WorldWideScience

Sample records for adenovirus-mediated gene transfer

  1. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  2. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  3. Adenovirus-mediated p53 gene transfer increases radiosensitivity of human gastric carcinoma cells

    Objective: To evaluate the effect of adenovirus-mediated p53 gene (Adp53) on apoptosis and radiosensitivity of human gastric carcinoma cell lines. Methods: Recombinant adenovirus carrying wild-type p53 gene was transferred into four human gastric carcinoma cell lines with different p53 genetic status. P53 protein expression was detected by immunohistochemistry and Western blot assay. Cell survival was assessed using a clonogenic assay. TUNEL assay was used in determination of apoptosis. The four human gastric carcinoma cell line infected with Adp53 were irradiated with 4 Gy, and cell cycle distribution and apoptotic rate were assayed by flow cytometry. Nude mice xenograft models of W and M cell were intratumorally injected with Adp53 and 48 h later were irradiated with 6 Gy. Relative volume in growth curve of tumor was used to observe tumor regression. Results: G2/M arrest, apoptosis and inhibition of tumor cell proliferation were induced by infection with Adp53 at 100 MOI, which caused high transfer rate of wild-type p53 and strong expression of P53 protein in the four human gastric carcinoma cell line cells. When evaluating radio-biologic efficacy by apoptotic rate, the apoptotic enhancement ratio of Adp53 at 4 Gy was 3.0 for W cell, 3.6 for M cell, 2.2 for neo cell and 2.5 for 823 cell respectively, in vitro. The antitumor enhancement ratio of Adp53 at 6 Gy was 1.41 for cell-implanted tumor and 1.91 for M cell-implanted tumor in vivo. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and radiosensitivity of human gastric carcinoma

  4. SYNERGISTIC EFFICACY OF ADENOVIRUS-MEDIATED BCL-XS GENE TRANSFER AND TOPOTECAN IN OVARIAN CANCER CELL

    2001-01-01

    To observe the synergistic efficacy between Adenovirus-mediated bcl-Xs(Adv-bcl-Xs) gene transfer and chemotherapy on ovarian cancer cell growth. Methods: NuTu-19 cells were infected by different titers of Adv-bcl-Xs and treated with topotecan in the meantime. Cell proliferation was measured 3 days later by MTT. Graphical representations and statistical analyses for their interaction in tumor cells were done. Results: The statistical result and Graphical representations of the statistical modeling showed synergy effect on cell growth inhibition (P<0.01). Conclusion: There were synergistic efficacies between Adv-bcl-Xs gene therapy and Topotecan in ovarian cancer cell growth.

  5. Dual effects of adenovirus-mediated thrombopoietin gene transfer on hepatic oval cell proliferation and platelet counts

    Thrombopoietin (TPO) is the growth factor for megakaryocytes and platelets, however, it also acts as a potent regulator of stem cell proliferation. To examine the significance of TPO expression in proliferation of hepatic oval cells, the effect of adenovirus-mediated TPO gene transfer into livers of the Solt-Farber model, which mimics the condition where liver regeneration is impaired, was examined. Hepatic TPO mRNA peaked its expression at 2 days after gene transduction and then gradually decreased. The peripheral platelet number began to increase at 4 days (P < 0.05) and reached its plateau at 9 days (P < 0.01). Oval cells expressed c-Mpl, a receptor for TPO as well as immature hematopoietic and hepatocytic surface markers such as CD34 and AFP. The proliferating cell nuclear antigen-positive oval cells in rats into which adenovirus-TPO gene was transferred at 7 and 9 days were significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each), and the total numbers of oval cells in the adenovirus-TPO gene transferred at 9 and 13 days were also significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each). Expression of SCF protein was increased at 4, 7, and 9 days by TPO gene administration and that of c-Kit was increased at 4 and 7 days. These data suggest that adenovirus-mediated TPO gene transfer stimulated oval cell proliferation in liver as well as increasing peripheral platelet counts, emphasizing the significance of the TPO/c-Mpl system in proliferation of hepatic oval cells

  6. Adenovirus-mediated transfer of RA538 gene and its antitumor effect

    程金科; 林晨; 隗玥; 张雪艳; 邢嵘; 牟巨伟; 王秀琴; 吴旻

    1999-01-01

    The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.

  7. Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer

    哈小琴; 李元敏; 劳妙芬; 苑宾; 吴祖泽

    2003-01-01

    Objective To evaluate the effects of hepatocyte growth factor (HGF) on the prevention of scar formation and the promotion of wound healing by gene transfer. Methods A total of 12 female New Zealand rabbits were used in this study. Rabbits were anesthetized with an intravenous injection of sodium pentobarbital, and identical wounds were made over the ventral surface of each ear. Five circular wounds, 7 mm in diameter, were created in each ear by excision through the skin to the underlying cartilage using sterile technique. After the surgical procedures, 10 of the rabbits were randomly allocated to five groups, with 2 rabbits in each group: Ad-HGF group 1, Ad-HGF group 2, Ad-HGF group 3, Ad-GFP (a reporter gene) group and the solvent group. Immediately after surgery, 6×107 pfu Ad-HGF, 6×108 pfu Ad-HGF, 6×109 pfu of Ad-HGF, 6×109 pfu of Ad-GFP, or same volume of solvent (PBS, pH 7.2) was applied once to each wound in groups 1 to 5, respectively. One additional rabbit was used to evaluate the transfer efficiency of the adenovirus vector by transferring Ad-GFP (6×109 pfu) into its wounds. Ice slides of wounds from this animal were observed under fluorescence microscopy. Another additional rabbit was used to evaluate the expression of HGF and TGFβ1 after transferring Ad-HGF (6×109 pfu) into each of its wound. Immunohistochemistry was used for detection. Results The effect of HGF on reducing excessive dermal scarring was observed by adenovirus-mediated gene transfer. Transfection of the human HGF cDNA into skin wounds through an adenoviral vector suppressed the over-expression of TGFβ1, which plays an essential role in the progression of dermal fibrogenesis. Application of HGF to the wounds significantly enhanced wound healing and inhibited over scarring.Conclusion HGF gene therapy could be a new approach for preventing excessive dermal scarring in wound healing.

  8. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure

    2007-01-01

    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  9. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice

    Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a heterodimeric immunoregulatory cytokine composed of covalently linked p35 and p40 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca) tumors. Adenoviral vectors were constructed encoding one or both subunits of murine IL-12 (Ad.p35, Ad.p40 and Ad.IL-12) or cytosine deaminase (Ad.CD). The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN)-γ production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose) intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK) cell activity and IFN-γ production. The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control). The combined gene transfer increased splenic NK cell activity and IFN-γ production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. The results suggest that adenovirus-mediated IL-12 gene transfer combined with Ad.CD followed by 5-FC treatment may be useful for treating cancers

  10. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice

    Kim Samyong

    2005-05-01

    Full Text Available Abstract Background Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12, a heterodimeric immunoregulatory cytokine composed of covalently linked p35 and p40 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD and 5-fluorocytosine (5-FC has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca tumors. Methods Adenoviral vectors were constructed encoding one or both subunits of murine IL-12 (Ad.p35, Ad.p40 and Ad.IL-12 or cytosine deaminase (Ad.CD. The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN-γ production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK cell activity and IFN-γ production. Results The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control. The combined gene transfer increased splenic NK cell activity and IFN-γ production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. Conclusion The results suggest that adenovirus-mediated IL-12 gene transfer combined with Ad.CD followed by

  11. ADENOVIRUS-MEDIATED P53 GENE TRANSFER INCREASES THE THERMOSENSITIVITY OF HUMAN GASTRIC CARCINOMA CELL LINES (IN VITRO AND IN VIVO)

    张珊文; 肖绍文; 吕有勇

    2003-01-01

    Objective: To investigate the effect of adenovirus- mediated p53 (Adp53) transfer on thermosensitivity of human gastric carcinoma cell lines (BGC823). Methods: Two human gastric carcinoma cell lines with different p53 status, BGC823-wtp53 cell (abbreviate W) bearing the wilt-type p53 and BGC823-mutp53 cell (abbreviate M) bearing the mutant p53, were cultured with DMEM medium and were infected with Adp53 at a viral multiplicity of infection of 100 (1:100MOI) for 48h before heating. Cell cycle redistribution and apoptosis of two human gastric carcinoma cell lines in 24h at 37℃ after heat treatment at 42℃ for 2h or 43℃ for 0.5h were analyzed by flow cytometry. Relative tumor volume growth curves were used in a nude mouse tumor model of the two cell lines following hyperthermia at 43℃ for 0.5h after 48h intratumoral injection of 1(108 pfu of Adp53 to evaluate thermoenhancemet effect in vivo. Results: In vitro study showed that both W and M cells infected with Adp53 and treated with heating had strong arrest in G2 (after heating at 42℃ for 2h, 34.0% of original population for W cells and 25.3% of original population for M cells) and produced obvious apoptotic response. The apoptosis rate showed 230% increased (for W cells) and 110% increase (for M cells) compared with heating only control. In vivo study showed that the growth of tumor of both W cells and M cells was significantly delayed by hyperthemia combining with Adp53 as compared to tumors receiving either treatment alone. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and thermo- sensitivity in vitro and tumor thermosensitivity in vivo independent of cellular intrinsic p53 status. These results support the combined used of p53 gene therapy with hyperthermia in clinical trials.

  12. Adenovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Transfer Driver by KDR Promoter in Treatment of Experimental Human HepatocelLular Carcinoma in Nude Mice

    LI Bao-jin; ZHANG Chao; YI Yuan-xue; HAO Ying; LIU Xiao-ping; OU Qing-jia

    2007-01-01

    Objective: To investigate the therapeutic efficacy of adenovirus-mediated herpes simplex virus thymidine kinase (HSV-tk) gene transfer under the driving of KDR promoter (AdKDR-tk) in combination of ganciclovir (GCV) against human hepatocellular carcinoma in nude mice. Methods: HepG2 cell line was implanted subcutaneously into 32 nude mice, which were subsequently divided into 4 groups (n=8 each group): Ganciclovir group (Ⅰ), Ad group (Ⅱ), AdCMV-tk/GCV group (under the driving of CMV promoter) (Ⅲ) and AdKDR-tk/GCV group (Ⅳ). Then intratumoral injection of recombinant adenovirus or Ad was performed in all nude mice, and repeated 24 h later. For the following 10 d GCV was given at a dose of 100 mg/(kg·d), ip. All the treated animals were killed to evaluate the tumor weight and the histopathological changes and the microvessel density of tumors after the treatment was determined. Results: Compared with group Ⅰ, the tumor inhibitory rate was 12.3% in group Ⅲ and 24.5% in group Ⅳ; the inhibition rates were significantly different between group Ⅲ and Ⅳ (P<0.05). The mean MVDs in group Ⅰ, Ⅱ, Ⅲand Ⅳ were 37.4±8.6, 30.6±7.8, 27.6±7.1, and 10.7±4.1 (microvessels/mm2), respectively. Significant differences were found between group Ⅲ and Ⅱ (P<0.05), Ⅳ and Ⅱ (P<0.01), and Ⅳ and Ⅲ (P<0.01). Conclusion: Intratumoral injection of AdKDR-tk results in marked inhibition of HCC growth through inhibition angiogenesis in nude mice. It may be a new treatment approach for human HCC.

  13. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo.

    Saito, Y; Swanson, X; Mhashilkar, A M; Oida, Y; Schrock, R; Branch, C D; Chada, S; Zumstein, L; Ramesh, R

    2003-11-01

    The tumor-suppressor gene PTEN encodes a multifunctional phosphatase that is mutated in a variety of human cancers. PTEN inhibits the phosphatidylinositol 3-kinase pathway and downstream functions, including activation of Akt/protein kinase B (PKB), cell survival, and cell proliferation in tumor cells carrying mutant- or deletion-type PTEN. In such tumor cells, enforced expression of PTEN decreases cell proliferation through cell-cycle arrest at G1 phase accompanied, in some cases, by induction of apoptosis. More recently, the tumor-suppressive effect of PTEN has been reported in ovarian and thyroid tumors that are wild type for PTEN. In the present study, we examined the tumor-suppressive effect of PTEN in human colorectal cancer cells that are wild type for PTEN. Adenoviral-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in colorectal cancer cells (DLD-1, HT29, and SW480) carrying wtPTEN than in normal colon fibroblast cells (CCD-18Co) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) and cell-cycle arrest at the G2/M phase, but not the G1 phase. Furthermore, treatment of human colorectal tumor xenografts (HT-29, and SW480) with Ad-PTEN resulted in significant (P=0.01) suppression of tumor growth. These results indicate that Ad-PTEN exerts its tumor-suppressive effect on colorectal cancer cells through inhibition of cell-cycle progression and induction of cell death. Thus Ad-PTEN may be a potential therapeutic for treatment of colorectal cancers. PMID:14528320

  14. Construction and identification of recombinant adenovirus-mediated gene transfer system for rat vascular endothelial growth factor

    Hongyu Yang; Hong Qi; Junjie Zou; Xiwei Zhang

    2008-01-01

    Objective: To construct the recombinant adenovirus vector carrying rat vascular endothelial growth factor(VEGF), as preparation for genetic transfection that follows. Methods: Rat VEGF was obtained by using RT-PCR amplification and then cloned into the shutter plasmid pDC316. Subsequently, this newly constructed plasmid pDC316-VEGF, after identification by nuclease digestion analysis and sequencing analysis, was transfected into human embryonic kidney cells HEK293 by Lipofectamine 2000 mediation, together with adenovirus-packaging plasmid pBHGE3. Based on the homologous recombination of the two plasmids within HEK293 cells, the recombinant adenovirus vector carrying VEGF and VDC316-VEGF was created. VDC316-VEGF was subsequently identified using PCR, purified using repeated plaque passages, proliferated using freezing and melting within HEK293 cells, and titrated using 50% Tissue Culture Infective Dose(TCID50) assay. Results:The newly constructed recombinant adenovirus was confirmed to carry rat VEGF based on PCR results, and its titration value determined based on TCID50 assay was 3×109 pfu/ml. Conclusion:The recombinant adenovirus carrying rat VEGF was successfully constructed. The newly constructed adenovirus can produce a sufficiently high titration value within HEK293 cells, providing a reliable tool for genetic transfection in further gene therapy researches.

  15. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  16. Effects of adenovirus mediated vascular endothelial growth factor gene transfer on reconstitution of hematopoiesis in post-bone marrow transplantation mice

    ZHONG Zhao-dong; ZOU Ping; HU Xian-shi; YOU Yong; CHEN Zhi-chao; HUANG Shi-ang

    2005-01-01

    Background Bone marrow transplantation (BMT) conditioning procedure is considered as the cause of damage to bone marrow microvasculature and the delay of hematopoiesis recovery. However, hematopoiesis regulation post BMT by vascular endothelial growth factor (VEGF) has not yet been studied. In this study, adenovirus were used to investigate the effects of VEGF gene transfer on preventing damages to bone marrow microenvironment and its promotion of hematopoiesis in post-BMT mice.Methods Recombinant adenovirus (Ad)-enhanced green fluorescent protein (EGFP)/hVEGF165 was injected via tail vein into BALB/c mice undergoing syngeneic BMT. During the different phases post BMT, the distribution of adenovirus and the plasma levels of hVEGF were measured as well as the numbers of white blood cells (WBC), platelet (PLT) and red blood cells (RBC) in peripheral blood. At the same time, the mice were injected with Chinese ink via tail vein, following which the tibias were separated and were used for analysis of bone marrow microvasculature surface area and cellularity.Results Significant expression of EGFP and hVEGF was observed in multiple organs at different phases post BMT, and the plasma level of hVEGF was up to (866.67±97.13) pg/ml. The recovery of WBC, PLT and RBC of the group treated with recombinant adenovirus Ad-EGFP/hVEGF165 were significantly more rapid than those of other BMT groups (P0.05]. The restoration of hematopoiesis was retarded more than that of microvasculature. The cellularity of bone marrow in each group was still lower than that of normal control [(62.3±4.0)%, P<0.05] at the 30th day post BMT, but the percentage in group treated with VEGF at the 20th and 30th days post BMT [(46.5±5.0)% and (55.1±4.5)%] exceeded those of other BMT groups (P<0.05, respectively).Conclusion VEGF gene transfer mediated by adenovirus may protect the hematopoietic microenvironment to promote the restoration of hematopoiesis in post-BMT mice.

  17. Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson’s disease

    Corti, Olga; Sánchez-Capelo, Amelia; Colin, Philippe; Hanoun, Naïma; Hamon, Michel; Mallet, Jacques

    1999-01-01

    Developments of technologies for delivery of foreign genes to the central nervous system are opening the field to promising treatments for human neurodegenerative diseases. Gene delivery vectors need to fulfill several criteria of efficacy and safety before being applied to humans. The ability to drive expression of a therapeutic gene in an adequate number of cells, to maintain long-term expression, and to allow exogenous control over the transgene product are essential requirements for clini...

  18. Adenovirus-mediates gene transfer of brain-derived neurotrophic factor for repairing sciatic nerve injury%重组腺病毒载体AxCA-BDNF基因转染修复坐骨神经损伤

    李培建; 李兵仓

    2011-01-01

    BACKGROUND: How to accelerate injury repair and regeneration following peripheral nerve injury is the research focus. Gene therapy may be the possible treatment for this problem.OBJECTIVE: To observe the expression of the brain-derived neurotrophic factor (BDN F) gene after microinjected adenovirus-mediated gene transfer of BDNF (AxCA-BDNF) to the sciatic nerve for peripheral nerve regeneration.METHODS: Based on silicone tube graft as a support to bridge adult rat sciatic nerve gaps, Wistar rat were microinjected recombinant adenovirus vector of BDNF (AxCA-BDNF), BDNF and simple injection of virus buffer to the sciatic nerve respectively.With the methods of in situ hybridization and immunocytochemistry, the BDNF gene expression was certified, the number of the new nerve fibers and motoneurons in anterior horn of the spinal cord were calculated, and the myelin sheath thickness of the new nerve fibers was measu red at 3, 7, 14 days and 1 , 2, 4 months after operation.RESULTS AND CONCLUSION: Compared with the BDNF and control group, the expression of the BDNF gene in the proximal end, distal end and spinal cord (L3-6) of injured sciatic nerve were obviously higher than that of the BDNF and control groups (P < 0.01). The result of retrograde axonal transport of HRP tracer indicated the survival neurons, regenerated nerve fibers,thickness of myelin sheath, as well as the re-formation of nerve connection of the AxCA-BDNF group were superior to the control group(P < 0.01). The results demonstrated that exogenous BDNF gene and its express proteins were uptaken to the spinal cord motoneurons through retrograde axonal transport. Gene therapy for sciatic nerve injury of adult rats by adenovirus-mediated gene transfer of brain-derived neurotrophic factor in vivo not only promotes nerve regeneration but also protects the neurons in the spinal cord.%背景:如何促进周围神经损伤修复与再生一直是基础与临床研究的热点.基因治疗有可能成为今后

  19. Adenovirus-mediated p53 and ING4 gene co-transfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer.

    Wu, Jie; Zhu, Yanbo; Xu, Chun; Xu, Hong; Zhou, Xiumin; Yang, Jicheng; Xie, Yufeng; Tao, Min

    2016-01-01

    Multigene-based combination therapy may be an effective practice in cancer gene therapy. Substantial studies have demonstrated that tumor suppressor p53 acetylation is indispensable for p53 activation. Inhibitor of growth 4 (ING4), as a novel tumor suppressor, is capable of remarkably enhancing p53 acetylation and its transcriptional activity. Hence, we assumed that combined treatment of p53 and ING4 double tumor suppressors would exhibit enhanced antitumor effects. The combined therapeutic efficacy of p53 and ING4 for human cancers has not been previously reported. We thus generated multiple promoter expression cassette-based recombinant adenovirus-co-expressing ING4 and p53 double tumor suppressor genes (AdVING4/p53), evaluated the combined effects of AdVING4/p53 on breast cancer using the MDA-MB-231 (mutant p53) human breast cancer cell line, and also elucidated its underlying molecular mechanisms. We demonstrated that AdVING4/p53-mediated p53 and ING4 co-expression induced synergistic growth inhibition and apoptosis as well as enhanced effects on upregulation of acetylated p53, P21, Bax, PUMA, Noxa, cleaved caspase-9, cleaved caspase-3 and cleaved PARP, and downregulation of Bcl-2, CD31 and microvessel density (MVD) in MDA-MB-231 breast cancer in vitro and/or in vivo subcutaneous (s.c.) xenografted tumors. The synergistic antitumor activity elicited by AdVING4/p53 was closely associated with the enhanced activation of the intrinsic apoptotic pathway and synergistic inhibition of tumor angiogenesis, very possibly via ING4-mediated enhancement of p53 acetylation and activity. Thus, our results indicate that cancer gene therapy combining two or more tumor suppressors such as p53 and ING4 may constitute a novel and effective therapeutic modality for human breast cancer and other cancers. PMID:26530780

  20. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma

    2000-01-01

    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  1. Adenovirus-mediated IL-12 gene therapy in combination with radiotherapy for murine liver cancer

    Objective: To investigate the synergistic antitumor effects of adenovirus-mediated IL-12 gene therapy in combination with radiotherapy in mice bearing liver cancer. Methods: Balb/c mice bearing liver cancer received the treatment at day 1 with tumor local irradiation (TLI) of 20 Gy or mask irradiation when tumor size reached 0.6-1.0 cm. Within 1 hour after irradiation, adenovirus containing IL-12 gene or PBS was intra-tumor injected once a week. Forty-eight hours after the second injection, IFN-γ levels in sera and the supernatant of cultured spleen cells were assayed by ELISA, CTL activity of spleen cells was measured by 3H-TdR release assay, and phenotypes of tumor-infiltrating lymphocytes were analysed by immunohistochemical staining. Results: The growth of tumors in animals treated with a combination of IL-12 gene therapy and TLI was inhibited more significantly than those with either single treatment (P + and CD8+ lymphocyte infiltration and tumor-specific cytolytic activities, and the levels of IFN-γ in sera were higher in IL-12 gene therapy and IL-12 gene therapy combined with TLI groups. Conclusion: These results suggest that IL-12 gene therapy combined with radiotherapy is more effective than both single treatment modalities and can induce specific antitumor immuno-response greatly

  2. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  3. Adenovirus-mediated CTLA4Ig gene inhibits infiltration of immune cells and cell apoptosis in rats after liver transplantation

    Guo-Ping Jiang; Zhen-Hua Hu; Shu-Sen Zheng; Chang-Ku Jia; Ai-Bin Zhang; Wei-Lin Wang

    2005-01-01

    AIM: To investigate the role of adenovirus-mediated CTLA4Ig gene therapy in inhibiting the infiltration of macrophages and CD8+T cells and cell apoptosis after liver transplantation.METHODS: The rat orthotopic liver transplantation model was applied. The rats were divided into three groups:group Ⅰ: rejection control (SD-to-Wistar); group Ⅱ: acute rejection treated with intramuscular injection of CsA injection of 1× 109 PFU adenovirus-mediated CTLA4Ig gene liquor in dorsal vein of penis 7 d before liver transplantation(SD-to-Wistar+CTLA4Ig). Immunohistochemistry and transferase-mediated dUTPnick-end labeling (TUNEL)were used to analyze the expression of CTLA4Ig gene in liver, infiltration of macrophages and CD8+T cells, cell apoptosis in grafts at different time-points after liver transplantation. Histopathological examination was done.RESULTS: CTLA4Ig gene expression was positive in liver on d 7 after administering adenovirus-mediated CTLA4Ig gene via vein, and remained positive until day 60 after liver transplantation. Infiltration of macrophages and CD8+T cells in CTLA4Ig-treated group was less than in rejection control group and CsA-treated group. The apoptotic index of rejection group on d 3, 5, and 7 were significantly higher than that of CTLA4Ig-treated group. A good correlation was found between severity of rejection reaction and infiltration of immune activator cells or cell apoptotic index in grafts.CONCLUSION: CTLA4Ig gene is constantly expressed in liver and plays an important role in inducing immune tolerance.

  4. Combination of radiotherapy and adenovirus-mediated p53 gene therapy for MDM2-overexpressing hepatocellular carcinoma

    The p53 gene plays a determinant role in radiation-induced cell death and its protein product is negatively regulated by MDM2. We investigated whether adenovirus-mediated modified p53 gene transfer, which blocks p53-MDM2 binding, is effective for radiation-induced cell death in hepatocellular carcinoma (HCC) at different MDM2 cellular levels. Human hepatocellular carcinoma cell lines expressing MDM2 at low levels (Huh7) and high levels (SK-Hep1) were used. Ad-p53 and Ad-p53vp are replication-deficient adenoviral vectors containing human wild-type or modified p53, respectively. The anti-tumor effect was highest for Ad-p53 + radiotherapy (RT) in the low-level MDM2 cells, whereas this effect was highest for Ad-p53vp + RT in the MDM2-overexpressing cells. In Huh-7 cells, Ad-p53 + RT decreased cell viability (32%) in vitro and inhibited tumor growth (enhancement factor, 1.86) in vivo. Additionally, p21 expression and apoptosis were increased. In contrast, in SK-Hep1 cells, Ad-p53vp + RT showed decreased cell viability (51%) in vitro and inhibition of tumor growth (enhancement factor, 3.07) in vivo. Caspase-3 expression and apoptosis were also increased. Adenovirus-expressing modified p53, which blocks p53-MDM2 binding, was effective in killing tumor cells overexpressing MDM2. Furthermore, the combination strategy for disruption of the p53-MDM2 interaction with RT demonstrated enhanced anti-tumor effects both in vitro and in vivo. (author)

  5. Adenovirus-mediated gene transduction of truncated lκBα enhances radiosensitivity in human colon cancer cells

    Nuclear factor kappa B (NF-κB) is a transcription factor that is known to regulate apoptosis when cells are exposed to DNA-damaging agents such as ionizing radiation and cytotoxic drugs. We sought to determine if inhibition of NF-κB could enhance radiosensitivity in human colon cancer cells in vitro and in vivo. To inhibit NF-κB activation specifically, we constructed a recombinant adenovirus vector expressing a truncated form of the inhibitor protein IκBα (IκBαΔN) that lacks the phosphorylation sites essential for activation of NF-κB, and transfected two human colon cancer cell lines (HT29 and HCT15) with this vector. In vitro colony-forming assays revealed that the overexpression of the stable lκBα by AxIκBαΔN infection significantly suppressed cell growth after irradiation in both cell lines as compared to infection with a control vector, AxLacZ. Treatment with AxIκBαΔN and irradiation successfully inhibited the growth of HT29 xenografted subcutaneous tumors in nude mice with an 83.8% volume reduction on day 38 as compared to the untreated tumors. Furthermore, it was demonstrated that apoptosis was increased by adenovirus-mediated gene transduction of IκBαΔN in vitro and in vivo. These results indicated that inhibition of NF-κB could enhance radiosensitivity through an increase in radiation-induced apoptosis. We believe that radio-gene therapy using adenovirus-mediated gene transduction of IκBαΔN could be an attractive candidate as a treatment strategy for colorectal cancer. (author)

  6. Adenovirus Mediated BIMS Transfer Induces Growth Supression and Apoptosis in Raji Lymphoma Cells

    ZHAO Ya Ning; LI Qiang

    2014-01-01

    Objective To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells. Methods BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells. Results After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry. Conclusion These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells.

  7. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up

    Yong-song GUAN; Yuan LIU; Qing ZOU; Qing HE; Zi LA; Lin YANG; Ying HU

    2009-01-01

    Objective: In the present study, we have examined the safety and efficacy of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) injection in patients with advanced non-small-cell lung cancer (NSCLC) in the combination with the therapy of bronchial arterial infusion (BAI). Methods: A total of 58 patients with advanced NSCLC were enrolled in a non-randomized, two-armed clinical trial. Of which, 19 received a combination treatment of BAI and rAd-p53 (the combo group), while the remaining 39 were treated with only BAI (the control group). Patients were followed up for 12 months, with safety and local response evaluated by the National Cancer Institute's Common Toxicity Criteria and response evaluation criteria in solid tumor (RECIST), respectively. Time to progression (TTP) and survival rates were also analyzed by Kaplan-Meier method. Results: In the combo group,19 patients received a total of 49 injections of rAd-p53 and 46 times of BAI, respectively, while 39 patients in the control group received a total of 113 times of BAI. The combination treatment was found to have less adverse events such as anorexia, nausea and emesis, pain, and leucopenia (P0.05). Patients in the combo group had a longer TTP than those in the control group (a median 7.75 vs 5.5 months, P=0.018). However, the combination treatment did not lead to better survival, with survival rates at 3, 6, and 12 months in the combo group being 94.74%, 89.47%, and 52.63%, respectively, com-pared with 92.31%, 69.23%, and 38.83% in the control group (P=0.224). Conclusion: Our results show that the combination of rAd-p53 and BAI was well tolerated in patients with NSCLC and may have improved the quality of life and delayed the disease progression. A further study to better determine the efficacy of this combination therapy is warranted.

  8. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma.

    M. CARUSO; Pham-Nguyen, K; Kwong, Y. L.; Xu, B; Kosai, K I; Finegold, M; Woo, S L; Chen, S. H.

    1996-01-01

    Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an...

  9. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S;

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone or in...... combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  10. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  11. Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system

    Vasquez, E. C.; Beltz, T. G.; Haskell, R. E.; Johnson, R. F.; Meyrelles, S. S.; Davidson, B. L.; Johnson, A. K.

    2001-01-01

    The objective of the present study was to define the optimum conditions for using replication-defective adenovirus (Ad) to transfer the gene for the green fluorescent protein (GFP) to the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei and cells of the neurohypophysis (NH). As indicated by characterizing cell survival over 15 days in culture and in electrophysiological whole cell patch-clamp studies, viral concentrations up to 2 x 10(7) pfu/coverslip did not affect viability of transfected PVN and NH cultured cells from preweanling rats. At 2 x 10(7) pfu, GFP gene expression was higher (40% of GFP-positive cells) and more sustained (up to 15 days). Using a stereotaxic approach in adult rats, we were able to directly transduce the PVN, SON, and NH and visualize gene expression in coronal brain slices and in the pituitary 4 days after injection of Ad. In animals receiving NH injections of Ad, the virus was retrogradely transported to PVN and SON neurons as indicated by the appearance of GFP-positive neurons in cultures of dissociated cells from those brain nuclei and by polymerase chain reaction and Western blot analyses of PVN and SON tissues. Adenoviral concentrations of up to 8 x 10(6) pfu injected into the NH did not affect cell viability and did not cause inflammatory responses. Adenoviral injection into the pituitary enabled the selective delivery of genes to the soma of magnocellular neurons. The experimental approaches described here provide potentially useful strategies for the treatment of disordered expression of the hormones vasopressin or oxytocin. Copyright 2000 Academic Press.

  12. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  13. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S;

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone or in...

  14. Infection with adenovirus-mediated luciferase reporter gene in mesenchymal stem cells and bioluminescence imaging

    Objective: To construct adenovirus vector containing firefly luciferase reporter gene (Ad-Luc) and infect bone marrow mesenchymal stem cells (BMSC), then to take bioluminescence imaging in vitro and in vivo for identification. Methods: The luciferase gene was amplified with PCR from psiCHECK-2 plasmid and cloned into the adenoviral shuttle vector (pShuttle-CMV). It was confirmed by Nhe Ⅰ/Xba Ⅰ digestion and sequencing. PShuttle-CMV-Luc and backbone vector (pAdeno) were homologous recombined. Then the recombinant plasmid was packaged in HEK293 cells and the virus titer was detected. The BMSC were infected by the recombinant adenovirus. The bioluminescence imaging in vitro was performed to determine the best multiplicity of infection (MOI), and the relationship between bioluminescence intensity and MOI was analyzed by curve fitting regression analysis. Viability was evaluated via Trypan blue staining. The transfected BMSC (1 × 106) were implanted into the muscles of forelimb of SD rats,and then tracked by bioluminescence imaging in vivo. Cell viability was compared using two-way repeated measures analysis of variance between groups. Results: Enzyme digestion and sequence analysis indicated that Ad-Luc was successfully constructed. The virus titer was 1 × 1010 plaque forming unit (PFU)/ml. The bioluminescence detection in vitro showed that Ad-Luc could infect BMSC high efficiently to express luciferase and the best MOI was 50. The bioluminescence intensity enhanced with increase of MOI (R2 =0.98). No statistically significant difference was found in cell viability between transfected and untransfected BMSC at 1, 3, 5, 7 d. The cell survival rates were (92.5±2.3)% vs (94.1±1.8)%, (91.4±0.9)% vs (92.7±2.0)%, (92.1±1.6)% vs (93.3± 2.4)%, (91.9 ± 1.5)% vs (93.0 ± 3.1)%, respectively (F=4.38, P>0.05). The bioluminescence imaging in vivo showed that BMSC survived 1, 3, 7 d after implantation. However, bioluminescence signal decreased gradually over time

  15. Adenovirus-mediated delivery of interferon-γ gene inhibits the growth of nasopharyngeal carcinoma

    Liu Ran-yi

    2012-12-01

    Full Text Available Abstract Background Interferon-γ (IFN-γ is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ, and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR, and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma.

  16. Synergistic tumor suppression by adenovirus-mediated ING4/PTEN double gene therapy for gastric cancer.

    Zhang, H; Zhou, X; Xu, C; Yang, J; Xiang, J; Tao, M; Xie, Y

    2016-01-01

    Both inhibitor of growth 4 (ING4) and phosphatase and tensin homolog (PTEN) have been shown to be strong candidate tumor suppressors. However, the combined efficacy of ING4 and PTEN for human gastric cancer remains to be determined. In this report, we constructed a multiple promoter expression cassette-based recombinant adenovirus coexpressing ING4 and PTEN (AdVING4/PTEN), assessed the combined effects of AdVING4/PTEN on gastric cancer using wild-type p53 AGS and SNU-1 human gastric cancer cell lines, and elucidated its underlying mechanisms. We found that AdVING4/PTEN-induced synergistic growth inhibition and apoptosis in vitro AGS or SNU-1 tumor cells and in vivo AGS xenografted tumors subcutaneously inoculated in athymic BALB/c nude mice. Mechanistically, AdVING4/PTEN exhibited an enhanced effect on upregulation of p53, Ac-p53 (K382), P21, Bax, PUMA, Noxa, cleaved Caspase-9, cleaved Caspase-3 and cleaved PARP as well as downregulation of Bcl-2 in vitro and in vivo. In addition, AdVING4/PTEN synergistically downregulated tumor vessel CD34 expression and reduced microvessel density, and additively inhibited vascular endothelial growth factor (VEGF) expression in vivo. The synergistic tumor suppression elicited by AdVING4/PTEN was closely associated with the synergistic induction of apoptosis possibly via enhancement of endogenous p53 responses through cooperatively facilitating p53's stability and acetylation, and the synergistic inhibition of tumor angiogenesis probably via overlapping reduction of VEGF through cooperatively downregulating hypoxia inducible factor-1α's level and transcription activity. Thus, our results indicate that cancer gene therapy combining ING4 and PTEN may constitute a novel and effective therapeutic modality for human gastric cancer and other cancers. PMID:26564429

  17. Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model

    Introduction: In vivo tracking of the transplanted stem cells is important in pre-clinical research of stem cell therapy for myocardial infarction. We examined the feasibility of adenovirus-mediated sodium iodide symporter (NIS) gene to cell tracking imaging of transplanted stem cells in a canine infarcted myocardium by clinical single photon emission computed tomography (SPECT). Methods: Beagle dogs were injected intramyocardially with NIS-expressing adenovirus-transfected canine stem cells (Ad-hNIS-canine ADSCs) a week after myocardial infarction (MI) development. 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) and 99mTc-pertechnetate (99mTcO4−) SPECT imaging were performed for assessment of infarcted myocardium and viable stem cell tracking. Transthoracic echocardiography was performed to monitor any functional cardiac changes. Results: Left ventricular ejection fraction (LVEF) was decreased after LAD ligation. There was no significant difference in EF between the groups with the stem cell or saline injection. 125I uptake was higher in Ad-hNIS-canine ADSCs than in non-transfected ADSCs. Cell proliferation and differentiation were not affected by hNIS-carrying adenovirus transfection. 99mTc-MIBI myocardial SPECT imaging showed decreased radiotracer uptake in the infarcted apex and mid-anterolateral regions. Ad-hNIS-canine ADSCs were identified as a region of focally increased 99mTcO4− uptake at the lateral wall and around the apex of the left ventricle, peaked at 2 days and was observed until day 9. Conclusions: Combination of adenovirus-mediated NIS gene transfection and clinical nuclear imaging modalities enables to trace the fate of transplanted stem cells in infarcted myocardium for translational in vivo cell tracking study for prolonged duration

  18. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model

    Purpose: The purpose of this study was to evaluate the efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in an adjuvant setting with external beam radiation therapy (EBRT) in an experimental prostate cancer model in preparation for a Phase I clinical study in humans. Methods: For efficacy studies, i.m. DU145 and intraprostatic LNCaP C4-2 tumors were established in immune-deficient mice. Tumors were injected with the lytic, replication-competent Ad5-CD/TKrep adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene. Two days later, mice were administered 1 week of 5-fluorocytosine + ganciclovir (GCV) prodrug therapy and fractionated doses of EBRT (trimodal therapy). Tumor control rate of trimodal therapy was compared to that of EBRT alone. For toxicology studies, immune-competent male mice received a single intraprostatic injection (1010 vp) of the replication-competent Ad5-CD/TKrep adenovirus. Two days later, mice were administered 4 weeks of 5-fluorocytosine + GCV prodrug therapy and 56 Gy EBRT to the pelvic region. The toxicity of trimodal therapy was assessed by histopathologic analysis of major organs and clinical chemistries. Results: In both the i.m. DU145 and intraprostatic LNCaP C4-2 tumor models, trimodal therapy significantly improved primary tumor control beyond that of EBRT alone. In the DU145 model, trimodal therapy resulted in a tumor growth delay (70 days) that was more than twice that (32 days) of EBRT alone. Whereas EBRT failed to eradicate DU145 tumors, trimodal therapy resulted in 25% tumor cure. In the LNCaP C4-2 tumor model, EBRT slowed the growth of intraprostatic tumors, but resulted in no tumor cures, and 57% of the mice developed retroperitoneal lymph node metastases at 3 months. By contrast, trimodal therapy resulted in 44% tumor cure and reduced significantly the percentage (13%) of lymph node metastases relative to EBRT alone. Overall

  19. 腺病毒介导的白介素-24转移对脂多糖诱导的大鼠肾小球系膜细胞凋亡和周期调节蛋白p21、p27及CyclinE的影响%Effects of adenovirus mediated IL-24 gene transfer on apoptosis and cell cycle regulatory protein p21,p27 and CyclinE of rat gomerular mesangial cells induced by lipopolysaccharide

    王晓浪; 周建华; 王从俊

    2014-01-01

    Objective To explore the effect of interleukin-24(IL-24)gene transfer on glomerular mesangial cells(GMCs) apoptosis and to find out the effect of IL-24 on cell cycle regulatory protein p21,p27 and CyclinE of GMCs induced by LpS. Methods 293 cells were cultured in 10%FBS/DMEM and Ad. IL-24 and Ad. GFp were amplifycated in 293 cells. GMCs were analysed after 4 to 6 generations. ①They were divided into four groups:control group,Ad. IL-24 group,LpS group and LpS+Ad. IL-24 group. And control group and LpS group werenˊt infected with Ad. IL-24,Ad. IL-24 group and LpS+Ad. IL-24 group GMCs were infected with Ad. IL-24,then LpS+Ad. IL-24 group GMCs were cultured in 5%FBS/DMEM with LpS(10 mg·L-1 ). The apoptosis of the GMCs was examined by AnnexinV/FITC flow cytometry;②The effect of IL-24 on cell cycle regulatory protein p21, p27 and CyclinE of GMCs induced by LpS were determined. They were divided into three groups:control group,Ad-GFp group and IL-24 group. Control group GMCs were cultured in 5%FBS/DMEM. Ad-GFp group GMCs were infected with Ad. GFp and then cultured in 5%FBS/DMEM with LpS(10 mg·L-1 ). GMCs were infected with Ad. IL-24. The expressions of cell cycle regulatory protein p21,p27 and cyclinE were examined by Western-blotting. Results The GMCs were cultured for 24 hours and 48 hours. The apoptosis rate was(0. 86 ± 0. 15)% and(0. 98 ± 0. 4)% in the control group,(1. 02 ± 0. 22)% and(1. 43 ± 0. 31)% in the Ad. IL-24 group,(2. 19 ± 0. 81)% and(2. 49 ± 0. 12)% in the LpS group,(18. 01 ± 1. 17)% and(26. 82 ± 5. 01)% in LpS + Ad. IL-24 group. There was no difference between control group and Ad. IL-24 group,and the apoptosis rate of LpS group was higher than control group(P<0. 05). The apoptosis rate of LpS+Ad. IL-24 group was the highest while there was no change in Ad. IL-24 group(P<0. 05). ②The expressions of p21 and p27 were down-regulated while CyclinE expression was up-regulated in GMC by LpS(P<0. 05). Adenovirus mediated IL-24 gene transfer

  20. Chimeric smooth muscle-specific enhancer/promoters: valuable tools for adenovirus-mediated cardiovascular gene therapy.

    Ribault, S; Neuville, P; Méchine-Neuville, A; Augé, F; Parlakian, A; Gabbiani, G; Paulin, D; Calenda, V

    2001-03-16

    Gene transfer with adenoviral vectors is an attractive approach for the treatment of atherosclerosis and restenosis. However, because expression of a therapeutic gene in nontarget tissues may have deleterious effects, artery-specific expression is desirable. Although expression vectors containing transcriptional regulatory elements of genes expressed solely in smooth muscle cells (SMCs) have proved efficient to restrict expression of the transgene, their use in the clinical setting can be limited by their reduced strength. In the present study, we show that low levels of transgene expression are obtained with the smooth muscle (SM)-specific SM22alpha promoter compared with the viral cytomegalovirus (CMV) enhancer/promoter. We have generated chimeric transcriptional cassettes containing either a SM (SM-myosin heavy chain) or a skeletal muscle (creatine kinase) enhancer combined with the SM22alpha promoter. With both constructs we observed significantly stronger expression that remains SM-specific. In vivo, reporter gene expression was restricted to arterial SMCs with no detectable signal at remote sites. Moreover, when interferon-gamma expression was driven by one of these two chimeras, SMC growth was inhibited as efficiently as with the CMV promoter. Finally, we demonstrate that neointima formation in the rat carotid balloon injury model was reduced to the same extent by adenoviral gene transfer of interferon-gamma driven either by the SM-myosin heavy chain enhancer/SM22alpha promoter or the CMV promoter. These results indicate that such vectors can be useful for the treatment of hyperproliferative vascular disorders. PMID:11249869

  1. Adenovirus-mediated transfer of p53 augments hyperthermia-induced apoptosis in U251 glioma cells

    Purpose: Hyperthermia kills glioma cells by inducing apoptosis and is thereby an effective therapeutic modality for the treatment of malignant gliomas. However, cells harboring mutated p53 are refractory to hyperthermia-induced apoptosis. In this study, we assessed whether or not adenovirus (Adv)-mediated transduction of p53 overrides this resistant mechanism. Methods and Materials: We transduced the p53 wild-type tumor suppressor gene into U251 glioma cells harboring mutated p53 using Adv vectors in combination with hyperthermia (43, 44.5 deg. C), and evaluated the degree of cell death and apoptosis. Results: The percentage of cells that had died, as measured by trypan blue staining, among U251 cells infected with the Adv for p53 (Adv-p53) and treated with hyperthermia, was significantly higher than the percentage of cells that had died among U251 cells infected with Adv-p53 and not treated with hyperthermia, or those infected with the control Adv for dE (Adv-dE) and treated with hyperthermia. The degree of apoptosis, measured at 24 h after treatment, in hyperthermia-treated U251 cells infected with Adv-p53 (43 deg. C, 73%; 44.5 deg. C, 92%) was much higher than that infected with Adv-p53 (41%), or that infected with control Adv-dE and treated with hyperthermia (43 deg. C, 1.3%; 44.5 deg. C, 19%). Treatment with combined hyperthermia and Adv-p53 infection induced cleavage of caspase-3 in U251 cells. Conclusion: These results indicate that Adv-mediated transduction of p53 would render glioma cells highly sensitive to hyperthermia

  2. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer

  3. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    Freytag, Svend O., E-mail: sfreyta1@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Stricker, Hans [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Lu, Mei [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Peabody, James [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Oja-Tebbe, Nancy; Bourgeois, Renee [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Gupta, Nilesh; Lane, Zhaoli [Pathology, Henry Ford Health System, Detroit, Michigan (United States); Rodriguez, Ron [Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  4. Adenovirus-mediated REIC/Dkk-3 gene therapy: Development of an autologous cancer vaccination therapy (Review)

    Watanabe, Masami; Nasu,Yasutomo; Kumon, Hiromi

    2013-01-01

    Reduced expression in immortalized cells (REIC)/Dickkopf (Dkk)-3 is a tumor suppressor and therapeutic gene and has been studied with respect to the application of cancer gene therapy. Our previous studies demonstrated that the intratumoral injection of an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC) suppresses tumor growth in mouse models of prostate, breast and testicular cancer and malignant mesothelioma. The mechanisms underlying these antitumor therapeutic effects have ...

  5. Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension

    Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M.; Andrew H. Baker; MacLean, Margaret R.

    2012-01-01

    Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmo...

  6. Preliminary study of MR diffusion weighted imaging in nude mice models of hepatic Bel7402 tumors after adenovirus-mediated cytosine diaminase-thymidine kinase gene therapy

    Objective: To study the characteristics of DWI in nude mice models of hepatic Bel7402 tumors after treatment with adenovirus-mediated cytosine diaminase-thymidine kinase (Ad. CD-TK) double suicide gene therapy, and then to identify whether DWI can be used for assessing curative effect of postoperative tumors. Methods: Thirty nude mice models of hepatic Bel7402 tumors were successfully created using cell suspension method, after the tumor grew to more than 1 cm in diameter, 20 tumor models were treated by intratumoral administration of Ad. CD-TK for 3 days plus intraperitonea (i.p.) treatment with 5-Fc and GCV for the duration of the study.Then they were randomly divided into three groups during 5-Fc and GCV treatment. The remaining 10 tumor models were used as controls. MR scanning were performed in 10th day before and after tumor implantation in all models by using EPI-SE series and SENSE technology for treatment group. Tumor volumes and ADC values were calculated pretreatment and posttreatment. Cell apoptosis were determined by using TUNEL method. Analyze the change of ADC and apoptosis index (AI) in different times, t test was used for comparison the difference of AI and ADC values respectively. Results: After 10 days,the tumor volumes of the treatment groups and controls were respectively (724.16 ±57.45) mm3, (754.57 ± 66.84) mm3, with no significant difference (t=0.488, P >0.05). The ADC values of the treatment groups were (0.98 ±0.11) × 10-3 mm2/s,the ones of the control groups were (0.68 ±0.04) × 10-3 mm2/s; AI of the treatment groups were (23.25 ±6.57)%, the ones of the control groups were (2.57 ± 0.58)%. There were difference in both groups (t=4.473, 5.874; P<0.01). Conclusion: DWI can be effectively to monitor the early pathological changes of hepatic Bel7402 tumors after Ad. CD-TK double suicide gene therapy, and provide experimental evidences for clinical application. (authors)

  7. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer

  8. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Mu, Haixi [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Ren, Guosheng [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Xu, Yongzhu [Chongqing Health Service Center, Chongqing 400020 (China); Zhou, Xiangyang [The Wistar Institute, Philadelphia, PA (United States); Xiang, Tingxiu, E-mail: xiangtx1@gmail.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  9. BCL-XS adenovirus-mediated gene therapy approach sensitizes cancer cells to radiation-induced apoptosis

    Purpose: Apoptosis, a process in which a genetic program is activated ultimately leading to programmed cell death, has been shown to play a role in radiation therapy (RT)-induced cell death. We and others have previously shown that members of the bcl-2 family (including bcl-xl) protect cells from RT-induced apoptosis through p53-dependent and -independent pathways. Therefore, we postulated that inactivation of bcl-2 family members by overexpression of bcl-xs (a functional inhibitor of the bcl-2 family) would enhance RT-induced apoptosis. Overexpression of bcl-xs was achieved using two strategies: stable transfection and transient infection using an adenovirus (AV) vector. Methods: An expression plasmid encodingbcl-xs (pSFFVneo-bcl-xs) or a control plasmid (pSFFVneo) was stably transfected into MCF-7 (breast cancer), K562 (human leukemia), and FL512 (pro B-cell) cells and clonogenic survival was determined following RT. The second method used to overexpress bcl-xs involved construction of an AV vector that expresses bcl-xs by inserting the bcl-xs coding sequence into the pADRSV vector. Immunoblotting using a rabbit polyclonal antibody raised against the bcl-x protein revealed that K562 cells infected with the bcl-xs AV, but not the control AV that contains the β-galactosidase gene, expressed the 21 kDA bcl-xs protein. K562 cells were infected with the bcl-xs AV or the control AV at titres to achieve 90-95% infection. Various doses of RT were given 24 hrs following infection since maximal expression of bcl-xs was achieved at this time. Colony forming ability following RT was performed. Apoptotic death at 24 and 48 hrs following RT was assayed by flow cytometry using propidium iodide which quantitates DNA damage. Results: Bcl-xs overexpression by stable transfection in all three cell lines tested induced a marked increase in radiosensitivity. Bcl-xs overexpressing K562, FL512, and MCF-7 cells were more sensitive to RT-induced clonogenic death than their neo

  10. Overexpression of MicroRNA-30b Improves Adenovirus-Mediated p53 Cancer Gene Therapy for Laryngeal Carcinoma

    Liang Li

    2014-10-01

    Full Text Available MicroRNAs play important roles in laryngeal carcinoma and other cancers. However, the expression of microRNAs in paracancerous tissue has been studied less. Here, using laser capture microdissection (LCM, we detected the expression of microRNAs in paracancerous tissues. Among all down-regulated microRNAs in the center area of tumor tissues, only miR-30b expression was significantly reduced in paracancerous tissues compared to surgical margins. Therefore, to further investigate the effect of miR-30b on laryngeal carcinoma, we stably overexpressed miR-30b in laryngeal carcinoma cell line HEp-2 cells. It was found that although there was no significant difference in cell viability between miR-30b overexpressed cells and control HEp-2 cells, p53 expression was obviously enhanced in miR-30b overexpressed cells. Whether miR-30b could improve the anti-tumor effect of adenovirus-p53 (Ad-p53 in laryngeal carcinoma and other cancer cell lines was also evaluated. It was found that in miR-30b overexpressed HEp-2 cells, p53-mediated tumor cell apoptosis was obviously increased both in vitro and in vivo. MDM2-p53 interaction might be involved in miR-30b-mediated anti-tumor effect. Together, results suggested that miR-30b could modulate p53 pathway and enhance p53 gene therapy-induced apoptosis in laryngeal carcinoma, which could provide a novel microRNA target in tumor therapy.

  11. Adenovirus-mediated transfer of VEGF into marrow stromal cells combined with PLGA/TCP scaffold increases vascularization and promotes bone repair in vivo

    Duan, Chunguang; Liu, Jian; YUAN, ZHI; Meng, Guolin; Yang, Xiumei; Jia, Shuaijun; Zhang, Jinkang; Chen, Shi

    2012-01-01

    Introduction Large osseous defect remains a serious clinical problem due to the lack of sufficient blood supply and it has been proposed that this situation can be relieved by accelerating the formation of new vessels in the process of bone defect repair. The aim of this study was to develop a new type of artificial bone by transferring the VEGF gene into marrow stromal cells (MSCs) and seeding them into a porous scaffold. Material and methods An adenovirus vector was employed to transfer the...

  12. In vivo study on the effect of adenovirus mediating Smad 7 gene expression regulated by radiation via Egr-1 promoter in C57BL mice implanted with lewis lung cancer

    Objective: Objective To study the effect of adenovirus mediating Smad 7 gene regulated by radiation via Egr-1 on the primary tumor and lung metastasis in C57BL mice implanted with Lewis lung cancer. Methods: The radio-inducible elements from the Egr-1 gene promoter were inserted upstream to a cDNA encoding Smad 7 and integrated into a replication-defective adenovirus to generate recombinant adenovirus (AD. Egr-Smad 7). 270 mice implanted with Lewis lung cancer in the hind legs were used and the experiment was started when the transplanted tumor diameter reached 0.8 to l.0 cm. Then three investigations were undertaken, each demanding 90 mice implanted with Lewis lung cancer respectively. To each group, 90 mice models were randomized into 3 groups: the normal control group; the NS control group; and the implanted AD. Egr-Smad 7 group. Every 6 mice in each group were irradiated by different single close to study the following: 1. The maximal and minimal diameters of the tumor were recorded to observe the tumor growth tendency, the tumor growth delay and the mice survival time, 2. The incidence of lung metastasis two weeks after the radiation was recorded. 3. The incidence of lung metastasis when the tumor volume was four times as large as that at the beginning of radiation was recorded. Results: The adenovirus mediating Smad 7 gene expression regulated by irradiation via Egr-1 in C57BL mice implanted with Lewis lung cancer was able to inhibit the progression of the primary tumor and prolong the survival of the mice significantly as compared with the control group (P 0.05). Conclusions: The gene expression of AD. Egr-Smad 7 regulated by radiation is not risky in promoting the local progression and distant metastasis of Lewis lung cancer in mice. On the other hand, the gene expression of AD. Egr-Smad 7 regulated by radiation could inhibit the progression of the primary tumor and prolong the survival time of the mice significantly. It is safe, to some extent, of using AD

  13. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ2=18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong median

  14. Adenovirus-mediated Transfer of p53 and p16 Inhibiting Proliferating Activity of Human Bladder Cancer Cell EJ in vitro and in vivo

    朱朝辉; 邢诗安; 林晨; 曾甫清; 鲁功成; 付明; 张雪艳; 梁萧; 吴旻

    2002-01-01

    Summary: To evaluate the effects of adenovirus (Ad)-mediated transfer of p53 and p16 on humanbladder cancer cells EJ, EJ were transfected with Ad-p53 and Ad-p16. Cell growth, morphologi-cal change, cell cycle, apoptosis were measured using MTT assay, flow gytometry, cloning forma-tion, immunocytochemical assays. Ad-p16 or Ad-p53 alone could inhibit the proliferating activityof EJ cells in vitro. Ad-p53 could induce apoptosis of partial EJ cells. G1 arrest was observed 72 hafter infection with Ad-p16, but apoptosis was not obvious. The transfer of Ad-p16 and Ad-p53could significantly inhibit the growth of EJ cells, decrease the cloning formation rate and induceapoptosis of large number of EJ cells. The occurrence time of subcutaneous tumor was delayed andthe tumor volume in 4 weeks was diminished by using Ad-p53 combined with Ad-p16 and the dif-ference was significant compared with using Ad-p53 or Ad-p16 alone. It was suggested that thetransfer of wild-type p53 and p16 could significantly inhibit the growth of human bladder cancer invitro and in vivo.

  15. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage

    Zhen Yu; Li-Fen Chen; Ling Tang; Chang-Lin Hu

    2013-01-01

    Objective:To investigate the effects of adenovirus(Ad)-mediated hypoxia-inducible factor-1alpha(HIF-1α) gene on proliferation and differentiation of endogenous neural stem cells(NSCs) in rats following intracerebral hemorrhage(ICH) and the underlying mechanisms.Methods:A total of120 specific pathogen-free, adult, maleSprague-Dawley rats were included in this study.After establishment ofICH models in rats,PBS,Ad, orAd-HIF-1αwas administered via the ischemic ventricle.On the1st,7th,14th,21st and28th d afterICH, rat neurological deficits were scored, doublecortin(DCX) expression in the subventricular zone cells was detected by immunohistochemical staining, and5-bromo-2'-deoxyuridine(BrdU)-,BrdU/DCX-, andBrdU/glial fibrillary acidic protein-positive cells in the subventricular zone were counted using immumofluorescence method amongPBS,Ad, andAd-HIF-1α groups.Results:On the7th, 14th,21st and28th d afterICH, neurological deficit scores in theAd-HIF-1α group were significantly lower than in thePBS andAd groups(P<0.05).In theAd-HIF-1α group,DCX expression was significantly increased on the7th d, peaked on the14th d, and then gradually decreased.In theAd-HIF-1α group,BrdU-positive cells were significantly increased over time course, and significant difference inBrdU-positive cell counts was observed when compared with thePBS andAd groups at each time point(P<0.01 or0.05).On the7th,14th,21st and28th d after ICH, the number ofDCX-,BrdU-,BrdU/DCX-, andBrdU/DCX-positive cells in theAd-HIF-1α group was significantly greater than in thePBS andAd groups(P<0.05).Conclusions:HIF-1α gene can promote the proliferation, migration and differentiation of endogenous neural stem cells afterICH, thereby contributing to neurofunctional recovery afterICH.

  16. THE BIOLOGICAL CHARACTERISTICS OF ADENOVIRUS-MEDIATED IL-18 GENE-MODIFIED MURINE COLORECTAL ADENOCARCINOMA CELL IN VIVO AND IN VITRO

    SONG; Wen-gang

    2001-01-01

    [1]Meyer Zum Buschenfelde C, Cramer S, Trumpfheller C, et al. Trypanosoma cruzi induces strong IL-12 and IL-18 gene expression in vivo: correlation with interferon-gamma (IFN-gamma) production [J]. Clin Exp Immunol 1997; 110:378.[2]Tominaga K, Yoshimoto T, Torigoe K, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells [J]. Int Immunol 2000; 12:151.[3]Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice [J]. Immunity 1998; 8:383.[4]Tomura M, Zhou XY, Maruo S, et al. A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells [J]. J Immunol 1998; 160:4738.[5]Okamura H, Kashiwamura S, Tsutsui H, et al. Regulation of interferon-gamma production by IL-12 and IL-18 [J]. Curr Opin Immunol 1998; 10:259.[6]Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18) [J]. Gene Ther 1999; 6:808.[7]Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family [J]. J Allergy Clin Immunol 1999; 103:11.[8]Matsui K, Yoshimoto T, Tsutsui H, et al. Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells [J]. J Immunol 1997; 159:97.[9]Akira S. The role of IL-18 in innate immunity [J]. Curr Opin Immunol 2000; 12:59.[10]Lauwerys BR, Garot N, Renauld JC, et al. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18 [J]. J Immunol 2000; 165:1847.[11]Micallef MJ, Yoshida K, Kawai S, et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites [J]. Cancer Immunol Immunother 1997; 43:361.[12]Micallef MJ, Tanimoto T

  17. The effects of combining ionizing radiation and adenovirus-mediated p53 gene transfer in human nasopharyngeal carcinoma cell lines

    Purpose/Objective: We have previously demonstrated that the introduction of human recombinant wild-type p53 carried by the adenoviral vector (Ad5CMV-p53) into two human nasopharyngeal carcinoma (NPC) cell lines (CNE-1 and CNE-2Z) resulted in significant cytotoxicity. In the current work, we wanted to evaluate the results of this strategy when combined with ionizing radiation (XRT). Materials and Methods: CNE-1, CNE-2Z, and a normal human nasopharyngeal fibroblast strain KS1, were infected with iso-effective doses of 2, 6 and 6 pfu/cell of Ad5CMV-p53 respectively. XRT was administered 24 hours post-infection, to coincide with the time of maximal recombinant p53 expression. Western blot analyses were conducted for p53, p21WAF1/CIP1, bax and bcl-2. Cell viability was evaluated using both the MTT and clonogenic assays. Presence of apoptosis was determined by using DNA agarose gel electrophoresis. Results: We observed that the combination of Ad5CMV-p53 + XRT (2, 4, and 6 Gy) resulted in an approximately 1-log greater level of cytotoxicity compared to that observed with XRT alone for both NPC cell lines. The MTT assay indicated sparing of the KS1 cells when subjected to the identical treatments. XRT alone stimulated minimal p53 expression; Ad5CMV-p53 alone induced significant recombinant p53 expression, which was not further enhanced by the addition of XRT. Similar observations were made for p21WAF1/CIP1 expression. No changes were observed for bax and bcl-2 expression with any of these treatments. Apoptosis was induced following 4 Gy of XRT alone, but was observed earlier, at 2 Gy when combined with Ad5CMV-p53. Conclusion: Additional cytotoxicity was observed for the NPC cell lines when XRT was combined with Ad5CMV-p53 infection, with concurrent sparing of normal cells (KS1). This cytotoxicity also appeared to be mediated through the induction of the apoptotic pathway. These results support our previous observation of the potential application of this strategy in the treatment of NPC, particularly when combined with XRT

  18. 制备源自HBsAg基因修饰树突状细胞的外切体%Generation of exosomes derived from adenovirus-mediated HBsAg gene-modified dendritic cells

    杨静悦; 高琳; 付蓉; 薛妍; 刘文超

    2012-01-01

    Objective: To obtain exosomes derived from adenovirus - mediated HBsAg gene - modified dendritic cells. Methods: Full length HBsAg cDNAs were cloned into shuttle2 vector. The HBsAg gene fragments resulted from the - S digested with PI - See and I - Ceu were linked to the linear adeno - X virus DNA. After packaged with HEK293 cells, the adenovirus expression vector was obtained. Then the recombinant adenovirus expression plasmid AdVHBsAg was transfected into human monocyte - derived dendritic cells. The exosomes were isolated from superna-tant of transfected DCs. Transmission electron microscopy was used to observe their structures. The expressions of several proteins were investigated by flow cytometry. Results: The shuttle2 - S showed that band with 630 bp by di-gested with PI - See and I - Ceu, HBsAg gene in the inserted DNA of AdVHBsAg was confirmed by PCR, and pre-dictive fragments proved by restriction enzyme digestion analysis were exhibited. CPE appear 10 after days HEK293 cells transfected AdVHBsAg. Application of the isolation procedure to transfected DCs revealed exosome vesicles by transmission electron microscopy. Protein analysis by Western blot was performed and revealed that the costimulatory molecule CD86,CD83 and HBsAg was detectable. Conclusion; The exosomes derived from HBsAg - DC may be a tool of the HBV related hepatocellular carcinoma immunotherapy.%目的:制备一种新型负载HBsAg基因的外切体(exosome)瘤苗,并探讨其生物学特性、免疫学功能.方法:运用分子克隆和病毒载体转染HBsAg基因构建AdVHBsAg-DC肝癌瘤苗,采用流式细胞术鉴定转染基因表达;提取exosome;以透射电镜观察、Western blot法鉴定exosome.结果:构建的重组AdVHBsAg腺病毒载体,经PCR和酶切鉴定,结果显示HBsAg基因片段已正确插入腺病毒载体中.包装的腺病毒载体具有良好的感染性,可以在293细胞中形成病毒颗粒.提取的exosome在透射电镜下可观察到直径为50-100nm

  19. Adenovirus-mediated human endostatin gene delivery in the treatment of mouse melanoma%腺病毒载体介导的内皮抑素基因治疗小鼠黑素瘤的实验研究

    曹瑞华; 廖万清; 温海; 刘翠杰

    2009-01-01

    目的 探讨腺病毒载体介导的内皮抑素基因(Ad-mES)在体外和体内的生物学活性.方法 不同感染复度(MOI)的腺病毒体外感染靶细胞;RT-PCR法检测目的基因的表达;MTT法检测Ad-mES对靶细胞生物活性的影响.观察各组小鼠黑素瘤的生长、转移和生存率;免疫组化法鉴定肿瘤组织内内皮抑素蛋白的表达.电子透射电镜观察肿瘤组织内皮细胞、肿瘤细胞的凋亡情况.结果 腺病毒体外能够有效感染靶细胞,MOI为10,20,50,100,200,500时,B16F10细胞和ECV304细胞的腺病毒感染率分别为15.6%、35%、73%、88%、95.2%、97%和19%、35%、80%、90%、97%、98.5%.靶细胞明确表达内皮抑素基因;Ad-mES对B16F10细胞的增殖没有影响;而Ad-mES能抑制ECV304细胞的增殖,且随MOI增大,抑制内皮细胞增殖效果越强.瘤细胞接种后第8天,各组成瘤率100%.开始出现小鼠死亡的最早日:PBS组第16天、Ad-GFP组第18天、Ad-mES单剂、重复治疗组均在第20天.结论 Ad-mES体外和体内均影响靶细胞的生物学活性;Ad-mES治疗组小鼠平均生存时间延长(P<0.05),肿瘤体积增长减慢(P<0.05).%Objective To observe the bioactivity of adenovirus-mediated human endostatin gene in vivo and in vitro.Methods B16F10 melanoma cells and human endothelial cells(ECV 304)were both transfected with recombinant adenovirus containing green fluorescent protein(Ad-GFP)or human endostatin gene (Ad-mES) at various multiplicity of infection(MOI).Then,the expression of endostatin gene was detected by RT-PCR,and the growth of cells by MTT assay.B16F10 cells were inoculated into the back of mice to establish melanoma models,which were classified into treated groups intratumorally injected with Ad-mES once (single Ad-mES group) or repeatedly(repetitive Ad-mES group)with an interval of 7 days,and control groups intratumorally injected with Ad-GFP (Ad-GFP group)or phosphate buffred solution (PBS group).Subsequently,the growth of tumors was

  20. Adenovirus-mediated Expression of both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Inhibits Lung Cancer Cell Growth

    Hui TIAN; Xianxi LIU; Bing ZHANG; Qifeng SUN; Dongfeng SUN

    2007-01-01

    Polyamine biosynthesis is controlled primarily by ornithine decarboxylase (ODC) and Sadenosylmethionine decarboxylase (AdoMetDC). Antisense sequences of ODC and AdoMetDC genes were cloned into an adenoviral vector (named Ad-ODC-AdoMetDCas). To evaluate the effects of recombinant adenovirus Ad-ODC-AdoMetDCas that can simultaneously express both antisense ODC and AdoMetDC,the human lung cancer cell line A-549 was infected with Ad-ODC-AdoMetDCas or the control vector.Viable cell counting, determination of polyamine concentrations, cell cycle analysis, and Matrigel invasion assays were carried out to assess the properties of tumor growth and invasiveness. Our study showed that adenovirus-mediated antisense ODC and AdoMetDC expression inhibits tumor cell growth through blocking the polyamine synthesis pathway. Tumor cells were arrested at the G1 phase after gene transfer and the invasiveness was reduced. It suggested that the recombinant adenovirus Ad-ODC-AdoMetDCas might be a new anticancer reagent in the treatment of lung cancers.

  1. Adenovirus-mediated neurotrophin-3 gene can over-express neurotrophin-3 in the motoneurons located at ventral horn of rat spinal cord%腺病毒介导的神经营养素-3基因能够在大鼠脊髓前角运动神经元内过表达神经营养素-3

    陈元峰; 曾湘; 曾园山

    2011-01-01

    Objective To observe whether adenovirus-mediated neurotrophin-3 (NT-3) gene could over-express neu-rotrophin-3 in the motoneurons located at ventral hom of rat spinal cord, and derived efferent fibers of sciatic nerve. Methods NT-3 gene recombination adenovirus with green fluorescent protein (GFP) gene (report gene) were injected into the sciatic nerve. NT-3 overexpression of motoneurons located at ventral hom of spinal cord were observed under the fluorescent microscope, using immunofluorescence histochemistal staining technique, seven days after injecting the gene recombination adenovirus. Results GFP positive labeling cells were observed on cross sections of L, and L5 spinal cord segments in the animals of the GFP express (the control group) and NT-3+GFP express groups. In the NT-3+GFP express group, NT-3 positive labeling cells were observed also in L4 and L5 spinal cord segments. These cells were merged with GFP positive labeling cells, and were ventral horn's motoneurons over-expressing NT-3. Compared with the morphous of ventral horn's motoneurons in the GFP express group, motoneurons overexpress-ing NT-3 showed more branching processes in the NT-3+GFP express group. Conclusion Adenovirus-mediated NT-3 gene can over-express neurotrophin-3 in the motoneurons located at ventral hom of rat spinal cord and derived efferent fibers of sciatic nerve. The finding provides an initial experimental data for utilizing further a strategy of NT-3 gene therapy to repair experimental spinal cord injury.%目的 观察腺病毒介导的神经营养素-3 (NT-3)基因在发出坐骨神经传出纤维的大鼠脊髓前角运动神经元的过表达.方法 在坐骨神经内直接注射含有绿色荧光蛋白(GFP)基因(报告基因)的NT-3基因重组腺病毒(Ad-NT-3-GFP),7d后应用免疫荧光组织化学染色技术,在荧光显微镜下观察脊髓前角运动神经元的NT-3过表达.结果 GFP表达组(对照组)和NT-3加GFP表达组两组动物的L4和L5脊髓段横

  2. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; WANG Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-01-01

    Introduction Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor...

  3. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  4. Nitric Oxide Synthase Gene Transfer Overcomes the Inhibition of Wound Healing by Sulfur Mustard in a Human Keratinocyte In Vitro Model

    Hiroshi Ishida; Radharaman Ray; Jack Amnuaysirikul; Keiko Ishida; Prabhati Ray

    2012-01-01

    Sulfur mustard (SM) is a chemical warfare agent that causes extensive skin injury. Previously we reported that SM exposure resulted in suppression of inducible nitric oxide synthase (iNOS) expression to inhibit the healing of scratch wounds in a cultured normal human epidermal keratinocyte (NHEK) model. Based on this finding, the present study was to use adenovirus-mediated gene transfer of iNOS to restore the nitric oxide (NO) supply depleted by exposure to SM and to evaluate the effect of N...

  5. 腺病毒介导荧光素酶报告基因感染间充质干细胞的研究%Infection with adenovirus-mediated luciferase reporter gene in mesenchymal stem cells and bioluminescence imaging

    王一帆; 夏睿; 郭玉林; 郜发宝

    2013-01-01

    目的 构建携带萤火虫荧光素酶(Luc)报告基因的腺病毒载体(Ad-Luc),研究其感染大鼠骨髓间充质干细胞(BMSC)后的体内外生物发光成像.方法 从psiCHECK-2质粒中用PCR扩增Luc基因,克隆入腺病毒穿梭载体pShuttle-CMV后行Nhe Ⅰ/Xba Ⅰ双酶切和测序鉴定.重组腺病毒穿梭载体与骨架载体pAdeno同源重组并包装纯化后,测定其病毒滴度.用重组Ad-Luc感染BMSC,行体外生物发光成像确定最佳感染复数(MOI),并采用曲线拟合回归分析生物发光强度与MOI的关系.以锥虫蓝染色法评价细胞活力变化,计算细胞存活率.将转染后BMSC(1×106个)植入SD大鼠前肢肌肉内,行体内生物发光成像.细胞存活率组间比较采用两因素重复测量资料方差分析.结果 经酶切和测序鉴定证明,Ad-Luc构建成功,病毒滴度为1×1010空斑形成单位(PFU)/ml.体外生物发光检测结果显示最佳MOI值为50,Ad-Luc可高效感染BMSC,使其表达Luc,且拟合曲线示细胞生物发光强度随MOI增加而增强(R2 =0.98).转染组和未转染组细胞培养1、3、5、7d时,细胞存活率分别为(92.5±2.3)%与(94.1±1.8)%、(91.4±0.9)%与(92.7±2.0)%、(92.1±1.6)%与(93.3±2.4)%、(91.9±1.5)%与(93.0±3.1)%,2组间细胞活力的差异无统计学意义(F=4.38,P>0.05).体内生物发光成像结果示BMSC移植1、3、7d后仍有存活,但随时间延长,生物发光信号逐渐减弱.结论 Luc报告基因通过腺病毒载体成功转入BMSC,实现了光学报告基因成像对移植干细胞的示踪.%Objective To construct adenovirus vector containing firefly luciferase reporter gene (AdLuc) and infect bone marrow mesenchymal stem cells (BMSC),then to take bioluminescence imaging in vitro and in vivo for identification.Methods The luciferase gene was amplified with PCR from psiCHECK-2 plasmid and cloned into the adenoviral shuttle vector (pShuttle-CMV).It was confirmed by Nhe Ⅰ/Xba Ⅰ digestion and sequencing

  6. Adenovirus mediated angiostatin gene therapy for ovarian cancer: experiment with nude mice%重组腺病毒载体介导血管抑素基因治疗裸鼠卵巢癌的实验研究

    贾长茹; 杨树艳; 韩世愈; 孙蕾

    2008-01-01

    Objective To built an expression vector of angiostatin (AG) gene with recombinated replication defective adenovirus and investigate the therapeutic effect of human AG gene on ovarian cancer. Methods (1) Human AG K ( 1-3 ) cDNA was inserted into the vector pShuttle to build the recombinant plasmid pShttle-AG ( K1-3 ). pAdeno-X-AG (K1-3) was built by double-cut and recombinated pShttle-AG (K1-3) to vector pAdeno-X, and then recombinant adenovirus was finally prepared by transinfection of pAdeno-X-AG (K1-3) into to the human embryo kidney cells of the line 293. (2) Human ovarian cancer cells of the line SKOV3 were inoculated subcutaneously into nude mice of the line BALB/c nu/nu to establish model of human ovarian cancer. Then the mice were randomly divided into 3 groups to be injected with Ad = AG (K1-3), Ad-LacZ, or phosphate buffered saline (PBS) around the cancer every 5 days. The tumor size was measured every 5 days to calculate the tumor volume and tumor inhibition rate. Three days after the last injection the mice were killed. The tumor tissues, livers, and kidneys of the mice underwent imunohistochemistry to calculate the microvessel density (MVD) and expression of vessel endothelial growth factor (VEGF) and AG. Results The tumor volume and weight of the Ad-AG ( K1-3 ) group were significantly less than those of the PBS and Ad-LacZ groups ( all P 0. 05). The expression levels of CD34 and VEGF of the Ad-AG( K1-3 ) group were both significantly lower than those of the PBS and Ad-LacZ groups (all P 0. 05 ). Conclusion Human angiostatin mediated by adenovirus suppresses the angiogenesis and the growth of human ovarian cancer in the nude mice model, which suggests that it is promising in clinical application.%目的 构建携带血管抑素(AG)基因K(1-3)重组复制缺陷型腺病毒表达载体,研究腺病毒介导的人血管抑素基因对卵巢癌的治疗作用.方法 (1)将人血管抑素K(1-3)cDNA插入穿梭载体pShuttle产生重组质粒pShttle-AG(K1

  7. Adenovirus-mediated expression of UHRF1 reduces the radiosensitivity of cervical cancer HeLa cells to γ-irradiation

    Xin-li LI; Qing-hui MENG; Sai-jun FAN

    2009-01-01

    Aim:An in vitro study was carried out to determine the effect of UHRF1 overexpression on radiosensitivity in human cervical cancer HeLa ceUs using adenovirus-mediated UHRF1 gene transfer (Ad5-UHRF1). Methods: Cell survival was evaluated using the clonogenic survival assay and the MTT assay; apoptosis and cell cycle distribution were monitored by flow cytometry. Protein levels were measured by Western blotting. Silencing XRCC4 expression was performed by transfection of small interfering RNA (siRNA).Results: Increased expression of UHRF1 by AdS-UHRF1 significantly reduced the radiosensitivity of HeLa cells. The UHRF1-mediated radioresistance was correlated with increased DNA repair capability and increased expression of the DNA damage repair protein, XRCC4. Knocking down XRCC4 expression in the cells using XRCC4 siRNA markedly reduced the UHRFl-mediated radioresistance. Conclusion: These results provide the first evidence for revealing a functional role of UHRF1 in human cervical cancer cells as a negative regulator of radiosensitivity.

  8. 腺病毒介导CDglyTK双自杀基因系统对裸鼠皮下移植瘢痕疙瘩的治疗作用%Effects of recombinant adenovirus-mediated double suicide genes on implanted human keloid: experiment with athymic mice

    徐斌; 刘振中; 张敬; 宗宪磊; 蔡景龙

    2008-01-01

    目的 探讨由大肠杆菌胞嘧啶脱氨酶(CD)基因/5-氟胞嘧啶(5-Fc)和单纯疱疹病毒胸苷激酶(HSV-TK)基因/丙氧鸟苷(GCV)基因治疗系统整合形成的腺病毒介导CDgly/TK双自杀基因系统对瘢痕疙瘩的治疗作用及其机制.方法 采用皮下移植保留表皮的入瘢痕疙瘩组织块的方法建立瘢痕疙瘩裸鼠模型,术后第7天将20只模型裸鼠分4组,每组5只.A组瘢痕内注射生理盐水;B组瘢痕内注射生理盐水+腹腔注射5-Fc和GCV;C组瘢痕内注射自行构建的莆组CDglyTK双自杀基因腺病毒(CDgly/TK);D组瘢痕内注射CDgly/TK+腹腔注射5-Fc和GCV;用药持续18 d.术后2、7(用药前)、14、21、28、35、42 d测量各组瘢痕疙瘩组织块体积;术后42 d取出瘢痕疙瘩组织块,HE染色进行组织学检查,末端脱氧核苷酸转移酶介导的dUTP缺口末端标记法检测成纤维细胞凋亡情况,免疫组织化学染色检测Bcl-2、Bax蛋白质的表达.结果 用药前和用药后7、14、21、28、35 d,D组瘢痕疙瘩组织块体积(mm3)分别为173±5、172±5、147±5、125±6、112±7和84±9,从用药后14 d开始明显缩小(均P<0.05);而其他3组瘢痕疙瘩组织块体积均明显增大,从用约后7 d开始各时点测得的体积均明显大于D组(均P<0.05).D组瘢痕疙瘩组织中有大量小鼠组织细胞浸润,胶原结构破坏和成纤维细胞凋亡明显重于其他3组,Bcl-2蛋门质表达明显弱于而Bax蛋白质表达明显强于其他3组.结论 腺病毒介导的CDglyTK双自杀基因系统在瘢痕疙瘩裸鼠模型中对瘢痕疙瘩产生治疗作用,诱导成纤维细胞凋亡足其主要作用机制.%Objective To detect the effects of the recombinant adenovirus-mediated double suicide genes constructed by Escherichia coli cytosine deaminase (CD)/5-fluorocytosine (5-Fc) and herpes simplex virus-thymidine kinase (HSV-TK)/ganiclovir (GCV)-CDglyTK on implanted human keloids and mechanisms thereof.Methods Twenty nude mice were

  9. Adenovirus-mediated expression of Tob1 sensitizes breast cancer cells to ionizing radiation

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the effect of the Tobl gene, a member of the Transducing Molecule of ErbB2/B-cell Translocation Ggene (TOB/BTG) family, by using the adenovirus-mediated expression of Tob 1 on radiosensitivity in a human breast cancer cell line MDA-MB-231. Methods: Cell survival was determined by clonogenic assay. Apoptosis was evaluated by DNA fragmentation gel electro-phoresis and terminal deoxynucleotidyl transferase-mediated nick end labeling assay. Protein expression was analyzed by Western blot assay and DNA repair was measured by a host cell reactivation assay. Results: We demonstrated that pre-irradiation treatment with Ad5-Tob 1 significantly increased radiosensitivity,accompanying the increased induction of apoptosis and the repression of DNA damage repair. Furthermore, Ad5-Tob 1-mediated radiosensitivity correlates with the upregulation of the pro-apoptotic protein Bax and the downregulation of several DNA double strand break repair proteins, including DNA-dependent protein kinases, Ku70 and Ku80, and X-ray-sensitive complementation group 4.Conclusion: Tobl, as a new radiosensitizer, is a new target in the radiotherapy of breast cancer via increasing apoptosis and suppressing DNA repair.

  10. Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

    Junliang Li; Xinke Xu; Shanyi Zhang; Meiguang Zheng; Zhonghua Wu; Yinlun Weng; Leping Ouyang; Jian Yu; Fangcheng Li

    2012-01-01

    In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

  11. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model

    Wang, Bing; Li, Juan; Xiao, Xiao

    2000-01-01

    Duchenne muscular dystrophy (DMD) is the most common and lethal genetic muscle disorder, caused by recessive mutations in the dystrophin gene. One of every 3,500 males suffers from DMD, yet no treatment is currently available. Genetic therapeutic approaches, using primarily myoblast transplantation and adenovirus-mediated gene transfer, have met with limited success. Adeno-associated virus (AAV) vectors, although proven superior for muscle gene transfer, are too sm...

  12. The effect of adenovirus-mediated recombinant Tum5 gene expression on Rhesus retinal vascular endothelial cells under high glucose%腺病毒介导Tum5重组基因对高糖刺激下恒河猴视网膜血管内皮细胞增生、迁移及管腔形成的影响

    杨伟; 张琰; 孙靖; 韩倩; 贾育蓉; 张红

    2015-01-01

    Objective To observe the expression in vitro and the influence of adenovirus-mediated recombinant Tum5 gene to the proliferation,migration and tubing of Rhesus RF/6A cell under high glucose.Methods To construct the adenovirus vector of recombinant Tum5 gene (rAd-TumS),and then infected RF/6A cell with it.The Flow Cytometry was used to detect the infection efficiency.RF/6A cells were divided into normal group,high glucose (HG)-control group (HG group),empty expression vector group (HG+rAd-GFP),and HG+rAd-Tum5 group.Western blot was used to detect the expression of TumS.The CCK-8 test was applied to detect the proliferation of RF/6A cell,the Transwell test was applied to detect the migration and the Matrigel test was applied to detect the tubing of RF/6A cell under high glucose.The proliferation,migration and tubing of RF/6A were tested respectively by CCK-8 test,Transwell test and Matrigel test.Results The adenovirus vector of recombinant Tum5 gene was successfully constructed.The infection efficiency of rAd-Tum5 in RF/6A cell was 50.31% and rAd-GFP was 55.13% by the Flow Cytometry.The results of Western blot indicated that Tum5 was successfully expressed in RF/6A cell.The result of CCK-8 test,Transwell test and Matrigel test indicated that there were statistical differences between all groups in proliferation,migration and tubing of the RF/6A cell (F=44.484,772.666,137.696;P<0.05).The comparison of each group indicated that the HG group was higher than normal group (P< 0.05).There were no statistical differences between HG group and HG+ rAd-GFP group (P>0.05).However,the HG+rAd-Tum5 group was less than HG group (P<0.05),and the same to HG+rAd-GFP (P<0.05).Conclusion The adenovirus vector of recombinant Tum5 gene can inhibit the proliferation,migration and tubing of RF/6A cell under high glucose.%目的 观察腺病毒介导Tum5重组基因对高糖刺激下恒河猴视网膜血管内皮细胞(RF/6A细胞)增生、迁移

  13. Beta-Adrenergic gene therapy for cardiovascular disease

    Koch Walter J

    2000-10-01

    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  14. Inferring horizontal gene transfer.

    Matt Ravenhall

    2015-05-01

    Full Text Available Horizontal or Lateral Gene Transfer (HGT or LGT is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric" methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic" approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.

  15. Retrovirus-Mediated Gene Transfer in Immortalization of Progenitor Hair Cell Lines in Newborn Rat

    ZHANG Yuan; ZHAI Suo-qiang; SONG Wei; GUO Wei; ZHENG Gui-liang; HU Yin-yan

    2008-01-01

    Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possibl utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through morphology observation, immunnocytochemical staining and RT-PCR analysis. The Hathl gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1 (a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differenti-ate into hair cell-like cells when forced to express Hathl. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.

  16. Horizontal gene transfer in fungi

    Fitzpatrick, David A.

    2011-01-01

    Horizontal gene transfer (HGT) is frequently observed in prokaryotes and until recently was assumed to be of limited importance to eukaryotes. However, there is an increasing body of evidence to suggest that HGT is an important mechanism in eukaryotic genome evolution, particularly in unicellular organisms. The transfer of individual genes, gene clusters or entire chromosomes can have significant impacts on niche specification, disease emergence or shift in metabolic capabil...

  17. Does Gene Translocation Accelerate the Evolution of Laterally Transferred Genes?

    Hao, Weilong; Golding, G. Brian

    2009-01-01

    Lateral gene transfer (LGT) and gene rearrangement are essential for shaping bacterial genomes during evolution. Separate attention has been focused on understanding the process of lateral gene transfer and the process of gene translocation. However, little is known about how gene translocation affects laterally transferred genes. Here we have examined gene translocations and lateral gene transfers in closely related genome pairs. The results reveal that translocated genes undergo elevated ra...

  18. Adenovirus-mediated expression of an elastase-specific inhibitor (elafin): a comparison of different promoters.

    Sallenave, J M; Xing, Z; Simpson, A J; Graham, F L; Gauldie, J

    1998-03-01

    This report describes the design and construction of three recombinant adenoviruses of serotype 5 (Ad5) expressing elafin (EL), also called elastase-specific inhibitor. Three promoters were chosen to drive the synthesis of elafin: the small (380 bp) human cytomegalovirus promoter (HCMV), the Ad2 major late promoter (MLP) and the mouse cytomegalovirus (MCMV) promoter. Human alveolar epithelial cells (A549), as well as rat and human primary pulmonary fibroblasts were infected with Ad5-HCMV-EL, Ad5-MLP-EL, Ad5-MCMV-EL and with the control Ad5-dl70/3. The MCMV promoter was the most efficient promoter in all cells studied. MLP was the least efficient promoter Intermediate between MCMV and MLP was HCMV which was able to induce significant amounts of elafin, particularly in human A549 cells. When compared in vivo in rat lungs, results were similar; MCMV was the only promoter which induced significant amounts of elafin as assessed by Northern blot analysis and ELISA, even with a low dose of virus (3 x 10(8) p.f.u.). Our data indicate that the MCMV promoter is the promoter of choice for the strong induction of adenovirus-mediated transgenes in the lung and suggest its suitability both in rodent experimental models and in humans for investigative and therapeutic purposes. PMID:9614555

  19. Horizontal gene transfer in plants.

    Gao, Caihua; Ren, Xiaodong; Mason, Annaliese S; Liu, Honglei; Xiao, Meili; Li, Jiana; Fu, Donghui

    2014-03-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components. PMID:24132513

  20. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    杨静悦; 曹大勇; 刘文超; 斯小明

    2009-01-01

    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  1. Construction of Recombinant Adenovirus Carrying gfp Gene and Adenovirus-mediated GFP Expression in Human Vascular Smooth Muscle Cells%携带绿色荧光蛋白基因的重组腺病毒的构建及其在人血管平滑肌细胞中的表达

    张蕾; 王家宁; 郭凌郧; 孔霞; 杨建业; 唐俊明; 黄永章; 郑飞

    2009-01-01

    目的:构建携带绿色荧光蛋白(Green Fluorescent Protein,GFP)基因的重组腺病毒质粒pAd-GFP,制备重组腺病毒Ad-GFP,并使GFP在血管平滑肌细胞中得到高效表达.方法:将线性化的穿梭质粒pRNAT-H1.1与腺病毒骨架质粒pAdeagy-1在感受态BJ5183内进行同源重组,并筛选出阳性重组子pAd-GFP;用Pac I酶切线性化pAdGFP,线性化的腺病毒质粒经脂质体转染AD293细胞,进行重组腺病毒的包装和扩增.采用CsCl密度梯度离心进行病毒浓缩和纯化.获得的腺病毒感染人血管平滑肌细胞(human vascular smooth muscle cell,hVSMC),观察其感染效率和GFP表达水平.结果:通过Pac I酶切证实腺病毒载体构建成功,包装出携带GFP基因的腺病毒,滴度达到4.5 × 1012pfu/mL,获得的腺病毒对hVSMC的感染效率约为100%.结论:利用细菌内同源重组方法成功地构建了携带绿色荧光蛋白的重组腺病毒,并能够在hVSMC细胞中高效地表达,为利用GFP作为报告基因的研究奠定了实验基础.%Obieaive To construct recombinant edvenovirus phsmid containing GFP gene and prepare recombinant adenovirus pAd-GFP and GFP will be efficiently expressed in human vascular smooth muscle cells(hVSMC).Methods pRNATH1.1/Adeno was linearized with Pme I,and transformed into ultracompletent BJ5183 containing pAdeasy-1,then reeombinant advenovirus pAd-GFP was constructed by homologous recombination in bacteria BJ5 183.The recombinant adenoviral plasmid DAd-GFP Was identified bv Pac I dizestion.Linearized DAd-GFP was transfeeted into AD293 cells with llposome to generate recombinant adenovirus particles which were purified and concentrated by Cesium cMoride(CsCl)density gradient eentrifugation.Adenovirus particles were used to infect hVSMC,and the infection efficiency and GFP expression were observed under inveaed phase-contrast microscope.Results The adenovirus vector WaS constructed successfully and adenoviruff encoding GFP gene Wag prepared with titers

  2. Horizontal gene transfer in chromalveolates

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  3. Adenovirus-mediated wild-type PTEN promoting glioma stem/progenitor cells autophagy activity

    ZHAO Yao-dong; Zi-long WEI; Zhang, Quan-Bin; LOU Mei-qing; HUANG, QIANG

    2013-01-01

    Background PTEN is an anti-oncogene frequently inactivating in glioma. The previous study found that PTEN was closely related to cellular autophagy activity. The purpose of this paper is to study whether the inactivation of PTEN in glioma stem/progenitor cells (GSPCs) is correlative with the low autophagic activity in GSPCs. Methods Wild-type PTEN genes were transferred into GSPCs mediated by adenovirus. The autophagic activity in GSPCs before or after the introduction of wild-type PTEN was...

  4. Efficient Gene Transfer in Bacterial Cell Chains

    Babic, Ana; Berkmen, Melanie B.; Lee, Catherine A.; Grossman, Alan D.

    2011-01-01

    Horizontal gene transfer contributes to evolution and the acquisition of new traits. In bacteria, horizontal gene transfer is often mediated by conjugative genetic elements that transfer directly from cell to cell. Integrative and conjugative elements (ICEs; also known as conjugative transposons) are mobile genetic elements that reside within a host genome but can excise to form a circle and transfer by conjugation to recipient cells. ICEs contribute to the spread of genes involved in pathoge...

  5. The antitumor efficacy of a novel adenovirus-mediated anti-p21Ras single chain fragment variable antibody on human cancers in vitro and in vivo.

    Yang, Ju-Lun; Pan, Xin-Yan; Zhao, Wen-Xing; Hu, Qi-Chan; Ding, Feng; Feng, Qiang; Li, Gui-Yun; Luo, Ying

    2016-03-01

    Activated ras genes are found in a large number of human tumors, and therefore are one of important targets for cancer therapy. This study investigated the antitumor effects of a novel single chain fragment variable antibody (scFv) against ras protein, p21Ras. The anti-p21Ras scFv gene was constructed by phage display library from hybridoma KGHR1, and then subcloned into replication-defective adenovirus vector to obtain recombinant adenovirus KGHV100. Human tumor cell lines with high expression of p21Ras SW480, MDA-MB‑231, OVCAR-3, BEL-7402, as well as tumor cell line with low expression of p21Ras, SKOV3, were employed to investigate antitumor effects in vitro and in vivo. Fluorescence microscopy demonstrated that KGHV100 was able to express intracellularly anti-p21Ras scFv antibody in cultured tumor cells and in transplantation tumor cells. MTT, Transwell, colony formation, and flow cytometry analysis showed that KGHV100 led to significant growth arrest in tumor cells with high p21Ras expression, and induced G0/G1 cell cycle arrest in the studied tumor cell lines. In vivo, KGHV100 significantly inhibited tumor growth following intratumoral injection, and the survival rates of the mice were higher than the control group. These results indicate that the adenovirus-mediated intracellular expression of the novel anti-p21Ras scFv exerted strong antitumoral effects, and may be a potential method for therapy of cancers with p21Ras overexpression. PMID:26780944

  6. Transferring alien genes to wheat

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  7. Adenovirus-mediated wild-type PTEN promoting glioma stem/progenitor cells autophagy activity

    ZHAO Yao-dong

    2013-05-01

    Full Text Available Background PTEN is an anti-oncogene frequently inactivating in glioma. The previous study found that PTEN was closely related to cellular autophagy activity. The purpose of this paper is to study whether the inactivation of PTEN in glioma stem/progenitor cells (GSPCs is correlative with the low autophagic activity in GSPCs. Methods Wild-type PTEN genes were transferred into GSPCs mediated by adenovirus. The autophagic activity in GSPCs before or after the introduction of wild-type PTEN was detected by immunocytochemistry, electron microscopy, and Western blotting assay. Results After transfection of wild-type PTEN, a large number of microtuble-associated protein 1 light chain 3 (MAP1LC3-positive granules could be found in the cytoplasm of GSPCs under a confocal microscopy, and these granules were demonstrated to be autophagosomes under an electron microscope. Moreover, the expression of autophagy-related gene Beclin-1 significantly increased after the transfection of wild-type PTEN gene. Conclusion The inactivation of PTEN in GSPCs is one reason of the low autophagic activity of GSPCs.

  8. Translating Gene Transfer: A Stalled Effort

    Greenberg, Alexandra J.; McCormick, Jennifer; Tapia, Carmen J.; Windebank, Anthony J.

    2011-01-01

    The journey of gene transfer from laboratory to clinic has been slow and fraught with many challenges and barriers. Despite the development of the initial technology in the early 1970s, a standard clinical treatment involving “gene therapy” remains to be seen. Furthermore, much was written about the technology in the early 1990s, but since then, not much has been written about the journey of gene transfer. The translational path of gene transfer thus far, both pitfalls and successes, can serv...

  9. Targeting Radiotherapy to Cancer by Gene Transfer

    R. J. Mairs; Boyd, M.

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer ...

  10. Horizontal gene transfer between bacteria and animals

    Dunning Hotopp, Julie C.

    2011-01-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria to animal transfer occur as part of intimate relationships like those of endosymbionts and their invertebra...

  11. Horizontal gene transfer between bacteria and animals.

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  12. Adenovirus-mediated siRNA targeting CXCR2 attenuates titanium particle-induced osteolysis by suppressing osteoclast formation.

    Wang, Chen; Liu, Yang; Wang, Yang; Li, Hao; Zhang, Ran-Xi; He, Mi-Si; Chen, Liang; Wu, Ning-Ning; Liao, Yong; Deng, Zhong-Liang

    2016-01-01

    BACKGROUND Wear particle-induced peri-implant loosening is the most common complication affecting long-term outcomes in patients who undergo total joint arthroplasty. Wear particles and by-products from joint replacements may cause chronic local inflammation and foreign body reactions, which can in turn lead to osteolysis. Thus, inhibiting the formation and activity of osteoclasts may improve the functionality and long-term success of total joint arthroplasty. The aim of this study was to interfere with CXC chemokine receptor type 2 (CXCR2) to explore its role in wear particle-induced osteolysis. MATERIAL AND METHODS Morphological and biochemical assays were used to assess osteoclastogenesis in vivo and in vitro. CXCR2 was upregulated in osteoclast formation. RESULTS Local injection with adenovirus-mediated siRNA targeting CXCR2 inhibited titanium-induced osteolysis in a mouse calvarial model in vivo. Furthermore, siCXCR2 suppressed osteoclast formation both directly by acting on osteoclasts themselves and indirectly by altering RANKL and OPG expression in osteoblasts in vitro. CONCLUSIONS CXCR2 plays a critical role in particle-induced osteolysis, and siCXCR2 may be a novel treatment for aseptic loosening. PMID:26939934

  13. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice.

    Dong Xi

    Full Text Available Hepatitis B virus (HBV-related acute-on-chronic liver failure (ACLF has a poor prognosis with high in-hospital mortality. Hepatic and circulating inflammatory cytokines, such as fibrinogen like protein 2 (fgl2, FasL/Fas, and TNFα/TNFR1, play a significant role in the pathophysiology of ACLF. This study aimed to investigate the therapeutic effect of recombinant adenoviral vectors carrying constructed DNA code for non-native microRNA (miRNA targeting mouse fgl2 (mfgl2 or both mFas and mTNFR1 on murine hepatitis virus (MHV-3-induced fulminant hepatitis in BALB/cJ mice. Artificial miRNA eukaryotic expression plasmids against mfgl2, mFas, and mTNFR1 were constructed, and their inhibitory effects on the target genes were confirmed in vitro. pcDNA6.2-mFas-mTNFR1- miRNA,which expresses miRNA against both mFas and mTNFR1 simultaneously,was constructed. To construct a miRNA adenovirus expression vector against mfgl2, pcDNA6.2-mfgl2-miRNA was cloned using Gateway technology. Ad-mFas-mTNFR1- miRNA was also constructed by the same procedure. Adenovirus vectors were delivered by tail-vein injection into MHV-3-infected BALB/cJ mice to evaluate the therapeutic effect. 8 of 18 (44.4% mice recovered from fulminant viral hepatitis in the combined interference group treated with Ad-mfgl2-miRNA and Ad-mFas-mTNFR1-miRNA. But only 4 of 18 (22.2% mice receiving Ad-mfgl2-miRNA and 3 of 18 (16.7% mice receiving Ad-mFas-mTNFR1- miRNA survived. These adenovirus vectors significantly ameliorated inflammatory infiltration, fibrin deposition, hepatocyte necrosis and apoptosis, and prolonged survival time. Our data illustrated that combined interference using adenovirus-mediated artificial miRNAs targeting mfgl2, mFas, and mTNFR1 might have significant therapeutic potential for the treatment of fulminant hepatitis.

  14. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo.

    Mao, Zong-Lei; He, Song-Bing; Sheng, Wei-Hua; Dong, Xiao-Qiang; Yang, Ji-Cheng

    2013-11-01

    Chemotherapy is the primary treatment for both resectable and advanced gastric carcinoma, yet multiple drug resistance (MDR) of gastric carcinoma remains a significant therapeutic obstacle. The development of novel strategies to reduce MDR in gastric carcinoma would yield a better outcome following chemotherapy. ING4, a member of the inhibitor of growth (ING) tumor-suppressor family, possesses antitumor and radiosensitization or chemosensitization effects in a variety of human cancers. The present study investigated the effects and possible mechanisms of action of adenovirus-mediated ING4 (AdVING4) on the reversion of human gastric carcinoma cell MDR in vitro and in vivo in nude mouse xenografts. The data showed that the expression of ING4 mRNA and protein was dramatically downregulated (or lost) in gastric carcinoma SGC7901/CDDP cells after CDDP-induced MDR phenotype and in the parental SGC7901 cells. AdVING4‑induced ING4 expression reversed MDR and induced apoptosis of SGC7901/CDDP cells in vitro and in vivo in the SGC7901/CDDP xenograft tumors. Furthermore, AdVING4 substantially downregulated the expression of MDR-related proteins P-gp and MRP1 and apoptosis‑related proteins Bcl-2 and survivin, but upregulated the expression of apoptosis-related protein Bax in the SGC7901/CDDP xenograft tissues. The reversion effects elicited by AdVING4 on gastric cancer cell MDR were closely associated with the downregulation of ATP-binding cassette transporters and activation of apoptotic pathways. Thus, these findings suggest that AdVING4 may be a feasible modulator for the MDR phenotype of gastric carcinoma cells. PMID:23969950

  15. The ethics of human gene transfer.

    Kimmelman, Jonathan

    2008-03-01

    Almost 20 years since the first gene-transfer trial was carried out in humans, the field has made significant advances towards clinical application. Nevertheless, it continues to face numerous unresolved ethical challenges--among them are the question of when to initiate human testing, the acceptability of germline modification and whether the technique should be applied to the enhancement of traits. Although such issues have precedents in other medical contexts, they take on a different character in gene transfer, in part because of the scientific uncertainty and the social context of innovation. PMID:18278058

  16. Gene transfer in the GI tract and oral cavity

    Mullany, Peter

    2000-01-01

    Gene transfer is important in spreading antibiotic resistance and other traits such as virulence factors. In this review the molecular mechanisms of gene transfer are outlined and the biological consequences of bacterial gene transfer in the GI tract and the oral cavity (GIOC) are discussed. Finally areas of possible future research aimed at attaining a deeper understanding of the process of gene transfer and the potential for stopping or slowing unwanted transfer are discussed.Keywords: gene...

  17. Viral Vectors for in Vivo Gene Transfer

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  18. Rates of Lateral Gene Transfer in Prokaryotes

    Vos, Michiel; Hesselman, M.C.; Beek, te T.A.; Passel, van M.W.J.; Eyre-Walker, Adam

    2015-01-01

    Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifyi

  19. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  20. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten+/- mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten+/- mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ERα as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  1. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  2. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  3. Horizontal gene transfer and bacterial diversity

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  4. The use of alien gene transfers

    The present status of the gene transfers from alien species belonging to the sub-tribe Triticanae into wheat is reviewed, and the advantages and disadvantages of the different methods available for such transfers are examined. In general, the alien genes provide a high degree of resistance against a notably wide range of physiological races of wheat rusts, powdery mildew and other diseases. The alien resistance, like other sources of resistance, is known to break down for certain new races. This may happen more often when alien genes of resistance are widely incorporated in commercial cultivars and grown over large areas. So far, few of the available induced translocation stocks have contributed to the development of agronomically superior commercial cultivars, mainly due to the associated undesirable effects of the translocations on agronomic characters of the recipient variety. The deleterious effects appear in some genetic backgrounds and not in others. Extensive hybridization of translocation stocks with different genotypes has been emphasized by most investigators. Such programmes have led to the release of three commercial cultivars - 2 in Australia and 1 in the USA. On the other hand, spontaneous wheat-rye translocations carrying gene(s) for disease resistance have been unconsciously incorporated into several wheat cultivars, some of them are widely cultivated and were top in ranking based on grain yield. (author)

  5. Gene Transfer with Poly-Melittin Peptides

    Chen, Chang-Po; Kim, Ji-Seon; Steenblock, Erin; Liu, Dijie; Rice, Kevin G.

    2006-01-01

    The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by addition of one to four Lys repeats at either the C or N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic po...

  6. Gene transfer system for Rhodopseudomonas viridis.

    Lang, F S; Oesterhelt, D

    1989-01-01

    A gene transfer system for Rhodopseudomonas viridis was established which uses conjugation with Escherichia coli S17-I as the donor and mobilizable plasmids as vectors. Initially, plasmids of the incompatibility group P1 (pRK290 and pRK404) were used. The more effective shuttle vectors between E. coli and R. viridis, pKV1 and pKVS1, were derived from plasmid pBR322 and showed the highest conjugation frequency (10(-2] thus far demonstrated in purple bacteria. It was also demonstrated that Rhiz...

  7. Adenovirus-mediated NDRG2 inhibits the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro

    Sheng Qiang; Zhen-Fang Du; Min Huang

    2014-01-01

    Objective: To investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. Methods: NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy showed that NDRG2 protein was specifically located on subcellular organelle. Results: A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. Conclusions: NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.

  8. Evidences of lateral gene transfer between archaea and pathogenic bacteria

    Bokhari, Habib; Anwar, Maryam; Mirza, Hasan Bilal; Gillevet, Patrick Martin

    2011-01-01

    Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and bacteria is not so common. In this context, we explore events of horizontal gene transfer between arch...

  9. DNA-mediated gene transfer without carrier DNA

    1981-01-01

    DNA-mediated gene transfer is a procedure which uses purified DNA to introduce new genetic elements into cells in culture. The standard DNA- mediated gene transfer procedure involves the use of whole cell DNA as carrier DNA for the transfer. We have modified the standard DNA- mediated gene transfer procedure to transfer the Herpes simplex virus type 1 thymidine kinase gene (TK) into TK- murine recipient cells in the absence of whole cell carrier DNA. The majority (8/10) of carrier- free trans...

  10. Progress in gene transfer by germ cells in mammals

    2008-01-01

    Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells.

  11. Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays

    Raut, Shruti; Lei, Pedro; Padmashali, Roshan; Andreadis, Stelios T.

    2010-01-01

    We employed fibrin hydrogel as bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 – 7.5 mg/mL. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decrease...

  12. Gene Transfer between Salmonella enterica Serovar Typhimurium inside Epithelial Cells

    Ferguson, Gayle C.; Heinemann, Jack A.; Kennedy, Martin A

    2002-01-01

    Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside ...

  13. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  14. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  15. Lentiviral vector gene transfer to porcine airways.

    Sinn, Patrick L; Cooney, Ashley L; Oakland, Mayumi; Dylla, Douglas E; Wallen, Tanner J; Pezzulo, Alejandro A; Chang, Eugene H; McCray, Paul B

    2012-01-01

    In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1-based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF).Molecular Therapy - Nucleic Acids (2012) 1, e56; doi:10.1038/mtna.2012.47; published online 27 November 2012. PMID:23187455

  16. Optical gene transfer by femtosecond laser pulses

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  17. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    Nelson, Karen E.

    2005-10-14

    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  18. Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase

    Daley, Daniel O; Clifton, Rachel; Whelan, James

    2002-01-01

    Subunit 2 of cytochrome c oxidase (Cox2) in legumes offers a rare opportunity to investigate factors necessary for successful gene transfer of a hydrophobic protein that is usually mitochondrial-encoded. We found that changes in local hydrophobicity were necessary to allow import of this nuclear-encoded protein into mitochondria. All legume species containing both a mitochondrial and nuclear encoded Cox2 displayed a similar pattern, with a large decrease in hydrophobicity evident in the first...

  19. Identification and Categorization of Horizontally Transferred Genes in Prokaryotic Genomes

    Shuo-Yong SHI; Xiao-Hui CAI; Da-fu DING

    2005-01-01

    Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.

  20. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  1. Evolution of and Horizontal Gene Transfer in the Endornavirus Genus

    Song, Dami; Cho, Won Kyong; Park, Sang-Ho; Jo, Yeonhwa; Kim, Kook-Hyung

    2013-01-01

    The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endor...

  2. Gene transfer approaches in cancer immunotherapy.

    Larin, S S; Georgiev, G P; Kiselev, S L

    2004-10-01

    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  3. Ad-ING4-IRES-IL-24双基因共表达载体的构建及表达%Construction and expression of adenovirus-mediated ING4 and IL-24 co-expression

    盛伟华; 谢宇锋; 缪竞诚; 顾范博; 单云波; 朱晔涵; 陈华昕; 杜贤荣; 杨吉成

    2011-01-01

    GEZ-Term,pcDNA 3.0-IL-24,and pcDNA3.0-ING4 plasmids as templates and subcloned into pAdTrack-CMV transfer vector to form pA dTrack-CMV-ING4-IRES-IL-24,respectively.The pAdTrack-CMV-ING4-IRES-IL-24 transfer vector linearized with Pme Ⅰdigestion and pAdEasy-1 backbone vector were further cotransformed into the bacteria BJ5183 competent cells for homologous recombination.The resultant pAdEasy-1-pAdTrack-CMV-ING4-IRES-IL-24 homologous recombinant plasmids were linearized with Pac Ⅰdigestion and transfected into the human embryonic kidney 293(QBI-293A)cells by liposome,leading to formation of the recombinant adenoviruses Ad-ING4-IRES-IL-24 co-expressing ING4 and IL-24.Infected the A549 cells by the expanded adenoviruses Ad-ING4-IRES-IL-24,A denovirus-mediated ING4 and IL-24 expression in QBI-293A and A549 cells was examined by RT-PCR and Western blot.The growth-suppressing and apoptosis-inducing effect of Ad-ING4-ERES IL-24 co-expressing ING 4 and IL-24 on A549 human lung carcinoma cells were assessed by MTT assay and FCM,respectively.Results:DNA sequencing showed that the ING4,IRES,and IL-24 fragments subcloned into pAdTrack-CMV plasmids were completely identical to those reported in GenBank.ING4 and IL-24 gene mediated by adenovirus could both successfully express in QBI-293A and A 549 cells.A denovirus-mediated ING4 and IL-24 co-expression significantly suppressed A549 lung carcinom a cell growth and induced cell apoptosis.The adenoviral vector co-expressing ING 4 and IL-24 mediated by IRES,Ad-ING4-IRES-IL-24,was successfully constructed.Adenovirus-mediated ING 4 and IL-24 co-expression had marked anti-tum or effect in suppressin A549 human lung carcinom a cell growth and inducing cell apoptosis in vitro.Compared with Ad-ING 4 -IRES(growth inhibition ratio at 72h was 42.31%±0.43%,apoptosis rate was 13.30%±1.85%)and AdIRES-IL-24(growth inhibition ratio at 72h was 47.44%±0.39%,apoptosis rate was 12.40%±1.05%),Ad-ING4-IRES IL-24(growth inhibition ratio at 72h is

  4. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  5. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas;

    2013-01-01

    approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers......, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for...... bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are...

  6. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  7. The power of phylogenetic approaches to detect horizontally transferred genes

    Gogarten J Peter

    2007-03-01

    Full Text Available Abstract Background Horizontal gene transfer plays an important role in evolution because it sometimes allows recipient lineages to adapt to new ecological niches. High genes transfer frequencies were inferred for prokaryotic and early eukaryotic evolution. Does horizontal gene transfer also impact phylogenetic reconstruction of the evolutionary history of genomes and organisms? The answer to this question depends at least in part on the actual gene transfer frequencies and on the ability to weed out transferred genes from further analyses. Are the detected transfers mainly false positives, or are they the tip of an iceberg of many transfer events most of which go undetected by current methods? Results Phylogenetic detection methods appear to be the method of choice to infer gene transfers, especially for ancient transfers and those followed by orthologous replacement. Here we explore how well some of these methods perform using in silico transfers between the terminal branches of a gamma proteobacterial, genome based phylogeny. For the experiments performed here on average the AU test at a 5% significance level detects 90.3% of the transfers and 91% of the exchanges as significant. Using the Robinson-Foulds distance only 57.7% of the exchanges and 60% of the donations were identified as significant. Analyses using bipartition spectra appeared most successful in our test case. The power of detection was on average 97% using a 70% cut-off and 94.2% with 90% cut-off for identifying conflicting bipartitions, while the rate of false positives was below 4.2% and 2.1% for the two cut-offs, respectively. For all methods the detection rates improved when more intervening branches separated donor and recipient. Conclusion Rates of detected transfers should not be mistaken for the actual transfer rates; most analyses of gene transfers remain anecdotal. The method and significance level to identify potential gene transfer events represent a trade

  8. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic ...

  9. Modification of pGH cDNA using the first intron and adenovirus-mediated expression in CHO cells

    李秀锦; 仲飞; 齐顺章

    2003-01-01

    Objective This study was conducted to investigate the function of the first intron of porcine growth hormone (pGH) gene in the gene expression.Methods PCR method was used to amplify the first intron from pig genomic DNA. The intron was then inserted into pGH cDNA to construct pGH cDNA-intron (pGH cDNA-in). The recombinant adenoviruses containing pGH cDNA and pGH cDNA-in genes under control of CMV promoter were generated by homologous recombination method in HEK 293 cells respectively. The effect of the first intron on gene expression was evaluated by comparing the expression levels of pGH cDNA-in and pGH cDNA mediated by adenovirus vectors in CHO cells.Results The expression level of pGH cDNA containing the first intron increased by 117%, which was significantly higher than that of pGH cDNA without the intron (P<0.001). Conclusion The first intron of pGH gene has the function to improve pGH gene expression.

  10. Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays.

    Raut, Shruti D; Lei, Pedro; Padmashali, Roshan M; Andreadis, Stelios T

    2010-06-01

    We employed fibrin hydrogel as a bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 and 7.5mg/ml. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner suggesting that fibrin degradation by target cells may be necessary for successful gene delivery. Under these conditions transduction may be limited only to cells interacting with the matrix thereby providing a method for spatially-localized gene delivery. Indeed, when lentivirus-containing fibrin microgels were spotted in an array format gene transfer was confined to virus-containing fibrin spots with minimal cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may provide an effective matrix for spatially-localized gene delivery with potential applications in high-throughput lentiviral microarrays and in regenerative medicine. PMID:20153386

  11. Electroporation-Mediated Gene Transfer Directly to the Swine Heart

    Hargrave, Barbara; Downey, Harre; Strange, Robert; Murray, Len; Cinnamond, Cade; Lundberg, Cathryn; Israel, Annelise; Chen, Yeong-Jer; Marshall, William; Heller, Richard

    2012-01-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using 3 different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the ECG were administered at varying pulse...

  12. Gentamicin resistance genes in environmental bacteria: prevalence and transfer

    Heuer, H.; Krögerrecklenfort, E.; Wellington, E.M.H.; Egan, S.; Elsas, van J.D.; Overbeek, van L.S.; Collard, J.M.; Guillaume, G.; Karagouni, A.; Nikolakopoulou, D.; Smalla, K.

    2002-01-01

    A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gmr) genes in different non-clinical environments has been performed. We were interested to find out whether Gmr genes described from clinical isolates can be detected in different environmental habitats and

  13. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  14. Can we modify response to radiation therapy with gene transfer?

    Several recent studies suggest that gene transfer can be combined with irradiation to increase anti-tumor efficacy. Among genes of particular interest to be used in this combined approach are those involved in the regulation of radiation-induced lethality (apoptosis, DNA repair). Some additional aspects appear to be relatively specific to these combinations, such as the type of vector to be used (anaerobic bacteria) or the type of promoter (radio-inducible promoters). The first results obtained in mice bearing human xenograft tumors, combining gene transfer and irradiation are encouraging, but no clinical study has been performed so far. Finally it should be pointed out, in this area as well as in cancer gene therapy in general, that progress in gene vectorization is mandatory to optimize gene distribution within the tumor. (authors)

  15. Design of radiopharmaceuticals for monitoring gene transfer therapy

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123I for SPET and 124I for PET studies. (author)

  16. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  17. In vivo comparison of transduction efficiency with recombinant adenovirus-mediated p53 in a human colon cancer mouse model by different delivery routes%rAd/p53不同给药途径治疗人类结肠癌荷瘤鼠模型p53导入效率的在体评价

    Qi Xie; Biling Liang; ling Zhang; Qihua Yang; Xiongfei Gu; Jing Xu; Mingwang Chen

    2008-01-01

    Objective: To evaluate transduction efficiency with recombinant adenovirus-mediated p53 (rAd/p53) therapy in a human colon cancer mouse model by intra-tumoral injection and intra-arterial delivery. Methods: The tumor pieces of human colon cancer SW480 were implanted in the livers of 45 nude mice. These mice were administrated with rAd/p53 by intratu-moral injection and intra-arterial delivery. After 24 h, 48 h and 72 h rAd/p53 administration, 5 mice each group were killed with over anesthesia and their livers were removed. P53 expression and apoptosis of tumor and liver were assessed. Results: P53 expression and apoptosis of intratumoral administration group was higher than tail vein group and control group. Apoptosis and p53 expression of livers in three groups had no significant difference. Conclusion: p53 gene transduction efficiency and anticancer effect of tAd/p53 is much better by intra-tumoral injection than intra-arterial delivery.

  18. Oncolytic adenovirus mediated Survivin knockdown by RNA interference suppresses human colorectal carcinoma growth in vitro and in vivo

    Wang Chun-Yi

    2009-06-01

    Full Text Available Abstract Background Colorectal cancer is a one of the most common alimentary malignancies. Survivin has been proved by many studies to be an ideal target for cancer gene therapy because of its strong anti-apoptotic effect. The reduction of Survivin expression by means of chemically synthesized small interfering RNA or small hairpin RNA expressed from plasmid and resulted growth inhibition of cancer cells had been proved by many studies including ours, but the transfection efficiency was not encouraging. So for the first time we constructed the Survivin shRNA into an oncolytic adenovirus, tested its effects on colorectal cancer cell lines and nude mice xenograft model. Methods In this study, we constructed an oncolytic adenovirus with a Survivin targeted small hairpin RNA and a reporter gene (ZD55-Sur-EGFP. The expression of Survivin mRNA and protein were analyzed by RT-PCR and western blot. The cell growth and apoptosis were tested by in vitro cytopathic assay, MTT assay and flow cytometry respectively. The effect of the constructed virus on xenograft model was evaluated by tumor volume and western blot analysis. Results ZD55-Sur-EGFP replicated in cancer cells specifically, reduced the expression of Survivin mRNA and protein expression effectively (P Conclusion We conclude Survivin RNA interference combining with oncolytic adenovirus virotherapy to be a promising treatment for colorectal cancer.

  19. Amelioration of radiation-induced skin injury by adenovirus-mediated heme oxygenase-1 (HO-1) overexpression in rats

    Radiation-induced skin injury remains a serious concern for radiation therapy. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant and anti-apoptotic properties. However, the role of HO-1 in radiation-induced skin damage remains unclear. This study aims to elucidate the effects of HO-1 on radiation-induced skin injury in rats. A control adenovirus (Ad-EGFP) and a recombinant adenovirus (Ad-HO1-EGFP) were constructed. Rats were irradiated to the buttock skin with a single dose of 45 Gy followed by a subcutaneous injection of PBS, 5 × 109 genomic copies of Ad-EGFP or Ad-HO1-EGFP (n = 8). After treatment, the skin MDA concentration, SOD activity and apoptosis were measured. The expression of antioxidant and pro-apoptotic genes was determined by RT-PCR and real-time PCR. Skin reactions were measured at regular intervals using the semi-quantitative skin injury score. Subcutaneous injection of Ad-HO1-EGFP infected both epidermal and dermal cells and could spread to the surrounding regions. Radiation exposure upregulated the transcription of the antioxidant enzyme genes, including SOD-1, GPx2 and endogenous HO-1. HO-1 overexpression decreased lipid peroxidation and inhibited the induction of ROS scavenging proteins. Moreover, HO-1 exerted an anti-apoptotic effect by suppressing FAS and FASL expression. Subcutaneous injection of Ad-HO1-EGFP demonstrated significant improvement in radiation-induced skin injury. The present study provides evidences for the protective role of HO-1 in alleviating radiation-induced skin damage in rats, which is helpful for the development of therapy for radiation-induced skin injury

  20. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    Rogers, B.E.; Buchsbaum, D.J. [Birmingham University of Alabama, Birmingham, AL (United States). Dept. of Radiation Oncology; Zinn, K.R. [Birmingham University of Alabama, Birmingham, AL (United States). Radiology

    2000-09-01

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2)) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic trans gene (e.g., cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites.

  1. Agrobacterium-mediated gene transfer to Chrysanthemum.

    Wordragen, van M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is

  2. Gene therapy of cancer and development of therapeutic target gene

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  3. Gene therapy of cancer and development of therapeutic target gene

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  4. DNA-mediated gene transfer into ataxia-telangiectasia cells

    The complete description of the genetic lesion(s) underlying the AT mutation might, therefore, highlight not only a DNA-repair pathwa, but also an important aspect of the physiology of lymphocytes. DNA-mediated gene transfer into eukaryotic cells has proved a powerful tool for the molecular cloning of certain mammalian genes. The possibility to clone a given gene using this technology depends, basically, on the availability of a selectable marker associated with the expression of the transfected gene in the recipient cell. Recently, a human DNA repair gene has been cloned in CHO mutant cells by taking advantage of the increased resistance to ultraviolet radiation of the transformants. As a preliminary step toward the molecular cloning of the AT gene(s), the authors have attempted to confer radioresistance to AT cells by transfection with normal human DNA

  5. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites

  6. Expression of a transferred nuclear gene in a mitochondrial genome

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  7. Agrobacterium-mediated gene transfer to Chrysanthemum.

    Wordragen, van, M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is a random process in which two complete genomes are mixed and the desired phenotype has to be regained by repeated back crossing with the cultivated parent line. Despite these differences, both pro...

  8. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  9. Plastid evolution: gene transfer and the maintenance of 'stolen' organelles

    Archibald John M

    2010-06-01

    Full Text Available Abstract Many heterotrophic organisms sequester plastids from prey algae and temporarily utilize their photosynthetic capacity. A recent article in BMC Genomics reveals that the dinoflagellate Dinophysis acuminata has acquired photosynthesis-related genes by horizontal gene transfer, which might explain its ability to retain 'stolen' plastids for extended periods of time. See research article http://www.biomedcentral.com/1471-2164/11/366

  10. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    Getino Redondo, María; Sanabria Ríos, David J.; Fernández López, Raúl; Campos Gómez, Javier; Sánchez López, José M.; Fernández Medarde, Antonio; Carballeira Cabranes, Néstor M.; Cruz Calahorra, Fernando de la

    2015-01-01

    Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential fe...

  11. Plasmid-mediated horizontal gene transfer is a coevolutionary process

    Harrison, Ellie; Brockhurst, Michael A

    2012-01-01

    Conjugative plasmids are key agents of horizontal gene transfer (HGT) that accelerate bacterial adaptation by vectoring ecologically important traits between strains and species. However, although many conjugative plasmids carry beneficial traits, all plasmids exert physiological costs-of-carriage on bacteria. The existence of conjugative plasmids, therefore, presents a paradox because non-beneficial plasmids should be lost to purifying selection, whereas beneficial genes carried on plasmids ...

  12. Unconventional lateral gene transfer in extreme thermophilic bacteria

    César, Carolina Elvira; Bricio, Carlos; van Heerden, Esta; Littauer, Dereck; Berenguer, José; Álvarez, Laura

    2011-01-01

    Conjugation and natural competence are two major mechanisms that explain the acquisition of foreign genes throughout bacterial evolution. In recent decades, several studies in model organisms have revealed in great detail the steps involved in such processes. The findings support the idea that the major basis of these mechanisms is essentially similar in all bacteria. However, recent work has pinpointed the existence of new, evolutionarily different processes underlying lateral gene transfer....

  13. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Nico Lachmann

    2013-03-01

    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  14. Effects of ionizing radiation on DNA-mediated gene transfer

    The process of DNA-mediated gene transfer is a powerful genetic tool that involves the cellular uptake, genomic integration and expression of exogenous DNA sequences. This process can also be used to examine the effects of radiation at the molecular level. There have been a few reported describing the enhancement of the gene transfer process by a number of DNA damaging agents. The agents tested included UV light, x-rays and accelerated argon particles. One hypothesis to explain this phenomenon is that these DNA damaging agents themselves, or subsequent DNA repair processes, introduce strand breaks into the cellular DNA of recipient cells. These DNA breaks then serve as possible sites of integration for the exogenous DNA sequences. The authors are continuing these studies by determining what effect neutrons have on the transfection of DNA. The gene transfer system we plan to employ involves the transfection of the chimeric plasmid pSV2-GPT into recipient hamster cell lines. This plasmid contains the Escherichia coli ecogpt gene, which codes for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT), along with simian virus 40 (SV40) sequences which allow for expression of the bacterial gene in mammalian cells

  15. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  16. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  17. Regulatory and Ethical Issues for Phase I In Utero Gene Transfer Studies

    Strong, Carson

    2011-01-01

    Clinical gene transfer research has involved adult and child subjects, and it is expected that gene transfer in fetal subjects will occur in the future. Some genetic diseases have serious adverse effects on the fetus before birth, and there is hope that prenatal gene therapy could prevent such disease progression. Research in animal models of prenatal gene transfer is actively being pursued. The prospect of human phase I in utero gene transfer studies raises important regulatory and ethical i...

  18. Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (NeoR) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact NeoR gene integration and expressed high levels of neomycin phosphotransferase activity. The NeoR gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for β- and γ-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the β and γ chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors (α and β) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs

  19. Examining Ancient Inter-domain Horizontal Gene Transfer

    Francisca C. Almeida

    2008-01-01

    Full Text Available Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test, to examine the robustness of these inferences and to corroborate the phylogenetically identifi ed cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS, fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.

  20. Can Viruses be Modified to Achieve Sustained Gene Transfer?

    HildegundCJErtl

    2011-07-01

    Full Text Available It is very easy to replace a faulty gene in an immunocompromised mouse. First, one takes a well-characterized virus, such as an adenovirus or an adeno-associated virus, and incorporates the correct version of the faulty gene together with some regulatory sequences into the genome. Then, one transduces the recombinant genome into helper cells, which will add the viral capsid. At last, one injects the resulting viral vector into the sick mouse, and the mouse is cured. It is not that easy in an immunocompetent mouse, let alone in a human, as over the eons the immune system evolved to eliminate viruses regardless if they penetrate as dangerous pathogens or are injected by a well-meaning gene therapist. Here we offer our perspective on the potential of how viral vectors achieve sustained gene transfer in the face of a hostile immune system.

  1. Nano-Sized Sunflower Polycations As Effective Gene Transfer Vehicles.

    Cheng, Yilong; Wei, Hua; Tan, James-Kevin Y; Peeler, David J; Maris, Don O; Sellers, Drew L; Horner, Philip J; Pun, Suzie H

    2016-05-01

    The architecture of polycations plays an important role in both gene transfection efficiency and cytotoxicity. In this work, a new polymer, sunflower poly(2-dimethyl amino)ethyl methacrylate) (pDMAEMA), is prepared by atom transfer radical polymerization and employed as nucleic acid carriers compared to linear pDMAEMA homopolymer and comb pDMAEMA. The sunflower pDMAEMAs show higher IC50 , greater buffering capacity, and stronger binding capacity toward plasmid DNA than their linear and comb counterparts. In vitro transfection studies demonstrate that sunflower pDMAEMAs exhibit high transfection efficiency as well as relatively low cytotoxicity in complete growth medium. In vivo gene delivery by intraventricular injection to the brain shows that sunflower polymer delivers plasmid DNA more effectively than comb polymer. This study provides a new insight into the relationship between polymeric architecture and gene delivery capability, and as well as a useful means to design potent vectors for successful gene delivery. PMID:27061622

  2. Characterization of an ancient lepidopteran lateral gene transfer.

    David Wheeler

    Full Text Available Bacteria to eukaryote lateral gene transfers (LGT are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31 from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65-145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea. Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material.

  3. A rice Stowaway MITE for gene transfer in yeast.

    Isam Fattash

    Full Text Available Miniature inverted repeat transposable elements (MITEs lack protein coding capacity and often share very limited sequence similarity with potential autonomous elements. Their capability of efficient transposition and dramatic amplification led to the proposition that MITEs are an untapped rich source of materials for transposable element (TE based genetic tools. To test the concept of using MITE sequence in gene transfer, a rice Stowaway MITE previously shown to excise efficiently in yeast was engineered to carry cargo genes (neo and gfp for delivery into the budding yeast genome. Efficient excision of the cargo gene cassettes was observed even though the excision frequency generally decreases with the increase of the cargo sizes. Excised elements insert into new genomic loci efficiently, with about 65% of the obtained insertion sites located in genes. Elements at the primary insertion sites can be remobilized, frequently resulting in copy number increase of the element. Surprisingly, the orientation of a cargo gene (neo on a construct bearing dual reporter genes (gfp and neo was found to have a dramatic effect on transposition frequency. These results demonstrated the concept that MITE sequences can be useful in engineering genetic tools to deliver cargo genes into eukaryotic genomes.

  4. Gene Transfer To Intact Mesenteric Arteries by Electroporation

    Martin, Jason B.; Young, Jennifer L.; Benoit, Joseph N.; Dean, David A.

    2000-01-01

    The purpose of the present study was to develop a rapid, reproducible method of non-viral gene transfer to the intact vasculature. Male Sprague-Dawley rats were anesthetized, a midline abdominal incision was made and segmental branches of the superior mesenteric artery were dissected free of surrounding mesentery. A specially designed electroporation probe was placed around the neurovascular bundle and the electroporation chamber filled with a solution containing the firefly luciferase expres...

  5. Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    Shozo Sonoda

    2012-01-01

    Full Text Available This paper aims to evaluate the efficacy of intravitreal ultrasound (US irradiation for green fluorescent protein (GFP plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL and bubble liposomes (BLs; 50 μL was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM of GFP-positive cells (32±4.9; n=7; P<0.01 . No GFP-positive cells were observed in the control eyes (n=7. Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value.

  6. Dynamic monitoring of horizontal gene transfer in soil

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  7. Radiation improves gene transfer into human ovarian carcinoma cells

    Purpose/Objective: Poor gene transfer is the major stumbling block to successful gene therapy today. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. During studies to quantitate radiation activated recombination, we also found that both plasmid and adenoviral vector transduction could be increased by irradiation. The studies presented here describe the effects of irradiation on gene transduction efficiency (both transient and stable transduction) in several human ovarian carcinoma lines, as a prelude to in vivo animal studies. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human ovarian carcinoma cell lines (SKOV3, CAOV3 and PA1). Either irradiated or unirradiated cells were transfected with pRSVZ plasmid (containing a LacZ expression cassette) in either the supercoiled and linearized (XmnI) forms and β-galactosidase expression followed with time. Transfection efficiency was measured by flow cytometry following FDG staining at 0, 48, and 96 hours after irradiation. FDG is converted to a fluorescent metabolite by LacZ, and thus reflects the transfection efficiency of the LacZ containing vector. Vector quantitation was also performed by southern hybridization. Stable transduction efficiency was measured 14 -35 days after irradiation. Optimization of the time of irradiation with respect to transfection was performed. Since cells demonstrated increased stable recombination for as long as 96 hours after irradiation, continuous low dose rate and multiple radiation fractions were also tested. These experiments were repeated using the Ad5CMVlacZ. Dividing cells were exposed to Ad5CMVlacZ at an MOI of 0.1,1,5,10 and 100 to determine optimum transfection concentration. Transduction efficiency was again measured at various intervals to determine the radiation dose and interval post transfection which provides the maximum increase in transfection

  8. Evidence of horizontal gene transfer between obligate leaf nodule symbionts.

    Pinto-Carbó, Marta; Sieber, Simon; Dessein, Steven; Wicker, Thomas; Verstraete, Brecht; Gademann, Karl; Eberl, Leo; Carlier, Aurelien

    2016-09-01

    Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants. PMID:26978165

  9. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  10. Gene Transfer into Mouse Prepancreatic Endoderm by Whole Embryo Electroporation

    Rousseau GG

    2005-03-01

    Full Text Available CONTEXT: Understanding gene function in the developing pancreas is a major issue for pancreatic cell therapy. The in vivo analysis of gene function has essentially been performed by modulating gene expression in transgenesis. A faster and easier method is electroporation of mouse embryos. This technique, coupled with whole embryo culture, enables one to deliver genes and analyze their effects in a spatially and temporally regulated manner. OBJECTIVE: We wanted to adapt the electroporation technique for gene transfer of whole e8.5 mouse embryos into the endoderm to allow expression of transgenes in the pancreas or liver. RESULTS: Using two platinum plate electrodes, low voltage and a precise positioning of the embryo in the electroporation cuvette we could target and express DNA constructs in the prepancreatic or prehepatic territories, identified with cell markers. We also demonstrated that this technique is a valuable tool in the study of transcriptional regulation in the developing endoderm. CONCLUSIONS: Targeted electroporation of whole embryos is a useful method of characterizing the gene network which controls pancreatic development.

  11. Monitoring of gene transfer for cancer therapy with radioactive isotopes

    Gene therapy for cancer has recently been developed, and four approaches are currently being evaluated in experimental and clinical studies: 1) protection of normal tissue, such as bone marrow, which are normally targets for cytotoxic drugs; 2) improvement of the host antitumor response by increasing the antitumor activity of tumor-infiltrating immuno-competent cells or by modifying the tumor cells to enhance their immunogenicity; 3) reversion of the malignant phenotype either by suppression of oncogene expression or by introduction of normal tumor suppressor genes; 4) direct killing of tumor cells by the transfer of cytotoxic or prodrug-activating genes. Monitoring of gene therapy by assessing metabolic effects or the uptake of a specific substance with radioactive isotopes is reviewed. The author's experience is mostly described: uptake measurements with 11 Cthymidine, 18FDG, 3-D-methylglucose, and methionine in the presence of different concentrations of ganciclovir after transfection of a rat hepatoma cell line with a retroviral vector containing the HSVtk gene. Non-suicide reporter gene approaches are also discussed. (K.H.)

  12. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR. PMID:23912835

  13. Gene ontology based transfer learning for protein subcellular localization

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  14. In vivo Cytokine Gene Transfer by Gene Gun Reduces Tumor Growth in Mice

    Sun, Wenn H.; Burkholder, Joseph K.; Sun, Jian; Culp, Jerilyn; Turner, Joel; Lu, Xing G.; Pugh, Thomas D.; Ershler, William B.; Yang, Ning-Sun

    1995-03-01

    Implantation of tumor cells modified by in vitro cytokine gene transfer has been shown by many investigators to result in potent in vivo antitumor activities in mice. Here we describe an approach to tumor immunotherapy utilizing direct transfection of cytokine genes into tumorbearing animals by particle-mediated gene transfer. In vivo transfection of the human interleukin 6 gene into the tumor site reduced methylcholanthrene-induced fibrosarcoma growth, and a combination of murine tumor necrosis factor α and interferon γ genes inhibited growth of a renal carcinoma tumor model (Renca). In addition, treatment with murine interleukin 2 and interferon γ genes prolonged the survival of Renca tumor-bearing mice and resulted in tumor eradication in 25% of the test animals. Transgene expression was demonstrated in treated tissues by ELISA and immunohistochemical analysis. Significant serum levels of interleukin 6 and interferon γ were detected, demonstrating effective secretion of transgenic proteins from treated skin into the bloodstream. This in vivo cytokine gene therapy approach provides a system for evaluating the antitumor properties of various cytokines in different tumor models and has potential utility for human cancer gene therapy.

  15. Expression of the Thy-1 glycoprotein gene by DNA-mediated gene transfer.

    Evans, G A; Ingraham, H A; Lewis, K; Cunningham, K; Seki, T.; Moriuchi, T; Chang, H. C.; Silver, J; Hyman, R

    1984-01-01

    We isolated a gene encoding the Thy-1.2 glycoprotein from a recombinant library constructed from BALB/c mouse DNA. To evaluate the expression of this cloned gene in different genomic environments, we introduced it into cell lines derived from fibroblast, lymphoid, and neuronal tissues by DNA-mediated gene transfer. When integrated into the genome of mouse L cells, cell-surface Thy-1 can be detected with anti-Thy-1 monoclonal antibodies. These L-cell lines contain between two and four copies o...

  16. Differences in lateral gene transfer in hypersaline versus thermal environments

    House Christopher H

    2011-07-01

    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  17. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover

    Dieterich Christoph

    2011-01-01

    Full Text Available Abstract Background Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. Results We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. Conclusion We could demonstrate functional integration of acquired

  18. Foreign gene transfer into Chinese shrimps (Penaeus chinensis) with gene gun

    2001-01-01

    Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.

  19. Adenovirus-mediated expression of pig α(1, 3) galactosyltransferase reconstructs Gal α(1, 3) Gal epitope on the surface of human tumor cells

    2001-01-01

    Gal α(1,3)Gal(gal epitope)is a carbohydrate epitope and synthesized in large amount by α(1,3)galactosyltransferase [α(1,3)GT] enzyme on the cells of lower mammalian animals such as pigs and mice.Human has no gal epitope due to the inactivation of α(1,3)GT gene but produces a large amount of antibodies(anti-Gal)which recognize Gal α(1,3)Gal structures specifically.In this study,a replicationdeficient recombinant adenoviral vector Ad5sGT containing pig α(1,3)GT cDNA was constructed and characterized.Adenoviral vector-mediated transfer of pig α(1,3)GT gene into human tumor cells such as malignant melanoma A375,stomach cancer SGC-7901,and lung cancer SPC-A-1 was reported for the first time.Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis,although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction.Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I(UEA I)lectins,Vicia villosa agglutinin(VVA),Arachis hypogaea agglutinin(PNA),and Glycine max agglutinin(SBA)to different degrees.In addition,no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.

  20. Study on magnetic gene transfer using HTS bulk magnet

    Highlights: •DNA–magnetite complexes were prepared as ferromagnetic DNA carrier. •The condition of magnetic field to suppress the diffusion was found by calculation. •The result of model experiment showed the validity of the calculated value. •The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field. -- Abstract: This study aimed to realize local and high-efficient gene expression by suppressing the diffusion of ferromagnetic DNA carriers in a strong magnetic field generated by HTS bulk magnet. DNA–magnetite complexes were prepared as ferromagnetic DNA carrier and the magnetic gene transfer using the DNA carriers was examined. From the results of the simulation and the model experiment, it was shown that the particle diffusion was suppressed within 10 mm in diameter by the magnetic field at 20 mm above the HTS bulk magnet. The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field

  1. Gene Transfer Enhancement by Alkylcarboxylation of Poly(propylenimine

    Maryam Hashemi

    2013-01-01

    Full Text Available Abstract Among synthetic carriers, dendrimers with the more flexible structure have attracted a great deal of researchers’ attention in the field of gene delivery. Followed by the promising results upon hydrophobic modification on polymeric structures in our laboratory, alkylcarboxylated poly (propylenimine-based carriers were synthesized by nucleophilic substitution of amines with alkyl moieties and were further characterized for their physicochemical and biological characteristics for plasmid DNA delivery. Although not noticeably effective gene transfer activity for hexanoate- and hexadecanoate-modified series was observed, but alkylation by decanoic acid significantly improved the transfection efficiency of the final constructs up to 60 fold in comparison with unmodified poly(propylenimine (PPI. PPI modified by 10-bromodecanoic acid at 50% grafting, showed significantly higher gene expression at c/p ratio of 2 compared to Superfect as positive control.  Overall, modification of PPI with 50% primary amines grafting with 10-bromodecanoic acid could increase the transfection efficiency which is occurred at lower c/p ratio when compared to Superfect, i.e. less amount of modified vector is required to exhibit the same efficiency as Superfect. Therefore, the obtained constructs seem to be safer carriers for long-term gene therapy applications.

  2. Association between translation efficiency and horizontal gene transfer within microbial communities

    Tuller, Tamir; Girshovich, Yana; Sella, Yael; Kreimer, Avi; Freilich, Shiri; Kupiec, Martin; Gophna, Uri; Ruppin, Eytan

    2011-01-01

    Horizontal gene transfer (HGT) is a major force in microbial evolution. Previous studies have suggested that a variety of factors, including restricted recombination and toxicity of foreign gene products, may act as barriers to the successful integration of horizontally transferred genes. This study identifies an additional central barrier to HGT—the lack of co-adaptation between the codon usage of the transferred gene and the tRNA pool of the recipient organism. Analyzing the genomic sequenc...

  3. GENE TRANSFER IN TOBACCO MITOCHONDRIA IN VITRO AND IN VIVO

    Katyshev A.I.

    2012-08-01

    Full Text Available Earlier, we had showed that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility of genes transfer in tobacco mitochondria in vitro and in vivo. Whereas homologous recombination is a rare occasion in higher plant nuclei, recombination between the large direct repeats in plant mitochondrial genome generates its multipartite structure. Following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by mitochondrial DNA fragments, we showed the homologous recombination of imported DNA with the resident DNA and the integration of the reporter gene. The recombination yielded an insertion of a continuous exogenous DNA fragment including the gfp sequence and at least the 0.5 kb of the flanking sequence on each side. Using of transfection constructs carrying multiple sequences homologous to mitochondrial DNA could be suitable for insertion of a target gene into any region of the mitochondrial genome, which turns this approach to be of a general and methodical importance. Usually mitochondrial reactive oxygen species (ROS level is under strict control of the antioxidant system including the Mn-containing superoxide dismutase (MnSOD. MnSOD is presented in multiple forms encoded by several genes in plants. Possibly, this enzyme, beside its catalytic function, fulfills as well some unknown biochemical functions. Thus, one of maize SOD enzymes (SOD3.4 could bind with mitochondrial DNA. Another SOD form (SOD3.1 is located in close proximity to mitochondrial respiratory complexes, where ROS are generated. To study possible physiological functions of this enzyme, we cloned the maize SOD3.1 gene. Compared to the SOD3.4, this enzyme didn't demonstrate DNA-binding activity. At the same time, SOD3.1 didn't show non-specific DNA-hydrolyzing activity as Cu/ZnSOD does. It means that this enzyme might have some DNA protective function. We made NtPcob-sod3.1-IGR

  4. Amoebozoa possess lineage-specific globin gene repertoires gained by individual horizontal gene transfers.

    Dröge, Jasmin; Buczek, Dorota; Suzuki, Yutaka; Makałowski, Wojciech

    2014-01-01

    The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. PMID:25013378

  5. Genome-wide experimental determination of barriers to horizontal gene transfer

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  6. Gene transfer into older chicken embryos by ex ovo electroporation.

    Luo, Jiankai; Yan, Xin; Lin, Juntang; Rolfs, Arndt

    2012-01-01

    The chicken embryo provides an excellent model system for studying gene function and regulation during embryonic development. In ovo electroporation is a powerful method to over-express exogenous genes or down-regulate endogenous genes in vivo in chicken embryos(1). Different structures such as DNA plasmids encoding genes(2-4), small interfering RNA (siRNA) plasmids(5), small synthetic RNA oligos(6), and morpholino antisense oligonucleotides(7) can be easily transfected into chicken embryos by electroporation. However, the application of in ovo electroporation is limited to embryos at early incubation stages (younger than stage HH20--according to Hamburg and Hamilton)(8) and there are some disadvantages for its application in embryos at later stages (older than stage HH22--approximately 3.5 days of development). For example, the vitelline membrane at later stages is usually stuck to the shall membrane and opening a window in the shell causes rupture of the vessels, resulting in death of the embryos; older embryos are covered by vitelline and allantoic vessels, where it is difficult to access and manipulate the embryos; older embryos move vigorously and is difficult to control the orientation through a relatively small window in the shell. In this protocol we demonstrate an ex ovo electroporation method for gene transfer into chicken embryos at late stages (older than stage HH22). For ex ovo electroporation, embryos are cultured in Petri dishes(9) and the vitelline and allantoic vessels are widely spread. Under these conditions, the older chicken embryos are easily accessed and manipulated. Therefore, this method overcomes the disadvantages of in ovo electroporation applied to the older chicken embryos. Using this method, plasmids can be easily transfected into different parts of the older chicken embryos(10-12). PMID:22872055

  7. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants.

    Adams, K L; Daley, D O; Qiu, Y L; Whelan, J; Palmer, J D

    2000-11-16

    A central component of the endosymbiotic theory for the bacterial origin of the mitochondrion is that many of its genes were transferred to the nucleus. Most of this transfer occurred early in mitochondrial evolution; functional transfer of mitochondrial genes has ceased in animals. Although mitochondrial gene transfer continues to occur in plants, no comprehensive study of the frequency and timing of transfers during plant evolution has been conducted. Here we report frequent loss (26 times) and transfer to the nucleus of the mitochondrial gene rps10 among 277 diverse angiosperms. Characterization of nuclear rps10 genes from 16 out of 26 loss lineages implies that many independent, RNA-mediated rps10 transfers occurred during recent angiosperm evolution; each of the genes may represent a separate functional gene transfer. Thus, rps10 has been transferred to the nucleus at a surprisingly high rate during angiosperm evolution. The structures of several nuclear rps10 genes reveal diverse mechanisms by which transferred genes become activated, including parasitism of pre-existing nuclear genes for mitochondrial or cytoplasmic proteins, and activation without gain of a mitochondrial targeting sequence. PMID:11099041

  8. Genetic modification of cereal crops by direct gene transfer

    On the basis of efficient in vitro culture and regeneration systems, reproducible transformation methods for different cereal crops were developed. Scutellar tissue of the immature embryos of hexaploid wheat and maize were used as targets for microprojectile mediated gene transfer. Bombardment of haploid microspores resulted in homozygous, transgenic and fertile barley plants. Each target was the subject of individual optimization processes of bombardment conditions by analysing the transient β-glucuronidase activity. Furthermore, phosphinothricin resistance conferred by the bar gene turned out to be a suitable selectable marker for regenerating transgenic crop plants. Summarizing the results of independent transformation experiments for wheat and maize led to a transformation efficiency of one transgenic plant per 83 and 230 bombardment immature embryos, respectively. For barley, the average of all the experiments was one transgenic plant per 2.8 x 1016 bombarded microspores. Primary transformants and progeny were analyzed for the enzyme activity of the two marker enzymes introduced and integration of the corresponding genes by Southern blot experiments. Stable integration of the foreign DNA and its inheritance by progeny were demonstrated. All the transformed plants showed normal morphology and their development and flowering were comparable with those of seed derived plants. (author). 28 refs, 2 tabs

  9. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    Adel Kamal Khider; Aras Muhammad Khidher

    2011-01-01

    To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes) from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil ...

  10. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  11. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  12. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles.

    Brevet, David; Hocine, Ouahiba; Delalande, Anthony; Raehm, Laurence; Charnay, Clarence; Midoux, Patrick; Durand, Jean-Olivier; Pichon, Chantal

    2014-08-25

    Mesoporous silica nanoparticles (MSN) were functionalized with aminopropyltriethoxysilane (MSN-NH2) then L-histidine (MSN-His) for pDNA delivery in cells and in vivo. The complexation of pDNA with MSN-NH2 and MSN-His was first studied with gel shift assay. pDNA complexed with MSN-His was better protected from DNase degradation than with MSN-NH2. An improvement of the transfection efficiency in cells was observed with MSN-His/pDNA compared to MSN-NH2/pDNA, which could be explained by a better internalization of MSN-His. The improvement of the transfection efficiency with MSN-His was also observed for gene transfer in Achilles tendons in vivo. PMID:24853464

  13. Detecting rare gene transfer events in bacterial populations

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  14. Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects

    Li Zi-Wen; Shen Yi-Hong; Xiang Zhong-Huai; Zhang Ze

    2011-01-01

    Abstract Background Horizontal gene transfer (HGT), a source of genetic variation, is generally considered to facilitate hosts' adaptability to environments. However, convincing evidence supporting the significant contribution of the transferred genes to the evolution of metazoan recipients is rare. Results In this study, based on sequence data accumulated to date, we used a unified method consisting of similarity search and phylogenetic analysis to detect horizontally transferred genes (HTGs...

  15. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    Lili Yang

    2014-01-01

    Full Text Available Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP, which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  16. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi

    Szöllősi, Gergely J.; Davín, Adrián Arellano; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis, we compare the dynamics of genome evolution in two groups of organisms: cyanobacteria and fungi. Ancestral genomes are inferred in both clades using two types of methods: first, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome; second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of fungi. PMID:26323765

  17. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  18. Improved efficiency of the walnut somatic embryo gene transfer system.

    McGranahan, G H; Leslie, C A; Uratsu, S L; Dandekar, A M

    1990-01-01

    AnAgrobacterium-mediated gene transfer system which relies on repetitive embryogenesis to regenerate transgenic walnut plants has been made more efficient by using a more virulent strain ofAgrobacterium and vectors containing genes for both kanamycin resistance and beta-glucuronidase (GUS) activity to facilitate early screening and selection. Two plasmids (pCGN7001 and pCGN7314) introduced individually into the disarmedAgrobacterium host strain EHA101 were used as inoculum. Embryos maintained on medium containing 100 mg/l kanamycin after co-cultivation produced more transformed secondary embryos than embryos maintained on kanamycin-free medium. Of the 186 GUS-positive secondary embryo lines identified, 70% were regenerated from 3 out of 16 primary embryos inoculated with EHA101/pCGN7314 and grown on kanamycin- containing medium, 28% from 4 out of 17 primary embryos inoculated with EHA101/ pCGN7001 and grown on kanamycin medium, and 2% from one out of 13 primary embryos inoculated with EHA101/pCGN7001 but not exposed to kanamycin. Because kanamycin inhibits but does not completely block new embryo formation in controls, identification of transformants formerly required repetitive selection on kanamycin for several months. Introduction of the GUS marker gene allowed positive identification of transformant secondary embryos as early as 5-6 weeks after inoculation. DNA analysis of a representative subset of lines (n=13) derived from secondary embryos confirmed transformation and provided evidence for multiple insertion events in single inoculated primary embryos. PMID:24226275

  19. Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts

    Marsit, Souhir; Mena, Adriana; Bigey, Frederic; Sauvage, Francois Xavier; Couloux, Arnaud; Guy, Julie; Legras, Jean Luc; Barrio, Eladio; Dequin, Sylvie

    2015-01-01

    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding ol...

  20. The Use of Viral Vectors in Gene Transfer Therapy

    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová

    2016-01-01

    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  1. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  2. Heparin Inhibits Retrovirus Binding to Fibronectin as Well as Retrovirus Gene Transfer on Fibronectin Fragments

    Carstanjen, D.; Dutt, P; Moritz, T.

    2001-01-01

    Fibronectin fragments have been shown to improve retrovirus gene transfer efficiency by binding retrovirus and target cells. Using a novel virus adhesion assay, we confirmed binding of type C oncoretrovirus vectors to the heparin II domain of fibronectin and demonstrated inhibition of viral binding and gene transfer by heparin.

  3. Horizontal Gene Transfer and Its Part in the Reorganisation of Genetics during the LUCA Epoch

    Jheeta, Sohan

    2013-01-01

    Currently there are five known mechanisms of horizontal gene transfer (HGT): transduction, conjugation, transformation, gene transfer agents and membrane vesicle transfer. The question here is: what part did HGT play in the reorganisation of genetics during the last universal common ancestor (LUCA) epoch? LUCA is a construct to explain the origin of the three domains of life; namely Archaea, Bacteria and Eukarya. This editorial offers a general introduction to the relevance and ultimate signi...

  4. Differential gene transfers and gene duplications in primary and secondary endosymbioses

    McFadden Geoffrey I

    2006-04-01

    Full Text Available Abstract Background Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. Results Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. Conclusion The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages.

  5. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    李崇辉; 温守明; 翟海峰; 孙曼霁

    1999-01-01

    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  6. Proteasome Inhibitors Enhance Bacteriophage Lambda (λ) Mediated Gene Transfer in Mammalian Cells

    Volcy, Ketna; Dewhurst, Stephen

    2008-01-01

    Bacteriophage lambda vectors can transfer their genomes into mammalian cells, resulting in expression of phage-encoded genes. However, this process is inefficient. Experiments were therefore conducted to delineate the rate limiting step(s) involved, using a phage vector that contains a mammalian luciferase reporter gene cassette. The efficiency of phage-mediated gene transfer in mammalian cells was quantitated, in the presence or absence of pharmacologic inhibitors of cell uptake and degradat...

  7. On the need for widespread horizontal gene transfers under genome size constraint

    Stein Richard R

    2009-08-01

    Full Text Available Abstract Background While eukaryotes primarily evolve by duplication-divergence expansion (and reduction of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. Hypothesis We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i their apparent genome size constraint compared to typical eukaryote genomes and ii their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. Implications This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene

  8. The Use of Viral Vectors in Gene Transfer Therapy

    A. Dziaková

    2016-05-01

    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  9. Estimating the extent of horizontal gene transfer in metagenomic sequences

    Moya Andrés

    2008-03-01

    Full Text Available Abstract Background Although the extent of horizontal gene transfer (HGT in complete genomes has been widely studied, its influence in the evolution of natural communities of prokaryotes remains unknown. The availability of metagenomic sequences allows us to address the study of global patterns of prokaryotic evolution in samples from natural communities. However, the methods that have been commonly used for the study of HGT are not suitable for metagenomic samples. Therefore it is important to develop new methods or to adapt existing ones to be used with metagenomic sequences. Results We have created two different methods that are suitable for the study of HGT in metagenomic samples. The methods are based on phylogenetic and DNA compositional approaches, and have allowed us to assess the extent of possible HGT events in metagenomes for the first time. The methods are shown to be compatible and quite precise, although they probably underestimate the number of possible events. Our results show that the phylogenetic method detects HGT in between 0.8% and 1.5% of the sequences, while DNA compositional methods identify putative HGT in between 2% and 8% of the sequences. These ranges are very similar to these found in complete genomes by related approaches. Both methods act with a different sensitivity since they probably target HGT events of different ages: the compositional method mostly identifies recent transfers, while the phylogenetic is more suitable for the detections of older events. Nevertheless, the study of the number of HGT events in metagenomic sequences from different communities shows a consistent trend for both methods: the lower amount is found for the sequences of the Sargasso Sea metagenome, while the higher quantity is found in the whale fall metagenome from the bottom of the ocean. The significance of these observations is discussed. Conclusion The computational approaches that are used to find possible HGT events in complete

  10. Assessment and Improvement of Gene Transfer into Human Hematopoietic Stem Cells

    D.A. Breems (Dimitri)

    1997-01-01

    textabstractThe application of somatic gene transfer as a potential treatment in human disease has progressed from speculation to reality in a short time [4,20,21,84,85,87,105,117,174]. In May 1989 the first clinical marker gene protocol took place [145], followed by the first gene therapy protocol

  11. Gene transfer from wild Helianthus to sunflower: topicalities and limits

    Breton Catherine

    2010-03-01

    Full Text Available Sunflower (2n=17 belongs to the Helianthus genus (Asteraceae. Wild Helianthus species display morphological variation for branching and stem number, for architecture and seed size, and for resistance to abiotic and biotic stresses due to which they thrive in different environments in North America. The genus is divided into botanical sections, two for annual as sunflower, and two for perennial species as Jerusalem artichoke that produces rhizomes (tubers. We explain the difficulties and successes obtained by crossing sunflower with these species to improve the agronomic traits of the sunflower crop. It is easier to cross the annual species than the perennials’ with sunflower. Several traits such as Cytoplasmic male sterility and restorer Rf-PET1 genes, Downy mildew resistance, Phomopsis resistance, Sclerotinia resistance, Rust resistance, and Orobanche resistance have already been introduced from annual species into sunflower crop, but the complex genomic organization of these species compared to sunflower limits their important potential. Perennial species are much more diverse, and their genomes display 2n, 4n, or 6n chromosomes for n 17. The realities of inter-specific hybridization are relatively disappointing due to the introgression lines that have low oil and low seed yield. We report here several attempts to introgress agronomic traits from these species to sunflower, and we present as a case study, an introgressed progenies from H. mollis, a diploid species with sessile small leaves. We constructed a preliminary genetic map with AFLP markers in 21 BC1 plants, and we then showed that some progenies display 6 to 44% of introgression from H. mollis. Although this study is promising due to the novel compact architecture of the progenies, we cannot estimate the transferability from H. mollis to other perennial Helianthus to improve sunflower.

  12. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  13. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  14. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  15. Can we modify response to radiation therapy with gene transfer?; Transfert de gene pour modifier la reponse a la radiotherapie

    Marangoni, E.; Bourhis, J. [Institut Gustave Roussy, Dept. de Radiotherapie, 94 - Villejuif (France); Bay, J.O.; Verrelle, P. [Centre Jean-Perrin, Lab. d' Oncologie Moleculaire, INSERM CRI 9502 EA 2145, 63 - Clermont-Ferrand (France)

    2000-06-01

    Several recent studies suggest that gene transfer can be combined with irradiation to increase anti-tumor efficacy. Among genes of particular interest to be used in this combined approach are those involved in the regulation of radiation-induced lethality (apoptosis, DNA repair). Some additional aspects appear to be relatively specific to these combinations, such as the type of vector to be used (anaerobic bacteria) or the type of promoter (radio-inducible promoters). The first results obtained in mice bearing human xenograft tumors, combining gene transfer and irradiation are encouraging, but no clinical study has been performed so far. Finally it should be pointed out, in this area as well as in cancer gene therapy in general, that progress in gene vectorization is mandatory to optimize gene distribution within the tumor. (authors)

  16. Rate of Gene Transfer From Mitochondria to Nucleus: Effects of Cytoplasmic Inheritance System and Intensity of Intracellular Competition

    Yamauchi, Atsushi

    2005-01-01

    Endosymbiotic theory states that mitochondria originated as bacterial intracellular symbionts, the size of the mitochondrial genome gradually reducing over a long period owing to, among other things, gene transfer from the mitochondria to the nucleus. Such gene transfer was observed in more genes in animals than in plants, implying a higher transfer rate of animals. The evolution of gene transfer may have been affected by an intensity of intracellular competition among organelle strains and t...

  17. Gene Transfer into Older Chicken Embryos by ex ovo Electroporation

    Luo, Jiankai; Yan, Xin; Lin, Juntang; Rolfs, Arndt

    2012-01-01

    The chicken embryo provides an excellent model system for studying gene function and regulation during embryonic development. In ovo electroporation is a powerful method to over-express exogenous genes or down-regulate endogenous genes in vivo in chicken embryos1. Different structures such as DNA plasmids encoding genes2-4, small interfering RNA (siRNA) plasmids5, small synthetic RNA oligos6, and morpholino antisense oligonucleotides7 can be easily transfected into chicken embryos by electrop...

  18. Transfer of engineered genes from crop to wild plants

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.; Østergård, Hanne

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape is a...

  19. Transfer of engineered genes from crop to wild plants

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.; Østergård, Hanne

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape is a...... sexual reproduction has been the basis for breeding almost all crops....

  20. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus.

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-08-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  1. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Xinghua SONG; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part...

  2. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  3. Prostate Specific Antigen Promoter-Driven Adenovirus-Mediated Expression of Both ODC and AdoMetDC Antisenses Inhibit Prostate Cancer Growth

    Wei Li; Hui Xiong; Yi-lin Hong; Chun-hua Zhang; Chang-chun Liu

    2011-01-01

    Objective: To generate recombinant adenovirus that could simultaneously express ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase(AdoMetDC) antisenses specifically in prostate cancer cells,and evaluate its inhibitory effect on prostate cancer in vivo.Methods: Fragments of ODC and AdoMetDC genes were generated by PCR,cloned into the pPGL-PSES,and then recombined with pAdEasy-1 vectors in AdEasy-1 cells.Ad-PSES-ODC-AdoMetDCas virus was produced in HEK293 cells.Following transfection with Ad-PSES-ODC-AdoMetDCas,the levels of ODC or AdoMetDC were determined by RT-PCR and western blot assays.The effect of Ad-PSES-ODC-AdoMetDCas treatment on tumor formation and growth was evaluated in xenograft models of prostate cancers in vivo.Results: The plasmid pAdEasy-PSES-ODC-AdoMetDCas was successfully constructed and the recombinant Ad-PSES-ODC-AdoMetDCas adenovirus was produced.Transfection with Ad-PSES-ODC-AdoMetDCasadenovirus significantly inhibited the expression of ODC and AdoMetDC genes specifically in prostate DU145 cells,but not H1299,HT29 and HepG2 cancer cells,and disrupted the ability of DU145 cells to form solid prostate cancer in vivo.Intratumoral treatment with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the growth of engrafted prostate tumors in vivo.both ODC and AdoMetDC genes in prostate cells and may be used for treatment of prostate cancers at the clinic.

  4. Prostate Specific Antigen Promoter-Driven Adenovirus-Mediated Expression of Both ODC and AdoMetDC Antisenses Inhibit Prostate Cancer Growth

    Wei Li; Hui Xiong; Yi-lin Hong; Chun-hua Zhang; Chang-chun Liu

    2010-01-01

    Objective:To generate recombinant adenovirus that could simultaneously express ornithine decarboxylase(ODC)and S-adenosylmethionine decarboxylase(AdoMetDC)antisenses specifically in prostate cancer cells,and evaluate its inhibitory effect on prostate cancer in vivo.Methods:Fragments of ODC and AdoMetDC genes were generated by PCR,cloned into the pPGL-PSES,and then recombined with pAdEasy-1 vectors in AdEasy-1 cells.Ad-PSES-ODC-AdoMetDCas virus was produced in HEK293 cells.Following transfection with Ad-PSES-ODC-AdoMetDCas,the levels of ODC or AdoMetDC were determined by RT-PCR and western blot assays.The effect of Ad-PSES-ODC-AdoMetDCas treatment on tumor formation and growth was evaluated in xenograft models of prostate cancers in vivo.Results:The plasmid pAdEasy-PSES-ODC-AdoMetDCas was successfully constructed and the recombinant Ad-PSES-ODC-AdoMetDCas adenovirus was produced.Transfection with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the expression of ODC and AdoMetDC genes specifically in prostate DU145cells,but not H1299,HT29 and HepG2 cancer cells,and disrupted the ability of DU145 cells to form solid prostate cancer in vivo.Intratumoral treatment with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the growth of engrafted prostate tumors in vivo.Conclusion:The recombinant Ad-PSES-ODC-AdoMetDCas adenovirus specifically reduces the expression of both ODC and AdoMetDC genes in prostate cells and may be used for treatment of prostate cancers at the clinic.

  5. Conjugal gene transfer between bacteria in soil and rhizosphere.

    Smit, E.

    1994-01-01

    The extent of possible conjugal transfer of recombinant DNA present in genetically engineered microorganisms (GEMs) was studied. Occurrence of transfer of recombinant DNA is only one of the concerns regarding the use of GEMs (Chapter 2). Other potential hazards preventing the application of GEMs for

  6. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251

    Liu Hongsheng

    2010-01-01

    Full Text Available Abstract Background bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. Methods In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI, and infection with adenovirus expressing green fluorescent protein (Ad-GFP at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Results Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. Conclusion To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  7. Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy

    Keyhani Nemat O; Song Jian; Bonner Carol A; Xie Gary; Jensen Roy A

    2004-01-01

    Abstract Background The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertica...

  8. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  9. Regulated expression of foreign genes in vivo after germline transfer.

    Passman, R S; Fishman, G I

    1994-01-01

    Tight transcriptional control of foreign genes introduced into the germline of transgenic mice would be of great experimental value in studies of gene function. To develop a system in which the spatial and temporal expression of candidate genes implicated in cardiac development or function could be tightly controlled in vivo, we have generated transgenic mice expressing a tetracycline-controlled transactivator (tTA) under the control of a rat alpha myosin heavy chain promoter (MHC alpha-tTA m...

  10. Gene transfer system for the phytopathogenic fungus Ustilago maydis.

    Wang, J.; Holden, D. W.; Leong, S A

    1988-01-01

    A selectable marker for transformation was constructed by transcriptional fusion of a Ustilago maydis heat shock gene promoter with the hygromycin B phosphotransferase gene of Escherichia coli. U. maydis was transformed to hygromycin B resistance by polyethylene glycol-induced fusion of spheroplasts following exposure to plasmid DNA that carried the marker gene. Transformation frequencies of 50 and 1000 transformants per microgram of DNA per 2 x 10(7) spheroplasts were obtained for circular a...

  11. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer

    Luis Boto

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  12. Feline Immunodeficiency Virus as a Gene Transfer Vector in the Rat Nucleus Tractus Solitarii

    Lin, L. H.; Langasek, J. E.; Talman, L. S.; Taktakishvili, O. M.; Talman, W. T.

    2009-01-01

    Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effect...

  13. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria

    Portal-Celhay, Cynthia; Nehrke, Keith; Martin J. Blaser

    2013-01-01

    Horizontal gene transfer (HGT) between bacteria occurs in the intestinal tract of their animal hosts and facilitates both virulence and antibiotic resistance. A model in which both the pathogen and the host are genetically tractable facilitates developing insight into mechanistic processes enabling or restricting the transfer of antibiotic resistance genes. Here we develop an in vivo experimental system to study HGT in bacteria using Caenorhabditis elegans as a model host. Using a thermosensi...

  14. Plasmids as mediators of gene transfer in the genetic manipulation of gram-positive bacteria

    O'Hara, Seamus

    1989-01-01

    Lack of suitable gene transfer techniques hampers genetic improvement and analysis of several industrially and clinically important gram-positive bacteria. Techniques already developed are often difficult to reproduce and limited in application. This study examines the feasibility of expanding the techniques available through the use of conjugation as a broad host range gene transfer mechanism. Such systems have been developed for gram-negative bacteria. Theoretical and practical aspec...

  15. Retrovirus-Associated Heparan Sulfate Mediates Immobilization and Gene Transfer on Recombinant Fibronectin

    Lei, Pedro; Bajaj, Bharat; Andreadis, Stelios T.

    2002-01-01

    Recombinant retroviruses have been shown to bind to fibronectin (FN) and increase the efficiency of gene transfer to a variety of cell types. Despite recent work to optimize gene transfer on recombinant FN, the mechanism of retrovirus binding to FN and the interactions of target cells with the bound virus remain elusive. We investigated the roles of virus surface glycoprotein (gp70), cell-conditioned medium, and proteoglycans in mediating retrovirus binding to FN. We also examined the role of...

  16. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Shih Ping Yao; Ho Pei-Yu; Huang Hsiao-I; Bolen James; Brown Lucy; Hsiao Chin-Ton; Lo Hsin-Lung; Lai Chao-Kuen; Chen Chi-Dar; Wu Ming-Che; Liu Yi-Hsin; Jiang MeiSheng; Qian Jin; Chang Keejong; Yao Chen-Wen

    2002-01-01

    Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal ...

  17. The impact of non-electrical factors on electrical gene transfer

    Hu, Jiemiao; CUTRERA, JEFFRY; LI, SHULIN

    2014-01-01

    Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, the property of DNA, DNA formulation, and the expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties ...

  18. Radiosensitization of head/neck squamous cell carcinoma by adenovirus-mediated expression of dominant negative constructs of the Nbs1 protein

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. In order to test this hypothesis we have devised recombinant adenoviruses expressing various portions of the Nbs1 protein and assessed the ability of these viruses to increase the radiation sensitivity of HNSCC cells. Materials and Methods: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1(Nbs1-300, aa453 to aa754) into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line 011. These cells were evaluated for expression of the viral based constructs and assayed for growth rate and clonogenic survival following radiation exposure. Results: A constitutively expressed GFP gene in the viral backbone confirmed efficient uptake of the virus into the 011 cell line and Western blot confirmed the presence of the virally expressed Nbs1 and Nbs1-300. Following exposure to ionizing radiation cells infected with the Nbs1-300 virus showed a significant reduction in growth rate relative to cells infected with control virus. Surprisingly, this effect was even stronger with the full-length wild-type Nbs1 protein. Examination of clonogenic survival also demonstrated statistically significant sensitization, however the effects of the two constructs were distinct as Nbs1-300 expression resulted in reduction of the shoulder while expression of the full-length Nbs1 showed a change in the slope of the survival curve

  19. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes. PMID:21564143

  20. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  1. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  2. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Nan Lu

    2014-05-01

    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  3. ENHANCED ANTITUMOR EFFECTS OF SUICIDE GENE THERAPY BY SIMULTANEOUS TRANSFER OF GMCSF GENE IN LEUKEMIA-BEARING MICE

    Ju Dianwen; Cao Xuetao; Yu Yizhi; Tao Qun; Wang Baomei; Wan Tao

    1998-01-01

    In the present report, antitumor effect of combined transfer of suicide gene and cytokine gene was studied.Adenovirus engineered to express E. Coli. Cytosine deaminase (AdCD) and/or adenovirus engineered toexpress murine granulocyte-macrophage colonystimulating factor (AdGMCSF) were used for the treatment of leukemia-bearing mice. The mice were inoculated s.c. With FBL-3 erythroleukemia cells and 3days later received intratumoral injection of AdCD in the presence or absence of AdGMCSF followed by intraperitoneal 5-fluorocytosine (5FC) treatment. The results demonstrated that mice received combined therapy of AdCD/5FC and AdGMCSF developed tumors most slowly and survived much longer when compared with mice treated with AdCD/5FC alone, AdGMCSF alone, AdlacZ/5FC or PBS. Combined transfer of CD gene and GM-CSF gene achieved higher specific CTL activity than control therapies. Pathological examination illustrated that the tumor mass showed obvious necrosis and inflammatory cell infiltration in mice after combined therapy. The results demonstrated that combined transfer of suicide gene and cytokine gene could synergistically inhibit the growth of leukemia in mice and induce antitumor immunity of the host. The combination therapy might be a potential approach for cancer gene therapy.

  4. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.

    Dreyer, Jean-Luc

    2011-02-01

    Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animals models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect non-dividing cells, thereby allowing stable gene transfer in post-mitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition. PMID:20862616

  5. Expression of transferred thymidine kinase genes is controlled by methylation.

    Christy, B.; Scangos, G

    1982-01-01

    Plasmid pTKx-1, containing the herpes simplex virus gene for thymidine kinase (TK) inserted into the BamHI site of plasmid pBR322, was introduced into Ltk- cells by calcium phosphate precipitation in the absence of carrier DNA. Line 101 is a TK+ derivative of Ltk- that contains multiple copies of pTKx-1 in a multimeric structure. A derivative of 101 that retained but no longer expressed the herpes simplex TK genes (termed 101BU1) and derivatives of line 101BU1 that reexpressed the genes (term...

  6. Evolutionary transfer of the chloroplast tufA gene to the nucleus.

    Baldauf, S L; Palmer, J D

    1990-03-15

    Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants. PMID:2314461

  7. Apical Gene Transfer into Quiescent Human and Canine Polarized Intestinal Epithelial Cells by Lentivirus Vectors

    Seppen, Jurgen; Barry, Simon C.; Klinkspoor, J. Henriette; Katen, Louis J.; Lee, Sum P; Garcia, J. Victor; Osborne, William R. A.

    2000-01-01

    Intestinal epithelial cells secrete a protective luminal mucus barrier inhibiting viral gene transfer. Quiescent, polarized monolayers of primary epithelial cells from dog gallbladder and human colon are efficiently transduced through the apical mucus side by lentivirus vectors, suggesting their application to intestinal gene therapy.

  8. The interconnection between biofilm formation and horizontal gene transfer

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.;

    2012-01-01

    . Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...... believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states...

  9. Efficient retrovirus-mediated transfer of cell-cycle control genes to transformed cells

    B.E. Strauss

    1999-07-01

    Full Text Available The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.

  10. Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence.

    Romero, Miguel; Cerritos, R; Ximenez, Cecilia

    2016-01-01

    Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus. PMID:27239333

  11. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans.

    Nabel, G J; Nabel, E. G.; Z.Y. Yang; Fox, B A; Plautz, G E; Gao, X.; Huang, L.; Shu, S.; Gordon, D.; Chang, A.E. (Alfred E.)

    1993-01-01

    Direct gene transfer offers the potential to introduce DNA encoding therapeutic proteins to treat human disease. Previously, gene transfer in humans has been achieved by a cell-mediated ex vivo approach in which cells from the blood or tissue of patients are genetically modified in the laboratory and subsequently returned to the patient. To determine the feasibility and safety of directly transferring genes into humans, a clinical study was performed. The gene encoding a foreign major histoco...

  12. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  13. Kinetics of conjugative gene transfer on surfaces in granular porous media

    Massoudieh, A.; Crain, C.; Lambertini, E.; Nelson, K. E.; Barkouki, T.; L'Amoreaux, P.; Loge, F. J.; Ginn, T. R.

    2010-03-01

    The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic subsurface conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated Escherichiacoli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model and experimental system to quantify bacterial filtration and gene transfer in the attached state, on granular porous media. We include attachment kinetics described in Nelson et al. (2007) using the filtration theory approach of Nelson and Ginn (2001, 2005) with motility of E. coli described according to Biondi et al. (1998).

  14. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes

    Richards, Thomas A; Soanes, Darren M.; Jones, Meredith D.M.; Vasieva, Olga; Leonard, Guy; Paszkiewicz, Konrad; Foster, Peter G.; Hall, Neil; Talbot, Nicholas J.

    2011-01-01

    Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that t...

  15. Synthetic gene transfer vectors II: back to the future.

    Behr, Jean-Paul

    2012-07-17

    The discovery of RNA interference has given a new lease on life to both the chemistry of oligonucleotides and chemical approaches for the intracellular delivery of nucleic acids. In particular, delivery of siRNA, whether in vitro for screening and target validation purposes or in humans as a new class of drugs, may revolutionize our approach to therapy. Their impact could equal that of the bioproduction and various uses of monoclonal antibodies today. Unfortunately, global pharmaceutical companies again seem to be waiting to buy the next Genentech or Genzyme of gene silencing rather than investing research and development into this promising area of research. Gene silencing encounters barriers similar to gene addition and hence may benefit from the extra decade of experience brought by gene therapy. "Chemical" transfection of cells in culture has become routine, and this Account discusses some of the reasons this success has not extended to nonviral gene therapy trials, most of which do not progress beyond the phase 2 stage. The author also discusses a (much debated) mechanism of nucleic acid cell entry and subsequent release of the polycationic particles into the cytoplasm. Both topics should be useful to those interested in delivery of siRNA. The move from gene therapy toward siRNA as an oligonucleotide-based therapy strategy provides a much wider range of druggable targets. Even though these molecules are a hundredfold smaller than a gene, they are delivered via similar cellular mechanisms. Their complexes with cationic polymers are less stable than those with a higher number of phosphate groups, which may be compensated by siRNA concatemerization or by chemical conjugation with the cationic carrier. Thus chemistry is again desperately needed. PMID:22311735

  16. Cellular automata-based artificial life system of horizontal gene transfer

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  17. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  18. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma

    冷建杭; 张立煌; 姚航平; 曹雪涛

    2003-01-01

    Objective To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma.Methods Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2 ). Two weeks later, the serum levels of IL-18, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. Results In the treatment group, the serum levels of IL-18, IFN-γ, TNF-α and NO increased significantly. The splenic CTL activity increased markedly (P<0.01) , accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice.Conclusions In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.

  19. Number and size of human X chromosome fragments transferred to mouse cells by chromosome-mediated gene transfer.

    Olsen, A S; McBride, O W; Moore, D. E.

    1981-01-01

    Labeled probes of unique-sequence human X chromosomal deoxyribonucleic acid, prepared by two different procedures, were used to measure the amount of human X chromosomal deoxyribonucleic acid in 12 mouse cell lines expressing human hypoxanthine phosphoribosyltransferase after chromosome-mediated gene transfer. The amount of X chromosomal deoxyribonucleic acid detected by this procedure ranged from undetectable levels in the three stable transformants and some unstable transformants examined t...

  20. Prokaryotic genes in eukaryotic genome sequences: when to infer horizontal gene transfer and when to suspect an actual microbe.

    Artamonova, Irena I; Lappi, Tanya; Zudina, Liudmila; Mushegian, Arcady R

    2015-07-01

    Assessment of phylogenetic positions of predicted gene and protein sequences is a routine step in any genome project, useful for validating the species' taxonomic position and for evaluating hypotheses about genome evolution and function. Several recent eukaryotic genome projects have reported multiple gene sequences that were much more similar to homologues in bacteria than to any eukaryotic sequence. In the spirit of the times, horizontal gene transfer from bacteria to eukaryotes has been invoked in some of these cases. Here, we show, using comparative sequence analysis, that some of those bacteria-like genes indeed appear likely to have been horizontally transferred from bacteria to eukaryotes. In other cases, however, the evidence strongly indicates that the eukaryotic DNA sequenced in the genome project contains a sample of non-integrated DNA from the actual bacteria, possibly providing a window into the host microbiome. Recent literature suggests also that common reagents, kits and laboratory equipment may be systematically contaminated with bacterial DNA, which appears to be sampled by metagenome projects non-specifically. We review several bioinformatic criteria that help to distinguish putative horizontal gene transfers from the admixture of genes from autonomously replicating bacteria in their hosts' genome databases or from the reagent contamination. PMID:25919787

  1. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    Anthony E Glenn

    Full Text Available Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA. In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL superfamily. Deletion of this gene (MBL1 rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

  2. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  3. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells. PMID:25189742

  4. Ex ovo electroporation for gene transfer into older chicken embryos.

    Luo, Jiankai; Redies, Christoph

    2005-08-01

    In ovo electroporation is an excellent method to ectopically induce or inhibit gene expression in chicken embryos and to study the in vivo function of genes during embryonic development. However, the application of electroporation in ovo to date is limited to an early stage of incubation ( stage 22), the vitelline and allantoic vessels have developed extensively and the in ovo manipulation of the embryo becomes exceedingly difficult. Therefore, in this study, we validate an ex ovo electroporation system, by which the time for performing electroporation can be extended up to at least day 7 of incubation. The application of this method will help to study gene function and regulation at later stages of development in the living chicken embryo. PMID:15965981

  5. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes

    Graham Laurie A

    2012-09-01

    Full Text Available Abstract Background Type II antifreeze protein (AFP from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved. Results Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes. Conclusions These results provide stand-alone support for an example of lateral gene transfer between vertebrate species. They should further inform the debate about genetically modified organisms by showing that gene transfer between ‘higher’ eukaryotes can occur naturally. Analysis of the syntenic regions from several fishes strongly suggests that the smelt acquired the AFP gene from the herring.

  6. Adenoviral Mediated Gene Transfer into the Dog Brain In Vivo

    Candolfi, Marianela; Kroeger, Kurt; Pluhar, Elizabeth; Liu, Chunyan; Barcia, Carlos; Bergeron, Josee; Puntel, Mariana; Curtin, James; McNiel, Elizabeth; Freese, Andrew; Ohlfest, John; Moore, Peter; Kuoy, William; Lowenstein, Pedro; Castro, Maria

    2007-01-01

    OBJECTIVE: Glioblastoma multiforme (GBM) is a devastating brain tumor for which there is no cure. Adenoviral-mediated transfer of conditional cytotoxic (herpes simplex virus [HSV] 1-derived thymidine kinase [TK]) and immunostimulatory (Fms-like tyrosine kinase 3 ligand [Flt3L]) transgenes elicited immune-mediated long-term survival in a syngeneic intracranial GBM model in rodents. However, the lack of a large GBM animal model makes it difficult to predict the outcome of therapies in humans. D...

  7. Gene transfer-applied cancer boron neutron capture therapy

    Mishima, Yutaka [ed.] [Mishima Institute for Dermatological Research, Kobe (Japan)

    1999-02-01

    On the basis of research progress made in basic investigations to clinical treatment in melanoma BNCT, we have advanced the present project through the application of the latest in melanogenesis research as well as cancer gene therapy. The multiple findings obtained during the fiscal years of 1997 and 1998 and contained in this current volume. (J.P.N.)

  8. Gene transfer-applied cancer boron neutron capture therapy

    On the basis of research progress made in basic investigations to clinical treatment in melanoma BNCT, we have advanced the present project through the application of the latest in melanogenesis research as well as cancer gene therapy. The multiple findings obtained during the fiscal years of 1997 and 1998 and contained in this current volume. (J.P.N.)

  9. Follistatin allows efficient retroviral-mediated gene transfer into rat liver

    Retroviral vectors are widely used tools for gene therapy. However, in vivo gene transfer is only effective in dividing cells, which, in liver, requires a regenerative stimulus. Follistatin is effective in promoting liver regeneration after 90% and 70% hepatectomy in rats. We studied its efficacy on liver regeneration and retroviral-mediated gene delivery in 50% hepatectomized rats. When human recombinant follistatin was infused into the portal vein immediately after 50% hepatectomy, hepatocyte proliferation was significantly higher than in control 50% hepatectomized rats. A single injection of virus particles administered 23 h after follistatin infusion resulted in more than 20% gene transduction efficiency in hepatocytes compared to 3% in control rats. It is concluded that a single injection of follistatin induces onset of proliferation in 50% hepatectomized rats and allows efficient retroviral-mediated gene transfer to the liver

  10. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W

    2001-09-01

    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal. PMID:11571577

  11. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.

    Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing

    2016-01-01

    Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression. PMID:27386255

  12. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  13. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  14. HVJ-E-mediated gene transfer into the intestinal epithelium

    sprotocols

    2015-01-01

    This protocol describes a novel method that enables transfection of plasmids and siRNAs into the mouse intestinal epithelium. The mouse was anesthetized with isoflurane, and the small intestine was pulled out from the peritoneal cavity. The small intestinal lumen was then washed with buffer containing a reducing agent, dithiothreitol, to remove mucus, and injected with transfection solution. To achieve efficient gene delivery, we used a hemagglutinating virus of Japan envelope (HVJ-E)-based t...

  15. Organic farming and gene transfer from genetically modified crops

    Moyes, Catherine L.; Dale, Philip J.

    1999-01-01

    This is the final report of MAFF/Defra project OF0157. Genetically modified (GM) crops cannot be released into the environment and used as food, feed, medicines or industrial processing before they have passed through a rigorous and internationally recognised regulatory process designed to protect human and animal health, and the environment. The UK body that oversees standards in organic farming, the United Kingdom Register of Organic Food Standards (UKROFS), has ruled that gene...

  16. Modulation of lung development by In utero gene transfer

    Santos, Sílvia Gonzaga da Silva

    2009-01-01

    Tese de doutoramento em Ciências da Saúde (ramo de conhecimento em Ciências Biológicas e Biomédicas) Advances in prenatal diagnosis of genetic and congenital disorders with progressively more sensitive techniques may increase opportunities for consideration of prenatal gene therapy. There are a number of genetic and acquired disorders with peri or postnatal pulmonary manifestations. These include monogenetic diseases like cystic fibrosis or surfactant protein B deficiency that wou...

  17. Microbubble-Enhanced Ultrasound Gene Transfer into Fibroblast Cells

    Hirayama, Kota; Kaneko, Yukio; Tei, Yuichi; Matsumoto, Yoichiro

    2007-05-01

    Ultrasound finds many applications in the medical field, including ultrasound imaging, non-invasive treatment of tumors and lithotripsy. Ultrasound also has a potential to deliver some therapeutic materials, such as genes, drugs or proteins into cells. It is known that microbubbles can improve the delivery efficiency. It is believed that therapeutic materials can pass through the cell membrane whose permeability is increased by microbubble destruction or the ultrasound pressure. In this study, we investigated the delivery of GFP plasmid gene into the fibroblast cells. Ultrasound (frequency = 2.1 MHz, duty cycle = 10%) was used to irradiate the cultured cells through a medium that contains microbubbles and GFP plasmid. GFP plasmid transfection could be easily observed by fluorescence microscopy. Ultrasound irradiation under a variety of conditions resulted in successful GFP plasmid delivery. Microbubbles enhanced GFP transfection, and conclusions were drawn as to the relationship between gene transfection and various ultrasound exposure parameters. We also investigated the effect of ultrasound intensity on cell viability.

  18. A first glimpse into the pattern and scale of gene transfer in the Apicomplexa

    Huang, J.L.; Mullapudi, N.; Sicheritz-Pontén, Thomas; Kissinger, J.C.

    2004-01-01

    Reports of plant-like and bacterial-like genes for a number of parasitic organisms, most notably those within the Apicomplexa and Kinetoplastida, have appeared in the literature over the last few years. Among the apicomplexan organisms, following discovery of the apicomplexan plastid (apicoplast...... combined with a phylogenomic approach to detect potential gene transfers in four apicomplexan genomes. We have detected genes of algal nuclear, chloroplast (cyanobacterial) and proteobacterial origin. Plant-like genes were detected in species not currently harbouring a plastid (e.g. Cryptosporidium parvum...

  19. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods.

    Jung, Yangjin; Matthews, Karl R

    2016-12-01

    This study investigated the transfer frequency of the extended-spectrum β-lactamase-encoding gene (blaSHV18) among Klebsiella pneumoniae in tryptic soy broth (TSB), pasteurized milk, unpasteurized milk, alfalfa sprouts and chopped lettuce at defined temperatures. All transconjugants were characterized phenotypically and genotypically. KP04(ΔKM) and KP08(ΔKM) isolated from seed sprouts and KP342 were used as recipients in mating experiments with K. pneumoniae ATCC 700603 serving as the donor. In mating experiments, no transconjugants were detected at 4 °C in liquid media or chopped lettuce, but detected in all media tested at 15 °C, 24 °C, and 37 °C. At 24 °C, the transfer of blaSHV18 gene occurred more frequently in alfalfa sprouts (5.15E-04 transconjugants per recipient) and chopped lettuce (3.85E-05) than liquid media (1.08E-05). On chopped lettuce, transconjugants were not detected at day 1 post-mating at 15 °C, but observed on day 2 (1.43E-05). Transconjugants carried the blaSHV18 gene transferred from the donor and the virulence gene harbored by recipient. More importantly, a class 1 integrase gene and resistance to tetracycline, trimethoprim/sulfamethoxazole were co-transferred during mating. These quantitative results suggest that fresh produce exposed to temperature abuse may serve as a competent vehicle for the spread of gene encoding for antibiotic resistance, having a potential negative impact on human health. PMID:27554144

  20. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  1. RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS

    2000-01-01

    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  2. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine. PMID:26683492

  3. Use of gene transfer and a novel cosmid rescue strategy to isolate transforming sequences.

    Brady, G.; Funk, A.; Mattern, J.; Schütz, G; Brown, R.

    1985-01-01

    Mouse Lewis Lung tumor DNA was ligated to a cosmid containing a geneticin (G418)/kanamycin resistance gene and transferred into NIH3T3 cells. Recipient cells were first selected for geneticin resistance and subsequently for their ability to grow as a tumour when injected into nude mice. By repeating this transfection procedure with DNA from resultant tumours, geneticin-resistant NIH3T3 cells were obtained which were tumorigenic and contained approximately 1-5 copies of the transferred cosmid....

  4. Induction of Apoptosis in Sonoporation and Ultrasonic Gene Transfer

    Miller, Douglas L.; Dou, Chunyan

    2008-01-01

    The role of apoptosis in sonoporation and ultrasound enhanced gene transfection of cell suspensions was examined in vitro. Suspensions of HL-60 and of CHO-K1 cells were exposed to 2.25 MHz continuous ultrasound for 1 min in a 60 rpm rotating-tube exposure system, with ultrasound contrast media added to ensure nucleation of cavitation. Cell necrosis was measured by trypan blue dye exclusion (using a hemacytometer) and by propidium iodide nuclear staining (using flow cytometry). Apoptosis was d...

  5. Improved retroviral suicide gene transfer in colon cancer cell lines after cell synchronization with methotrexate

    Nordlinger Bernard

    2011-10-01

    Full Text Available Abstract Background Cancer gene therapy by retroviral vectors is mainly limited by the level of transduction. Retroviral gene transfer requires target cell division. Cell synchronization, obtained by drugs inducing a reversible inhibition of DNA synthesis, could therefore be proposed to precondition target cells to retroviral gene transfer. We tested whether drug-mediated cell synchronization could enhance the transfer efficiency of a retroviral-mediated gene encoding herpes simplex virus thymidine kinase (HSV-tk in two colon cancer cell lines, DHDK12 and HT29. Methods Synchronization was induced by methotrexate (MTX, aracytin (ara-C or aphidicolin. Gene transfer efficiency was assessed by the level of HSV-TK expression. Transduced cells were driven by ganciclovir (GCV towards apoptosis that was assessed using annexin V labeling by quantitative flow cytometry. Results DHDK12 and HT29 cells were synchronized in S phase with MTX but not ara-C or aphidicolin. In synchronized DHDK12 and HT29 cells, the HSV-TK transduction rates were 2 and 1.5-fold higher than those obtained in control cells, respectively. Furthermore, the rate of apoptosis was increased two-fold in MTX-treated DHDK12 cells after treatment with GCV. Conclusions Our findings indicate that MTX-mediated synchronization of target cells allowed a significant improvement of retroviral HSV-tk gene transfer, resulting in an increased cell apoptosis in response to GCV. Pharmacological control of cell cycle may thus be a useful strategy to optimize the efficiency of retroviral-mediated cancer gene therapy.

  6. Transferring Gus gene into intact rice cells by low energy ion beam

    Zengliang, Yu; Jianbo, Yang; Yuejin, Wu; Beijiu, Cheng; Jianjun, He; Yuping, Huo

    1993-06-01

    A new technique of transferring genes by low energy ion beam has been reported in this paper. The Gus and CAT (chloramphenicol acetyltransferase) genes, as "foreign" genetic materials, were introduced into the suspension cells and ripe embryos or rice by implantation of 20-30 keV Ar + at doses ranging from 1 × 10 15 to 4 × 10 15 ions/cm 2. The activities of CAT and Gus were detected in the cells and embryos after several weeks. The results indicate that the transfer was a success.

  7. Regulatory and ethical issues for phase I in utero gene transfer studies.

    Strong, Carson

    2011-11-01

    Clinical gene transfer research has involved adult and child subjects, and it is expected that gene transfer in fetal subjects will occur in the future. Some genetic diseases have serious adverse effects on the fetus before birth, and there is hope that prenatal gene therapy could prevent such disease progression. Research in animal models of prenatal gene transfer is actively being pursued. The prospect of human phase I in utero gene transfer studies raises important regulatory and ethical issues. One issue not previously addressed arises in applying U.S. research regulations to such studies. Specifically, current regulations state that research involving greater than minimal risk to the fetus and no prospect of direct benefit to the fetus or pregnant woman is not permitted. Phase I studies will involve interventions such as needle insertions through the uterus, which carry risks to the fetus including spontaneous abortion and preterm birth. It is possible that these risks will be regarded as exceeding minimal. Also, some regard the probability of therapeutic benefit in phase I studies to be so low that these studies do not satisfy the regulatory requirement that they "hold out the prospect of direct benefit" to subjects. On the basis of these considerations, investigators and institutional review boards might reasonably conclude that some phase I in utero studies are not to be permitted. This paper identifies considerations that are relevant to such judgments and explores ethically acceptable ways in which phase I studies can be designed so that they are permitted by the regulations. PMID:21846200

  8. Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses

    Yolamanova, Maral; Meier, Christoph; Shaytan, Alexey K.; Vas, Virag; Bertoncini, Carlos W.; Arnold, Franziska; Zirafi, Onofrio; Usmani, Shariq M.; Müller, Janis A.; Sauter, Daniel; Goffinet, Christine; Palesch, David; Walther, Paul; Roan, Nadia R.; Geiger, Hartmut; Lunov, Oleg; Simmet, Thomas; Bohne, Jens; Schrezenmeier, Hubert; Schwarz, Klaus; Ständker, Ludger; Forssmann, Wolf-Georg; Salvatella, Xavier; Khalatur, Pavel G.; Khokhlov, Alexei R.; Knowles, Tuomas P. J.; Weil, Tanja; Kirchhoff, Frank; Münch, Jan

    2013-02-01

    Inefficient gene transfer and low virion concentrations are common limitations of retroviral transduction. We and others have previously shown that peptides derived from human semen form amyloid fibrils that boost retroviral gene delivery by promoting virion attachment to the target cells. However, application of these natural fibril-forming peptides is limited by moderate efficiencies, the high costs of peptide synthesis, and variability in fibril size and formation kinetics. Here, we report the development of nanofibrils that self-assemble in aqueous solution from a 12-residue peptide, termed enhancing factor C (EF-C). These artificial nanofibrils enhance retroviral gene transfer substantially more efficiently than semen-derived fibrils or other transduction enhancers. Moreover, EF-C nanofibrils allow the concentration of retroviral vectors by conventional low-speed centrifugation, and are safe and effective, as assessed in an ex vivo gene transfer study. Our results show that EF-C fibrils comprise a highly versatile, convenient and broadly applicable nanomaterial that holds the potential to significantly facilitate retroviral gene transfer in basic research and clinical applications.

  9. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    Amanda Donnelly

    2015-12-01

    Full Text Available The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i provides enhanced phage-mediated gene transfer; (ii is applicable for laboratory transfection processes and (iii shows promise within industry for large-scale gene transfer applications.

  10. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  11. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  12. Analysis of bone marrow stromal cell transferred bacterial β-galactosidase gene by PIXE

    PIXE, Particle Induced X-ray Emission, is a powerful, multi-elemental analysis method which has many distinguishing features and has been used in varies research fields. Recently the method of applying baby cyclotrons for nuclear medicine to PIXE has been developed. This enables us to study biomedical phenomena from the physical point of view. Mouse bone marrow stromal cells were transferred bacterial β-galactosidase gene (LacZ gene) by murine retroviral vectors. Analysis of the bone marrow stromal cells with the LacZ gene by PIXE revealed remarkable changes of intracellular trace elements compared with the normal control cells. These results indicate that gene transfer by retroviral vectors may bring about a dynamic change of intracellular circumstances of the target cell. (author)

  13. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  14. Adenoviral transfer of human interleukin-10 gene in lethal pancreatitis

    Zi-Qian Chen; Yao-Qing Tang; Yi Zhang; Zhi-Hong Jiang; En-Qiang Mao; Wei-Guo Zou; Ruo-Qing Lei; Tian-Quan Han; Sheng-Dao Zhang

    2004-01-01

    AIM: To evaluate the therapeutic effect of adenoviral-vectordelivered human interleukin-10 (hIL-10) gene on severe acute pancreatitis (SAP) rats.METHODS: Healthy Sprague-Dawley (SD) rats were intraperitoneally injected with adenoviral IL-10 gene (AdvhIL-10), empty vector (Adv0) or PBS solution. Blood,liver, pancreas and lung were harvested on the second day to examine hIL-10 level by ELISA and serum amylase by enzymatic assay. A SAP model was induced by retrograde injection of sodium taurocholate through pancreatic duct.SAP rats were then administered with AdvhIL-10, Adv0 and PBS solution by a single intraperitoneal injection 20 min after SAP induction. In addition to serum amylase assay,levels of hIL-10 and tumor necrosis factor-α (TNF-α) were detected by RT-PCR, ELISA and histological study. The mortality rate was studied and analyzed by Kaplan-Meier and log rank analysis.RESULTS: The levels of hIL-10 in the pancreas, liver and lung of healthy rats increased significantly after AdvhIL-10injection (1.42 ng/g in liver, 0.91 ng/g in pancreas); while there was no significant change of hIL-10 in the other two control groups. The concentration of hIL-10 was increased significantly in the SAP rats after AdvhIL-10 injection (1.68 ng/g in liver, 1.12 ng/g in pancreas) compared to the other two SAP groups with blank vector or PBS treatment (P<0.05). The serum amylase levels remained normal in the AdvhIL-10 transfected healthy rats. However,the serum amylase level was significantly elevated in the other two control SAP rats. In contrast, serum amylase was down-regulated in the AdvhIL-10 treated SAP groups.The TNF-α expression in the AdvhIL-10 treated SAP rats was significantly lower compared to the other two control SAP groups. The pathohistological changes in the AdvhIL-10 treated group were better than those in the other two control groups. Furthermore, the mortality of the AdvhIL-10 treated group was significantly reduced compared to the other two control groups (P

  15. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  16. Rate of gene transfer from mitochondria to nucleus: effects of cytoplasmic inheritance system and intensity of intracellular competition.

    Yamauchi, Atsushi

    2005-11-01

    Endosymbiotic theory states that mitochondria originated as bacterial intracellular symbionts, the size of the mitochondrial genome gradually reducing over a long period owing to, among other things, gene transfer from the mitochondria to the nucleus. Such gene transfer was observed in more genes in animals than in plants, implying a higher transfer rate of animals. The evolution of gene transfer may have been affected by an intensity of intracellular competition among organelle strains and the organelle inheritance system of the organism concerned. This article reveals a relationship between those factors and the gene transfer rate from organelle to nuclear genomes, using a mathematical model. Mutant mitochondria that lose a certain gene by deletion are considered to replicate more rapidly than normal ones, resulting in an advantage in intracellular competition. If the competition is intense, heteroplasmic individuals possessing both types of mitochondria change to homoplasmic individuals including mutant mitochondria only, with high probability. According to the mathematical model, it was revealed that the rate of gene transfer from mitochondria to the nucleus can be affected by three factors, the intensity of intracellular competition, the probability of paternal organelle transmission, and the effective population size. The gene transfer rate tends to increase with decreasing intracellular competition, increasing paternal organelle transmission, and decreasing effective population size. Intense intracellular competition tends to suppress gene transfer because it is likely to exclude mutant mitochondria that lose the essential gene due to the production of lethal individuals. PMID:16079242

  17. The influence of gene transfer on the lactic acid bacteria evolution

    Višnja Bačun-Družina; Jasna Mrvčić; Ana Butorac; Krešimir Gjuračić

    2009-01-01

    In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the La...

  18. Local Gene Transfer of OPG Prevents Joint Damage and Disease Progression in Collagen-Induced Arthritis

    Qingguo Zhang; Weiming Gong; Bin Ning; Lin Nie; Paul H. Wooley; Shang-You Yang

    2013-01-01

    This study examined the influence of osteoprotegerin (OPG) gene transfer on a murine collagen-induced arthritis model. A single periarticular injection of AAV-OPG or AAV-LacZ on the arthritic paw successfully incorporated the exogenous gene to the local tissue and resulted in marked transgene expression in the joint homogenate for at least three weeks. Clinical disease scores were significantly improved in OPG treated mice starting at 28-day post-treatment (P < 0.05). Histological assessment ...

  19. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA

    Marraffini, Luciano A.; Sontheimer, Erik J.

    2008-01-01

    Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced short palindromic repeats (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we ...

  20. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee

    Acuña, Ricardo; Padilla, Beatriz E.; Flórez-Ramos, Claudia P.; Rubio, José D.; Herrera, Juan C; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H.; Egan, Ashley N.; Doyle, Jeffrey J.; Rose, Jocelyn K. C.

    2012-01-01

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a...

  1. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Maguin Emmanuelle

    2007-08-01

    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  2. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  3. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  4. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment

    Chimeric chloramphenicol acetyltransferase and β-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10-3 and 6 x 10-4, respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy

  5. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  6. Gene Transfer and the Reconstruction of Life's Early History from Genomic Data

    Gogarten, J. Peter; Fournier, Gregory; Zhaxybayeva, Olga

    2008-03-01

    The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.

  7. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  8. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. PMID:26078016

  9. Noninvasive radiological imaging of pulmonary gene transfer and expression using the human sodium iodide symporter

    Niu, Gang; Krager, Kimberly J.; Domann, Frederick E. [University of Iowa, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, Iowa City (United States); Graham, Michael M.; Hichwa, Richard D. [University of Iowa, Division of Nuclear Medicine, Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA (United States)

    2005-04-01

    In this study we investigated the application of the human sodium iodide symporter (hNIS) as a reporter gene to noninvasively image in vivo gene transfer and expression in lung tissue in real time. Human NIS-expressing adenoviruses (Ad-hNIS) or empty adenoviruses (Ad-Bgl II) were instilled into the lungs of Cotton rats via the nostrils. After 3, 10, and 17 days post infection, gamma camera scintigraphy with {sup 99m}TcO{sub 4}{sup -} was performed to observe the distribution and duration of gene transfer. At 20 days after infection, reverse transcription polymerase chain reaction was performed to detect hNISgene expression. Dual expressing vector Ad-hNIS-eGFP was used to detect transgene expression by fluorescence photomicroscopy in infected lung tissue. Positron emission tomography (PET) imaging of gene transfer to the lungs was performed using {sup 124}I{sup -} as tracer. Finally, hNIStransfer to a polarized human airway epithelial cell layer was evaluated by phosphorimaging. Lungs in animals infected with Ad-hNIS were clearly visible on scintigraphy and PET scans, while those infected with Ad-Bgl II were undetectable. Lungs in Ad-hNIS infected animals could still be visualized at 17 days but were no longer detectable at 20 days. Fluorescence microscopy showed that lung tissue infected with Ad-hNIS-eGFP had significantly higher GFP signal intensity than that infected with Ad-Bgl II. It is feasible to use the hNISgene as a reporter gene to monitor the location, magnitude, and timing of expression of genes delivered during pulmonary gene therapy. The ability to noninvasively visualize gene expression tomographically in real time has significant translational implications in human gene therapy. (orig.)

  10. Identification of a Divided Genome for VSH-1, the Prophage-Like Gene Transfer Agent of Brachyspira hyodysenteriae

    The Brachyspira hyodysenteriae B204 genome sequence revealed three VSH-1 tail genes hvp31, hvp60, and hvp37, in a 3.6 kb cluster. The location and transcription direction of these genes relative to the previously described VSH-1 16.3 kb gene operon indicate that the gene transfer agent VSH-1 has a ...

  11. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain.

    Tan, James-Kevin Y; Pham, Binhan; Zong, Yujin; Perez, Camilo; Maris, Don O; Hemphill, Ashton; Miao, Carol H; Matula, Thomas J; Mourad, Pierre D; Wei, Hua; Sellers, Drew L; Horner, Philip J; Pun, Suzie H

    2016-06-10

    Neurons in the brain can be damaged or lost from neurodegenerative disease, stroke, or traumatic injury. Although neurogenesis occurs in mammalian adult brains, the levels of natural neurogenesis are insufficient to restore function in these cases. Gene therapy has been pursued as a promising strategy to induce differentiation of neural progenitor cells into functional neurons. Non-viral vectors are a preferred method of gene transfer due to potential safety and manufacturing benefits but suffer from lower delivery efficiencies compared to viral vectors. Since the neural stem and progenitor cells reside in the subventricular zone of the brain, intraventricular injection has been used as an administration route for gene transfer to these cells. However, the choroid plexus epithelium remains an obstacle to delivery. Recently, transient disruption of the blood-brain barrier by microbubble-enhanced ultrasound has been used to successfully improve drug delivery to the brain after intravenous injection. In this work, we demonstrate that microbubble-enhanced ultrasound can similarly improve gene transfer to the subventricular zone after intraventricular injection. Microbubbles of different surface charges (neutral, slightly cationic, and cationic) were prepared, characterized by acoustic flow cytometry, and evaluated for their ability to increase the permeability of immortalized choroid plexus epithelium monolayers in vitro. Based on these results, slightly cationic microbubbles were evaluated for microbubble and ultrasound-mediated enhancement of non-viral gene transfer in vivo. When coupled with our previously reported gene delivery vehicles, the slightly cationic microbubbles significantly increased ultrasound-mediated transfection of the murine brain when compared to commercially available Definity® microbubbles. Temporary disruption of the choroid plexus by microbubble-enhanced ultrasound is therefore a viable way of enhancing gene delivery to the brain and merits

  12. Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects

    Li Zi-Wen

    2011-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, a source of genetic variation, is generally considered to facilitate hosts' adaptability to environments. However, convincing evidence supporting the significant contribution of the transferred genes to the evolution of metazoan recipients is rare. Results In this study, based on sequence data accumulated to date, we used a unified method consisting of similarity search and phylogenetic analysis to detect horizontally transferred genes (HTGs between prokaryotes and five insect species including Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum and Apis mellifera. Unexpectedly, the candidate HTGs were not detected in D. melanogaster, An. gambiae and T. castaneum, and 79 genes in Ap. mellifera sieved by the same method were considered as contamination based on other information. Consequently, 14 types of 22 HTGs were detected only in the silkworm. Additionally, 13 types of the detected silkworm HTGs share homologous sequences in species of other Lepidopteran superfamilies, suggesting that the majority of these HTGs were derived from ancient transfer events before the radiation of Ditrysia clade. On the basis of phylogenetic topologies and BLAST search results, donor bacteria of these genes were inferred, respectively. At least half of the predicted donor organisms may be entomopathogenic bacteria. The predicted biochemical functions of these genes include four categories: glycosyl hydrolase family, oxidoreductase family, amino acid metabolism, and others. Conclusions The products of HTGs detected in this study may take part in comprehensive physiological metabolism. These genes potentially contributed to functional innovation and adaptability of Lepidopteran hosts in their ancient lineages associated with the diversification of angiosperms. Importantly, our results imply that pathogens may be advantageous to the subsistence and prosperity of hosts through effective HGT

  13. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Tauch Andreas

    2009-01-01

    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  14. The standard lateral gene transfer model is statistically consistent for pectinate four-taxon trees

    Sand, Andreas; Steel, Mike

    2013-01-01

    species trees from gene trees under such conditions is to combine three-taxon analyses for several genes using a majority vote approach. For incomplete lineage sorting this method is known to be statistically consistent; however, for lateral gene transfers it was recently shown that a zone of...... inconsistency exists for a specific four-taxon tree topology, and it was posed as an open question whether inconsistencies could exist for other four-taxon tree topologies? In this letter we analyze all remaining four-taxon topologies and show that no other inconsistencies exist....

  15. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer

    Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E.; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D.; Holmes, Michael C.; Gregory, Philip D.; Naldini, Luigi; Bonini, Chiara

    2016-01-01

    The transfer of high-avidity T-cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted specificities. We designed zinc-finger nucleases (ZFNs) promoting the disruption of endogenous TCR β and α chain genes. ZFN-treated lymphocytes lacked CD3/TCR surface expression and expanded with IL-7 and IL-15. Upon lentiviral transfer of a TCR for the WT1 tumor antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near-purity, and proved superior in specific antigen recognition to matched TCR-transferred cells. In contrast to TCR-transferred cells, TCR edited lymphocytes did not mediate off-target reactivity while maintaining anti-tumor activity in vivo, thus demonstrating that complete editing of T-cell specificity generate tumor-specific lymphocytes with improved biosafety profile. PMID:22466705

  16. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes

    Lu-yang YU; Bo LIN; Zhen-lin ZHANG; Li-he GUO

    2004-01-01

    AIM: To investigate the efficiency of transfer of A20 gene into pancreas against STZ-induced diabetes. METHODS:PVP-plasmid mixture was directly transferred into the pancreatic parenchyma 2 d before STZ injection. The uptake of plasmid pcDNA3-LacZ or pcDNA3-A20 was detected by PCR and the expression of LacZ was confirmed by histological analysis with X-gal. A20 expression in the pancreas of pcDNA3-A20 transgenic mice was measured by RT-PCR and Westem blots. Urine amylase, NO generation, and histological examination were examined. RESULTS:Injection of PVP-plasmid mixture directly into the pancreatic parenchyma increased urine amylase concentration 16 h after operation and reversed it to nearly normal 36 h later. On d 33 LacZ expression could be found in spleen,duodenum, and islets. The development of diabetes was prevented by direct A20 gene transferring into the pancreas and A20-mediated protection was correlated with suppression of NO production. The insulitis was ameliorated in A20-treated mice. CONCLUSION: Injection of PVP-plasmid mixture directly into the pancreatic parenchyma led to target gene expression in islets. Direct transfer of A20 gene into the pancreas protected mice from STZ-induced diabetes.

  17. Assessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa.

    Jensen, Lindy; Grant, Jessica R; Laughinghouse, Haywood Dail; Katz, Laura A

    2016-06-01

    A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early-diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze single-gene phylogenies generated with over 900 species sampled from among Bacteria, Archaea, and Eukaryota to identify well-supported interdomain LGTs. We focus on ancient interdomain LGT (i.e., those between prokaryotes and multiple lineages of Metazoa) as systematic errors in single-gene tree reconstruction create uncertainties for interpreting eukaryote-to-eukaryote transfer. The breadth of the sampled Metazoa enables us to estimate the timing of LGTs, and to examine the pattern before versus after the evolution of a sequestered germline. We identified 58 LGTs found only in Metazoa and prokaryotes (i.e., bacteria and/or archaea), and seven genes transferred from prokaryotes into Metazoa plus one other eukaryotic clade. Our analyses indicate that more interdomain transfers occurred before the development of a sequestered germline, consistent with the hypothesis that this feature is an obstacle to LGT. PMID:27139503

  18. Bacteriophage-like Particles Associated with the Gene Transfer Agent of Methanococcus Voltale PS

    Bertani, G.; Eiserling, F.; Pushkin, A.; Gingery, M.

    1999-01-01

    The methanogenic archaebacterium Methanococus voltae (strain PS) is known to produce a filterable, DNase resistant agent (called VTA, for voltae transfer agent), which carries very small fragments (4,400 base pairs) of bacterial DNA and is able to transduce bacterial genes between derivatives of the strain.

  19. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima

    Worning, Peder; Jensen, Lars Juhl; Nelson, K. E.;

    2000-01-01

    The recently published complete DNA sequence of the bacterium Thermotoga maritima provides evidence, based on protein sequence conservation, for lateral gene transfer between Archaea and Bacteria. We introduce a new method of periodicity analysis of DNA sequences, based on structural parameters, ...

  20. Current status of gene transfer into haemopoietic progenitor cells: application to Langerhans cell histiocytosis.

    M. Brenner

    1994-01-01

    A number of recent studies have shown that it is possible to obtain significant levels of gene transfer and expression in marrow progenitor cells and their progeny by using retroviral vectors. The data obtained from these studies and the possible applications to Langerhans cell histiocytosis (LCH) are reviewed.

  1. Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution

    Werner Arber

    2014-01-01

    This is a contribution to the history of scientific advance in the past 70 years concerning the identification of genetic information, its molecular structure, the identification of its functions and the molecular mechanisms of its evolution. Particular attention is thereby given to horizontal gene transfer among microorganisms, as well as to biosafety considerations with regard to beneficial applications of acquired scientific knowledge.

  2. Evolution of Acetoclastic Methanogenesis in Methanosarcina via Horizontal Gene Transfer from Cellulolytic Clostridia▿ †

    Fournier, Gregory P.; Gogarten, J. Peter

    2007-01-01

    Phylogenetic analysis confirmed that two genes required for acetoclastic methanogenesis, ackA and pta, were horizontally transferred to the ancestor of Methanosarcina from a derived cellulolytic organism in the class Clostridia. This event likely occurred within the last 475 million years, causing profound changes in planetary methane biogeochemistry.

  3. The evolution of land plants: a perspective from horizontal gene transfer

    Qia Wang; Hang Sun; Jinling Huang

    2014-01-01

    Recent studies suggest that horizontal gene transfer (HGT) played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C4 photosynthesis, and mitochondrial genome evolution.

  4. Molecular Evidence for the Evolution of Metal Homeostasis Genes by Lateral Gene Transfer in Bacteria from the Deep Terrestrial Subsurface

    Coombs, J. M.; Barkay, T.

    2004-01-01

    Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PC...

  5. Diversity, evolution, and horizontal gene transfer (HGT) in soda lakes

    Pinkart, Holly C.; Storrie-Lombardi, Michael C.

    2007-09-01

    Soap Lake is a hypersaline, alkaline lake in Central Washington State (USA). For the past five years the lake has been the site of an NSF Microbial Observatory project devoted to identifying critical geochemical and microbial characteristics of the monimolimnion sediment and water column, and has demonstrated rich multispecies communities occupy all areas of the lake. Soap Lake and similar soda lakes are subject to repeated transient periods of extreme evaporation characterized by significant repetitive alterations in salinity, pH, and total water volume, yet maintain high genetic and metabolic diversity. It has been argued that this repetitive cycle for salinity, alkalinity, and sulfur concentration has been a major driver for prokaryote evolution and diversity. The rapidity of wet-dry cycling places special demands on genome evolution, requirements that are beyond the relatively conservative eukaryotic evolutionary strategy of serial alteration of existing gene sequences in a relatively stable genome. Although HGT is most likely responsible for adding a significant amount of noise to the genetic record, analysis of HGT activity can also provide us with a much-needed probe for exploration of prokaryotic genome evolution and the origin of diversity. Packaging of genetic information within the protective protein capsid of a bacteriophage would seem preferable to exposing naked DNA to the highly alkaline conditions in the lake. In this study, we present preliminary data demonstrating the presence of a diverse group of phage integrases in Soap Lake. Integrase is the viral enzyme responsible for the insertion of phage DNA into the bacterial host's chromosome. The presence of the integrase sequence in bacterial chromosomes is evidence of lysogeny, and the diversity of integrase sequences reported here suggests a wide variety of temperate phage exist in this system, and are especially active in transition zones.

  6. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  7. Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

    David M Nelson

    Full Text Available BACKGROUND: Lateral gene transfer (LGT appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. CONCLUSION: Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  8. The effect of interleukin-6 gene transfer on human cord blood megakaryopoiesis

    Yang Xingsheng; Hitoshi Kurata; Kazuyuki Fujita; Kenichi Tanaka

    2004-01-01

    Objective:To investigate the effect of IL-6 gene transfer into human cord blood hematopoietic stem cells on the production of megakaryocytic progenitors. Methods: IL-6 gene was transfected into human cord blood CD34 + cells using a retrovirus vector with the aid of recombinant fibronectin fragments in the presence of a cocktail of cytokines (SCF, IL-6, sIL-6R, FL, and TPO). Colony-forming units-megakaryocyte (CFU-MK) assays were perfonned as IL-6 gene transduced CD34 + cells were incubated alone or in combination with IL-3 or sIL-6R, controlled with neoR gene transduced CD34 + cells. Results: IL-6 alone or sIL-6R alone stimulated few CFU-MK colonies, the addition of sIL-6R to IL-6 gene transduced CD34 + cells significantly enhanced the production of CFU-MK colonies. IL-6 gene transduced CD34 + cells showed a modest synergistic effect with IL-3. Conclusion: These results suggest that IL-6 gene transfer may protect patients from chemotherapy-induced thrombocytopenia.

  9. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications.

    Wong, Liang-Fong; Goodhead, Lucy; Prat, Christine; Mitrophanous, Kyriacos A; Kingsman, Susan M; Mazarakis, Nicholas D

    2006-01-01

    The management of disorders of the nervous system remains a medical challenge. The key goals are to understand disease mechanisms, to validate therapeutic targets, and to develop new therapeutic strategies. Viral vector-mediated gene transfer can meet these goals and vectors based on lentiviruses have particularly useful features. Lentiviral vectors can deliver 8 kb of sequence, they mediate gene transfer into any neuronal cell type, expression and therapy are sustained, and normal cellular functions in vitro and in vivo are not compromised. After delivery into the nervous system they induce no significant immune responses, there are no unwanted side effects of the vectors per se to date, and manufacturing and safety testing for clinical applications are well advanced. There are now numerous examples of effective long-term treatment of animal models of neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, motor neuron diseases, lysosomal storage diseases, and spinal injury, using a range of therapeutic genes expressed in lentiviral vectors. Significant issues remain in some areas of neural gene therapy including defining the optimum therapeutic gene(s), increasing the specificity of delivery, regulating expression of potentially toxic genes, and designing clinically relevant strategies. We discuss the applications of lentiviral vectors in therapy and research and highlight the essential features that will ensure their translation to the clinic in the near future. PMID:16409120

  10. Optimization of the uidA Gene Transfer of Rosa hybrida via Agrobacterium tumefaciens:an Assessment of Factors Influencing the Efficiency of Gene Transfer

    Gao Liping; Bao Manzhu

    2004-01-01

    To develop a transformation protocol of Rosa hybrida 'Samantha' via Agrobacterium tumefaciens, the authors examined the effect of different factors on T-DNA transfer by measuring transient expression levels of an intron-containing β-glucuronidase gene. The results indicate that explant, light condition, salt concentration and acetosyringone (AS) concentration in co-culture medium are the most important factors, and factors like co-culture temperature, co-culture period and bacteria density have a strong effect on the growth of bacteria and then T-DNA transfer. Optimized co-cultivation was performed by inoculation of embryogenic callus with bacteria at a density of OD600= 0.5-0.8 for 20 min and co-culture in darkness under 23 °C on medium with 1/2 MS salts and 300 μmol·L-1 AS for 3 d.

  11. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    Adel Kamal Khider

    2011-03-01

    Full Text Available To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil city soils. The chromosomal genes transferred were verified by analysis of the genomes of donor, recipient and putative transconjugants, by polymorphism of DNA bands obtained through amplification of nifH1, nifH2, nifH3, nifU and nifV genes by PCR technique. The transconjugant cells promote an efficient fixation of nitrogen in liquid cultures fixed 0.2% nitrogen, and in the soil as inoculums of wheat plants, fixed 0.31% nitrogen and solublized 11.71 ppm phosphorus, beside all advantages of Lactic acid bacteria, and probably to be used as inoculums for both nitrogen fixation and solublizing insoluble phosphorus components, and used as biofertilizers

  12. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  13. Using the nucleotide substitution rate matrix to detect horizontal gene transfer

    Betterton M D

    2006-10-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT has allowed bacteria to evolve many new capabilities. Because transferred genes perform many medically important functions, such as conferring antibiotic resistance, improved detection of horizontally transferred genes from sequence data would be an important advance. Existing sequence-based methods for detecting HGT focus on changes in nucleotide composition or on differences between gene and genome phylogenies; these methods have high error rates. Results First, we introduce a new class of methods for detecting HGT based on the changes in nucleotide substitution rates that occur when a gene is transferred to a new organism. Our new methods discriminate simulated HGT events with an error rate up to 10 times lower than does GC content. Use of models that are not time-reversible is crucial for detecting HGT. Second, we show that using combinations of multiple predictors of HGT offers substantial improvements over using any single predictor, yielding as much as a factor of 18 improvement in performance (a maximum reduction in error rate from 38% to about 3%. Multiple predictors were combined by using the random forests machine learning algorithm to identify optimal classifiers that separate HGT from non-HGT trees. Conclusion The new class of HGT-detection methods introduced here combines advantages of phylogenetic and compositional HGT-detection techniques. These new techniques offer order-of-magnitude improvements over compositional methods because they are better able to discriminate HGT from non-HGT trees under a wide range of simulated conditions. We also found that combining multiple measures of HGT is essential for detecting a wide range of HGT events. These novel indicators of horizontal transfer will be widely useful in detecting HGT events linked to the evolution of important bacterial traits, such as antibiotic resistance and pathogenicity.

  14. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

    Hall, James P J; Wood, A Jamie; Harrison, Ellie; Brockhurst, Michael A

    2016-07-19

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  15. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities

    Wood, A. Jamie

    2016-01-01

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (HgR) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable HgR captured to the chromosome in P. putida. A simple mathematical model suggests these differences were likely due to pQBR57’s lower intraspecific conjugation rate in P. putida. By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source–sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal HgR in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  16. Growth enhancement of shrimp (Litopenaeus schmitti) after transfer of tilapia growth hormone gene.

    Arenal, Amilcar; Pimentel, Rafael; Pimentel, Eulogio; Martín, Leonardo; Santiesteban, Dayamí; Franco, Ramón; Aleström, Peter

    2008-05-01

    Electroporation of Litopenaeus schmitti embryos was used to transfer the pE300tiGH15 plasmid that contains the tilapia growth hormone gene (tiGH) complexed with a nuclear localization signal peptide into the zygotes. The gene construct was detected in 35 (36%) of the 98 larvae screened by PCR and Southern blot analyses. Western blot analyses revealed that 34% of the screened larvae expressed a single tiGH-specific band with the expected molecular mass (23.1 kDa). The development index and larval length indicated a significant growth enhancement from day 3 on after electroporation, with an average of 32% of the growth enhancement. To our knowledge, this is the first report on gene transfer enhanced growth in crustaceans. PMID:18204820

  17. The influence of gene transfer on the lactic acid bacteria evolution

    Višnja Bačun-Družina

    2009-09-01

    Full Text Available In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the Lactobacillales evolution. Knowledge about the exchange of lactobacillus genetic information through horizontal gene transfer, mobile genetic elements, and its evolution is very important due to characterizations and stability maintenance of autochthonous as well as industrial lactic acid bacteria strains in dairy products that benefit human health.

  18. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Alejandra Moreno-Letelier

    2011-01-01

    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  19. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  20. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  1. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  2. Growth factor enhanced retroviral gene transfer to the adult central nervous system.

    King, L A; Mitrophanous, K A; Clark, L A; Kim, V N; Rohll, J B; Kingsman, A J; Colello, R J

    2000-07-01

    The use of viral vectors for gene delivery into mammalian cells provides a new approach in the treatment of many human diseases. The first viral vector approved for human clinical trials was murine leukemia virus (MLV), which remains the most commonly used vector in clinical trials to date. However, the application of MLV vectors is limited since MLV requires cells to be actively dividing in order for transduction and therefore gene delivery to occur. This limitation precludes the use of MLV for delivering genes to the adult CNS, where very little cell division is occurring. However, we speculated that this inherent limitation of ML V may be overcome by utilizing the known mitogenic effect of growth factors on cells of the CNS. Specifically, an in vivo application of growth factor to the adult brain, if able to induce cell division, could enhance MLV-based gene transfer to the adult brain. We now show that an exogenous application of basic fibroblast growth factor induces cell division in vivo. Under these conditions, where cells of the adult brain are stimulated to divide, MLV-based gene transfer is significantly enhanced. This novel approach precludes any vector modifications and provides a simple and effective way of delivering genes to cells of the adult brain utilizing MLV-based retroviral vectors. PMID:10918476

  3. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  4. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT+ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  5. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  6. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  7. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  8. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer ability

    Satoko eNonaka

    2014-12-01

    Full Text Available Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.

  9. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis

    Butler Geraldine

    2008-06-01

    Full Text Available Abstract Background To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. Results Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR. Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. Conclusion Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.

  10. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells

    Sapinoro, Ramil; Volcy, Ketna; Shanaka, W.W.; Rodrigo, I.; Schlesinger, Jacob J.; Dewhurst, Stephen

    2008-01-01

    Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcγRI, but not its associated γ chain, and was not supported by othe...

  11. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein

    A high-titer amphotropic retroviral vector containing the neomycin resistance gene and a hybrid γ-β genomic human globin gene has been constructed. Mouse erythroleukemia cells infected with this virus were found to contain the full transcriptional unit of the transferred human globin gene by Southern blot analysis. These cells contain normally initiated, spliced, and terminated human globin mRNA. The human globin mRNA level increased 5- to 10-fold upon induction of the mouse erythroleukemia cells. Human globin chains were produced but only in a fraction of the cells as detected by immunofluorescent staining. A similar retrovirus containing a human β-globin gene was used to transduce mouse erythroleukemia cells resulting in much higher levels of human globin synthesis than detected in mouse erythroleukemia cells transduced with the γ-β globin virus

  12. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Kaul Rajinder

    2009-11-01

    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  13. Functional biogeography as evidence of gene transfer in hypersaline microbial communities.

    J Jacob Parnell

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT plays a major role in speciation and evolution of bacteria and archaea by controlling gene distribution within an environment. However, information that links HGT to a natural community using relevant population-genetics parameters and spatial considerations is scarce. The Great Salt Lake (Utah, USA provides an excellent model for studying HGT in the context of biogeography because it is a contiguous system with dispersal limitations due to a strong selective salinity gradient. We hypothesize that in spite of the barrier to phylogenetic dispersal, functional characteristics--in the form of HGT--expand beyond phylogenetic limitations due to selective pressure. METHODOLOGY AND RESULTS: To assay the functional genes and microorganisms throughout the GSL, we used a 16S rRNA oligonucleotide microarray (Phylochip and a functional gene array (GeoChip to measure biogeographic patterns of nine microbial communities. We found a significant difference in biogeography based on microarray analyses when comparing Sørensen similarity values for presence/absence of function and phylogeny (Student's t-test; p = 0.005. CONCLUSION AND SIGNIFICANCE: Biogeographic patterns exhibit behavior associated with horizontal gene transfer in that informational genes (16S rRNA have a lower similarity than functional genes, and functional similarity is positively correlated with lake-wide selective pressure. Specifically, high concentrations of chromium throughout GSL correspond to an average similarity of chromium resistance genes that is 22% higher than taxonomic similarity. This suggests active HGT may be measured at the population level in microbial communities and these biogeographic patterns may serve as a model to study bacteria adaptation and speciation.

  14. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  15. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  16. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α1-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  17. Baculovirus vector-mediated transfer of NIS gene into colon tumor cells for radionuclide therapy

    2010-01-01

    AIM:To investigate the feasibility of radionuclide therapy of colon tumor cells by baculovirus vector-mediated transfer of the sodium/iodide symporter(NIS) gene.METHODS:A recombinant baculovirus plasmid carrying the NIS gene was constructed,and the viruses(BacNIS) were prepared using the Bac-to-Bac system.The infection efficiency in the colon cancer cell line SW1116 of a green fluorescent protein(GFP) expressing baculovirus(Bac-GFP) at different multiplicities of infection(MOI) with various concentrations o...

  18. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients

    Noon, Jason B.; Baum, Thomas J.

    2016-01-01

    Background Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismat...

  19. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid.

    Qing Wang

    Full Text Available The spread and propagation of antibiotic resistance genes (ARGs is a worldwide public health concern. Ionic liquids (ILs, considered as "environmentally friendly" replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6] (0.001-5.0 g/L was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups by the IL [BMIm][PF6] (1.0 g/L. Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM. This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.

  20. Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length

    Anson Don S

    2010-06-01

    Full Text Available Abstract Background Poor gene transfer efficiency has been a major problem in developing an effective gene therapy for cystic fibrosis (CF airway disease. Lysophosphatidylcholine (LPC, a natural airway surfactant, can enhance viral gene transfer in animal models. We examined the electrophysiological and physical effect of airway pre-treatment with variants of LPC on lentiviral (LV vector gene transfer efficiency in murine nasal airways in vivo. Methods Gene transfer was assessed after 1 week following nasal instillations of a VSV-G pseudotype LV vector pre-treated with a low and high dose of LPC variants. The electrophysiological effects of a range of LPC variants were assessed by nasal transepithelial potential difference measurements (TPD to determine tight junction permeability. Any physical changes to the epithelium from administration of the LPC variants were noted by histological methods in airway tissue harvested after 1 hour. Results Gene transduction was significantly greater compared to control (PBS for our standard LPC (palmitoyl/stearoyl mixture treatment and for the majority of the other LPC variants with longer acyl chain lengths. The LPC variant heptadecanoyl also produced significantly greater LV gene transfer compared to our standard LPC mixture. LV gene transfer and the transepithelial depolarization produced by the 0.1% LPC variants at 1 hour were strongly correlated (r2 = 0.94, but at the 1% concentration the correlation was less strong (r2 = 0.59. LPC variants that displayed minor to moderate levels of disruption to the airway epithelium were clearly associated with higher LV gene transfer. Conclusions These findings show the LPC variants effect on airway barrier function and their correlation to the effectiveness of gene expression. The enhanced expression produced by a number of LPC variants should provide new options for preclinical development of efficient airway gene transfer techniques.

  1. Emergence of collective territorial defense in bacterial communities: horizontal gene transfer can stabilize microbiomes.

    Juhász, János; Kertész-Farkas, Attila; Szabó, Dóra; Pongor, Sándor

    2014-01-01

    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment. PMID:24755769

  2. [Viral transfer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gene therapy].

    Wędrowska, Ewelina; Wandtke, Tomasz; Dyczek, Andrzej; Woźniak, Joanna

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces carcinoma cell death through the extrinsic pathway of apoptosis. Preclinical trials of gene therapy have been conducted using viral transfer of the TRAIL transgene into prostate, bladder, breast, kidney, liver, non-small cell lung cancer and also glioblastoma cells. Experiments in vitro demonstrated the extensive apoptosis of target cells as well as frequent disease regression or remission. TRAIL transfer did not show any side effects, opposite to chemotherapy. Encouraging results of TRAIL-related gene therapy were observed in rheumatoid arthritis and type 1 diabetes. Adenoviral vectors (AdV) encoding TRAIL are the most promising tool in anti-tumor therapy. They have undergone numerous modifications by increasing transfection efficiency and transgene expression in target cells. However, only one clinical phase I trial has been performed. AdV encoding the TRAIL transgene caused local inflammation and apoptosis in patients with prostate cancer. PMID:27259213

  3. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Yael Garbian

    2012-12-01

    Full Text Available The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  4. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  5. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  6. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation

    Kouzel, Nadzeya; Oldewurtel, Enno R.; Maier, Berenike

    2015-01-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal t...

  7. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  8. Production of human glucocerebrosidase in mice after retroviral gene transfer into multipotential hematopoietic progenitor cells.

    Correll, P H; Fink, J K; Brady, R O; Perry, L K; S. Karlsson

    1989-01-01

    The human glucocerebrosidase (GC) gene has been transferred efficiently into spleen colony-forming unit (CFU-S) multipotential hematopoietic progenitor cells, and production of human GC RNA and protein has been achieved in transduced CFU-S colonies. High-titer retroviral vectors containing the human GC cDNA were constructed. Mouse bone marrow cells were stimulated with hematopoietic growth factors, infected by coculture with producer cells, and injected into lethally irradiated animals. Four ...

  9. Emergence of Collective Territorial Defense in Bacterial Communities: Horizontal Gene Transfer Can Stabilize Microbiomes

    János Juhász; Attila Kertész-Farkas; Dóra Szabó; Sándor Pongor

    2014-01-01

    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving ...

  10. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-pro...

  11. Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants

    Arias, Maria Cecilia; Danchin, Étienne G.J.; Coutinho, Pedro; Henrissat, Bernard; Ball, Steven

    2012-01-01

    Lateral gene transfer (LGT) between bacteria constitutes a strong force in prokaryote evolution, transforming the hierarchical tree of life into a network of relationships between species. In contrast, only a few cases of LGT from eukaryotes to prokaryotes have been reported so far. The distal animal intestine is predominantly a bacterial ecosystem, supplying the host with energy from dietary polysaccharides through carbohydrate-active enzymes absent from its genome. It has been suggested tha...

  12. Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea

    Bo Zhu; Qing Zhou; Guanlin Xie; Guoqing Zhang; Xiaowei Zhang; Yanli Wang; Gunchang Sun; Bin Li; Gulei Jin

    2012-01-01

    The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. The genome of B. cinerea has been fully sequenced while the importance of horizontal gene transfer (HGT) to extend the host range in plant pathogenic fungi has been recently appreciated. However, recent data confirm that the B. cinerea fungus shares conserved virulence factors with other fungal plant pathogens with narrow host range. Therefore, interkingdom HGT may ...

  13. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440

    Lambertsen, L.M.; Molin, Søren; Kroer, N.; Thomas, C.M.

    2004-01-01

    IncP-9 transfer genes are transcribed from at least three promoter regions. The promoters for traA and traD act divergently from the region found to encode the origin of transfer, oriT. These promoters regulate expression of traA, B, and perhaps traC in one direction and traD in the other, all of...... are, as in pWWO, transcribed divergently from an operon for replication and/or stable inheritance functions, MpfR is not related to the known regulatory proteins of these other transfer systems outside those of the IncP-9 family and indeed the regulators tend to be specific for each plasmid family...

  14. Transfer of alien genes by means of induced translocation in oats and other crop species

    Some of the best sources of resistance to mildew, which is the most important disease of the oat crop in the United Kingdom, occur in related weed species. The mildew resistance found in a genotype of the tetraploid species Avena barbata has been transferred into the germ plasm of the cultivated hexaploid species A. sativa by means of an induced translocation. The procedures adopted to isolate the desirable translocation and to determine its breeding behaviour are described. A number of alien genes have been transferred into wheat by means of induced translocations and genetic induction, but their successful introduction into commercial varieties has been limited. In this paper, the use and limitations of alien transfers as breeding material are discussed. (author)

  15. Phage-mediated transfer of a dextranase gene in Lactobacillus sanfranciscensis and characterization of the enzyme.

    Picozzi, Claudia; Meissner, Daniel; Chierici, Margherita; Ehrmann, Matthias A; Vigentini, Ileana; Foschino, Roberto; Vogel, Rudi F

    2015-06-01

    While phages of lactobacilli are extensively studied with respect to their structure and role in the dairy environment, knowledge about phages in bacteria residing in sourdough fermentation is limited. Based on the previous finding that the Lactobacillus sanfranciscensis phage EV3 carries a putative dextranase gene (dex), we have investigated the distribution of similar dex(+) phages in L. sanfranciscensis, the chance of gene transfer and the properties of the dextranase encoded by phage EV3. L. sanfranciscensis H2A (dex(-)), originally isolated from a wheat sourdough, expressed a Dex(+) phenotype upon infection with EV3. The dextranase gene was isolated from the transductant and heterologously expressed in Escherichia coli. The gene encoded a protein of 801 amino acids with a calculated molecular weight (Mw) of 89.09 kDa and a calculated pI of 5.62. Upon purification aided by a 6-His tag, enzyme kinetic parameters were determined. The Km value was 370 mM, and the Vmax was calculated in about 16 μmol of glucose released from dextran by 1 mg of enzyme in 1 min in a buffer solution at pH 5.0. The optimum conditions were 60 °C and pH 4.5. The enzyme retained its activity for >3h at 60 °C and exhibited only 40% activity at 30 °C; the highest homology of 72% was found to a dextranase gene from Lactobacillus fermentum phage φPYB5. Within 25 L. sanfransiscensis isolates tested, the strain 4B5 carried a similar prophage encoding a dextranase gene. Our data suggest a phage-mediated transfer of dextranase genes in the sourdough environment resulting in superinfection-resistant L. sanfranciscensis Dex(+) strains with a possible ecological advantage in dextran-containing sourdoughs. PMID:25771219

  16. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  17. THE RISK OF GENE TRANSFERRING IN THE INSURANCE PROTECTION OF AGRICULTERE

    M. Malik

    2016-05-01

    Full Text Available The paper justified essence of genetic engineering as the object of insurance services. Defines the concept of risk gene transferring. The character features of this specific risk. The influence and consequences for agricultural producers. The description of the possible creation of the concept of insurance services that cover risk of gene transferring. The study reveals of the use of GMOs in agriculture, due to issues of economic security of a particular region or country as a whole. To determined the impact of risks and control for developing and developed countries that are important aspects of farming. Changes in weather, climate, productivity, price values, public policy, the situation on global markets can cause large fluctuations in agricultural production, and consequently affecting the income of agricultural producers. Risk management includes a range of strategies that reduce the social and financial implications of possible changes affecting the production and income of farmers. There is a need for an in-depth study of the theoretical and practical aspects of the impact of the risk of gene transferring in the context of insurance protection.

  18. Production of human glucocerebrosidase in mice after retroviral gene transfer into multipotential hematopoietic progenitor cells

    The human glucocerebrosidase (GC) gene has been transferred efficiently into spleen colony-forming unit (CFU-S) multipotential hematopoietic progenitor cells, and production of human GC RNA and protein has been achieved in transduced CFU-S colonies. High-titer retroviral vectors containing the human GC cDNA were constructed. Four vectors were compared with respect to gene-transfer efficiency into CFU-S progenitors. One vector (G vector) required high concentrations of interleukins 3 and 6 during stimulation and coculture for efficient transduction of CFU-S progenitors. The remaining three vectors (NTG, GTN, and GI vectors) transduced these progenitors at infection frequencies approaching 100% using low concentrations of hematopoietic growth factors to simulate cell division prior to and during the infection. Vectors using the viral long terminal repeat enhancer/promoter to drive the human GC cDNA produced high levels of human GC RNA in the progeny of CFU-S progenitors after gene transfer. All three vectors producing human GC RNA in CFU-S colonies can generate human GC as detected by immunochemical analysis of CFU-S colonies. The capacity of the viral long terminal repeat and the internal thymidine kinase promoter to direct synthesis of RNA in transduced bone marrow and spleen cells 5 months after bone marrow transplantation reflected the performance of these promoters in NTG-transduced CFU-S colonies

  19. Production of human glucocerebrosidase in mice after retroviral gene transfer into multipotential hematopoietic progenitor cells

    Correll, P.H.; Fink, J.K.; Brady, R.O.; Perry, L.K.; Karlsson, S. (National Institutes of Health, Bethesda, MD (USA))

    1989-11-01

    The human glucocerebrosidase (GC) gene has been transferred efficiently into spleen colony-forming unit (CFU-S) multipotential hematopoietic progenitor cells, and production of human GC RNA and protein has been achieved in transduced CFU-S colonies. High-titer retroviral vectors containing the human GC cDNA were constructed. Four vectors were compared with respect to gene-transfer efficiency into CFU-S progenitors. One vector (G vector) required high concentrations of interleukins 3 and 6 during stimulation and coculture for efficient transduction of CFU-S progenitors. The remaining three vectors (NTG, GTN, and GI vectors) transduced these progenitors at infection frequencies approaching 100% using low concentrations of hematopoietic growth factors to simulate cell division prior to and during the infection. Vectors using the viral long terminal repeat enhancer/promoter to drive the human GC cDNA produced high levels of human GC RNA in the progeny of CFU-S progenitors after gene transfer. All three vectors producing human GC RNA in CFU-S colonies can generate human GC as detected by immunochemical analysis of CFU-S colonies. The capacity of the viral long terminal repeat and the internal thymidine kinase promoter to direct synthesis of RNA in transduced bone marrow and spleen cells 5 months after bone marrow transplantation reflected the performance of these promoters in NTG-transduced CFU-S colonies.

  20. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  1. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication

    2007-01-01

    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  2. Airway gene transfer in a non-human primate: lentiviral gene expression in marmoset lungs.

    Farrow, N; Miller, D; Cmielewski, P; Donnelley, M; Bright, R; Parsons, D W

    2013-01-01

    Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n = 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials. PMID:23412644

  3. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma

    Human troponin I (TROP), the soluble receptor for vascular endothelial growth factor (sFLT) and angiostatin (ASTAT) are potent inhibitors of endothelial cell proliferation, angiogenesis and tumour growth in vivo. Transfer of these genes into tumours may induce changes not only in perfusion, but also more general ones such as changes in metabolism. The aim of this study was to assess these reactions using FDG-PET and high-throughput methods such as gene profiling. We established Morris hepatoma (MH3924A) cell lines expressing TROP, sFLT or ASTAT and quantified 18F-fluorodeoxyglucose (18FDG) uptake by dynamic positron emission tomography (PET) after tumour inoculation in ACI rats. Furthermore, expression of glucose transporter-1 and -3 (GLUT-1 and GLUT-3) as well as hexokinase-1 and -2 were investigated by RT-PCR and immunohistomorphometry. In addition, gene array analyses were performed. 18FDG uptake, vascular fraction and distribution volume were significantly higher in all genetically modified tumours. Immunohistomorphometry showed an increased percentage of hexokinase-1 and -2 as well as GLUT-1 and -3 immunoreactive (ir) cells. Using gene arrays and comparing all three groups of genetically modified tumours, we found upregulated expression of 36 genes related to apoptosis, signal transduction, stress or metabolism. TROP-, sFLT- or ASTAT-expressing MH3924A tumours show enhanced influx of 18FDG, which seems to be caused by several factors: enhanced exchange of nutrients between blood and tumour, increased amounts of glucose transporters and hexokinases, and increased expression of genes related to apoptosis, matrix and stress, which induce an increased demand for glucose. (orig.)

  4. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  5. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  6. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer.

    Richard-Fiardo, Peggy; Hervouet, Catherine; Marsault, Robert; Franken, Philippe R; Cambien, Béatrice; Guglielmi, Julien; Warnez-Soulie, Julie; Darcourt, Jacques; Pourcher, Thierry; Colombani, Thibault; Haudebourg, Thomas; Peuziat, Pauline; Pitard, Bruno; Vassaux, Georges

    2015-03-01

    In the present study, we evaluated, in mice, the efficacy of the tetrafunctional block copolymer 704 as a nonviral gene delivery vector to the lungs. SPECT/CT molecular imaging of gene expression, biochemical assays, and immunohistochemistry were used. Our dataset shows that the formulation 704 resulted in higher levels of reporter gene expression than the GL67A formulation currently being used in a clinical trial in cystic fibrosis patients. The inflammatory response associated with this gene transfer was lower than that induced by the GL67A formulation, and the 704 formulation was amenable to repeated administrations. The cell types transfected by the 704 formulation were type I and type II pneumocytes, and transgene expression could not be detected in macrophages. These results emphasize the relevance of the 704 formulation as a nonviral gene delivery vector for lung gene therapy. Further studies will be required to validate this vector in larger animals, in which the lungs are more similar to human lungs. PMID:25662490

  7. Evolution of Type II Antifreeze Protein Genes in Teleost Fish: A Complex Scenario Involving Lateral Gene Transfers and Episodic Directional Selection

    Ulf Sorhannus

    2012-01-01

    I examined hypotheses about lateral transfer of type II antifreeze protein (AFP) genes among “distantly” related teleost fish. The effects of episodic directional selection on amino acid evolution were also investigated. The strict consensus results showed that the type II AFP and type II antifreeze-like protein genes were transferred from Osmerus mordax to Clupea harengus, from the ancestral lineage of the Brachyopsis rostratus—Hemitripterus americanus clade to the ancestor of the Hypomesus ...

  8. Fishing for biodiversity: Novel methanopterin-linked C1 transfer genes deduced from the Sargasso Sea metagenome

    Kalyuzhnaya, Marina G.; Nercessian, Olivier; Lapidus, Alla; Chistoserdova, Ludmila

    2004-01-01

    The recently generated database of microbial genes from an oligotrophic environment populated by a calculated 1,800 of major phylotypes (the Sargasso Sea metagenome) presents a great source for expanding local databases of genes indicative of a specific function. In this paper we analyze the Sargasso Sea metagenome in terms of the presence of methanopterin-linked C1 transfer genes that are signature for methylotrophy. We conclude that more than 10 phylotypes possessing genes of interest ...

  9. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease.

    Fink, J K; Correll, P H; Perry, L K; Brady, R O; S. Karlsson

    1990-01-01

    Retroviral gene transfer has been used successfully to correct the glucocerebrosidase (GCase) deficiency in primary hematopoietic cells from patients with Gaucher disease. For this model of somatic gene therapy, we developed a high-titer, amphotropic retroviral vector designated NTG in which the human GCase gene was driven by the mutant polyoma virus enhancer/herpesvirus thymidine kinase gene (tk) promoter (Py+/Htk). NTG normalized GCase activity in transduced Gaucher fibroblasts and efficien...

  10. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer

    TomohikoICHIKAWA; ShigeruHOSOKI; HiroyoshiSUZUKI; KoichiroAKAKURA; TatsuoIGARASHI; YuzoFURUYA; MitsuoOSHIMURA; CarrieW.RINKER-SCHAEFFER; NaokiNIHEI; JohnT.ISAACS; HaruoITO

    2000-01-01

    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  11. Adenovirus-mediated p53 gene therapy in human nasopharyngeal cancer%重组人p53腺病毒基因药物对人鼻咽癌细胞的抑制实验

    敖敏; 何刚

    2010-01-01

    目的 探索p53基因在鼻咽癌基因治疗方面的可行性.方法 以人鼻咽癌CNE细胞株为实验对象,将重组人p53腺病毒药物(1010rAd/p53)转染人鼻咽癌CNE细胞,用MTT比色实验及流式细胞仪实验的方法进行体外实验,观察重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞体外生长的影响.结果 各浓度重组人p53腺病毒药物(1010rAd/p53、109rAd/p53、108rAd/p53、107rAd/p53)对人鼻咽癌CNE细胞生长有抑制.尤以1010rAd/p53明显.转染3天后,重组人p53腺病毒药物(rAd/p53)诱导人鼻咽癌CNE细胞明显凋亡.结论 重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞生长能有效抑制,为鼻咽癌的基因治疗提供了实验依据.

  12. 重组人p53腺病毒药物对人喉癌细胞的抑制实验%ADENOVIRUS-MEDIATED P53 GENE THERAPY OF HUMAN LARYNGEAL CANCER

    敖敏; 何刚; 梁传余

    2007-01-01

    [目的]探索p53基因在喉癌基因治疗方面的可行性.[方法]以人喉癌细胞系Hep-2为实验对象,将重组人p53腺病毒药物(rAd/p53)转染Hep-2细胞,体外实验观察重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长的影响.[结果]各浓度重组人p53 腺病毒药物(rAd/p53)(1010、109、108、107)对Hep-2生长均有抑制.尤以1010明显.转染3d后,重组人p53腺病毒药物(rAd/p53)诱导Hep-2细胞明显凋亡.[结论]重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长能有效抑制,能明显诱导其凋亡,为喉癌的治疗提供了临床前依据.

  13. Mutation and gene transfer of neutral amino acid transport System L genes in mammalian cells

    The authors are attempting to clone the genes coding for amino acid transport System L. Chinese hamster ovary (CHO) cell mutants that are temperature sensitive in their leucyl-tRNA synthetase show temperature-dependent regulation of System L. Temperature resistant mutants isolated from these cells have constitutively derepressed System L activity. Somatic cell fusion studies using these mutants have suggested that a trans-acting element controls regulation of System L. Mutants with reduced transport activity were isolated by a 3H-suicide selection. The growth of these mutant cells is limited by the transport defect. CHO mutants were transformed with a human cosmid library, followed by selection at high temperatures and low leucine concentrations. Some transformants have increased levels of System L activity, suggesting that human genes coding for leucine transport have been incorporated into the CHO genome. Human sequences were rescued by a lambda in vitro packaging system. These sequences hybridize to vector and total human DNA. Experiments are being done to confirm that these sequences indeed code for transport System L. They are also attempting to label membrane components of amino acid transporters by group-specific modifying reagents

  14. Gene expression system in green sulfur bacteria by conjugative plasmid transfer.

    Chihiro Azai

    Full Text Available Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10(-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.

  15. Recombined adenovirus mediated delivery of p21 inhibits oxygen-induced retinal neovascularization in mice%重组腺病毒介导p21对小鼠视网膜新生血管生成的抑制作用

    韩金栋; 袁志刚; 郑华宾; 颜华

    2012-01-01

    Objective To observe the the inhibitory effect of recombined adenovirus mediated delivery of p21 (rAd-p21) on oxygen-induced retinal neovascularization in mice.Methods A total of 56 C57BL/6 mice at the age of seven days were divided into control group,phosphate buffer solution (PBS) group,rAdp21 group and rAd-no purpose gene control (rAd-NC) group,14 mice in each group.The retinal neovascularization of PBS,rAd-p21and rAd-NC group were induced by oxygen,and received an intravitreal injection 1 μl PBS,rAd-p21 and rAd-NC at postnatal day 11,respectively.The rats of control group were not intervened.At postnatal day 17,RNV was determined by retinal flat mounts and retinal section; nonperfusion areas of retina were analyzed by Image-Pro plus 6.0 software; reverse transcription-polymerase chain reaction (RT-PCR) and Western blot was used to measure the mRNA and protein expression of p21 and CDK2.Results Compared with PBS and rAd-NC groups,the retinal non-perfusion areas,neovascularization and the numbers of endothelial cell nuclei breaking through the internal limiting membrane in rAd-p21 group were reduced significantly.Non-perfusion areas of retina in rAd-p21 group was less than that in PBS and rAd-NC groups,the difference among these three groups was significantly (F= 101.634,P<0.05).Compared with the other three groups,the level of p21 mRNA and protein in rAd-p21 group increased significantly (F=839.664,509.817; P<0.05) ; the level of CDK2 mRNA and protein in rAd-p21 group decreased significantly (F=301.858,592.882; P<0.05).Conclusion rAd-p21can inhibit oxygen-induced retinal neovascularization,up-regulated p21 expression and down-regulated CDK2 expression may be the mechanism.%目的 观察重组腺病毒-p21 (rAd-p21)对氧诱导小鼠视网膜新生血管(RNV)的抑制作用.方法 将56只健康7日龄C57BL/6J小鼠随机分为对照组、磷酸盐缓冲液(PBS)组、rAd-p21组及rAd-无目的基因对照(rAd-NC)组,每组14只.PBS组、rAd-p21组及rAd

  16. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  17. Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers.

    Corradi, Nicolas

    2015-01-01

    Microsporidia are eukaryotic parasites of many animals that appear to have adapted to an obligate intracellular lifestyle by modifying the morphology and content of their cells. Living inside other cells, they have lost many, or all, metabolic functions, resulting in genomes that are always gene poor and often very small. The minute content of microsporidian genomes led many to assume that these parasites are biochemically static and uninteresting. However, recent studies have demonstrated that these organisms can be surprisingly complex and dynamic. In this review I detail the most significant recent advances in microsporidian genomics and discuss how these have affected our understanding of many biological aspects of these peculiar eukaryotic intracellular pathogens. PMID:26195306

  18. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Xu, Yu, E-mail: xuyu1001@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liu, Zhengchun, E-mail: l135027@126.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Kong, Haiyan, E-mail: suppleant@163.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Sun, Wenjie, E-mail: wendy11240325@163.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liao, Zhengkai, E-mail: fastbeta@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: happyzhoufx@sina.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  19. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Highlights: → A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. → The promoter was characterized with radiation-inducibility and tumor-specificity. → Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. → Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  20. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  1. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  2. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  3. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae.

    Baldauf, S L; Manhart, J R; J.D. Palmer

    1990-01-01

    Previous work suggested that the tufA gene, encoding protein synthesis elongation factor Tu, was transferred from the chloroplast to the nucleus within the green algal lineage giving rise to land plants. In this report we investigate the timing and mode of transfer by examining chloroplast and nuclear DNA from the three major classes of green algae, with emphasis on the class Charophyceae, the proposed sister group to land plants. Filter hybridizations reveal a chloroplast tufA gene in all Ul...

  4. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    Mandel, Ronald J.; Burger, Corinna; Snyder, Richard O.

    2007-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and len...

  5. Gene Electro Transfer of Plasmid Encoding Vascular Endothelial Growth Factor for Enhanced Expression and Perfusion in the Ischemic Swine Heart

    Hargrave, Barbara; Strange, Robert; Navare, Sagar; Stratton, Michael; Burcus, Nina; Murray, Len; Lundberg, Cathryn; Bulysheva, Anna; Li, Fanying; Heller, Richard

    2014-01-01

    Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth...

  6. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  7. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-01

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination. PMID:27035985

  8. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  9. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Huan eQiu

    2013-09-01

    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  10. Transfer of genes for stem rust resistance from Agropyron elongatum and imperial rye to durum wheat

    The Agropyron elongatum gene for stem rust resistance on chromosome 6A of Knott's Thatcher translocation line was transferred to a susceptible local durum wheat variety, Jaya, through a series of back-crosses. Plants heterozygous for the Agropyron translocation always show at least one open bivalent. Homozygotes have not been obtained, probably because of the absence of male transmission in durum background. Monotelosomic addition of the short arm of Imperial rye chromosome 3R (formerly ''G'' of Sears), which carries a gene(s) for resistance to wheat stem rust, was obtained in the local durum variety. Rust-resistant plants from parents having the added rye telocentric were irradiated with gamma rays just before meiosis, and the pollen obtained from the irradiated spikes was used to pollinate euploid plants. In addition, seeds harvested from 2n+1 resistant plants were irradiated with thermal neutrons and the resistant M1 plants were selfed to raise M2 families. Two durum-rye translocation lines were obtained following irradiation. DRT-1 was transmitted normally through the female gametes but showed no male transmission. As a result of this, homozygotes have not been obtained. Gametic transmission rates of DRT-2 are being tested. Alien translocations, which show normal gametic and zygotic transmissions in the hexaploid wheat, may behave differently in a tetraploid background. The results indicate that alien genetic transfers may be more difficult to obtain in durum wheat, probably owing to the reduced buffering effect of the tetraploid genome. (author)

  11. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice.

    Heckmann, M B; Bauer, R; Jungmann, A; Winter, L; Rapti, K; Strucksberg, K-H; Clemen, C S; Li, Z; Schröder, R; Katus, H A; Müller, O J

    2016-08-01

    Mutations of the human desmin (DES) gene cause autosomal dominant and recessive myopathies affecting skeletal and cardiac muscle tissue. Desmin knockout mice (DES-KO), which develop progressive myopathy and cardiomyopathy, mirror rare human recessive desminopathies in which mutations on both DES alleles lead to a complete ablation of desmin protein expression. Here, we investigated whether an adeno-associated virus-mediated gene transfer of wild-type desmin cDNA (AAV-DES) attenuates cardiomyopathy in these mice. Our approach leads to a partial reconstitution of desmin protein expression and the de novo formation of the extrasarcomeric desmin-syncoilin network in cardiomyocytes of treated animals. This finding was accompanied by reduced fibrosis and heart weights and improved systolic left-ventricular function when compared with control vector-treated DES-KO mice. Since the re-expression of desmin protein in cardiomyocytes of DES-KO mice restores the extrasarcomeric desmin-syncoilin cytoskeleton, attenuates the degree of cardiac hypertrophy and fibrosis, and improves contractile function, AAV-mediated desmin gene transfer may be a novel and promising therapeutic approach for patients with cardiomyopathy due to the complete lack of desmin protein expression. PMID:27101257

  12. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine

    Boussif, Otmane; Lezoualc'h, Frank; Zanta, Maria Antonietta; Djavaheri Mergny, Mojgan; Scherman, Daniel; Demeneix, Barbara; Behr, Jean-Paul

    1995-08-01

    Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se-i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its genedelivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

  13. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.

    Noda-García, Lianet; Camacho-Zarco, Aldo R; Medina-Ruíz, Sofía; Gaytán, Paul; Carrillo-Tripp, Mauricio; Fülöp, Vilmos; Barona-Gómez, Francisco

    2013-09-01

    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole l-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in l-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA's substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in l-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism. PMID:23800623

  14. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    2000-01-01

    The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blas-tula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  15. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    孙永华; 陈尚萍; 汪亚平; 朱作言

    2000-01-01

    The transcriptional onset ot hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  16. Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration.

    Nomikou, Nikolitsa; Feichtinger, Georg A; Redl, Heinz; McHale, Anthony P

    2016-01-01

    It has been suggested that gene transfer into donor cells is an efficient and practical means of locally supplying requisite growth factors for applications in tissue regeneration. Here we describe, for the first time, an ultrasound-mediated system that can non-invasively facilitate gene transfer into cells entrapped within fibrin-based matrices. Since ultrasound-mediated gene transfer is enhanced using microbubbles, we compared the efficacy of neutral and cationic forms of these reagents on the ultrasound-stimulated gene transfer process in gel matrices. In doing so we demonstrated the beneficial effects associated with the use of cationic microbubble preparations that interact directly with cells and nucleic acid within matrices. In some cases, gene expression was increased two-fold in gel matrices when cationic microbubbles were compared with neutral microbubbles. In addition, incorporating collagen into fibrin gels yielded a 25-fold increase in gene expression after application of ultrasound to microbubble-containing matrices. We suggest that this novel system may facilitate non-invasive temporal and spatial control of gene transfer in gel-based matrices for the purposes of tissue regeneration. PMID:23596105

  17. The Reacquisition of Biotin Prototrophy in Saccharomyces cerevisiae Involved Horizontal Gene Transfer, Gene Duplication and Gene Clustering

    Hall, Charles; Dietrich, Fred S

    2007-01-01

    The synthesis of biotin, a vitamin required for many carboxylation reactions, is a variable trait in Saccharomyces cerevisiae. Many S. cerevisiae strains, including common laboratory strains, contain only a partial biotin synthesis pathway. We here report the identification of the first step necessary for the biotin synthesis pathway in S. cerevisiae. The biotin auxotroph strain S288c was able to grow on media lacking biotin when BIO1 and the known biotin synthesis gene BIO6 were introduced t...

  18. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    Palmer Jeffrey D; Rice Danny W

    2006-01-01

    Abstract Background Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees u...

  19. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function

    Bilewitch Jaret P; Degnan Sandie M

    2011-01-01

    Abstract Background The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA vi...

  20. The Extent and Regulation of Lateral Gene Transfer in Natural Microbial Ecosystems

    Aminov, Rustam I.

    The importance of horizontal gene transfer (HGT) in bacterial evolution is evident from the retrospective analyses of bacterial genomes, which suggest that a substantial part of bacterial genomes is of foreign origin. Another line of evidence that supports the possibility of rapid adaptation of...... allowed monitoring HGT events in situ. In this chapter, a brief overview of the milestones of mobile genetic elements (MGEs) research is given, followed by discussion of the conceptual framework development. Then the occurrence and diversity of MGEs as well as the frequencies of HGT in terrestrial...

  1. VERTICAL HEREDITY VS. HORIZONTAL GENE TRANSFER: A CHALLENGE TO BACTERIAL CLASSIFICATION

    HAO Bailin; QI Ji

    2003-01-01

    The diversity and classification of microbes has been a long-standing issue. Molecular phylogeny of the prokaryotes based on comparison of the 16S rRNA sequences of the small ribosomal subunit has led to a reasonable tree of life in the late 1970s. However, the availability of more and more complete bacterial genomes has brought about complications instead of refinement of the tree. In particular, it turns out that different choice of genes may tell different history. This might be caused by possible horizontal gene transfer (HGT) among species. There is an urgent need to develop phylogenetic methods that make use of whole genome data. We describe a new approach in molecular phylogeny, namely, tree construction based on K-tuple frequency analysis of the genomic sequences. Putting aside the technicalities, we emphasize the transition from randomness to determinism when the string length K increases and try to comment on the challenge mentioned in the title.

  2. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... effective and rapid. The titer of the HSVlac stocks was determined on NIH3T3 cells. Eighty-three percent of the beta-gal forming units successfully transduced beta-gal after microapplication to slice cultures. beta-Gal expression was detected as rapidly as 4 h after transduction into cultures of fibroblasts...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  3. Transfer and expression of the gene for human growth hormone in Oryza sativa and Phleum pratense L

    Two derived pB322 plasmids harboring bla (for Beta-lactamase genes) and Human growth Hormone (hGH) genes, were transferred to a cereal plant (Rice) and to a gramine ous fodder (Timothy) in which they are expressed, whereas those constructions are not expressed in Escherichia coli.

  4. Multiple Antibiotic Resistance Gene Transfer from Animal to Human Enterococci in the Digestive Tract of Gnotobiotic Mice

    Moubareck, C.; Bourgeois, N.; Courvalin, P; Doucet-Populaire, F.

    2003-01-01

    It has been proposed that food animals represent the source of glycopeptide resistance genes present in enterococci from humans. We demonstrated the transfer of vanA and of other resistance genes from porcine to human Enterococcus faecium at high frequency in the digestive tract of gnotobiotic mice. Tylosin in the drinking water favored colonization by transconjugants.

  5. A single intravenous AAV9 injection mediates bilateral gene transfer to the adult mouse retina.

    Alexis-Pierre Bemelmans

    Full Text Available Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.

  6. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na125I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future studies

  7. Design and bioinformatics analysis of novel biomimetic peptides as nanocarriers for gene transfer

    Asia Majidi

    2015-01-01

    Full Text Available Objective(s: The introduction of nucleic acids into cells for therapeutic objectives is significantly hindered by the size and charge of these molecules and therefore requires efficient vectors that assist cellular uptake. For several years great efforts have been devoted to the study of development of recombinant vectors based on biological domains with potential applications in gene therapy. Such vectors have been synthesized in genetically engineered approach, resulting in biomacromolecules with new properties that are not present in nature. Materials and Methods: In this study, we have designed new peptides using homology modeling with the purpose of overcoming the cell barriers for successful gene delivery through Bioinformatics tools. Three different carriers were designed and one of those with better score through Bioinformatics tools was cloned, expressed and its affinity for pDNA was monitored. Results: The resultszz demonstrated that the vector can effectively condense pDNAinto nanoparticles with the average sizes about 100 nm. Conclusion: We hope these peptides can overcome the biological barriers associated with gene transfer, and mediate efficient gene delivery.

  8. An Approach for Treating the Hepatobiliary Disease of Cystic Fibrosis by Somatic Gene Transfer

    Yang, Yiping; Raper, Steven E.; Cohn, Jonathan A.; Engelhardt, John F.; Wilson, James M.

    1993-05-01

    Cystic fibrosis (CF) is an inherited disease of epithelial cell ion transport that is associated with pathology in multiple organ systems, including lung, pancreas, and liver. As treatment of the pulmonary manifestations of CF has improved, management of CF liver disease has become increasingly important in adult patients. This report describes an approach for treating CF liver disease by somatic gene transfer. In situ hybridization and immunocytochemistry analysis of rat liver sections indicated that the endogenous CFTR (cystic fibrosis transmembrane conductance regulator) gene is primarily expressed in the intrahepatic biliary epithelial cells. To specifically target recombinant genes to the biliary epithelium in vivo, recombinant adenoviruses expressing lacZ or human CFTR were infused retrograde into the biliary tract through the common bile duct. Conditions were established for achieving recombinant gene expression in virtually all cells of the intrahepatic bile ducts in vivo. Expression persisted in the smaller bile ducts for the duration of the experiment, which was 21 days. These studies suggest that it may be feasible to prevent CF liver disease by genetically reconstituting CFTR expression in the biliary tract, using an approach that is clinically feasible.

  9. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-07-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics.

  10. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents.

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-01-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205-279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics. PMID:27460944

  11. Genetic diversity of bacterial communities and gene transfer agents in northern South China Sea.

    Fu-Lin Sun

    Full Text Available Pyrosequencing of the 16S ribosomal RNA gene (rDNA amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA major capsid gene (g5 was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS, temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments.

  12. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics

    Tanifuji, Goro; Archibald, John M.; Hashimoto, Tetsuo

    2016-02-01

    Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.

  13. CFTR gene transfer to lung epithelium--on the trail of a target cell.

    O'Dea, S; Harrison, D J

    2002-05-01

    Cystic fibrosis (CF) is a lethal inherited disease that afflicts up to 1 in 2,500 people in the western world. Since 1989, when mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were identified as responsible for the disease, intense effort has been applied to the development of replacement gene therapy strategies to cure CF. Problems with basic gene delivery techniques along with limited knowledge of the pathogenesis of CF have hindered progress so far. However, recent insights into the expression patterns and functions of CFTR in developing and adult lungs are now advancing our understanding of this disease. It is becoming apparent that progress in gene delivery to cure CF may be best served by identification of a target cell(s) around which gene transfer strategies can be specifically tailored to most closely reproduce the effects of normal CFTR expression. In fact, accurate restoration of endogenous expression patterns may be crucial, not only for disease reversal, but also to avoid potentially deleterious effects of inappropriate expression. This approach is in turn confounded however, by ill-defined stem and progenitor cell pathways within the lung epithelium. Nonetheless, studies to date suggest that these pathways are relatively plastic and may respond differently during homeostasis compared with repair following injury. It may therefore be feasible to target the lung epithelium in a non-cell specific manner and allow endogenous differentiation pathways to subsequently establish correct CFTR distribution patterns. In this review, emerging information on CFTR expression and function in developing and adult lungs is discussed in the context of putative stem cell populations and their potential for current gene delivery approaches. PMID:12109214

  14. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M.; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Jordan, I. King; Arkin, Adam P.; Kostka, Joel E.

    2016-01-01

    ABSTRACT Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. PMID:27048805

  15. Gene transfer of the Na+,K+-ATPase β1 subunit using electroporation increases lung liquid clearance in rats

    Machado-Aranda, David; Adir, Yochai; Young, Jennifer L.; Briva, A.; Budinger, G.R. Scott; Yeldandi, Anjana V.; Sznajder, Jacob I.; Dean, David A.

    2004-01-01

    The development of non-viral methods for efficient gene transfer to the lung is highly desired for the treatment of a number of pulmonary diseases. We have developed a non-invasive procedure using electroporation to transfer genes to the lungs of rats. Purified plasmid (100 to 600 μg) was delivered to the lungs of anesthetized rats through an endotracheal tube and a series of square wave pulses were delivered via electrodes placed on the chest. Relatively uniform gene expression was observed ...

  16. Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites

    Pombert, Jean-François; Selman, Mohammed; Burki, Fabien; Bardell, Floyd T.; Farinelli, Laurent; Solter, Leellen F.; Whitman, Douglas W.; Weiss, Louis M.; Corradi, Nicolas; Patrick J Keeling

    2012-01-01

    Microsporidia of the genus Encephalitozoon are widespread pathogens of animals that harbor the smallest known nuclear genomes. Complete sequences from Encephalitozoon intestinalis (2.3 Mbp) and Encephalitozoon cuniculi (2.9 Mbp) revealed massive gene losses and reduction of intergenic regions as factors leading to their drastically reduced genome size. However, microsporidian genomes also have gained genes through horizontal gene transfers (HGT), a process that could allow the parasites to ex...

  17. Transfers

    Xavier Sala-i-Martin

    1992-01-01

    In this paper I develop a positive theory of intergenerational transfers. I argue that transfers are a means to induce retirement. that is, to buy the elderly out of the labor force. The reason why societies choose to do such a thing is that aggregate output is higher if the elderly do not work. I model this idea through positive externalities in the average stock of human capital: because skills depreciate with age. one implication of these externalities is that the elderly have a negative e...

  18. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10-5 and 10-4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  19. Progress in identifying a human ionizing-radiation repair gene using DNA-mediated gene transfer techniques

    The authors employing DNA-mediated gene transfer techniques in introducing human DNA into a DNA double-strand break (DSB) repair deficient Chinese hamster (CHO) cell mutant (xrs-6), which is hypersensitive to both X-rays (D0 = 0.39 Gy) and the antibiotic bleomycin (D0 = 0.01 μg/ml). High molecular weight DNA isolated from cultured human skin fibroblasts was partially digested with restriction enzyme Sau 3A to average sizes of 20 or 40 Kb, ligated with plasmid pSV2-gpt DNA, and transfected into xrs-6 cells. Colonies which developed under a bleomycin and MAX (mycophenolic acid/adenine/xanthine) double-selection procedure were isolated and further tested for X-ray sensitivity and DSB rejoining capacity. To date a total of six X-ray or bleomycin resistant transformants have been isolated. All express rejoining capacity for X-ray-induced DSB, similar to the rate observed for DSB repair in CHO wild type cells. DNA isolated from these primary transformants contain various copy numbers of pSV2-gpt DNA and also contain human DNA sequences as determined by Southern blot hybridization. Recently, a secondary transformant has been isolated using DNA from one of the primary transformants. Cellular and molecular characterization of this transformant is in progress. DNA from a genuine secondary transformant will be used in the construction of a DNA library to isolate human genomic DNA encoding this radiation repair gene

  20. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes.

    Theile, M; Hartmann, S; Scherthan, H; Arnold, W; Deppert, W; Frege, R; Glaab, F; Haensch, W; Scherneck, S

    1995-02-01

    A number of candidate tumor suppressor genes located on the human chromosome 17 are thought to have a role to play in the development of breast cancer. In addition to the p53 gene on 17p13.1 and the BRCA1 gene mapped to 17q12-21, other chromosomal regions for tumor suppressor genes have been suggested to exist on 17p13.3 and both the central and the distal parts of 17q, although definitive functional proof of their involvement in breast cancer tumorigenesis is still lacking. In this report we show that microcell transfer of a human chromosome 17 into wild-type p53 breast cancer cells CAL51 results in loss of tumorigenicity and anchorage-independent growth, changes in cell morphology and a reduction of cell growth rates of the neo-selected microcell hybrids. In the hybrid cells, which express the p53 wild-type protein, only the p- and the distal parts of the q arm of donor chromosome 17 are transferred. Thus, our results provide functional evidence for the presence of one or more tumor suppressor gene(s) on chromosome 17, which are distinct from the p53 and the BRCA1 genes. PMID:7845668

  1. Microbial co-habitation and lateral gene transfer: what transposases can tell us

    Hooper, Sean D.; Mavromatis, Konstantinos; Kyrpides, Nikos C.

    2009-03-01

    Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with? All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections. We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.

  2. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  3. Heat-transfer-based detection of SNPs in the PAH gene of PKU patients.

    Vanden Bon, Natalie; van Grinsven, Bart; Murib, Mohammed Sharif; Yeap, Weng Siang; Haenen, Ken; De Ceuninck, Ward; Wagner, Patrick; Ameloot, Marcel; Vermeeren, Veronique; Michiels, Luc

    2014-01-01

    Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH) gene. This method is based on the change in heat-transfer resistance (R(th)) upon thermal denaturation of dsDNA (double-stranded DNA) on nanocrystalline diamond. First, ssDNA (single-stranded DNA) fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an R(th) change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear R(th) shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, R(th) was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q), c.932T>C (p.L311P), and c.1222C>T (R408W), correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes. PMID:24741310

  4. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.

    Deverman, Benjamin E; Pravdo, Piers L; Simpson, Bryan P; Kumar, Sripriya Ravindra; Chan, Ken Y; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P; Gradinaru, Viviana

    2016-02-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  5. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

    Hinnebusch, B Joseph; Rosso, Marie-Laure; Schwan, Tom G; Carniel, Elisabeth

    2002-10-01

    The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar. PMID:12406213

  6. Heat-transfer-based detection of SNPs in the PAH gene of PKU patients

    Vanden Bon N

    2014-03-01

    Full Text Available Natalie Vanden Bon,1 Bart van Grinsven,2 Mohammed Sharif Murib,2 Weng Siang Yeap,2 Ken Haenen,2,3 Ward De Ceuninck,2,3 Patrick Wagner,2,3 Marcel Ameloot,1 Veronique Vermeeren,1 Luc Michiels11Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; 2Institute for Materials Research, Hasselt University, Diepenbeek, Belgium; 3IMOMEC, Diepenbeek, BelgiumAbstract: Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH gene. This method is based on the change in heat-transfer resistance (Rth upon thermal denaturation of dsDNA (double-stranded DNA on nanocrystalline diamond. First, ssDNA (single-stranded DNA fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an Rth change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear Rth shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, Rth was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q, c.932T>C (p.L311P, and c.1222C>T (R408W, correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes.Keywords: mutation detection, heat-transfer resistance, melting temperature, nanocrystalline diamond, persistence length

  7. Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    Rouy Zoé

    2011-11-01

    Full Text Available Abstract Background Legionella pneumophila is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of Legionella species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg of a single species, namely L. pneumophila Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1 and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis. Results We show that L. pneumophila Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between L. pneumophila strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different Legionella species. Conclusion Horizontal gene transfer among bacteria and from eukaryotes to L. pneumophila as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.

  8. Retroviral-mediated transfer and expression of human β-globin genes in cultured murine and human erythroid cells

    The authors cloned human β-globin DNA sequences from a genomic library prepared from DNA isolated from the human leukemia cell line K562 and have used the retroviral vector pZip-NeoSV(X)1 to introduce a 3.0-kilobase segment encompassing the globin gene into mouse erythroleukemia cells. Whereas the endogenous K562 β-globin gene is repressed in K562 cells, when introduced into mouse erythroleukemia cells by retroviral-mediated gene transfer, the β-globin gene from K562 cells was transcribed and induced 5-20-fold after treatment of the cells with dimethyl sulfoxide. The transcripts were correctly initiated, and expression and regulation of the K562 gene were identical to the expression of a normal human β-globin gene transferred into mouse erythroleukemia cells in the same way. They have also introduced the normal human β-globin gene into K562 cells using the same retrovirus vector. SP6 analysis of the RNA isolated from the transduced cells showed that the normal β-globin gene was transcribed at a moderately high level, before or after treatment with hemin. Based on these data, they suggest that the lack of expression of the endogenous β-globin gene in K562 cells does not result from an alteration in the gene itself and may not result from a lack of factor(s) necessary for β-lobin gene transcription. Retroviral-mediated transfer of the human β-globin gene may, however, uniquely influence expression of the gene K562 cells

  9. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  10. Putative cross-kingdom horizontal gene transfer in sponge (Porifera mitochondria

    Ilan Micha

    2006-09-01

    Full Text Available Abstract Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria, in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera. Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida. This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  11. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. PMID:26412445

  12. Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles.

    Bao-Fa Sun

    Full Text Available Many studies have reported horizontal gene transfer (HGT events from eukaryotes, especially fungi. However, only a few investigations summarized multiple interkingdom HGTs involving important phytopathogenic species of Pyrenophora and few have investigated the genetic contributions of HGTs to fungi. We investigated HGT events in P. teres and P. tritici-repentis and discovered that both species harbored 14 HGT genes derived from bacteria and plants, including 12 HGT genes that occurred in both species. One gene coding a leucine-rich repeat protein was present in both species of Pyrenophora and it may have been transferred from a host plant. The transfer of genes from a host plant to pathogenic fungi has been reported rarely and we discovered the first evidence for this transfer in phytopathogenic Pyrenophora. Two HGTs in Pyrenophora underwent subsequent duplications. Some HGT genes had homologs in a few other fungi, indicating relatively ancient transfer events. Functional analyses indicated that half of the HGT genes encoded extracellular proteins and these may have facilitated the infection of plants by Pyrenophora via interference with plant defense-response and the degradation of plant cell walls. Some other HGT genes appeared to participate in carbohydrate metabolism. Together, these functions implied that HGTs may have led to highly efficient mechanisms of infection as well as the utilization of host carbohydrates. Evolutionary analyses indicated that HGT genes experienced amelioration, purifying selection, and accelerated evolution. These appeared to constitute adaptations to the background genome of the recipient. The discovery of multiple interkingdom HGTs in Pyrenophora, their significance to infection, and their adaptive evolution, provided valuable insights into the evolutionary significance of interkingdom HGTs from multiple donors.

  13. Improving access to intestinal stem cells as a step toward intestinal gene transfer.

    Sandberg, J W; Lau, C; Jacomino, M; Finegold, M; Henning, S J

    1994-03-01

    In previous studies exploring the intestinal epithelium as a potential site for somatic gene therapy, we concluded that the mucus lining the intestine constitutes a significant barrier to any attempts at gene transfer via the lumenal route. The mucus problem is aggravated by the fact that the epithelial stem cells, which are the logical target for gene transfer, are located deep in the intestinal crypts. The goals of the current study were to develop procedures that would improve accessibility to the intestinal stem cells and which would effect in vivo mucus removal without damaging the underlying epithelium. Initial experiments involved evaluation of the use of distension to improve accessibility to the intestinal crypts and the use of the mucolytic agents dithiothreitol (DTT) and N-acetyl-cysteine (NAC) versus a control solution of phosphate-buffered saline (PBS) for mucus removal. Catheters were inserted in each end of 3-cm terminal ileal segments in anesthetized rats. Two milliliters of agent was instilled into the clamped segment for 2 min, removed, and repeated. Lumenal distension resulted in shortened villi with wider intervillus spacing, thereby improving crypt access. Both NAC and DTT washes removed significant mucus between the villi but failed to reach the crypt lumen. To enhance mucus release from the crypt lumen, pilocarpine was selected due to its cholinergic properties and preferential binding to muscarinic receptors on crypt goblet cells. Pilocarpine given intraperitoneally 30 min prior to the mucolytic or PBS wash resulted in significant eradication of mucus down into the crypt lumen. This effect was still evident 3-4 hr later provided the intestine remained undisturbed. PMID:8018747

  14. Expression of VEGF protein of lung and liver in GM-CSF gene transferred mice after neutron acute injury

    Objective: To study lung and liver vascular endothelial growth factor (VEGF) protein expression changes in granulocyte-macrophage colony-stimulating factor(GM-CSF) transgene mice after neutron exposure. Methods: Male BALB/C mice were irradiated with neutron, in dose of 0.6Gy, the mice were divided into the non-transfer group and the gene transfer group. In the gene transfer group, hGM-CSF gene was transfered by electroporation in vivo 24 h prior to exposure. Animals in the two groups were sacrificed at the 1st, 14th, 28th day, using pathologic test, immunohistochemica test and Western blot to study VEGF protein expression in lung and liver. Results: From 14 d to 28 d after exposure, the levels of VEGF protein expression in the mice in the genetransfer group was significantly higher than that in the non-transfer group. Conclusion: GM-CSF in vivo gene transfer in mice significantly promote angiogenesis and restoration in the climax and recovery phase acute injury caused by neutron. (authors)

  15. Stimulating recovery of hemopoietic and immunological functions by co-transferring IL-6 and SCF genes in irradiated mice

    Objective: To explore the hemopoietic and immunological functions of retroviral-mediated IL-6 and SCF genes co-transferred into bone marrow stromal cells in irradiated mice. Methods: IL-6 and SCF cDNA were recombined with retroviral vector pLXSN by gene recombination technology. Number of peripheral blood and bone marrow cells, CFU-GM of bone marrow cells, LTT and CD4/CD8 ratio of spleen were also assayed in vivo. Results: The bone marrow stromal cells transferred with IL-6 and SCF genes could stimulate the recovery of hemopoietic and immunological functions in irradiated mice in vivo. Conclusion: IL-6 and SCF genes are simultaneously expressed in bone marrow stromal cells, which provide a basis for studies on hematopoietic regulation by gene-transfected bone marrow stromal cells

  16. Improvement of Drought Tolerance in Transgenic Tobacco Plants by a Dehydrin-Like Gene Transfer

    SHEN Ye; JIA Wei-long; ZHANG Yan-qin; HU Yuan-lei; WU Qi; LIN Zhong-ping

    2004-01-01

    A full-length cDNA of dehydrin BcDh2 from Boea crassifolia and its antisense nucleotide sequence have been transferred into tobacco (Nicotiana tabacum) NC89 under the control of a caulifower mosaic virus 35S promoter. Under a progressive water stress, photosynthetic rate, transpiration rate and stomatal conductance of the sense and antisense plants reduced, and those of the control reduced much more. Photosynthetic rate, transpiration rate and stomatal conductance of all plants tested increased significantly 24 hours later after recoveried water supply, and those of the sense and antisense plants were higher than control. These indicated that overexpression of a dehydrin gene in tobacco may improve tolerance to water stress for plants, however, antisense BcDh2 gene in transgenic plant did not influence physiological conditions. The results of germination experiment of the transgenic seeds showed that on MS medium with different concentration PEG (8000), sense seed could more endure drought than control, while antisense seed was sensitive to drought. The results suggested that the overexpression of a dehydrin gene in tobacco might improve the tolerance to water stress for plants.

  17. Improvement of Drought Tolerance in Transgenic Tobacco Plants by aDehydrin-Like Gene Transfer

    SHENYe; JIAWei-long; ZHANGYan-qin; HUYuan-lei; WUQi; LINZhongping

    2004-01-01

    A full-length cDNA of dehydrin BcDh2 from Boea crassifolia and its antisense nucleotide sequence have been transferred into tobacco (Nicotiana tabacum) NC89 under the control of a caulifower mosaic virus 35S promoter. Under a progressive water stress, photosynthetic rate, transpiration rate and stomatal conductance of the sense and antisense plants reduced, and those of the control reduced much more. Photosynthetic rate, transpiration rate and stomatal conductance of all plants tested increased significantly 24 hours later after recoveried water supply, and those of the sense and antisense plants were higher than control. These indicated that overexpression of a dehydrin gene in tobacco may improve tolerance to water stress for plants, however, antisense BcDh2 gene in transgenic plant did not influence physiological conditions. The results of germination experiment of the transgenic seeds showed that on MS medium with different concentration PEG (8000), sense seed could more endure drought than control, while antisense seed was sensitive to drought. The results suggested that the overexpression of a dehydrin gene in tobacco might improve the tolerance to water stress for plants.

  18. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    Zhicheng Shen

    2003-08-01

    Full Text Available Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L., and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  19. Parkinson-related parkin reduces α-Synuclein phosphorylation in a gene transfer model

    Rebeck GW

    2010-11-01

    Full Text Available Abstract Background α-Synuclein aggregates in Lewy bodies and plays a central role in the pathogenesis of a group of neurodegenerative disorders, known as "Synucleinopathies", including Parkinson's disease. Parkin mutations result in loss of parkin E3-ubiquitin ligase activity and cause autosomal recessive early onset parkinsonism. Results We tested how these two genes interact by examining the effects of parkin on post-translational modification of α-Synuclein in gene transfer animal models, using a lentiviral gene delivery system into the striatum of 2-month old male Sprague Dawley rats. Viral expression of wild type α-Synuclein caused accumulation of α-Synuclein and was associated with increased cell death and inflammation. α-Synuclein increased PLK2 levels and GSK-3β activity and increased the levels of phosphorylated α-Synuclein and Tau. Parkin co-expression reduced the levels of phosphorylated α-Synuclein and attenuated cell death and inflammation. Parkin reduced PLK2 levels and increased PP2A activation. Conclusions These data suggest that parkin reduces α-Synuclein levels and alters the balance between phosphatase and kinase activities that affect the levels of phosphorylated α-Synuclein. These results indicate novel mechanisms for parkin protection against α-Synuclein-induced toxicity in PD.

  20. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee.

    Acuña, Ricardo; Padilla, Beatriz E; Flórez-Ramos, Claudia P; Rubio, José D; Herrera, Juan C; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H; Egan, Ashley N; Doyle, Jeffrey J; Rose, Jocelyn K C

    2012-03-13

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or "false berry borer"), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  1. Genome analysis and gene nblA identification of Microcystis aeruginosa myovirus (MaMV-DC) reveal the evidence for horizontal gene transfer events between cyanomyovirus and host.

    Ou, Tong; Gao, Xiao-Chan; Li, San-Hua; Zhang, Qi-Ya

    2015-12-01

    The genome sequence, genetic characterization and nblA gene function of Microcystis aeruginosa myovirus isolated from Lake Dianchi in China (MaMV-DC) have been analysed. The genome DNA is 169 223 bp long, with 170 predicted protein-coding genes (001L–170L) and a tRNA gene. About one-sixth of these genes have homologues in the host cyanobacteria M. aeruginosa. The genome carries a gene homologous to host nblA, which encodes a protein involved in the degradation of cyanobacterial phycobilisome. Its expression during MaMV-DC infection was confirmed by reverse transcriptase PCR and Western blot detection and abundant expression was companied by the significant decline of phycocyanin content and massive release of progeny MaMV-DC. In addition, expressing MaMV-DC nblA reduced the phycocyanin peak and the phycocyanin to chlorophyll ratio in model cyanobacteria. These results confirm that horizontal gene transfer events have occurred between cyanobacterial host and cyanomyovirus and suggest that MaMV-DC carrying host-derived genes (such as 005L, that codes for NblA) is responsible for more efficient expression of cyanophage genes and release of progeny cyanophage. This study provides novel insight into the horizontal gene transfer in cyanophage and the interactions between cyanophage and their host. PMID:26399243

  2. Orexin gene transfer into the amygdala suppresses both spontaneous and emotion-induced cataplexy in orexin-knockout mice.

    Liu, Meng; Blanco-Centurion, Carlos; Konadhode, Roda Rani; Luan, Liju; Shiromani, Priyattam J

    2016-03-01

    Narcolepsy is a chronic sleep disorder linked to the loss of orexin-producing neurons in the hypothalamus. Cataplexy, a sudden loss of muscle tone during waking, is an important distinguishing symptom of narcolepsy and it is often triggered by strong emotions. The neural circuit underlying cataplexy attacks is not known, but is likely to involve the amygdala, a region implicated in regulating emotions. In mice models of narcolepsy, transfer of the orexin gene into surrogate neurons has been successful in ameliorating narcoleptic symptoms. However, it is not known whether this method also blocks cataplexy triggered by strong emotions. To examine this possibility, the gene encoding mouse prepro-orexin was transferred into amygdala neurons of orexin-knockout (KO) mice (rAAV-orexin; n = 8). Orexin-KO mice that did not receive gene transfer (no-rAAV; n = 7) or received only the reporter gene (rAAV-GFP; n = 7) served as controls. Three weeks later, the animal's sleep and behaviour were recorded at night (no-odour control night), followed by another recording at night in the presence of predator odour (odour night). Orexin-KO mice given the orexin gene transfer into surrogate amygdala neurons had significantly less spontaneous bouts of cataplexy, and predator odour did not induce cataplexy compared with control mice. Moreover, the mice with orexin gene transfer were awake more during the odour night. These results demonstrate that orexin gene transfer into amygdala neurons can suppress both spontaneous and emotion-induced cataplexy attacks in narcoleptic mice. It suggests that manipulating amygdala pathways is a potential strategy for treating cataplexy in narcolepsy. PMID:26741960

  3. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  4. Modeling horizontal gene transfer (HGT in the gut of the Chagas disease vector Rhodnius prolixus

    Durvasula Ravi V

    2011-05-01

    Full Text Available Abstract Background Paratransgenesis is an approach to reducing arthropod vector competence using genetically modified symbionts. When applied to control of Chagas disease, the symbiont bacterium Rhodococcus rhodnii, resident in the gut lumen of the triatomine vector Rhodnius prolixus (Hemiptera: Reduviidae, is transformed to export cecropin A, an insect immune peptide. Cecropin A is active against Trypanosoma cruzi, the causative agent of Chagas disease. While proof of concept has been achieved in laboratory studies, a rigorous and comprehensive risk assessment is required prior to consideration of field release. An important part of this assessment involves estimating probability of transgene horizontal transfer to environmental organisms (HGT. This article presents a two-part risk assessment methodology: a theoretical model predicting HGT in the gut of R. prolixus from the genetically transformed symbiont R. rhodnii to a closely related non-target bacterium, Gordona rubropertinctus, in the absence of selection pressure, and a series of laboratory trials designed to test the model. Results The model predicted an HGT frequency of less than 1.14 × 10-16 per 100,000 generations at the 99% certainty level. The model was iterated twenty times, with the mean of the ten highest outputs evaluated at the 99% certainty level. Laboratory trials indicated no horizontal gene transfer, supporting the conclusions of the model. Conclusions The model treats HGT as a composite event, the probability of which is determined by the joint probability of three independent events: gene transfer through the modalities of transformation, transduction, and conjugation. Genes are represented in matrices and Monte Carlo method and Markov chain analysis are used to simulate and evaluate environmental conditions. The model is intended as a risk assessment instrument and predicts HGT frequency of less than 1.14 × 10-16 per 100,000 generations. With laboratory studies that

  5. Noninvasive Assessment of Gene Transfer and Expression by In Vivo Functional and Morphologic Imaging in a Rabbit Tumor Model

    Ravoori, Murali K.; Han, Lin; Singh, Sheela P.; Dixon, Katherine; Duggal, Jyoti; Liu, Ping; Uthamanthil, Rajesh; Gupta, Sanjay; Wright, Kenneth C; Kundra, Vikas

    2013-01-01

    Purpose To evaluate the importance of morphology in quantifying expression after in vivo gene transfer and to compare gene expression after intra-arterial (IA) and intra-tumoral (IT) delivery of adenovirus expressing a SSTR2-based reporter gene in a large animal tumor model. Materials and Methods Tumor directed IA or IT delivery of adenovirus containing a human somatostatin receptor type 2A (Ad-CMV-HA-SSTR2A) gene chimera or control adenovirus (Ad-CMV-GFP) was performed in VX2 tumors growing ...

  6. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification.

    Elisabet Vikeved

    2016-01-01

    Full Text Available The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT. Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania.To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species.LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets.

  7. Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid Phytomonas serpens.

    Ienne, Susan; Pappas, Georgios; Benabdellah, Karim; González, Antonio; Zingales, Bianca

    2012-04-01

    Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of γ-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas, Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. PMID:22293462

  8. In vivo evaluation of adeno-associated virus gene transfer in airways of mice with acute or chronic respiratory infection.

    Myint, Melissa; Limberis, Maria P; Bell, Peter; Somanathan, Suryanarayan; Haczku, Angela; Wilson, James M; Diamond, Scott L

    2014-11-01

    Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼10(5) CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼10(5) CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer. PMID:25144316

  9. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%

  10. Transferring gfp gene with ion implantation and transient expression of gfp in liliaceous pollen cells

    YUAN Shibin; CHEN Qizhong; WANG Yugang; ZHAO Weijiang; XU An; YANG Gen; WANG Wenxian; WU Lijun

    2004-01-01

    Liliaceous pollen cells were implanted by 4.0 MeV C2+ ion beam or by 25.0 keV N+ ion beam. Laser confocal scanning microscopy (LCSM) of the implanted intact samples showed that parts of the implanted pollen cells could be stained by propidium iodide (PI). This indicated that energetic ion beam could directly act on cells beneath the pollen coats and made channels for entry of the molecules from outside of the cells. LCSM analysis of green fluorescent protein (GFP) showed that energetic ion beam could mediate transient expression of gfp in treated pollen cells. Compared with 25.0 keV N+ ion beam, implantation of 4.0 MeV C2+ ion beam greatly improved gene transfer efficiency in pollen cells.

  11. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  12. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    Awazu, Kunio; Kinpara, Takeshi; Tamiya, Eiichi

    2002-05-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm 2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%.

  13. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae.

    Metzger, Lisa C; Blokesch, Melanie

    2016-04-01

    The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae. PMID:26615332

  14. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    Jean-MarcRolain

    2013-06-01

    Full Text Available The increase and spread of antibiotic resistance (AR over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.

  15. Imaging expression of adenoviral HSV1-tk suicide gene transfer using the nucleoside analogue FIRU

    Substrates for monitoring HSV1-tk gene expression include uracil and acycloguanosine derivatives.The most commonly used uracil derivative to monitor HSV1-tk gene transfer is 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-[*I]iodouracil (fialuridine; I*-FIAU), where the asterisk denotes any of the radioactive iodine isotopes that can be used. We have previously studied other nucleosides with imaging properties as good as or better than FIAU, including 1-(2-fluoro-2-deoxy-β-D-ribofuranosyl)-5-[*I]iodouracil (FIRU). The first aim of this study was to extend the biodistribution data of 123I-labelled FIRU. Secondly, we assessed the feasibility of detecting differences in HSV1-tk gene expression levels following adenoviral gene transfer in vivo with 123I-FIRU. 9L rat gliosarcoma cells were stably transfected with the HSV1-tk gene (9L-tk+). 123I-FIRU was prepared by radioiodination of 1-(2-fluoro-2-deoxy-β-D-ribofuranosyl)-5-tributylstannyl uracil (FTMRSU; precursor compound) and purified using an activated Sep-Pak column. Incubation of 9L-tk+ cells and the parental 9L cells with 123I-FIRU resulted in a 100-fold higher accumulation of radioactivity in the 9L-tk+ cells after an optimum incubation time of 4 h. NIH-bg-nu-xid mice were then inoculated subcutaneously with HSV1-tk (-) 9L cells or HSV1-tk (+) 9L-tk+ cells into both flanks. Biodistribution studies and gamma camera imaging were performed at 15 min and 1, 2, 4 and 24 h p.i. At 15 min, the tumour/muscle, tumour/blood and tumour/brain ratios were 5.2, 1.0 and 30.3 respectively. Rapid renal clearance of the tracer from the body resulted in increasing tumour/muscle, tumour/blood and tumour/brain ratios, reaching values of 32.2, 12.5 and 171.6 at 4 h p.i. A maximum specific activity of 22%ID/g tissue was reached in the 9L-tk+ tumours 4 h after 123I-FIRU injection. Two Ad5-based adenoviral vectors containing the HSV1-tk gene were constructed: a replication-incompetent vector with the transgene in the former E1 region

  16. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots.

    Franks, T K; Powell, K S; Choimes, S; Marsh, E; Iocco, P; Sinclair, B J; Ford, C M; van Heeswijck, R

    2006-04-01

    A multigenic trait (biosynthesis of the secondary metabolite, dhurrin cyanogenic glucoside) was engineered de novo in grapevine (Vitis vinifera L.). This follows a recent report of transfer of the same trait to Arabidopsis (Arabidopsis thaliana) using three genetic sequences from sorghum (Sorghum bicolor): two cytochrome P450-encoding cDNAs (CYP79A1 and CYP71E1) and a UDPG-glucosyltransferase-encoding cDNA (sbHMNGT). Here we describe the two-step process involving whole plant transformation followed by hairy root transformation, which was used to transfer the same three sorghum sequences to grapevine. Transgenic grapevine hairy root lines that accumulated transcript from none, one (sbHMNGT), two (CYP79A1 and CYP71E1) or all three transgenes were recovered and characterisation of these lines provided information about the requirements for dhurrin biosynthesis in grapevine. Only lines that accumulated transcripts from all three transgenes had significantly elevated cyanide potential (up to the equivalent of about 100 mg HCN kg(-1) fresh weight), and levels were highly variable. One dhurrin-positive line was tested and found to release cyanide upon maceration and can therefore be considered 'cyanogenic'. In in vitro dual co-culture of this cyanogenic hairy root line or an acyanogenic line with the specialist root-sucking, gall-forming, aphid-like insect, grapevine phylloxera (Daktulosphaira vitifoliae, Fitch), there was no evidence for protection of the cyanogenic plant tissue from infestation by the insect. Consistently high levels of dhurrin accumulation may be required for this to occur. The possibility that endogenous grapevine gene expression is modulated in response to engineered dhurrin biosynthesis was investigated using microarray analysis of 1225 grapevine ESTs, but differences in patterns of gene expression associated with dhurrin-positive and dhurrin-negative phenotypes were not identified. PMID:16604459

  17. N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae.

    Dustin L Higashi

    Full Text Available The genus Neisseria contains at least eight commensal and two pathogenic species. According to the Neisseria phylogenetic tree, commensals are basal to the pathogens. N. elongata, which is at the opposite end of the tree from N. gonorrhoeae, has been observed to be fimbriated, and these fimbriae are correlated with genetic competence in this organism. We tested the hypothesis that the fimbriae of N. elongata are Type IV pili (Tfp, and that Tfp functions in genetic competence. We provide evidence that the N. elongata fimbriae are indeed Tfp. Tfp, as well as the DNA Uptake Sequence (DUS, greatly enhance N. elongata DNA transformation. Tfp allows N. elongata to make intimate contact with N. gonorrhoeae and to mediate the transfer of antibiotic resistance markers between these two species. We conclude that Tfp functional for genetic competence is a trait of a commensal member of the Neisseria genus. Our findings provide a mechanism for the horizontal gene transfer that has been observed among Neisseria species.

  18. N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae.

    Higashi, Dustin L; Biais, Nicolas; Weyand, Nathan J; Agellon, Al; Sisko, Jennifer L; Brown, Lewis M; So, Magdalene

    2011-01-01

    The genus Neisseria contains at least eight commensal and two pathogenic species. According to the Neisseria phylogenetic tree, commensals are basal to the pathogens. N. elongata, which is at the opposite end of the tree from N. gonorrhoeae, has been observed to be fimbriated, and these fimbriae are correlated with genetic competence in this organism. We tested the hypothesis that the fimbriae of N. elongata are Type IV pili (Tfp), and that Tfp functions in genetic competence. We provide evidence that the N. elongata fimbriae are indeed Tfp. Tfp, as well as the DNA Uptake Sequence (DUS), greatly enhance N. elongata DNA transformation. Tfp allows N. elongata to make intimate contact with N. gonorrhoeae and to mediate the transfer of antibiotic resistance markers between these two species. We conclude that Tfp functional for genetic competence is a trait of a commensal member of the Neisseria genus. Our findings provide a mechanism for the horizontal gene transfer that has been observed among Neisseria species. PMID:21731720

  19. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco.

    Pontiroli, Alessandra; Rizzi, Aurora; Simonet, Pascal; Daffonchio, Daniele; Vogel, Timothy M; Monier, Jean-Michel

    2009-05-01

    Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-DeltaPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues. PMID:19329660

  20. Optimization of ectopic gene expression in skeletal muscle through DNA transfer by electroporation

    Latour Mickey

    2004-05-01

    Full Text Available Abstract Background Electroporation (EP is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums. Results We found that as the amount of damage increased in skeletal muscle in response to EP, the level of β-galactosidase (β-gal expression drastically decreased and that there was no evidence of β-gal expression in damaged fibers. Two specific types of electrodes yielded the greatest amount of expression. We also discovered that DNA uptake in skeletal muscle following intra-arterial injection of DNA was significantly enhanced by EP. Finally, we found that DMSO and LipoFECTAMINE™, common enhancers of DNA electroporation in vitro, had no positive effect on DNA electroporation in vivo. Conclusions When injecting DNA intramuscularly, a flat plate electrode without any plasmid enhancers is the best method to achieve high levels of gene expression.

  1. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population.

    Labonté, Jessica M; Field, Erin K; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K Eric; Kieft, Thomas L; Onstott, Tullis C; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  2. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  3. The use of irradiated pollen for differential gene transfer in wheat (Triticum aestivum)

    The use of irradiated pollen to bring about limited gene transfer in wheat has been investigated. Doses of X-rays of 2Kr, 3Kr and 5Kr were used to generate M1 progeny between maternal and paternal genotypes differing in quantitative and major gene characters. Cytological studies of M1 plants revealed hybrids with widespread aneuploidy and structural rearrangements in the paternal genome. These effects resulted in phenotypic variation between M1 progeny and complex multivalent formation at meiosis. All M1 plants at the 5Kr and 3Kr doses were sterile and all but 2 plants at the 2Kr dose. Studies of the two M2 families from these plants revealed disturbances in genotype frequencies for some of the marker loci with an excess of maternal homozygotes and a deficit of paternal homozygotes. This was also reflected in a more maternal appearance for quantitative characters. These results are interpreted as showing that irradiation damage to the paternal genome in M1 plants results in the differential transmission of maternal alleles. (orig.)

  4. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs

    Hakim, Chady H.; Yue, Yongping; Shin, Jin-Hong; Williams, Regina R; Zhang, Keqing; Smith, Bruce F; Duan, Dongsheng

    2014-01-01

    The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F A...

  5. Effect of Bacterial Distribution and Activity on Conjugal Gene Transfer on the Phylloplane of the Bush Bean (Phaseolus vulgaris)

    Normander, Bo; Christensen, Bjarke B.; Molin, Søren; Kroer, Niels

    1998-01-01

    Conjugal plasmid transfer was examined on the phylloplane of bean (Phaseolus vulgaris) and related to the spatial distribution pattern and metabolic activity of the bacteria. The donor (Pseudomonas putida KT2442) harbored a derivative of the TOL plasmid, which conferred kanamycin resistance and had the gfp gene inserted downstream of a lac promoter. A chromosomal insertion of lacIq prevented expression of the gfp gene. The recipient (P. putida KT2440) had a chromosomal tetracycline resistance...

  6. Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathogenic Fungal Genus Colletotrichum

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R.

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically ...

  7. In vitro functional correction of Hermansky-Pudlak Syndrome type-1 by lentiviral-mediated gene transfer

    Ikawa Y.; Hess R.; Dorward H.; Cullinane A.R.; Huizing M.; Gochuico B.R.; Gahl W.A.; Candotti F.

    2014-01-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal mela...

  8. Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy

    Keyhani Nemat O

    2004-06-01

    Full Text Available Abstract Background The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertical genealogy that underpins tryptophan biosynthesis. Results In 47 complete-genome Bacteria, the genes encoding the seven catalytic domains that participate in primary tryptophan biosynthesis were distinguished from any paralogs or xenologs engaged in other specialized functions. A reliable list of orthologs with carefully ascertained functional roles has thus been assembled and should be valuable as an annotation resource. The protein domains associated with primary tryptophan biosynthesis were then concatenated, yielding single amino-acid sequence strings that represent the entire tryptophan pathway. Lateral gene transfer of several whole-pathway trp operons was demonstrated by use of phylogenetic analysis. Lateral gene transfer of partial-pathway trp operons was also shown, with newly recruited genes functioning either in primary biosynthesis (rarely or specialized metabolism (more frequently. Conclusions (i Concatenated tryptophan protein trees are congruent with 16S rRNA subtrees provided that the genomes represented are of sufficiently close phylogenetic spacing. There are currently seven tryptophan congruency groups in the Bacteria. Recognition of a succession of others can be expected in the near future, but ultimately these should coalesce to a single grouping that parallels the 16S rRNA tree (except for cases of lateral gene transfer. (ii The vertical trace of evolution for tryptophan biosynthesis can be deduced. The daunting complexities engendered

  9. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    Palmer Jeffrey D

    2006-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts, where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. Conclusion The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and

  10. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype

    Mortensen, Ole Hartvig; Frandsen, Lis; Schjerling, Peter; Nishimura, Erica; Grunnet, Niels

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta (PGC-1alpha and PGC-1beta) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism...

  11. Hepatocyte-targeting gene transfer mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative.

    Wang, Yuqiang; Su, Jing; Cai, Wenwei; Lu, Ping; Yuan, Lifen; Jin, Tuo; Chen, Shuyan; Sheng, Jing

    2013-01-01

    Biscarbamate cross-linked polyethylenimine derivative (PEI-Et) has been reported as a novel nonviral vector for efficient and safe gene transfer in our previous work. However, it had no cell-specificity. To achieve specific delivery of genes to hepatocytes, galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative (GPE) was prepared through modification of PEI-Et with poly(ethylene glycol) and lactobionic acid, bearing a galactose group as a hepatocyte-targeting moiety. The composition of GPE was characterized by proton nuclear magnetic resonance. The weight-average molecular weight of GPE measured with a gel permeation chromatography instrument was 9489 Da, with a polydispersity of 1.44. GPE could effectively condense plasmid DNA (pDNA) into nanoparticles. Gel retardation assay showed that GPE/pDNA complexes were completely formed at weigh ratios (w/w) over 3. The particle size of GPE/pDNA complexes was 79-100 nm and zeta potential was 6-15 mV, values which were appropriate for cellular uptake. The morphology of GPE/pDNA complexes under atomic force microscopy appeared spherical and uniform in size, with diameters of 53-65 nm. GPE displayed much higher transfection efficiency than commercially available PEI 25 kDa in BRL-3A cell lines. Importantly, GPE showed good hepatocyte specificity. Also, the polymer exhibited significantly lower cytotoxicity compared to PEI 25 kDa at the same concentration or weight ratio in BRL-3A cell lines. To sum up, our results indicated that GPE might carry great potential in safe and efficient hepatocyte-targeting gene delivery. PMID:23576866

  12. Identification of novel small molecule inhibitors of adenovirus gene transfer using a high throughput screening approach.

    Duffy, Margaret R; Parker, Alan L; Kalkman, Eric R; White, Katie; Kovalskyy, Dmytro; Kelly, Sharon M; Baker, Andrew H

    2013-08-28

    Due to many favourable attributes adenoviruses (Ads) are the most extensively used vectors for clinical gene therapy applications. However, following intravascular administration, the safety and efficacy of Ad vectors are hampered by the strong hepatic tropism and induction of a potent immune response. Such effects are determined by a range of complex interactions including those with neutralising antibodies, blood cells and factors, as well as binding to native cellular receptors (coxsackie adenovirus receptor (CAR), integrins). Once in the bloodstream, coagulation factor X (FX) has a pivotal role in determining Ad liver transduction and viral immune recognition. Due to difficulties in generating a vector devoid of multiple receptor binding motifs, we hypothesised that a small molecule inhibitor would be of value. Here, a pharmacological approach was implemented to block adenovirus transduction pathways. We developed a high throughput screening (HTS) platform to identify small molecule inhibitors of FX-mediated Ad5 gene transfer. Using an in vitro fluorescence and cell-based HTS, we evaluated 10,240 small molecules. Following sequential rounds of screening, three compounds, T5424837, T5550585 and T5660138 were identified that ablated FX-mediated Ad5 transduction with low micromolar potency. The candidate molecules possessed common structural features and formed part of the one pharmacophore model. Focused, mini-libraries were generated with structurally related molecules and in vitro screening revealed novel hits with similar or improved efficacy. The compounds did not interfere with Ad5:FX engagement but acted at a subsequent step by blocking efficient intracellular transport of the virus. In vivo, T5660138 and its closely related analogue T5660136 significantly reduced Ad5 liver transgene expression at 48 h post-intravenous administration of a high viral dose (1×10¹¹ vp/mouse). Therefore, this study identifies novel and potent small molecule inhibitors of the

  13. Obtaining chicken primordial germ cells used for gene transfer: in vitro and in vivo results.

    Chojnacka-Puchta, Luiza; Sawicka, Dorota; Lakota, Paweł; Plucienniczak, Grazyna; Bednarczyk, Marek; Plucienniczak, Andrzej

    2015-11-01

    Recently, several attempts have been made to create a generation of transgenic chickens via chimeric intermediates produced by primordial germ cells (PGCs) transfer. This study aimed to compare the influences of different chicken PGCs isolated from circulating blood (bPGCs) or gonads (gPGCs), purification (ACK, Percoll or trypsin) and transfection methods (electroporation or lipofection) on the expression of transgenes in vitro and the migration of modified donor cells to the recipient gonads. The highest average frequency of pEGFP-N1 plasmid-transfected bPGCs (75.8%) was achieved with Percoll density gradient centrifugation and electroporation. After ammonium chloride-potassium (ACK) treatment and lipofection, in vitro transgene expression was only detected in 35.2% of bPGCs. Chimeric chickens were produced from these purified, transfected and cultured cells, and the transgene was detected in the gonads of 44 and 42% of the recipient embryos that had been injected with bPGCs and gPGCs, respectively. These data confirmed that the combination of PGC purification via Percoll centrifugation and electroporation was an effective method for producing transgenic chickens. Subsequently, we used this method with expression vectors for gene hIFNα 2a/hepatitis B virus surface antigen (HBsAg) under the control of the ovalbumin promoter to generate G0 transgenic chickens. Consequently, we observed that 4.9% of the hens and 3.5% of the roosters carried the hIFNα 2a gene, whereas 16.7% of the hens and 2.4% of the roosters carried the HBsAg gene, thus undisputedly confirming the exceptional effectiveness of the applied methods. PMID:25737138

  14. GTOs and HGT: genes are older than expected and can be installed by horizontal gene transfer, especially with help from viruses

    Klyce, Brig

    2012-10-01

    The origin of life on Earth took a puzzlingly short time. Panspermia is appealing because it means that the origin of life need not be confined to a few million years on one planet. Similar puzzles arise in the evolution of higher life forms. Punctuated equilibrium, for example, seems to violate the darwinian account of gradual evolution by trial-and-error, a few DNA nucleotides at a time. The strong version of panspermia alleviates this puzzle as well. If all of life comes ultimately from space, genes may appear to be older than necessary, evolution by the acquisition of whole genes or suites of genes, by horizontal gene transfer (HGT), becomes much more important, and punctuated equilibrium is not surprising. Does evidence support this supposition? How common are old genes? How important is HGT versus the gradual composition of genetic programs? We will look at these questions.

  15. Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element.

    Delavat, François; Mitri, Sara; Pelet, Serge; van der Meer, Jan Roelof

    2016-06-14

    Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer. PMID:27247406

  16. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle.

    Pavel Makarevich

    Full Text Available Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165 and hepatocyte growth factor (HGF can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.

  17. Exploration of new perspectives and limitations in Agrobacterium-mediated gene transfer technology. Final report, June 1, 1992--May 31, 1995

    Marton, L.

    1996-02-01

    Genetic manipulation of plants often involves the introduction of homologous or partly homologous genes. Ectropic introduction of homologous sequences into plant genomes may trigger epigenetic changes, making expression of the genes unpredictable. The main project objective was to examine the feasibility of using Agrobacterium-mediated gene transfer for homologous gene targeting in plants.

  18. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria

    Gouy Manolo

    2008-10-01

    Full Text Available Abstract Background Despite a large agreement between ribosomal RNA and concatenated protein phylogenies, the phylogenetic tree of the bacterial domain remains uncertain in its deepest nodes. For instance, the position of the hyperthermophilic Aquificales is debated, as their commonly observed position close to Thermotogales may proceed from horizontal gene transfers, long branch attraction or compositional biases, and may not represent vertical descent. Indeed, another view, based on the analysis of rare genomic changes, places Aquificales close to epsilon-Proteobacteria. Results To get a whole genome view of Aquifex relationships, all trees containing sequences from Aquifex in the HOGENOM database were surveyed. This study revealed that Aquifex is most often found as a neighbour to Thermotogales. Moreover, informational genes, which appeared to be less often transferred to the Aquifex lineage than non-informational genes, most often placed Aquificales close to Thermotogales. To ensure these results did not come from long branch attraction or compositional artefacts, a subset of carefully chosen proteins from a wide range of bacterial species was selected for further scrutiny. Among these genes, two phylogenetic hypotheses were found to be significantly more likely than the others: the most likely hypothesis placed Aquificales as a neighbour to Thermotogales, and the second one with epsilon-Proteobacteria. We characterized the genes that supported each of these two hypotheses, and found that differences in rates of evolution or in amino-acid compositions could not explain the presence of two incongruent phylogenetic signals in the alignment. Instead, evidence for a large Horizontal Gene Transfer between Aquificales and epsilon-Proteobacteria was found. Conclusion Methods based on concatenated informational proteins and methods based on character cladistics led to different conclusions regarding the position of Aquificales because this lineage

  19. In vitro functional correction of Hermansky-Pudlak Syndrome type-1 by lentiviral-mediated gene transfer.

    Ikawa, Yasuhiro; Hess, Richard; Dorward, Heidi; Cullinane, Andrew R; Huizing, Marjan; Gochuico, Bernadette R; Gahl, William A; Candotti, Fabio

    2015-01-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development of gene therapy for HPS. PMID:25468649

  20. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Yang, Hyun Suk; Park, Seong-Wook [Department of Internal Medicine (Cardiology), Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, 138-736, Seoul (Korea); Lee, Heuiran; Kim, Sung Jin [Department of Microbiology, University of Ulsan College of Medicine, Seoul (Korea); Lee, Won Woo [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam (Korea); Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea); Yang, You-Jung; Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea)

    2004-09-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by {sup 99m}TcO{sub 4}{sup -} scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10{sup 7}, 2 x 10{sup 8} or 1 x 10{sup 9} plaque forming units (pfu)] or {beta}-galactosidase gene (Rad-CMV-LacZ 1 x 10{sup 9} pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of {sup 99m}TcO{sub 4}{sup -} (1.85 MBq). An additional two rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS underwent {sup 99m}TcO{sub 4}{sup -} scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of {sup 99m}TcO{sub 4}{sup -} and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by {sup 99m}TcO{sub 4}{sup -} scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of {sup 99m}TcO{sub 4}{sup -} was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that {sup 99m}TcO{sub 4}{sup -} scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in