta were determined using the ion thermal emission noise method. The activation energies for the charge transfer process in the adsorbed state were calculated using a special energetic balance equation, which describes the surface ionization and thermal desorption effect. Energies for desorption of Li, Na, K, Rb and Cs from Re and Ta surfaces were determined by measuring the time autocorrelation function of the ion thermoemission current fluctuations.

  14. Oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes in various diseases.

    Fujii, N; Kotake, S.; Hirose, S; Ohno, S; Yasuda, I.; Sagawa, A; Ishikawa, K.; Minagawa, T

    1984-01-01

    Interferon induces oligo-2',5'-adenylate synthetase in cells. In various diseases, interferon was detectable in the circulation or was produced spontaneously from peripheral blood mononuclear leukocytes. The oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes was examined in various diseases, including systemic lupus erythematosus, sarcoidosis, Vogt-Koyanagi-Harada disease, and Behcet's disease. The activity of this enzyme was significantly increased in system...

  15. Activation of the Pacidamycin PacL Adenylation Domain by MbtH-Like Proteins†

    Zhang, Wenjun; Heemstra, John R.; Walsh, Christopher T.; Imker, Heidi J.

    2010-01-01

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (~70 residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated n...

  16. Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes

    LI Yong; ZHENG Li-Ping; ZHANG Wei; XV Zi-Jian; REN Cui-Lan; HUAI Ping; ZHU Zhi-Yuan

    2011-01-01

    @@ Channeling phenomena of He, Ne, Ar and Kr ions at energy (200-5000eV) in single-wall carbon nanotubes (SWCNTs) are investigated by molecular dynamics simulation with analytical potentials.The critical angles for the particles to be channeled in an SWCNT are analyzed.In the incident energy range of 200-5000 eV, it is found that the ion energy dependence of the critical angle obeys an improved Lindhard equation which is closely related to the ratio of nuclear charge number to atomic mass Z/M.The critical angle for different types of ions channeling in SWCNTs is determined by both the atomic nuclear charge and mass.%Channeling phenomena of He, Ne, Ar and Kr ions at energy (200-5000eV) in single-wall carbon nanotubes (SWCNTs) are investigated by molecular dynamics simulation with analytical potentials. The critical angles for the particles to be channeled in an SWCNT are analyzed. In the incident energy range of 200-5000eV, it is found that the ion energy dependence of the critical angle obeys an improved Lindhard equation which is closely related to the ratio of nuclear charge number to atomic mass Z/M. The critical angle for different types of ions channeling in SWCNTs is determined by both the atomic nuclear charge and mass.

  17. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  18. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  19. Systematic study of individual charge-changing cross sections of intermediate-energy secondary beams

    Highlights: • Precision total and partial charge-changing cross section measurements of medium-mass nuclides were performed. • Systematic reaction data of intermediate-energy heavy-ion beams were obtained. • A significant odd-even effect is found in the partial charge-changing cross sections. -- Abstract: Charge-changing interactions of stable and unstable medium-mass nuclides have been systematically investigated at intermediate energies. Secondary beams ranging from Ar to Ge isotopes produced by projectile fragmentation of 56Fe and 70Ge were irradiated onto a carbon target, and their total and partial charge-changing cross sections were precisely measured. A clear odd–even effect found in the partial charge-changing cross sections monotonically varies as a function of the Z/N ratio among the isotopes, and grows toward the neutron-deficient side. The total charge-changing cross sections are sensitive to the Z number of nuclides, and tend to gradually increase toward the neutron-deficient side in some isotopes

  20. Direct observation of Space Charge Dynamics by picosecond Low Energy Electron Scattering

    Cirelli, C; Hengsberger, M.; Dolocan, A; Over, H.; Osterwalder, J; Greber, T.

    2008-01-01

    The electric field governing the dynamics of space charge produced by high intensity femtosecond laser pulses focused on a copper surface is investigated by time-resolved low-energy-electron-scattering. The pump-probe experiment has a measured temporal resolution of better than 35 ps at 55 eV probe electron energy. The probe electron acceleration due to space charge is reproduced within a 3-dimensional non-relativistic model, which determines an effective number of electrons in the space char...

  1. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  2. Synthetic system mimicking the energy transfer and charge separation of natural photosynthesis

    Gust, D.; Moore, T.A.

    1985-05-01

    A synthetic molecular triad consisting of a porphyrin P linked to both a quinone Q and a carotenoid polyene C has been prepared as a mimic of natural photosynthesis for solar energy conversion purposes. Laser flash excitation of the porphyrin moiety yields a charge-separated state Csup(+.)-P-Qsup(-.) within 100 ps with a quantum yield of more than 0.25. This charge-separated state has a lifetime on the microsecond time scale in suitable solvents. The triad also models photosynthetic antenna function and photoprotection from singlet oxygen damge. The successful biomimicry of photosynthetic charge separation is in part the result of multistep electron transfers which rapidly separate the charges and leave the system at high potential, but with a considerable barrier to recombination.

  3. Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea

    Moskalets, Michael

    2016-07-01

    A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e /2 . A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ . Another spectacular feature is that the distribution function has symmetric tails around μ , which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.

  4. Energy dependence of muon charge ratio for incident momentum range < 1 GeV/c

    Full text: The charge ratio of the atmospheric muons is a quantity sensitive to hadronic interactions of cosmic rays and to the influence of the geomagnetic field. Experimental information is of current interest for tuning models used for the calculation of atmospheric neutrino fluxes. We are performing measurements of the charge ratio based on the observation of the lifetime of the muons stopped in the absorber layers (aluminum support) of the detector WILLI, mounted in a rotatable frame and installed at IFIN-HH Bucharest (vertical geomagnetic cut-off rigidity of 5.6 GV). Our method to determine the muon charge ratio by measuring the lifetime of muons stopped in the matter, overcomes the uncertainties appearing in measurements based on magnetic spectrometers, which are affected by systematic effects at low muon energies, due to problems in the particle and trajectory identification. The results obtained with the rotatable WILLI detector, inclined at 45 angle (i.e. a mean zenith angle of detected muons of 35 angle), relevant to the atmospheric neutrino anomaly, show a pronounced east-west effect. The energy dependence of the muon charge ratio indicates an increasing asymmetry of the muon charge ratio with decreasing incident energy. (author)

  5. Measurements of charge distributions of the fragments in the low energy fission reaction

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ−Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au–Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2⁎ and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  6. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  7. The role of electron capture and energy exchange of positively charged particles passing through matter

    Ulmer, W

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a medium is incorrectly determined. The LET in the Bragg peak domain and distal end is significantly influenced by the electron capture. A rather significant result is that in the domain of the Bragg peak the superiority of carbon ions is reduced compared to protons.

  8. Charge, quantum state, and energy distributions of impurities released in plasma-wall interaction processes

    Conventional wisdom has it that total sputtering yields correlate with high Z-impurity levels found in fusion plasmas. The charge, quantum states and energy distributions of sputtered atoms have been virtually ignored in these considerations. Impurity transport from the wall or limiter to the plasma is, however, strongly influenced by these factors which may play a crucial role in determining impurity levels in the deeper plasma regions. Preliminary calculations have shown that positively charged impurities would most likely be redeposited on their surfaces of origin. The conditions leading to charged or excited state atoms emission and the energy distributions of such species are reviewed. Techniques for measuring these quantities are discussed and the need for a wider data base in this field is pointed out

  9. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  10. Pseudo Open Drain IO Standards Based Energy Efficient Solar Charge Sensor Design on 20nm FPGA

    Kalia, K; Pandey, B; Nanda, K;

    2015-01-01

    In this paper an approach is made to design Pseudo open drain IO standards Based Energy efficient solar charge sensor design on 20nm and 28nm technology. We have used LVCMOS18, POD10, POD10_DCI and POD12 I/O standard. In this design, we have taken two main parameters for analysis that are frequen...

  11. Damaging impacts of energetic charge particles on materials in plasma energy explosive events

    Deng Bai-Quan; Peng Li-Lin; Yan Jian-Cheng; Luo Zheng-Ming; Chen Zhi

    2006-01-01

    To provide some reference data for estimation of the erosion rates and lifetimes of some candidate plasma facing component (PF3 materials in the plasma stored energy explosive events (PSEEE), this paper calculates the sputtering yields of Mo, W and deuterium saturated Li surface bombarded by energetic charged particles by a new sputtering physics description method based on bipartition model of charge particle transport theory. The comparisons with Monte Carlo data of TRIM code and experimental results are made. The dependences of maximum energy deposition,particle and energy reflection coefficients on the incident energy of energetic runaway electrons impinging on the different material surfaces are also calculated. Results may be useful for estimating the lifetime of PFC and analysing the impurity contamination extent, especially in the PSEEE for high power density and with high plasma current fusion reactor.

  12. Proposal of the Electrically Charged Stellar Black Holes as Accelerators of Ultra High Energy Cosmic Rays

    Soto-Manriquez, Jose

    2016-01-01

    A new mechanism for the acceleration of ultra high energy cosmic rays (UHECR) is presented here. It is based on the tunnel-ionization of neutral atoms approaching electrically charged stellar black holes and on the repulsion of the resulting positively charged atomic part by huge, long-range electric fields. Energies above $10^{18}$ eV for these particles are calculated in a simple way by means of this single-shot, all-electrical model. When this acceleration mechanism is combined with the supernova explosions in the galactic halo of the massive runaway stars expelled from the galactic disk, this model predicts nearly the correct values of the measured top energy of the UHECRs and their flux in a specified EeV energy range. It also explains the near isotropy of the arrivals of these energetic particles to Earth, as has been recently measured by the Auger Observatory.

  13. Charge transfer and structured vibrational distributions in H++CH4 low-energy collisions

    Inelastic and charge transfer collisions of protons with methane molecules have been investigated in a perpendicular-plane crossed beam experiment via the detection of the scattered protons and H atoms, respectively. Time-of-flight analysis of the protons and H atoms at scattering angles 00≤θ≤100 and collision energies 10≤E≤30 eV provided information on internal energy distributions of the CH4 and CH+4 products. Excitation of the n(ν1 ,ν3) +m (ν2 ,ν4) type vibrations, with n,m = 0, 1, 2,xxxwas found to be the most probable assignment of the observed structured energy distributions of CH4 (1 A1 ) at θ≤40. At θ>40, the energy transfer increases steeply up to the dissociation limit while the vibrational structure was no longer resolved. In the case of charge transfer, the observed narrow internal energy distributions corresponding to a most probable average internal energy of CH+4 of about 0.95 eV was centered at the recombination energy of the proton indicative of quasiresonant charge transfer. In addition, fragmentation of CH+4 formed in charge transfer collisions of H+ with CH4 was investigated in an independent experiment using mass spectrometric analysis to identify the individual fragment species. The relative intensities of the parent and fragment ions (i.e., of CH+4, CH+3, and CH+2) were found to be in good agreement with the known values of the appearance potentials of the fragment ions and the distribution of the CH+4 internal energy as obtained from the differential cross sections

  14. High-resolving electrostatic charged particles energy analyzer with fine tuning for space investigations

    The paper presents results of numerical calculations of a high-resolving electrostatic energy analyzer, based on a bounded cylindrical field, for investigations of flows of charged particles in space. The analyzer possesses with ability of fine tuning of focusing characteristics, using an additional tuning potential, applied to one of electrodes. A combination of high energy resolution ability with high transmission, simple design and compactness makes this instrument very promising for space technologies

  15. A Schwinger-type variational principle for charge exchange at arbitrary energies

    An overview of difficulties encountered in charge exchange collision theory is presented. We emphasize problems in the most critical intermediate energy region where, as yet, no adequate method is available. A Schwinger-type variational principle, which is established at arbitrary energies, appears to exhibit many advantages over existing theories. It successfully connects the leading second Born approximation with the efficient L2-expansion methods. (orig.)

  16. Charge state and energy loss of relativistic heavy ions in matter

    Relativistic heavy-ion collisions of few-electron projectiles ranging from argon up to uranium have been investigated in solid and gaseous media. Electron-loss and electron-capture cross sections, charge-state distributions, as well as energy loss and energy deposition have been measured and are compared with theoretical predictions. Especially fully-ionized heavy projectiles represent a unique possibility to test atomic-collision theories. (orig.)

  17. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

    Kim, T; Dykstra, J E; Porada, S; van der Wal, A; Yoon, J; Biesheuvel, P M

    2015-05-15

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination. PMID:25278271

  18. Emittance growth in displaced, space-charge-dominated beams with energy spread

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, the authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of their results is presented

  19. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  20. Energy loss straggling of heavy charged particles in thick silicon absorbers

    The energy loss straggling of heavy charged particles with relatively high energies passing through thick uniform Si detectors (1.0mm-9.2mm) has been studied in a wide range of the ratio ΔE/E0 where ΔE is the energy loss and E0 is the initial energy of the incident particles. The experimental results are compared with those predicted by straggling theories. It suggests that the measured distributions are in good agreement with those predicted from the Bohr's or Livingston-Bethe's theories when ΔE/E00>0.3. (author)

  1. Azimuthally-integrated HBT parameters for charged pions in nuclear-nuclear collisions versus initial energy

    Okorokov, V A

    2014-01-01

    In the paper energy dependence of space-time extent of charged pion source is studied for various ion collisions for all experimentally available energies. There are no sharp changing of femtoscopy parameter values with increasing of $\\sqrt{s_{NN}}$ in domain of collision energies $\\sqrt{s_{NN}} \\geq 5$ GeV. Energy dependence of estimations for emission duration is almost flat for all energy domain under study within large error bars. Analytic function is suggested for smooth approximation of energy dependence of main HBT parameters. Fit curves demonstrate reasonable agreement with experimental data for most femtoscopy parameters in energy domain $\\sqrt{s_{NN}} \\geq 5$ GeV. Estimations of femtoscopy observables are obtained for energies of the LHC and FCC project.

  2. Charge-changing reactions of secondary fragments produced in high-energy heavy ion collisions

    The authors have begun a program to measure charge changing cross sections of projectile fragments using a quite different technique that is capable of much higher data acquisition rates. The primary beam impinges on a stack of 50 Lucite strips having an average thickness of 3.17 mm, emitting Cerenkov light as its passes through them. Since at a given velocity the intensity of light is proportional to Z2, where Z is the charge of the particle, a fragmentation reaction in a particular strip will be registered as a drop in the light output from that and subsequent strips. The authors use total internal reflection to transport the light to photomultiplier tubes so that there is no wrapping between the strips. Since the energy threshold of the device is approx.1.1 GeV/nucleon, low energy target fragments will not contribute to the signal, a distinct advantage over similar schemes using energy loss to measure the fragment charge. The resolution of the individual strips is typically 0.58 charge units, full width at half maximum, allowing reactions to be well localized even for single unit charge changes. In addition to the C detectors, scintillators and Si(Li) detectors were used to measure precisely the position and charge of the incoming beam particle. The authors have taken data using two beams, 56Fe and 40Ar, at 1.88 and 1.82 GeV/nucleon respectively, and two trigger modes, a free trigger to measure the reaction rate of the incoming beam and an inelastic trigger in which a reaction was required to occur in one of the first 14 C detectors. A total of 909,000 56Fe interactions and 460,000 40Ar interactions have been analyzed so far

  3. Production of a high energy beam of multiply charged Cn+60 ions

    For the first time fullerene ions have been accelerated to high energy (14-50 MeV). Negative ions of C-60 were produced in the ion source with a Cs gun and injected into the tandem accelerator. The change of charge from negative to positive was achieved in a N2 gas cell at the high voltage terminal before the second acceleration. To identify the accelerated molecular ions, the injected beam was pulsed, and time of flight measurements were performed. Unambiguous mass and charge assignments were obtained

  4. Local vs. non-local energy loss of low energy ions: Influence of charge exchange processes in close collisions

    Primetzhofer, D., E-mail: daniel.primetzhofer@physics.uu.se [Ion Physics, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Goebl, D.; Bauer, P. [Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz (Austria)

    2013-12-15

    We investigate the contribution of charge exchange processes in close collisions between projectile and target atoms to the electronic energy loss of low energy ions. We measure the energy loss of slow hydrogen and He ions in ultrathin Al films through which the ions are transmitted before and after backscattering by the atoms of a Ta substrate. The individual contributions to the energy loss are analyzed. The roles of thresholds for reionization and of scattering kinematics as key parameters for the coupling between elastic and inelastic losses are discussed. The implications of the obtained results for different experimental approaches to deduce stopping cross sections are outlined.

  5. Twin boundary energy and characterization of charge redistribution near the twin boundaries of cupperate superconductors

    Highlights: • Ab initio simulation for twin boundary energy in YBCO system for the 1st time. • Study of the twin boundary energy variation versus the inserted strain. • Proportionality of twin lamella width by the inserted strain. • Local charge transfer and charge redistribution on the twin planes. • Total DOSs for the twined system at Fermi level is higher than the untwined one. • This explain the effect of twin boundaries in agreement with experimental data. - Abstract: Ab-initio calculations under general gradient approximation have been employed for the first time to find out twin boundary energy, γ, in twined YBCO systems. Despite a vast discrepancy in reported experimental values, our results show that the γ value falls in the range of 40–85 mJ/m2. On the other hand, functional form of γ versus inserted strains shows that the mean value for the twin width lamella would tend to approach zero as the strain goes to zero. We have also investigated the local charge transfer and the modification of the electronic states of the basal and twin planes in YBCO, because the charge redistribution at interfaces can modify transport across the grains considerably and determine the applicability of high-Tc superconductors in the electronic applications. The total density of electronic states at the Fermi level for the twined system is enhanced in comparison with the untwined one. Our results explain the influence of twin boundaries in superconductive properties of YBCO, in experimental situations

  6. Regional differences in system usage charges. Impediment to a fair energy transition?

    The conversion of the German electricity supply system to production from renewable resources under the national energy transition policy is making it necessary to expand and restructure the distribution networks. Based on the expansion goals of the federal government, expectations are that thinly populated regions with low conflict potential will see a continued growth in distributed generation. This will increase the geographic asymmetry that exists between the production of renewable energy in rural, peripheral regions and its consumption predominantly in urban regions, thus enlarging the regional differences in system usage charges seen already today. The geographic disparity between production and consumption may grow larger still with the continuing installation of new and repowering of existing renewable energy plants. Of the possibilities discussed so far for reforming the scheme of charges, some would only have a weak impact, while others would even exacerbate the problem. The solution proposed in the present article takes account of the costs incurred through upstream supply networks in accordance with Article 14 Section 1 Sentence 1 of the Ordinance on System Usage Charges. In effect it leads to an allocation of costs according to the user-pays principle, thus protecting consumers connected to rural distribution networks against an undue cost burden and charging a fair share of the costs to consumers in urban and industrial distribution networks.

  7. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  8. Scaling and charge ratio in the energy range 1-10 TeV

    The purpose of the investigation was to study the spectra of generation of neutral and charged pions in the upper atmosphere in order to establish the scaling behaviour of the multiple birth of particles at primary particle energies above the acceleration energies. The study of the spectrum gamma-quanta in the atmosphere and the muon spectrum at the sea level made it possible to adjust the pion generation spectrum. In experiments with emulsion chambers the spectra of gamma-quanta and electrons at different zenith angles at two levels in the atmosphere (225 and 700 gxcm-2) and the muon spectrum at the sea level were determined. The obtained data on pion birth in the atmosphere pointed to the conservation of scale and charge invariance in pion birth at nucleon energies of 1012-1014 eV

  9. Calculation of Coulomb energies for uniform charge distributions of arbitrary shape

    Three distinct surface-integral formulas are derived for calculating the Coulomb energies of uniform charge distributions of arbitrary shape. Of particular interest is an equation obtained by applying Gauss' divergence theorem twice. It is shown that this equation can be simply transformed to another expression which has been widely used for calculating Coulomb energies, with this derivation implying a third formula. The three formulas are also expressed in cylindrical coordinates for charge distributions possessing axial symmetry. For such shapes, numerical studies are presented showing the computational times and errors involved in calculating the Coulomb energies and generalized forces using Gaussian-Legendre quadrature formulas. It is shown that the double-divergence-derived formula is faster and more accurate than the other two surface-integral formulas and other formulas used in the literature

  10. Surface charging of phosphors and its effects on cathodoluminescence at low electron energies

    Measurements of the threshold for secondary electron emission and shifts of the carbon Auger line position have been used to deduce the surface potential of several common phosphors during irradiation by electrons in the 0.5--5.0 keV range. All of the insulating phosphors display similar behavior: the surface potential is within ±1 V of zero at low electron energies. However, above 2--3 kV it becomes increasingly negative, reaching hundreds of volts within 1 keV of the turn-on energy. The electron energy at which this charging begins decreases dramatically after Coulomb aging at 17 microA/cm2 for 30--60 min. Measurements using coincident electron beams at low and high electron energies to control the surface potential were made to investigate the dependence of the cathodoluminescence (CL) process on charging. Initially, the CL from the two beams is identical to the sum of the separate beam responses, but after Coulomb aging large deviations from this additivity are observed. These results indicate that charging has important, detrimental effects on CL efficiency after prolonged e-beam irradiation. Measurements of the electron energy dependence of the CL efficiency before and after Coulomb aging will also be presented, and the implications of these data on the physics of the low-voltage CL process will be discussed

  11. Experimental investigation on charging and discharging performance of absorption thermal energy storage system

    Highlights: • A prototype of ATES using LiBr/H2O was designed and built. • Charging and discharging performances of ATES system were investigated. • ESE and ESD for cooling, domestic hot water and heating were obtained. - Abstract: Because of high thermal storage density and little heat loss, absorption thermal energy storage (ATES) is known as a potential thermal energy storage (TES) technology. To investigate the performance of the ATES system with LiBr–H2O, a prototype with 10 kW h cooling storage capacity was designed and built. The experiments demonstrated that charging and discharging processes are successful in producing 7 °C chilled water, 65 °C domestic hot water, or 43 °C heating water to meet the user’s requirements. Characteristics such as temperature, concentration and power variation of the ATES system during charging and discharging processes were investigated. The performance of the ATES system for supplying cooling, heating or domestic hot water was analyzed and compared. The results indicate that the energy storage efficiencies (ESE) for cooling, domestic hot water and heating are 0.51, 0.97, 1.03, respectively, and the energy storage densities (ESD) for cooling, domestic hot water and heating reach 42, 88, 110 kW h/m3, respectively. The performance is better than those of previous TES systems, which proves that the ATES system using LiBr–H2O may be a good option for thermal energy storage

  12. Energy-dependent Charge States and Their Connection with Ion Abundances in Impulsive Solar Energetic Particle Events

    DiFabio, R.; Guo, Z.; Möbius, E.; Klecker, B.; Kucharek, H.; Mason, G. M.; Popecki, M.

    2008-11-01

    Impulsive solar energetic particle (SEP) events show substantial enhancements of heavy ions and 3He over the composition in the Sun's atmosphere. Mass per charge dependent acceleration mechanisms have been proposed to account for this preferential acceleration. However, a problem emerged for all the preferential acceleration models with the measurement of ionization states near 1 MeV nucleon-1, which showed that ions from C to Mg are fully stripped, a challenge that had been recognized early on. Since all models relied on differences in the charge-to-mass ratio to enable preferential acceleration, the proposed mechanisms were incompatible with this observation. Recent observations of the ionic charge states at lower energies have revealed a dependence on energy, with the charge states decreasing for lower energy ions. This raises the possibility that the low-energy charge states reflect the plasma conditions at the acceleration site, while the high-energy charge states are due to stripping low in the solar corona. In a survey of impulsive events we show that the increase of the Fe charge states with energy is highly significant for the sample of events and thus most likely a general feature of impulsive events. To see whether there is a connection between the enhancements and charge states, we extended the ACE SEPICA charge-state observations to lower energies and combined them with the ion fluxes from ACE ULEIS for impulsive events observed between 1997 and 2000. We find a positive correlation between the abundance ratios and the charge states at low energy, while the charge states at the highest energy do not demonstrate such dependence. This supports the idea that the higher mass particles are preferentially accelerated before being stripped.

  13. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since part> is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of part>, so it may be hard to use charged particle pseudorapidity density per participant pair as a function of part> to distinguish various theoretical models for particle production

  14. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U91+ ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb81+ ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  15. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    Kálmán, Péter

    2015-01-01

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  16. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production

  17. Unusual features of charge carrier traps energy spectra in silicon organic polymers revealed by advanced TSL

    Highlights: ► The improved technique of the fractional TSL registration has been elaborated. ► The discrete energies of the charge carrier traps were observed for the PDHS film. ► The TSL activation energies correlate with the Raman Ag modes of the silicon chain. ► The width of TSL curve is generally due to the frequency factor dispersion. - Abstract: The peculiarities of charge carrier traps’ energy spectra in poly (di-n-hexylsilane) films have been studied by the enhanced fractional thermally stimulated luminescence (TSL) in the temperature range of 5–200 K. For the first time, we have shown that the majority of fractional energy values (>80%) is distributed between a set of horizontal energy levels suggesting a discontinuity of the traps’ energy spectrum. These data distinctly differ from the results of earlier studies where a quasilinear dependence of the activation energy on temperature was found. It is shown that the significant width of TSL bands originates from the dispersion of the frequency factor. It is also established that the values obtained for the activation energy correlate well with the frequencies of the symmetric Raman active Ag modes at 268 and 373 cm−1 of the silicon chain, which confirms the suggestion about the hole location on the segments of the silicon organic polymers backbone.

  18. Energy losses of fast heavy multiply charged structural ions in collisions with complex atoms

    Matveev, V. I.; Sidorov, D. B.

    2007-07-01

    A nonperturbatve theory of energy losses of fast heavy multiply charged structural ions in collisions with neutral complex atoms is elaborated with allowance for simultaneous excitations of ionic and atomic electron shells. Formulas for the effective deceleration that are similar to the well-known Bethe-Bloch formulas are derived. By way of example, the energy lost by partially stripped U q+ ions (10 ≤ q ≤ 70) colliding with argon atoms and also the energy lost by Au, Pb, and Bi ions colliding with various targets are calculated. The results of calculation are compared with experimental data.

  19. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar;

    2010-01-01

    electrons useful for driving chemical reactions at surfaces. Using the binary collision approximation and a nonadiabatic model that takes into account the time-varying nature of the ion–surface interaction, the energy loss of the ions is reproduced. The energy loss for Na + ions incident on the devices...... shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange....

  20. The Low-Energy Charged Particle (LECP) experiment on the Voyager Spacecraft

    The Low Energy Charged Particle (LECP) experiment on the Voyager spacecraft is designed to provide comprehensive measurements of energetic particles in the Jovian, Saturnian, Uranian and interplanetary environments. These measurements will be used in establishing the morphology of the magnetospheres of Saturn and Uranus, including bow shock, magnetosheath, magnetotail, trapped radiation, and satellite-energetic particle interactions. The experiment consists of two subsystems, the Low Energy Magnetospheric Particle Analyzer (LEMPA) whose design is optimized for magnetospheric measurements, and the Low Energy Particle Telescope (LEPT) whose design is optimized for measurements in the distant magnetosphere and the interplanetary medium. (Auth.)

  1. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×105 as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS

  2. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  3. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.

    Michael D Daily

    2011-07-01

    Full Text Available Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK, for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō simulation of mesophilic AK from E. coli (AKmeso to simulations of thermophilic AK from Aquifex aeolicus (AKthermo. In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A "heated" simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the "corresponding states" hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways.

  4. Adenylate cyclase regulates elongation of mammalian primary cilia

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  5. Adenylate cyclase regulates elongation of mammalian primary cilia

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  6. Charging studies of heat packs using parabolic dish solar energy concentrator for extreme conditions

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Parabolic dish solar energy concentrator with aperture diameter 1.4 m and focal length 0.32 m is designed and fabricated to charge and store solar thermal energy in phase change material (PCM) based heat packs. Overall heat loss factor, heat duty, over all thermal efficiency, and optical efficiency factor are calculated using water sensible heating and cooling tests and values are 16.11 W m-2 K-1, 546.9 W, 49.2% and 0.62 respectively. The performance characteristic curve is generated using these parameters to understand its performance at different ambient temperatures and solar insolation. The fabricated concentrator has been used to charge 16 PCM heat packs with 150 g PCM in each heat pack, which took about 35 minutes for complete charging of PCM heat packs at average ambient temperature 39 °C and solar radiation flux density 715 W m-2 K-1. The charged heat packs are subjected to discharge studies at average ambient temperature about - 7 °C and observed heat release in the temperature range of 48 to 40 °C for 50 minutes, suggesting its applications for comfort and therapeutic applications in high altitude areas.

  7. Organic photovoltaic devices with concurrent solar energy harvesting and charge storage capability

    Takshi, Arash; Tevi, Tete; Rahimi, Fatemeh

    2015-09-01

    Due to large variation of the solar energy availability in a day, energy storage is required in many applications when solar cells are used. However, application of external energy storage devices, such as batteries and supercapacitors, increases the cost of solar energy systems and requires additional charging circuitry. This combination is bulky and relatively expensive, which is not ideal for many applications. In this work, a novel idea is presented for making electrochemical devices with dual properties of solar energy harvesting and internal charge storage. The device is essentially a supercapacitor with a photoactive electrode. Energy harvesting occurs through light absorption at one of the electrodes made of a composite of a conducting polymer (i.e. PEDOT:PSS) and a Porphyrin dye. The energy storage takes place in the both photoactive and counter electrode (CE). We have studied the effect of the CE material on the device characteristics. Using Y-Carbon (a commercial available electrode), an open circuit voltage of 0.49 V was achieved in light across the cell with ~1 mF capacitance. The other two choices for CE were activated carbon and carbon nanotube based electrodes. The cyclic voltammetry and impedance spectroscopy demonstrated that the Y Carbon electrode was a better match.

  8. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λL=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of Tr=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is Tr=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is inertially and

  9. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  10. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements

  11. Glucose Repression of Fbp1 Transcription in Schizosaccharomyces Pombe Is Partially Regulated by Adenylate Cyclase Activation by a G Protein α Subunit Encoded by Gpa2 (Git8)

    Nocero, M.; Isshiki, T.; Yamamoto, M.; Hoffman, C. S.

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, a...

  12. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  13. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  14. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  15. Computer simulation of coherent interaction of charged particles and photons with crystalline solids at high energies

    Apyan, A

    2007-01-01

    Monte Carlo simulation code has been developed and tested for studying the passage of charged particle beams and radiation through the crystalline matter at the energies from tens of MeV up to hundreds of GeV. The developed Monte Carlo code simulates electron, positron and photon shower in single crystals and amorphous media. The Monte Carlo code tracks the all generations of charged particles and photons through the aligned crystal by taking into account the parameters of incoming beam, multiple scattering, energy loss, emission angles, transverse dimension of beams, and linear polarization of produced photons. The simulation results are compared with the CERN-NA-59 experimental data. The realistic descriptions of the electron and photon beams and the physical processes within the silicon and germanium single crystals have been implemented.

  16. Charge transfer in the interactions of partially stripped ions with atoms at intermediate and high energies

    The Coulomb-Born (CB) approximation has been employed to study charge transfer cross sections in collisions of Cq+, Nq+ and Oq+ (q = 1-5) with atomic hydrogen in ground state in the energy range of 30-200 keV/amu. The interaction of the active electron with the incoming projectile ion has been approximated by a model potential containing both a long-range part and a short-range part. Variations of total capture cross sections with impact energy compare favourable well with the available experimental observations and with other theoretical findings. In addition, sub-shell distributions of total capture cross sections are given in graphical form. However, we are unable to find any oscillation in the charge-state dependence of total capture cross sections. (author)

  17. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  18. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  19. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs

  20. Modeling Charge-Sign Asymmetric Solvation Free Energies With Nonlinear Boundary Conditions

    Bardhan, Jaydeep P

    2014-01-01

    We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory but replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [J. Phys. Chem. B, v. 112:2408, 2008]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.

  1. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-03-15

    The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb{sup -1}. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e{sup +}e{sup -} collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)

  2. Energy loss of charged particles at large distances from metal surfaces

    We present a theoretical study of the dissipative component of the force acting on a highly charged ion moving in front of a solid surface at large distances. The friction force (stopping power) of the surface is analyzed employing both the specular-reflection model and time-dependent density functional theory (TDDFT). Contributions from particle-hole and plasmon excitations are discussed. A simple method to include the correction due to the finite width of the plasmon resonance at large wavelength into the TDDFT description of the stopping power is suggested. We present applications to the energy loss of charged particles undergoing distant collisions at grazing incidence angles with the internal surface of the microcapillary. Our results indicate that the correlation between the angular distribution and the energy loss of transmitted ions can be used to probe the dielectric properties of the capillary material at large distances

  3. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/p-barp and e+e- data. ch>/part/2> in nuclear collisions at high energy scales with √s in a similar way as Nch in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions

  4. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √(sNN) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/(bar p)p and e+e- data. ch>/part/2> in nuclear collisions at high energy scales with √s in a similar way as Nch in e+e- collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions

  5. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  6. Development of low energy ion beam system for space charge compensation experiments

    A low energy ion beam system for space charge compensation (SCC) experiments was developed and evaluated. This system was designed for observation of SCC of a positive ion beam with an electron beam. The system consisted of the ion source chamber and the SCC experiment chamber. The ion source chamber was equipped with the compact microwave ion source for low voltage extraction. Ion current at initial position of the analysis chamber was 84 μA at extraction voltage of 500 V, and satisfied a condition to observe the SCC effect clearly. In order to evaluate the SCC, we measured the arrival ion current by supplying thermionic electrons, which were extracted from a tungsten filament driven by ac voltage. As the electron supply, the arrival ion current increased from 40 to 68 μA at the potential of filament of +3 eV which produced the thermionic electron with extremely low energy extracted by space charge of the ion beam

  7. Study of a charge-coupled device for high-energy-particle detection

    This presentation is based on measurements made to evaluate the application of charge-coupled devices as detectors of high-energy particles. The experiment was performed with a Fairchild Linear 256-Cell CCD111 array (size 8μm x 17 μm/cell), utilizing a light source instead of a particle beam. It was observed that the minimum detectable signal was limited to approx. 488 electrons at -500C, where the readout and exposure times were about 260 ms and 400 ms respectively. The transfer inefficiency of the CCD111 was determined to be approx. 10-4. It has been concluded that at a lower temperature (approx. -1000C) or with faster readout (approx. 10 ms), the CCD111 would be able to detect the total deposited energy of minimum-ionizing charged particles

  8. Space distribution and energy straggling of charged particles via Fokker-Planck equation

    The Fokker-Planck equation describing a beam of charged particles entering a homogeneous medium is solved here for a stationary case. Interactions are taken into account through Coulomb cross-section. Starting from the charged-particle distribution as a function of velocity and penetration depth, some important kinetic quantities are calculated, like mean velocity, range and the loss of energy per unit space. In such quantities the energy straggling is taken into account. This phenomenon is not considered in the continuous slowing-down approximation that is commonly used to obtain the range and the stopping power. Finally the well-know Bohr of Bethe formula is found as a first-order approximation of the Fokker-Planck equation

  9. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  10. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO2/electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO2/GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs